JPH08222429A - Device for cooling to extremely low temperature - Google Patents

Device for cooling to extremely low temperature

Info

Publication number
JPH08222429A
JPH08222429A JP7023700A JP2370095A JPH08222429A JP H08222429 A JPH08222429 A JP H08222429A JP 7023700 A JP7023700 A JP 7023700A JP 2370095 A JP2370095 A JP 2370095A JP H08222429 A JPH08222429 A JP H08222429A
Authority
JP
Japan
Prior art keywords
cooling
magnet
superconducting magnet
cooled
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7023700A
Other languages
Japanese (ja)
Inventor
Hisashi Isokami
尚志 磯上
Norihide Saho
典英 佐保
Takeo Nemoto
武夫 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7023700A priority Critical patent/JPH08222429A/en
Publication of JPH08222429A publication Critical patent/JPH08222429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE: To provide a device which has a simple structure since it does not necessitate a liquid helium tank and almost uniformly cools even a relatively large magnet. CONSTITUTION: An expander 1 is used for a cooling device and low temperature helium gas, which is generated by a refrigerator provided with at least one expansion valve, is permitted to flow in cooling piping 16c. A superconducting magnet is cooled by bringing the cooling piping 16c into thermal contact with the magnetic frame 25 of the superconducting magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極低温装置に係り、特
に、冷却手段の冷却部と被冷却体とが熱的に接触した直
冷式の極低温装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic device, and more particularly, to a direct cooling type cryogenic device in which a cooling portion of a cooling means and an object to be cooled are in thermal contact with each other.

【0002】[0002]

【従来の技術】超電導マグネットを使用した核磁気共鳴
診断装置,熱物性測定装置,ジョセフソン素子や各種セ
ンサ等の各種電子機器や、高真空,高排気速度のクライ
オポンプ,超電導マグネットを使用した電子加速器や放
射光発生装置,超電導マグネットを利用した磁気分離装
置等の冷媒には、極低温の液体ヘリウムを使用する。
2. Description of the Related Art Nuclear magnetic resonance diagnostic equipment using superconducting magnets, thermophysical property measuring equipment, various electronic equipment such as Josephson elements and various sensors, cryopumps of high vacuum and high pumping speed, and electronic equipment using superconducting magnets. Cryogenic liquid helium is used as the coolant for the accelerator, the synchrotron radiation generator, and the magnetic separator using a superconducting magnet.

【0003】一般にこれらの被冷却装置には、冷媒であ
る液体ヘリウムを溜めておく液体ヘリウムタンクを内装
し、さらに液体ヘリウムはわずかな熱で蒸発し、かつ、
高価であるため、蒸発したヘリウムガスを凝縮する冷凍
装置を装着する。
Generally, these devices to be cooled are equipped with a liquid helium tank for storing liquid helium as a refrigerant, and the liquid helium evaporates with a slight amount of heat, and
Since it is expensive, a refrigeration unit that condenses the evaporated helium gas is installed.

【0004】しかし、液体ヘリウムを使用する冷却方法
は、取り扱いに特別な技能を持つ人が必要であり、さら
に液体ヘリウムタンクを設置するため装置が複雑かつ大
規模となってしまう。
However, the cooling method using liquid helium requires a person with special skill in handling, and since the liquid helium tank is installed, the apparatus becomes complicated and large-scale.

【0005】そこで、ギフォード・マクマホン(G・
M)式往復動形冷凍機を超電導磁石と熱的に接続させ
て、伝導により超電導磁石の冷却を行う直冷式超電導磁
石システムの例が、例えば、特開平6−132567 号公報に
示されている。
Then, Gifford McMahon (G.
An example of a direct cooling type superconducting magnet system in which a M) type reciprocating refrigerator is thermally connected to a superconducting magnet to cool the superconducting magnet by conduction is shown in, for example, Japanese Patent Laid-Open No. 6-132567. There is.

【0006】本装置では二段式G・M冷凍機を用いて、
超電導磁石及び高温超電導材料で構成した電流リードを
冷凍機の冷却ステージと熱的に接触させて冷却する構造
としている。
This apparatus uses a two-stage G / M refrigerator,
It has a structure in which a current lead composed of a superconducting magnet and a high temperature superconducting material is brought into thermal contact with a cooling stage of a refrigerator to cool it.

