JPH05126426A - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator

Info

Publication number
JPH05126426A
JPH05126426A JP28994391A JP28994391A JPH05126426A JP H05126426 A JPH05126426 A JP H05126426A JP 28994391 A JP28994391 A JP 28994391A JP 28994391 A JP28994391 A JP 28994391A JP H05126426 A JPH05126426 A JP H05126426A
Authority
JP
Japan
Prior art keywords
tube
heat
compressor
heat exchanger
gaseous refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28994391A
Other languages
Japanese (ja)
Inventor
Michihiro Kurokawa
通広 黒河
Masato Osumi
正人 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28994391A priority Critical patent/JPH05126426A/en
Publication of JPH05126426A publication Critical patent/JPH05126426A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Abstract

PURPOSE:To increase the heat-releasing efficiency of a gaseous refrigerant and improve the refrigerating capacity by a method wherein gaseous refrigerant discharged from a compressor is sent into a vortex tube through a tube of small diameter and in a tangential direction and into a cold heat accumulator as it spirals along the inner wall of the vortex tube. CONSTITUTION:A precooling heat exchange device 11 is connected to the outlet side of a compressor 8 and to the outlet side of the precooling heat exchange device a cold heat accumulator 13 in part designed to act as a precooling heat exchanger 12, a cold-end heat exchanger 15. and a pulse tube 16 are connected. After releasing compression heat from a high temperature end part 17 in the function of a heat-releasing heat exchanger, the apparatus conveys heat to a buffer tank 18 through an orifice valve 19. In such a cryogenic refrigerator the precooling heat exchange device 11 is provided with a vortex tube 20 in which the main tube 21 has a first tube 22 of small diameter projecting in a direction tangential to the circumferential wall of the main tube and has it connected to the compressor 8; on the other hand, the precooling heat exchange device 11 is provided with a vortex tube 20 from which a second tube 23 of small diameter projects through an end of the main tube 21 and is connected to the cold heat accumulator 13; gaseous refrigerant is conveyed into the cold heat accumulator 13 as it spirals so that the heat-releasing effect of the gaseous refrigerant relative to the vortex tube 20 can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パルスチューブを使用
して低温端熱交換器に100〜20K(−173〜25
3℃)の極低温を発生し、この極低温を各種赤外線セン
サーや高温超伝導ディバイス等の冷却に利用する極低温
冷凍機に関する。
BACKGROUND OF THE INVENTION The present invention relates to a low temperature end heat exchanger using a pulse tube at 100 to 20K (-173 to 25K).
The present invention relates to a cryogenic refrigerator that generates a cryogenic temperature (3 ° C.) and uses the cryogenic temperature for cooling various infrared sensors and high temperature superconducting devices.

【0002】[0002]

【従来の技術】本発明に先行する特開平1−11467
0号公報に記載された従来の極低温冷凍機では、図3に
示すように、コンプレッサー1を順次、予冷用熱交換器
2、蓄冷器3、低温端熱交換器4、パルスチューブ5、
オリフィス弁6及びバッファータンク7に配管接続し、
圧縮過程においてコンプレッサー1で圧縮したガス状冷
媒を、予冷用熱交換器2及び蓄冷器3を通る間に冷却し
てパルスチューブ5に流入しこのパルスチューブ5の残
留冷媒を圧縮してその圧縮熱を高温端部5aで放熱し、
更にオリフィス弁6を通る間に断熱膨張により冷却して
バッファータンク7に流入し、その後膨張過程において
コンプレッサー1を吸引動作することで前記バッファー
タンク7のガス状冷媒を、復帰移動してパルスチューブ
5内で断熱膨張し更に低温化して低温端熱交換器4及び
蓄冷器3を冷却しコンプレッサー1に帰還させ、斯る往
復移動サイクルを繰り返すことにより、低温端熱交換器
4に極低温を得ている。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 1-116767 prior to the present invention
In the conventional cryogenic refrigerator described in Japanese Patent No. 0, as shown in FIG. 3, the compressor 1 is sequentially arranged in the precooling heat exchanger 2, the regenerator 3, the low temperature end heat exchanger 4, the pulse tube 5,
Pipe connection to the orifice valve 6 and the buffer tank 7,
During the compression process, the gaseous refrigerant compressed by the compressor 1 is cooled while passing through the pre-cooling heat exchanger 2 and the regenerator 3 and flows into the pulse tube 5 to compress the residual refrigerant in the pulse tube 5 and compress it. Radiates heat at the high temperature end 5a,
Further, while passing through the orifice valve 6, it is cooled by adiabatic expansion and flows into the buffer tank 7, and then the compressor 1 is sucked in the expansion process to return and move the gaseous refrigerant in the buffer tank 7 to the pulse tube 5. Adiabatic expansion is performed in the interior to further lower the temperature, the low temperature end heat exchanger 4 and the regenerator 3 are cooled and returned to the compressor 1, and the reciprocating cycle is repeated to obtain an extremely low temperature in the low temperature end heat exchanger 4. There is.

