JPH0643646Y2 - Refrigerator flow path - Google Patents

Refrigerator flow path

Info

Publication number
JPH0643646Y2
JPH0643646Y2 JP1986012028U JP1202886U JPH0643646Y2 JP H0643646 Y2 JPH0643646 Y2 JP H0643646Y2 JP 1986012028 U JP1986012028 U JP 1986012028U JP 1202886 U JP1202886 U JP 1202886U JP H0643646 Y2 JPH0643646 Y2 JP H0643646Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
passage
refrigerant
refrigerator
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986012028U
Other languages
Japanese (ja)
Other versions
JPS62124453U (en
Inventor
龍夫 井上
嘉宏 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP1986012028U priority Critical patent/JPH0643646Y2/en
Publication of JPS62124453U publication Critical patent/JPS62124453U/ja
Application granted granted Critical
Publication of JPH0643646Y2 publication Critical patent/JPH0643646Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は、冷凍装置の流路に関するものであり、更に詳
しくは、蓄冷型冷凍機(蓄冷器を構成要素の一とするギ
フオード・マクマホン・サイクル型,ソルベイ・サイク
ル型,スターリング・サイクル型の冷凍機)を用いた冷
凍装置の流路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a flow path of a refrigerating device, and more specifically, to a regenerator (a regenerator is one of the components. The present invention relates to a flow path of a refrigerating device using a Gifode McMahon cycle type, a Solvay cycle type, and a Stirling cycle type refrigerator.

(従来の技術) 此の種の冷凍装置は、例えば超伝導量子干渉計(SQUI
D)、核磁気共鳴コンピユータ断層撮影装置(NMR-CT)
の部品を冷却するために用いられるが、これらの装置
は、冷凍機自身から発生する機械振動・電気雑音を極度
に嫌うので、従来の冷凍装置においては、被冷却体を冷
却する寒冷部を、冷凍機から離して設置していた。
(Prior Art) This type of refrigeration system is, for example, a superconducting quantum interferometer (SQUI
D), Nuclear Magnetic Resonance Computer Tomography (NMR-CT)
Although these devices are extremely disliked by mechanical vibration and electrical noise generated from the refrigerator itself, in the conventional refrigeration device, a cold part for cooling the cooled object is used. It was installed away from the refrigerator.

しかして、此の種の冷凍装置においては、圧縮機から冷
凍機側に吐出された冷媒は、冷凍機によつて冷やされ、
寒冷部にて被冷却体を冷却したのち、圧縮機に帰還され
るが、冷凍効率を高める為、圧縮機から吐出された冷媒
と、ジユール・トムソン弁にて減圧・降温され、圧縮機
へ帰還される冷媒とを、熱交換するようになつている。
However, in this type of refrigerating apparatus, the refrigerant discharged from the compressor to the refrigerator side is cooled by the refrigerator,
After cooling the object to be cooled in the cold section, it is returned to the compressor, but in order to improve the refrigeration efficiency, the refrigerant discharged from the compressor and the depressurized and lowered temperature by the Jewry Thomson valve are returned to the compressor. It exchanges heat with the generated refrigerant.

(考案が解決しようとする問題点) ところが、従来の此の種の冷凍装置においては、ジユー
ル・トムソン弁を寒冷部側に設けていたので、冷媒がジ
ユール・トムソン弁を通過する際、急減な圧力変化が生
じ、これが為に、減圧後の冷媒の圧力が不安定となつた
り、被冷却体に振動を伝えるという不具合があつた。
(Problems to be solved by the invention) However, in the conventional refrigerating apparatus of this kind, since the Gyur-Thomson valve was provided on the cold side, when the refrigerant passed through the Gyur-Thomson valve, there was a sudden decrease. A pressure change occurs, which causes instability in the pressure of the refrigerant after depressurization and transmission of vibration to the cooled object.

それ故に、本考案は、かかる不具合を除去することを、
技術的課題とするものである。
Therefore, the present invention aims to eliminate such defects.
This is a technical issue.