【0007】[0007]

【発明が解決しようとする課題】上記に示した従来例で
は、超電導マグネットを冷却するための液体ヘリウムタ
ンクが不必要であるため、装置が簡単であるが、核磁気
共鳴装置や磁気分離装置等ボア径が1m近くあるいは1
m以上にもなるような磁石を冷却する場合には以下のよ
うな問題点があるため、実用化が困難であった。磁石が
大きくなると、冷凍機が接続している冷却部と磁石の先
端部との間の熱抵抗が大きくなり、磁石内部で温度差が
つくため、冷却部から離れた位置では温度が高くなり、
超電導状態が破壊する危険性がある。また、温度差を小
さくするには、超電導磁石の周囲に熱伝導率の良い銅や
アルミニウム製の断面積の大きな冷却板を設置する必要
があり、重量及びサイズが大きくなってしまう。さら
に、磁石の規模とともに大きくせざるをえない支持体や
電流リードからの侵入熱が増加するために比較的小規模
の冷凍能力しか発生できないG・M冷凍機では冷凍能力
不足となり、超電導状態を保つには冷凍機を複数個設置
する必要が有り、重量及びサイズが大きくなるとともに
初期コスト及び消費電力等のランニングコストが大きく
なる。このため、G・M冷凍機を用いた直冷式超電導磁
石は比較的小さなサイズに限定され、それより大きな磁
石を冷却する場合は液体ヘリウムを使用しなければなら
なかった。
In the above-mentioned conventional example, the liquid helium tank for cooling the superconducting magnet is unnecessary, so that the apparatus is simple, but the nuclear magnetic resonance apparatus, the magnetic separation apparatus, etc. Bore diameter is close to 1m or 1
In the case of cooling a magnet having a length of m or more, there are the following problems, and it has been difficult to put it into practical use. When the magnet becomes large, the thermal resistance between the cooling part to which the refrigerator is connected and the tip of the magnet becomes large, and the temperature difference inside the magnet causes the temperature to rise at a position distant from the cooling part.
There is a risk that the superconducting state will be destroyed. Further, in order to reduce the temperature difference, it is necessary to install a cooling plate made of copper or aluminum having a good thermal conductivity and having a large cross-sectional area around the superconducting magnet, resulting in an increase in weight and size. In addition, the inflow of heat from the support and the current leads, which must be increased with the size of the magnet, increases, so that the G / M refrigerator that can generate only a relatively small refrigerating capacity has insufficient refrigerating capacity, resulting in a superconducting state. In order to keep it, it is necessary to install a plurality of refrigerators, the weight and size increase, and the initial cost and running costs such as power consumption increase. Therefore, the direct cooling type superconducting magnet using the G / M refrigerator is limited to a relatively small size, and liquid helium must be used to cool a larger magnet.

【0008】[0008]

【課題を解決するための手段】予冷用の寒冷発生回路に
G・M冷凍機を用い、熱交換器と絞り弁及び配管で構成
されるジュール・トムソン(J・T)液化回路とを組み
合わせた(GM+JT)液化機の冷凍サイクルに、熱交換
器と絞り弁とを1つずつ追設することにより低温のヘリ
ウムガスを発生させ、前記低温ヘリウムガスが流れる配
管を超電導磁石と熱的に接続することによって、上記問
題点は解決できる。
[Means for Solving the Problems] A GM refrigerator is used in a cold generation circuit for precooling, and a heat exchanger, a Joule-Thomson (JT) liquefaction circuit composed of a throttle valve and piping are combined. (GM + JT) A low-temperature helium gas is generated by adding one heat exchanger and one throttle valve to the refrigeration cycle of the liquefier, and the pipe through which the low-temperature helium gas flows is thermally connected to the superconducting magnet. By doing so, the above problems can be solved.