【0003】しかしながらこの種従来の極低温冷凍機で
は、前記高温端部5aや前記予冷用熱交換器2について
は水で冷却しているだけでありその放熱機能が不充分の
ため冷凍能力を充分にアップできない等の欠点がある。
However, in this type of conventional cryogenic refrigerator, the high temperature end portion 5a and the precooling heat exchanger 2 are simply cooled with water, and the heat dissipation function is insufficient, so that the refrigerating capacity is sufficient. There are drawbacks such as not being able to upgrade.

【0004】[0004]

【発明が解決しようとする課題】本発明は前述の欠点を
解消し、冷凍能力の高い極低温冷凍機を提供するもので
ある。
The present invention solves the above-mentioned drawbacks and provides a cryogenic refrigerator having a high refrigerating capacity.

【0005】[0005]

【課題を解決するための手段】本発明は、コンプレッサ
ーを順次、予冷用熱交換装置、蓄冷器、低温端熱交換
器、パルスチューブ及びバッファータンクに配管接続
し、前記バッファータンクと前記コンプレッサーとの間
で、ガス状冷媒を往復移動させることにより、前記低温
端熱交換器を極低温に冷却してなるものであって、前記
予冷用熱交換装置にボルテックスチューブを備え、この
ボルテックスチューブの周壁に接線方向で突出形成した
第1の細管を前記コンプレッサーに連通し、このボルテ
ックスチューブの端部の中心部に突出形成した第2の細
管を前記蓄冷器に連通してなるものである。
According to the present invention, a compressor is sequentially connected to a pre-cooling heat exchange device, a regenerator, a low temperature end heat exchanger, a pulse tube and a buffer tank by piping to connect the buffer tank and the compressor. In between, by moving the gaseous refrigerant back and forth, the low temperature end heat exchanger is cooled to an extremely low temperature, the pre-cooling heat exchange device is equipped with a vortex tube, the peripheral wall of this vortex tube The first thin tube projecting in the tangential direction is communicated with the compressor, and the second thin tube projecting in the center of the end of the vortex tube is communicated with the regenerator.

【0006】[0006]

【作用】本発明によれば、コンプレッサーで圧縮された
ガス状冷媒は、第1の細管からボルテックスチューブに
接線方向で流入するため遠心力によってチューブの周壁
に沿って回転しその間に圧縮熱を充分に周壁に放熱して
からこのチューブの中心部に至りその後第2の細管から
蓄冷器に送られるようになり、よって、前記ボルテック
スチューブに対するガス状冷媒の放熱効率が向上し、そ
の分だけ、パルスチューブ冷凍機の冷凍能力が高まる。
According to the present invention, since the gaseous refrigerant compressed by the compressor flows tangentially from the first thin tube into the vortex tube, it is rotated by the centrifugal force along the peripheral wall of the tube and the heat of compression is sufficiently supplied during the rotation. After radiating heat to the peripheral wall, it reaches the central part of this tube and is then sent from the second thin tube to the regenerator. Therefore, the heat dissipation efficiency of the gaseous refrigerant to the vortex tube is improved, and the pulse is correspondingly increased. The freezing capacity of the tube refrigerator is increased.

【0007】[0007]

【実施例】次に本発明の一実施例について説明する。Next, an embodiment of the present invention will be described.