〔考案の構成〕[Constitution of device]

(問題点を解決するための手段) 上記技術的課題を解決するために、本考案において講じ
た技術手段は、圧縮機、冷媒が互に対向的に流れる第1
通路及び第2通路を備えた熱交換器,冷却部を備えた冷
凍機、並びに、前記熱交換器及び前記冷凍機を収容する
本体とは離隔的に配設された寒冷部を有し、前記圧縮機
の吐出口から吐出された冷媒が、前記熱交換器の第1通
路を通過した後、若しくは、前記熱交換器の第1通路及
び前記冷凍機の冷却部を通過した後、トランスファ管を
通過して前記寒冷部を冷却して前記本体側に帰還し、そ
の後前記冷凍機の冷却部及び前記熱交換器の第2通路を
介して前記圧縮機の吸入口に帰還するようにしてなる冷
凍装置の流路において、前記冷媒が、前記寒冷部を通過
した後前記熱交換器の第2通路を通過する前に、前記冷
媒をして、前記本体内に配設したジュール・トムソン弁
を通過せしめるようにしてなる、冷凍装置の流路であ
る。
(Means for Solving the Problems) In order to solve the above technical problems, the technical means taken in the present invention is the first means in which a compressor and a refrigerant flow in opposition to each other.
A heat exchanger having a passage and a second passage, a refrigerator having a cooling unit, and a cooling unit arranged at a distance from the heat exchanger and the main body accommodating the refrigerator, After the refrigerant discharged from the discharge port of the compressor passes through the first passage of the heat exchanger or after passing through the first passage of the heat exchanger and the cooling section of the refrigerator, the transfer pipe is Refrigeration which passes through to cool the cold section and return to the main body side, and then return to the suction port of the compressor through the cooling section of the refrigerator and the second passage of the heat exchanger. In the flow path of the device, the refrigerant passes through the Joule-Thomson valve disposed in the main body after passing through the cold section and before passing through the second passage of the heat exchanger. This is a flow path of the refrigeration system, which is designed to be weakened.

(作用) したがつて、冷媒ジユール・トムソン弁を通過すると
き、急減な圧力変化が生じても、ジユール・トムソン弁
と寒冷部とが離隔しているので、冷却に供される前の冷
媒の圧力変動や被冷却体の振動惹起を生じせしめるもの
ではなく、従来技術の不具合を解消することができる。
(Effect) Therefore, even when a sudden pressure change occurs when the refrigerant passes through the Gyur-Thomson valve, the Gyur-Thomson valve and the cold part are separated from each other. It does not cause pressure fluctuations or vibrations of the object to be cooled, and can solve the problems of the prior art.

(実施例) 以下、本考案の一実施例を添付図面にもとづいて説明す
る。第1図において、圧縮機10の吐出口10aから吐出さ
れる比較的高圧の冷媒(ヘリウム,窒素,アルゴン,そ
の他のガス,もしくは、これらの混合ガス)が、配管11
を介して、第1熱交換器12の第1通過12aに供給され、
第1通路12aを通過する冷媒は、第2通路12bを通つて、
圧縮機10の吸入口10b方向に流れる低温の冷媒と熱交換
して、降温される。第1熱交換器12の第1通路12aを出
た冷媒は、トランスフア管13を通つて、本体14から離隔
して配置せられた寒冷発生部15に取り付けられた被冷却
体16を包囲する熱放射遮断部17を冷却したのち、トラン
スフア管18を通つて本体14側に帰り、本体14内に配設さ
れた冷凍機19の第1冷凍部19aにて冷却されるようにな
つている。
(Embodiment) An embodiment of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, a relatively high-pressure refrigerant (helium, nitrogen, argon, other gas, or mixed gas thereof) discharged from the discharge port 10a of the compressor 10 is connected to the pipe 11
Is supplied to the first passage 12a of the first heat exchanger 12 via
The refrigerant passing through the first passage 12a passes through the second passage 12b,
The temperature of the compressor 10 is lowered by exchanging heat with the low-temperature refrigerant flowing toward the suction port 10b of the compressor 10. The refrigerant flowing out of the first passage 12a of the first heat exchanger 12 passes through the transfer pipe 13 and surrounds the cooled body 16 attached to the cold generating portion 15 arranged apart from the main body 14. After cooling the heat radiation blocking section 17, it returns to the main body 14 side through the transfer pipe 18, and is cooled by the first freezing section 19a of the refrigerator 19 arranged in the main body 14. .

冷凍機19の第1冷却部19aにて冷却された冷媒は、第2
熱交換器20の第1通路20aを通過する際、第2通路20bを
通過する冷媒と熱交換して降温され、冷凍機19の第2冷
却部19bにて冷却されるようになつている。ここで冷却
された冷媒は、トランスフア管21を通つて寒冷部15に送
られ、寒冷部15に配設された被冷却体16を冷却しての
ち、トランスフア管24を通つて、本体14側に帰つて来る
ようになつている。
The refrigerant cooled in the first cooling unit 19a of the refrigerator 19 is the second
When passing through the first passage 20a of the heat exchanger 20, the heat is exchanged with the refrigerant passing through the second passage 20b to lower the temperature, and the second cooling unit 19b of the refrigerator 19 cools the heat. The refrigerant cooled here is sent to the cold section 15 through the transfer tube 21, cools the cooled object 16 disposed in the cold section 15, and then passes through the transfer tube 24 to the main body 14 They are coming back to their side.