【0009】[0009]

【作用】冷凍機で発生させた低温のヘリウムガスが流れ
る配管を、超電導マグネット等の被冷却体に熱接触させ
ることにより、冷却を行う。これにより、液体ヘリウム
タンク無しで冷却を行うことができる。また、冷却部を
流れるヘリウムガスを超臨界ヘリウムにした場合には、
強制冷却により、レイノルズ数が大きい範囲では従来構
造の液体ヘリウムによる浸漬冷却の場合より冷却能力に
優れる。また、低温ヘリウムガスの配管は、被冷却体周
囲に熱接触させることができるため、被冷却体を均一に
冷却することが可能である。さらにヘリウムガスの流量
を増加させることによって、冷凍能力を増加させること
も容易である。
Operation: Cooling is performed by bringing a pipe through which low-temperature helium gas generated in a refrigerator flows into thermal contact with an object to be cooled such as a superconducting magnet. Thereby, cooling can be performed without using the liquid helium tank. When the helium gas flowing through the cooling section is supercritical helium,
Due to the forced cooling, in the range where the Reynolds number is large, the cooling capacity is superior to that of the immersion cooling with the conventional structure of liquid helium. Further, since the low temperature helium gas pipe can be brought into thermal contact with the periphery of the object to be cooled, it is possible to uniformly cool the object to be cooled. It is also easy to increase the refrigerating capacity by increasing the flow rate of helium gas.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1及び図2によ
り説明する。予冷用の寒冷発生回路に配置した寒冷発生
機1は、例えば、ギフォード・マクマホン膨張機で構成
される。ヘリウム圧縮機ユニット2の高圧ガスは寒冷発
生機1中に流入して内部で断熱膨張し、第一ステージ
3,第二ステージ4でそれぞれ温度約40K,15Kの
寒冷を発生する。膨張後のガスは、再び、圧縮機ユニッ
ト2に戻る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The cold generator 1 arranged in the cold generating circuit for precooling is composed of, for example, a Gifford-McMahon expander. The high-pressure gas of the helium compressor unit 2 flows into the cold generator 1 and undergoes adiabatic expansion inside to generate cold at temperatures of about 40K and 15K at the first stage 3 and the second stage 4, respectively. The expanded gas returns to the compressor unit 2 again.

【0011】一方、予冷用の寒冷発生回路と隔離したJ
・T回路の圧縮機ユニット5で約1.6MPa に加圧さ
れた高圧のヘリウムガスは、高圧配管16aを通り第一
熱交換器6,第二熱交換器7,第一吸着器8,第三熱交
換器9,第四熱交換器10,第二吸着器11,第五熱交
換器12,第三吸着器13に入る。第三吸着器13出口
後の高圧流路内には第一J・T弁14が存在し、ここで
圧力約0.8MPaまで膨張する。さらに第六熱交換器
15を通り、温度約5Kの低温のヘリウムガスとなっ
て、第二J・T弁17で約0.12MPa まで膨張して
一部が液化し、温度約4.4Kのヘリウムの二相流とな
って冷却部配管16cに流れ込む。
On the other hand, J separated from the cold generation circuit for pre-cooling
The high-pressure helium gas pressurized to about 1.6 MPa in the compressor unit 5 of the T circuit passes through the high-pressure pipe 16a and the first heat exchanger 6, the second heat exchanger 7, the first adsorber 8, the It enters the three heat exchanger 9, the fourth heat exchanger 10, the second adsorber 11, the fifth heat exchanger 12, and the third adsorber 13. There is a first JT valve 14 in the high pressure passage after the outlet of the third adsorber 13, and the pressure is expanded to about 0.8 MPa here. Further, it passes through the sixth heat exchanger 15 and becomes low temperature helium gas having a temperature of about 5K, which is expanded to about 0.12MPa by the second JT valve 17 and partly liquefied, and the temperature of about 4.4K is increased. It becomes a two-phase flow of helium and flows into the cooling section pipe 16c.

【0012】超電導磁石は、図2に示すように、超電導
コイル24の周囲に冷却板の役目を行う磁石枠25が、
熱的に接触しており、この磁石枠25と冷却手段の冷却
部配管16cとが、溶接等により熱的に接触している。
銅、アルミニウムあるいはステンレス等の金属でできた
磁石枠25と超電導コイル24との間には、カプトン,
FRP,ベークライト等の薄い絶縁膜を挟みこむことに
よって絶縁を行っている。冷却部配管16cは、超電導
磁石の周方向にほぼ一周接続されており、周方向にあま
り温度差がつかない構造となっている。
In the superconducting magnet, as shown in FIG. 2, a magnet frame 25 serving as a cooling plate is provided around the superconducting coil 24.
The magnet frame 25 and the cooling part pipe 16c of the cooling means are in thermal contact with each other by welding or the like.
Between the magnet frame 25 made of metal such as copper, aluminum or stainless steel and the superconducting coil 24, Kapton,
Insulation is performed by sandwiching a thin insulating film such as FRP or Bakelite. The cooling section pipe 16c is connected to the superconducting magnet in a circumferential direction substantially once, and has a structure in which there is not much temperature difference in the circumferential direction.