【0008】8はコンプレッサーで、シリンダー9の内
部に往復動型のピストン10を収納している。11はコ
ンプレッサー8に配管接続した予冷用熱交換装置で、そ
の詳細は後述する。12は予冷用熱交換装置11に配管
接続した予冷系熱交換器、13は予冷系熱交換器12を
その一部に備えた蓄冷器で、鉛や銅等からなる蓄冷材1
4を収納している。15は蓄冷器14に配管接続した低
温端熱交換器、16は低温端熱交換器15に配管接続し
たステンレス鋼製のパルスチューブで、圧縮過程で発生
した圧縮熱を放熱用熱交換器としての高温端部17から
放熱する。18はバッファータンクで、パルスチューブ
16から押し出された圧縮過程時のガス状冷媒をオリフ
ィス弁19にて断熱膨張させ更に冷却して流入させる。
Reference numeral 8 is a compressor, and a reciprocating piston 10 is housed inside a cylinder 9. Reference numeral 11 is a heat exchanger for pre-cooling which is connected to the compressor 8 by piping, the details of which will be described later. Reference numeral 12 is a pre-cooling heat exchanger pipe-connected to the pre-cooling heat exchanger 11, 13 is a regenerator having a pre-cooling heat exchanger 12 as a part thereof, and is a regenerator material 1 made of lead, copper or the like.
Holds 4. Reference numeral 15 is a low temperature end heat exchanger pipe-connected to the regenerator 14, 16 is a stainless steel pulse tube connected to the low temperature end heat exchanger 15, and the compression heat generated in the compression process is used as a heat radiating heat exchanger. Heat is radiated from the high temperature end portion 17. Reference numeral 18 denotes a buffer tank which adiabatically expands the gaseous refrigerant extruded from the pulse tube 16 during the compression process by the orifice valve 19 to further cool and inflow.

【0009】而して前記予冷用熱交換装置11は、ボル
テックスチューブ20を備えている。このボルテックス
チューブ20は、図2(a)(b)(bはaのb−b線
断面図)に示すように構成され、その主管21の周壁に
接線方向で突出形成した第1の細管22を前記コンプレ
ッサー8に連通し、前記主管21の端部の中心部に突出
形成した第2の細管23を前記蓄冷器13に連通してあ
る。このボルテックスチューブ20によれば、コンプレ
ッサー8で圧縮されたガス状冷媒は、第1の細管22か
らこのボルテックスチューブ20に接線方向で流入する
ため遠心力によってチューブ20の周壁に沿って回転し
その間に圧縮熱を充分に周壁に放熱してからこのチュー
ブ20の中心部に至りその軸方向の第2の細管23から
蓄冷器13に送られるようになり、よって、このボルテ
ックスチューブ20に対するガス状冷媒の放熱の良好化
分だけ、予冷用熱交換装置11の放熱効率が高まる。
The heat exchanger 11 for precooling is equipped with a vortex tube 20. The vortex tube 20 is configured as shown in FIGS. 2 (a) and 2 (b) (b is a sectional view taken along the line bb of a), and the first thin tube 22 is formed on the peripheral wall of the main tube 21 so as to project in the tangential direction. Is communicated with the compressor 8, and a second thin tube 23 formed to project at the center of the end of the main tube 21 is communicated with the regenerator 13. According to this vortex tube 20, the gaseous refrigerant compressed by the compressor 8 flows into the vortex tube 20 from the first thin tube 22 in a tangential direction, so that it is rotated along the peripheral wall of the tube 20 by centrifugal force, and in the meantime. After the compression heat is sufficiently radiated to the peripheral wall, it reaches the central portion of the tube 20 and is sent to the regenerator 13 from the second thin tube 23 in the axial direction thereof. Therefore, the gaseous refrigerant to the vortex tube 20 is The heat dissipation efficiency of the pre-cooling heat exchange device 11 is increased by the amount of improved heat dissipation.