しかして、本体14側に帰つた冷媒は、ジユール・トムソ
ン弁22にて、減圧、降温された後、前述したように、第
2熱交換器20及び第1熱交換器12bにて、冷媒と熱交換
しながら室温近くまで昇温され、圧縮機10の吸入口10b
に帰還される。
Then, the refrigerant returned to the main body 14 side is decompressed and cooled by the Jouille-Thomson valve 22, and then, as described above, in the second heat exchanger 20 and the first heat exchanger 12b, is replaced with the refrigerant. While exchanging heat, the temperature is raised to near room temperature, and the suction port 10b of the compressor 10
Be returned to.

また、トランスフア管21,24の断熱部23には、トランス
フア管13が通つており、トランスフア管13を通過する冷
媒により断熱部23が冷却されるようになつている。かく
して、トランスフア管21,24内に熱侵入することに伴な
う冷媒の寒冷搬送効率の低下を防いでいる。
Further, the transfer pipe 13 is passed through the heat insulating parts 23 of the transfer pipes 21, 24, and the heat insulating part 23 is cooled by the refrigerant passing through the transfer pipe 13. In this way, it is possible to prevent the cold transfer efficiency of the refrigerant from being lowered due to the heat entering the transfer tubes 21 and 24.

尚、第1熱交換器12,トランスフア管13及び第1冷却部9
aを除去し、圧縮機10の吐出口10aおよび吸入口10bを、
第2熱交換器20の第1通路20aおよび第2通路20bに、夫
々連結してもよい。更に、第2冷却部19bでの冷媒の冷
却は、寒冷部15の冷却の後に行なつてもよい。
The first heat exchanger 12, the transfer pipe 13, and the first cooling unit 9
a is removed, and the discharge port 10a and the suction port 10b of the compressor 10 are
The first passage 20a and the second passage 20b of the second heat exchanger 20 may be connected to each other. Further, the cooling of the refrigerant in the second cooling section 19b may be performed after the cooling of the cold section 15.

〔考案の効果〕[Effect of device]

前記した技術的課題を解決するためには、第2図に示す
ように、冷媒をトランスフア管21を介して寒冷部15へ送
る前に、ジユール・トムソン弁22をして減圧・降温せし
めてもよい。しかし、この手段だと、トランスフア管21
を通る冷媒は、比較的低圧となつており、圧力損失を避
ける為に、比較的高い冷媒に比べて、管の径を大きくせ
ざるを得なくなる。そうすると、 管内表面の増加に伴ない、トランスフア管内への熱侵
入が大きくなる。
In order to solve the above-mentioned technical problem, as shown in FIG. 2, before sending the refrigerant to the cold section 15 through the transfer pipe 21, the Jour Thomson valve 22 is used to reduce and reduce the temperature. Good. However, with this method, the transfer tube 21
The refrigerant passing through has a relatively low pressure, and in order to avoid pressure loss, the diameter of the pipe must be made larger than that of a relatively high refrigerant. Then, as the inner surface of the pipe increases, the heat penetration into the transfer pipe increases.

トランスフア管の熱容量に伴ない、予冷時間が増加す
る。
The precooling time increases with the heat capacity of the transfer tube.

という不具合が生ずる。The problem occurs.

これに反して、本考案においては、冷媒は、トランスフ
ア管を介して冷凍機側に帰つて来てからシユール・トム
ソン弁を通過するので、トランスフア管内を流れる冷媒
は、比較的高圧のままであり、前述した不具合が生ずる
ことはない。
On the contrary, in the present invention, since the refrigerant returns to the refrigerator side through the transfer pipe and then passes through the Shell-Thomson valve, the refrigerant flowing in the transfer pipe remains at a relatively high pressure. Therefore, the above-mentioned problems do not occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係る冷凍装置の流路の一実施例の略図
および第2図は従来技術の不具合を解消する手段の一例
の略図である。 10……圧縮機,15……寒冷部,19……冷凍機,19b……冷却
部,20……熱交換器,20a……第1通路,20b……第2通路,
21,24……トランスフア管,22……ジユール・トムソン弁
FIG. 1 is a schematic view of an embodiment of a flow path of a refrigerating apparatus according to the present invention, and FIG. 2 is a schematic view of an example of means for solving the problems of the prior art. 10 …… Compressor, 15 …… Cold section, 19 …… Refrigerator, 19b …… Cooling section, 20 …… Heat exchanger, 20a …… First passage, 20b …… Second passage,
21,24 ...... Transfer tube, 22 ...... Jule Thomson valve