【0013】冷却部配管16cを流れて、外部からの熱
侵入による熱負荷を受けて蒸発したヘリウムガスは、そ
のまま低圧配管16b内に流入し、第六熱交換器15,
第四吸着器18,第五熱交換器12,第五吸着器19,
第三熱交換器9,第六吸着器20,第二熱交換器6,第
七吸着器21を通り、ほぼ常温となって、低圧配管16
bより圧縮機ユニット5に戻る。
The helium gas which has flowed through the cooling section pipe 16c and has been subjected to a heat load due to heat intrusion from the outside and evaporated has flowed into the low pressure pipe 16b as it is, and the sixth heat exchanger 15,
The fourth adsorber 18, the fifth heat exchanger 12, the fifth adsorber 19,
After passing through the third heat exchanger 9, the sixth adsorber 20, the second heat exchanger 6 and the seventh adsorber 21, the temperature becomes almost room temperature, and the low pressure pipe 16
Return to compressor unit 5 from b.

【0014】クライオスッタト22内は真空断熱され、
極低温部は液体窒素槽あるいは、寒冷発生回路の第一ス
テージ3によって冷却された熱シールド板23によっ
て、外部からの輻射熱を遮蔽している。各吸着器ではヘ
リウムガス中の不純物を除去する。
The inside of the cryostat 22 is vacuum-insulated,
The cryogenic part shields radiant heat from the outside by a liquid nitrogen tank or a heat shield plate 23 cooled by the first stage 3 of the cold generation circuit. Each adsorber removes impurities in the helium gas.

【0015】本実施例では、二つのJ・T弁を持つ冷凍
機の構造を示したが、第一J・T弁14及び第六熱交換
器15が無い構造でも、運転条件によっては効率が少し
悪くはなるが、効果は同様である。
In this embodiment, the structure of the refrigerator having two J / T valves is shown. However, even if the structure does not have the first J / T valve 14 and the sixth heat exchanger 15, the efficiency may be reduced depending on the operating conditions. A little worse, but the effect is similar.

【0016】本実施例では、図2に示したような磁石の
冷却方法を示したが、別の冷却方式を図3,図4及び図
5に示す。
In this embodiment, the cooling method of the magnet as shown in FIG. 2 is shown, but another cooling method is shown in FIGS. 3, 4 and 5.

【0017】図3は、冷却配管16cを超電導磁石の両
端に設置した構造であり、本構造により、磁石の軸方向
に温度差がつくことを抑制している。
FIG. 3 shows a structure in which the cooling pipes 16c are installed at both ends of the superconducting magnet, and this structure suppresses a temperature difference in the axial direction of the magnet.

【0018】図4は、冷却配管16cを超電導磁石の周
囲に巻き付けて熱接触させることにより、より大きな磁
石の場合でも良好に冷却可能な構造である。核磁気共鳴
装置や磁気分離装置の場合には超電導コイル内部に常温
のボアが必要でありそのボア径は大きいほど装置として
望ましい。そのため、本構造では、超電導磁石の外側に
冷却配管16cを設置している。超電導コイル内に大き
なボアを必要としないような装置では、コイル内側に冷
却配管16cを設置しても効果は同様である。
FIG. 4 shows a structure in which the cooling pipe 16c is wound around the superconducting magnet and brought into thermal contact with the superconducting magnet so that even a larger magnet can be cooled well. In the case of a nuclear magnetic resonance apparatus or a magnetic separation apparatus, a bore at room temperature is required inside the superconducting coil, and the larger the bore diameter, the more desirable the apparatus. Therefore, in this structure, the cooling pipe 16c is installed outside the superconducting magnet. In a device that does not require a large bore in the superconducting coil, the same effect can be obtained by installing the cooling pipe 16c inside the coil.