【0010】更に前記予冷用熱交換装置11は、冷媒流
調整手段24を備えている。この冷媒流調整手段24
は、前記ボルテックスチューブ20の第1の細管22を
第1連結管25でコンプレッサー8に連結し、この第1
連結管25の途中個所を第2連結管26で前記主管21
の端部の第3の細管27に連結すると共に、この第2連
結管26に順次、第1弁体28、予冷補助熱交換器29
及び第2弁体30を介設してある。第1弁体28と第2
弁体30とは、制御装置(図示しない)により電気信号
で自動開閉し、圧縮過程においては第1弁体28が閉
成、第2弁体30が開成状態となり、これにより、コン
プレッサー8の圧縮冷媒を第1の細管22からボルテッ
クスチューブ20に導入しその一部を開成状態の第2弁
体30を通して予冷用補助熱交換器29に押し込んで放
熱させると共に、膨張過程においては反対に第2弁体3
0が閉成、第1弁体28が開成状態となり、これによ
り、予冷用補助熱交換器29の放熱後の冷媒を第2連結
管26内で吸引膨張して冷却しながら第1連結管25の
復帰主流冷媒と合流させてコンプレッサー8に帰還させ
るように機能する。
Further, the precooling heat exchange device 11 is provided with a refrigerant flow adjusting means 24. This refrigerant flow adjusting means 24
Connects the first thin tube 22 of the vortex tube 20 to the compressor 8 with a first connecting tube 25.
A second connecting pipe 26 is provided at an intermediate point of the connecting pipe 25 to connect the main pipe 21.
Is connected to the third thin pipe 27 at the end of the first pipe 28 and the precooling auxiliary heat exchanger 29 are sequentially connected to the second connecting pipe 26.
And the second valve body 30 is interposed. First valve body 28 and second
The valve body 30 is automatically opened / closed by an electric signal by a control device (not shown), and the first valve body 28 is closed and the second valve body 30 is opened in the compression process, whereby the compressor 8 is compressed. The refrigerant is introduced from the first thin tube 22 into the vortex tube 20, and a part of the refrigerant is pushed into the precooling auxiliary heat exchanger 29 through the opened second valve body 30 to radiate heat. Body 3
0 is closed and the first valve body 28 is opened, whereby the refrigerant after heat dissipation from the pre-cooling auxiliary heat exchanger 29 is sucked and expanded in the second connecting pipe 26 and cooled to cool the first connecting pipe 25. It returns to the compressor 8 by merging with the mainstream refrigerant.

【0011】前記極低温冷凍機では、圧縮過程において
コンプレッサー8を圧縮動作させると、圧縮冷媒はその
圧縮熱を予冷用熱交換装置11、放熱用熱交換器12及
び蓄冷器13にて放熱してパルスチューブ16に流入し
このパルスチューブ16の残留冷媒を圧縮してこの圧縮
熱を高温端部17から放熱し更にオリフィス弁19を通
って断熱膨張により冷却してバッファータンク18に流
入する。その後膨張過程においてコンプレッサー8を吸
引動作させると、ガス状冷媒は前記バッファータンク1
8から高速で復帰移動してパルスチューブ16内で断熱
膨張して更に低温化して低温端熱交換器15及び蓄冷器
13を冷却しコンプレッサー8に戻る。斯る往復移動サ
イクルを繰り返すことにより、低温端熱交換器15に1
00〜20K(−173〜253℃)の極低温が得られ
るようになる。
In the cryogenic refrigerator, when the compressor 8 is compressed during the compression process, the compressed refrigerant radiates the compression heat by the pre-cooling heat exchange device 11, the heat radiation heat exchanger 12 and the regenerator 13. The refrigerant flowing in the pulse tube 16 is compressed, the residual refrigerant in the pulse tube 16 is compressed, and the heat of compression is radiated from the high temperature end portion 17 and further cooled by adiabatic expansion through the orifice valve 19 to flow into the buffer tank 18. After that, when the compressor 8 is sucked in the expansion process, the gaseous refrigerant is discharged into the buffer tank 1
Then, the low temperature end heat exchanger 15 and the regenerator 13 are cooled and returned to the compressor 8. By repeating such a reciprocating movement cycle, the low temperature end heat exchanger 15 is
An extremely low temperature of 00 to 20K (-173 to 253 ° C) can be obtained.