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】圧縮機、冷媒が互に対向的に流れる第1通
路及び第2通路を備えた熱交換器,冷却部を備えた冷凍
機、並びに、前記熱交換器及び前記冷凍機を収容する本
体とは離隔的に配設された寒冷部を有し、前記圧縮機の
吐出口から吐出された冷媒が、前記熱交換器の第1通路
を通過した後、若しくは、前記熱交換器の第1通路及び
前記冷凍機の冷却部を通過した後、トランスファ管を通
過して前記寒冷部を冷却して前記本体側に帰還し、その
後前記冷凍機の冷却部及び前記熱交換器の第2通路を介
して前記圧縮機の吸入口に帰還するようにしてなる冷凍
装置の流路において、前記冷媒が、前記寒冷部を通過し
た後前記熱交換器の第2通路を通過する前に、前記冷媒
をして、前記本体内に配設したジュール・トムソン弁を
通過せしめるようにしてなる、冷凍装置の流路。
1. A compressor, a heat exchanger having a first passage and a second passage through which a refrigerant flows in a mutually opposing manner, a refrigerator having a cooling unit, and a housing for the heat exchanger and the refrigerator. The refrigerant discharged from the discharge port of the compressor has a cold portion disposed separately from the main body of the heat exchanger after passing through the first passage of the heat exchanger, or of the heat exchanger. After passing through the first passage and the cooling section of the refrigerator, the cooling section is cooled by passing through the transfer pipe and returned to the main body side, and then the cooling section of the refrigerator and the second section of the heat exchanger. In the flow path of the refrigerating device configured to return to the suction port of the compressor via a passage, the refrigerant, after passing through the cold section, and before passing through the second passage of the heat exchanger, Allow the refrigerant to pass through the Joule-Thomson valve located inside the body And comprising, a flow path of the refrigeration system.
JP1986012028U 1986-01-30 1986-01-30 Refrigerator flow path Expired - Lifetime JPH0643646Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986012028U JPH0643646Y2 (en) 1986-01-30 1986-01-30 Refrigerator flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986012028U JPH0643646Y2 (en) 1986-01-30 1986-01-30 Refrigerator flow path

Publications (2)

Publication Number Publication Date
JPS62124453U JPS62124453U (en) 1987-08-07
JPH0643646Y2 true JPH0643646Y2 (en) 1994-11-14

Family

ID=30799776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986012028U Expired - Lifetime JPH0643646Y2 (en) 1986-01-30 1986-01-30 Refrigerator flow path

Country Status (1)

Country Link
JP (1) JPH0643646Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114167A (en) * 1974-07-26 1976-02-04 Chizuo Kato Kinzokukanno kakohoho

Also Published As

Publication number Publication date
JPS62124453U (en) 1987-08-07

Similar Documents

Publication Publication Date Title
CN100347871C (en) Low-temp. cooling system with cooling and normal operation mode
JPS5880474A (en) Cryogenic cooling device
JPH0444202A (en) Cryostat with liquefying refrigerating machine
CA1237061A (en) Apparatus for condensing liquid cryogen boil-off
JP3702964B2 (en) Multistage low temperature refrigerator
CN100430672C (en) Pulse tube refrigerator
JPH08222429A (en) Device for cooling to extremely low temperature
JPH0515764A (en) Vacuum container with cooling device
Longsworth et al. 80 K closed-cycle throttle refrigerator
US11649989B2 (en) Heat station for cooling a circulating cryogen
JPH0643646Y2 (en) Refrigerator flow path
GB2397367A (en) A pulse tube refrigerator
JPS63302259A (en) Cryogenic generator
JPH0586050B2 (en)
JPH09113052A (en) Freezer
JP2666664B2 (en) Method and apparatus for producing superfluid helium
GB2149901A (en) Low temperature containers
JPS5951155B2 (en) superconducting device
JPH05332655A (en) Mounting device for cryogenic refrigerator
JPH0640773U (en) Helium liquefaction / refrigeration equipment
JPH0349019B2 (en)
JPH04350484A (en) Cryogenic refrigerating plant
JP2707624B2 (en) Cryogenic refrigeration equipment
JPH11337203A (en) Cryogenic temperature refrigerator
JPS62261868A (en) Helium cooling device