【0019】また、図2から図4に示した超電導磁石の
冷却構造例では、冷却板となる磁石枠25を超電導コイ
ル24の周囲全体に設置したが、一部だけに設置した場
合でも効果は同様である。
Further, in the cooling structure example of the superconducting magnet shown in FIGS. 2 to 4, the magnet frame 25 serving as a cooling plate is installed all around the superconducting coil 24, but the effect is obtained even if it is installed only partially. It is the same.

【0020】図5は、冷却配管16cと冷却板である磁
石枠25との接続部を示している。
FIG. 5 shows a connecting portion between the cooling pipe 16c and the magnet frame 25 which is a cooling plate.

【0021】冷却配管16cは銅またはアルミニウム等
の高熱伝導率部材でつくられた配管接続部27に溶接さ
れている。配管接続部27と磁石枠25とは、インジウ
ム28を介してビス29により固定されている。本構造
により、冷却配管16cを超電導磁石の磁石枠25に直
接溶接する必要が無く、溶接時に超電導コイル24に伝
わる熱によって超電導コイル24に異常な歪みや応力が
かかる危険性がなくなる。
The cooling pipe 16c is welded to the pipe connecting portion 27 made of a high thermal conductivity member such as copper or aluminum. The pipe connecting portion 27 and the magnet frame 25 are fixed by screws 29 via indium 28. With this structure, it is not necessary to directly weld the cooling pipe 16c to the magnet frame 25 of the superconducting magnet, and there is no risk of abnormal heat or stress being applied to the superconducting coil 24 by the heat transferred to the superconducting coil 24 during welding.

【0022】図6に本発明の第二実施例である冷凍機付
き超電導磁石の構造を示す。本構造は図1に示した装置
の構造とほとんど同じであるが、冷凍機の液化回路の極
低温部の構造が異なっている。すなわち、冷凍機の高圧
配管16aの第一J・T弁までは同構造であるが、その
後は、熱交換器の代わりに液体ヘリウムタンク26中の
液体ヘリウムと熱交換することによって冷却され、低温
のヘリウムガスとなって冷却配管16cの中を流れる。
超臨界ヘリウムガスが流れる冷却配管16cで超電導磁
石を冷却した後、第二J・T弁17で再び膨張する。す
なわち、超電導磁石から熱負荷を受けて若干温度上昇し
たヘリウムガスは、第二J・T弁17で約0.12MP
a まで膨張して液化し、液体ヘリウムタンク26に溜
まる。液化しなかったヘリウムガス及び高圧配管と熱交
換することで得た熱量によって蒸発したヘリウムガス
は、低圧配管16bに流れ、以下、図1に示した実施例
と同様に吸着器18,19,20及び熱交換器12,
9,6を通過して圧縮器ユニット5に戻る。本構造で
は、冷却配管16cを流れる低温のヘリウムガスは、圧
力約0.5MPa,温度約4.5Kの超臨界ヘリウムであ
り、レイノルズ数が高い条件においては、大気圧下の温
度4.2K の液体ヘリウムによる冷却の場合より高い熱
伝達率を示し、冷却能力が優れている。
FIG. 6 shows the structure of a superconducting magnet with a refrigerator according to a second embodiment of the present invention. This structure is almost the same as the structure of the device shown in FIG. 1, but the structure of the cryogenic part of the liquefaction circuit of the refrigerator is different. That is, the structure up to the first J · T valve of the high-pressure pipe 16a of the refrigerator has the same structure, but thereafter, it is cooled by exchanging heat with the liquid helium in the liquid helium tank 26 instead of the heat exchanger, so that the temperature is low. Helium gas of the above flows into the cooling pipe 16c.
After the superconducting magnet is cooled by the cooling pipe 16c through which the supercritical helium gas flows, the superconducting magnet is expanded again by the second JT valve 17. That is, the helium gas, which has been slightly heated due to the heat load from the superconducting magnet, is about 0.12MP in the second JT valve 17.
It expands to a and liquefies and collects in the liquid helium tank 26. Helium gas that has not been liquefied and helium gas that has evaporated due to the amount of heat obtained by exchanging heat with the high-pressure pipes flow to the low-pressure pipes 16b, and thereafter, as in the embodiment shown in FIG. And the heat exchanger 12,
It passes through 9 and 6 and returns to the compressor unit 5. In this structure, the low-temperature helium gas flowing through the cooling pipe 16c is supercritical helium with a pressure of about 0.5 MPa and a temperature of about 4.5 K, and under a condition of high Reynolds number, the temperature is 4.2 K under atmospheric pressure. It has a higher heat transfer rate than the case of cooling with liquid helium and has excellent cooling capacity.