【0012】また、前記極低温冷凍機では、前記圧縮過
程においてコンプレッサー8で圧縮されたガス状冷媒
は、第1の細管22からボルテックスチューブ20に接
線方向で流入するため遠心力によってチューブ20の周
壁に沿って旋回しその間に圧縮熱を充分に周壁に放熱し
てからこのチューブ20の中心部に至りその軸方向の第
2の細管23から蓄冷器13に送られるようになり、よ
って、このボルテックスチューブ20に対するガス状冷
媒の放熱効率を向上でき、また予冷用熱交換装置11に
ついては前記ボルテックスチューブ20の他に予冷補助
熱交換器29においても放熱できるようになり、よっ
て、前記予冷用熱交換装置11の放熱能力のアップ分だ
けパルスチューブ冷凍機の冷凍能力が高まり、確実に6
0K以下の極低温を低温端熱交換器15で発生できるよ
うになる。
In the cryogenic refrigerator, the gaseous refrigerant compressed by the compressor 8 in the compression process flows from the first thin tube 22 into the vortex tube 20 in the tangential direction, so that the centrifugal force causes centrifugal force to the peripheral wall of the tube 20. It swirls along and the compression heat is sufficiently radiated to the peripheral wall in the meantime, and reaches the central portion of the tube 20 and is sent from the second thin tube 23 in the axial direction to the regenerator 13. Therefore, this vortex The heat dissipation efficiency of the gaseous refrigerant to the tube 20 can be improved, and the precooling heat exchanger 11 can also radiate heat in the precooling auxiliary heat exchanger 29 in addition to the vortex tube 20. As the heat dissipation capacity of the device 11 is increased, the refrigeration capacity of the pulse tube refrigerator is increased to ensure 6
The cryogenic temperature of 0 K or less can be generated in the low temperature end heat exchanger 15.

【0013】[0013]

【発明の効果】本発明は以上のように構成したから、コ
ンプレッサーで圧縮されたガス状冷媒は、第1の細管か
らボルテックスチューブに接線方向で流入するため遠心
力によってチューブの周壁に沿って旋回しその間に圧縮
熱を充分に周壁に放熱してからこのチューブの中心部に
至り第2の細管から蓄冷器に送られるようになり、よっ
て、前記ボルテックスチューブに対するガス状冷媒の放
熱効率が向上し、その向上分だけ、パルスチューブ冷凍
機の冷凍能力を高めることができる。
Since the present invention is configured as described above, the gaseous refrigerant compressed by the compressor flows tangentially from the first thin tube into the vortex tube, so that it is swirled along the peripheral wall of the tube by centrifugal force. During that time, the compression heat is sufficiently radiated to the peripheral wall and then reaches the central portion of the tube to be sent to the regenerator from the second thin tube. Therefore, the heat dissipation efficiency of the gaseous refrigerant to the vortex tube is improved. The refrigerating capacity of the pulse tube refrigerator can be increased by that amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】同実施例の要部の構成図である。FIG. 2 is a configuration diagram of a main part of the embodiment.

【図3】従来例の構成図である。FIG. 3 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

8 コンプレッサー 11 予冷用熱交換装置 13 蓄冷器 15 低温端熱交換器 16 パルスチューブ 18 バッファータンク 20 ボルテックスチューブ 22 第1の細管 23 第2の細管 8 Compressor 11 Heat exchanger for pre-cooling 13 Regenerator 15 Low temperature end heat exchanger 16 Pulse tube 18 Buffer tank 20 Vortex tube 22 First thin tube 23 Second thin tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサーを順次、予冷用熱交換装
置、蓄冷器、低温端熱交換器、パルスチューブ及びバッ
ファータンクに配管接続し、前記バッファータンクと前
記コンプレッサーとの間で、ガス状冷媒を往復移動させ
ることにより、前記低温端熱交換器を極低温に冷却して
なるものであって、 前記予冷用熱交換装置にボルテックスチューブを備え、
このボルテックスチューブの周壁に接線方向で突出形成
した第1の細管を前記コンプレッサーに連通し、このボ
ルテックスチューブの端部の中心部に突出形成した第2
の細管を前記蓄冷器に連通したことを特徴とする極低温
冷凍機。
1. A compressor is sequentially connected to a pre-cooling heat exchanger, a regenerator, a low temperature end heat exchanger, a pulse tube and a buffer tank, and a gaseous refrigerant is reciprocated between the buffer tank and the compressor. By moving, the low-temperature end heat exchanger is cooled to an extremely low temperature, the pre-cooling heat exchange device comprises a vortex tube,
The first thin tube projecting in the tangential direction on the peripheral wall of the vortex tube communicates with the compressor, and the second thin tube projecting at the center of the end of the vortex tube.
A cryogenic refrigerator characterized in that the thin tube of (1) is communicated with the regenerator.
JP28994391A 1991-11-06 1991-11-06 Cryogenic refrigerator Pending JPH05126426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28994391A JPH05126426A (en) 1991-11-06 1991-11-06 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28994391A JPH05126426A (en) 1991-11-06 1991-11-06 Cryogenic refrigerator

Publications (1)

Publication Number Publication Date
JPH05126426A true JPH05126426A (en) 1993-05-21

Family

ID=17749749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28994391A Pending JPH05126426A (en) 1991-11-06 1991-11-06 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPH05126426A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250086B1 (en) 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
US6389818B2 (en) 2000-03-03 2002-05-21 Vortex Aircon, Inc. Method and apparatus for increasing the efficiency of a refrigeration system
US6430937B2 (en) 2000-03-03 2002-08-13 Vai Holdings, Llc Vortex generator to recover performance loss of a refrigeration system
KR100752326B1 (en) * 2006-08-29 2007-08-29 재단법인 포항산업과학연구원 Cryocooler using both tem and vortex tube
CN103851818A (en) * 2014-02-24 2014-06-11 浙江海洋学院 Novel vortex refrigerating tube device
CN105008821A (en) * 2013-01-11 2015-10-28 住友(Shi)美国低温研究有限公司 MRI cool down apparatus
KR20170143028A (en) * 2015-06-03 2017-12-28 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 A gas equilibrium engine with a buffer
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250086B1 (en) 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
US6389818B2 (en) 2000-03-03 2002-05-21 Vortex Aircon, Inc. Method and apparatus for increasing the efficiency of a refrigeration system
US6425249B1 (en) 2000-03-03 2002-07-30 Vai Holdings, Llc High efficiency refrigeration system
US6430937B2 (en) 2000-03-03 2002-08-13 Vai Holdings, Llc Vortex generator to recover performance loss of a refrigeration system
KR100752326B1 (en) * 2006-08-29 2007-08-29 재단법인 포항산업과학연구원 Cryocooler using both tem and vortex tube
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration
CN105008821A (en) * 2013-01-11 2015-10-28 住友(Shi)美国低温研究有限公司 MRI cool down apparatus
US9897350B2 (en) 2013-01-11 2018-02-20 Sumitomo (Shi) Cryogenics Of America Inc. MRI cool down apparatus
CN103851818A (en) * 2014-02-24 2014-06-11 浙江海洋学院 Novel vortex refrigerating tube device
KR20170143028A (en) * 2015-06-03 2017-12-28 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 A gas equilibrium engine with a buffer
US11137181B2 (en) 2015-06-03 2021-10-05 Sumitomo (Shi) Cryogenic Of America, Inc. Gas balanced engine with buffer

Similar Documents

Publication Publication Date Title
CA2152527A1 (en) Cooling system employing a primary high pressure closed refrigeration loop and a secondary refrigeration loop
WO2006009790A3 (en) Integrated heat exchanger for use in a refrigeration system
KR101025348B1 (en) Pulse tube refrigeration system
JP3702964B2 (en) Multistage low temperature refrigerator
JPH05126426A (en) Cryogenic refrigerator
JPS60117061A (en) Condenser of evaporation and outflow of liquid refrigerant
JP2000055488A (en) Refrigerating device
US4825667A (en) Cryogenic cooling system
JP2003503672A (en) High efficiency modular refrigeration cooler with floating piston expander
JP2734893B2 (en) Cryogenic refrigerator
JP2003194428A (en) Cooling device
JP2697476B2 (en) Cryogenic refrigerator heat exchanger
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
JP2877592B2 (en) Cryogenic refrigeration equipment
JPH0996453A (en) Cryogenic refrigerator
JP2723342B2 (en) Cryogenic refrigerator
JPH04225755A (en) Cryogenic refrigerating device
JP3278973B2 (en) Cryogenic refrigerator
JPH03194364A (en) Cryostatic freezer
JP3109243B2 (en) Cryogenic refrigerator
JPH10141792A (en) Vortex tube refrigerating machine
JP3589434B2 (en) Cryogenic refrigeration equipment
JP2504016Y2 (en) Cryogenic refrigerator
JPH04324073A (en) Cryogenic refrigerating plant
JPH0643646Y2 (en) Refrigerator flow path