【0023】図7に本発明の第三実施例を示す。本実施
例も図1に示した構造とほとんど同じであるが、冷凍機
の液化回路の極低温部の構造が異なっている。本構造で
は、第一J・T弁14で高圧ヘリウムガスを膨張させた
後、第六熱交換器15で冷却した約0.5MPa ,約5
Kの低温の超臨界ヘリウムガスを冷却配管16cに流し
て冷却を行う。熱負荷を受けて若干温度上昇したヘリウ
ムガスを第二J・T弁17で約0.15MPa まで膨張
させることによってさらに温度を低下させて、場合によ
っては二相流となって第六熱交換器15の低圧流路側に
流れ込む。以下、低圧流路16bは図1に示した実施例
と同様である。本構造により、液体ヘリウムタンクを必
要としないため図6に示した構造より簡素な構造で超臨
界のヘリウムガスを用いた冷却システムを作ることがで
きる。
FIG. 7 shows a third embodiment of the present invention. This embodiment is also almost the same as the structure shown in FIG. 1, but the structure of the cryogenic part of the liquefaction circuit of the refrigerator is different. In this structure, after the high pressure helium gas was expanded by the first JT valve 14, it was cooled by the sixth heat exchanger 15 at about 0.5 MPa, about 5 MPa.
A low-temperature supercritical helium gas of K is caused to flow through the cooling pipe 16c for cooling. The second J · T valve 17 expands the helium gas, which has been slightly heated due to the heat load, to about 0.15 MPa to further reduce the temperature, and in some cases, becomes a two-phase flow to form the sixth heat exchanger. It flows into the low-pressure channel side of 15. Hereinafter, the low-pressure flow path 16b is similar to that of the embodiment shown in FIG. With this structure, since a liquid helium tank is not necessary, a cooling system using supercritical helium gas can be made with a simpler structure than the structure shown in FIG.

【0024】図6及び図7に示した実施例では圧縮機ユ
ニット5の高圧吐出圧力を1.6MPaより小さくした
場合、例えば1.0MPa 程度の場合でも効果は同様で
あり、第一J・T弁あるいは第一J・T弁と第六熱交換
器を省いた構造でも効率は悪くはなるが同様の効果が得
られる。
In the embodiment shown in FIGS. 6 and 7, the effect is the same when the high-pressure discharge pressure of the compressor unit 5 is smaller than 1.6 MPa, for example, about 1.0 MPa. Even if the valve or the structure in which the first J / T valve and the sixth heat exchanger are omitted, the efficiency is deteriorated but the same effect can be obtained.

【0025】図6及び図7に示した実施例では、超電導
コイル24の周囲に設置した磁石枠25に冷却配管16
cを熱接触させる例を示したが、例えば、バンドル導体
等の内部冷却導体によって構成され超臨界ヘリウムが入
る入口及び出口が備えられた超電導コイルに、冷凍装置
によって発生した超臨界ヘリウムガスが流れる冷却配管
16cが接続された場合でも、効果は同様であり、この
場合は、上記実施例の場合と比較して装置の構造は複雑
にはなるが、冷却能力は著しく向上する。
In the embodiment shown in FIGS. 6 and 7, the cooling pipe 16 is attached to the magnet frame 25 installed around the superconducting coil 24.
Although the example in which c is brought into thermal contact is shown, for example, the supercritical helium gas generated by the refrigerating device flows in the superconducting coil which is composed of an internal cooling conductor such as a bundle conductor and is provided with an inlet and an outlet into which supercritical helium enters. Even if the cooling pipe 16c is connected, the effect is the same. In this case, the structure of the apparatus becomes complicated as compared with the case of the above embodiment, but the cooling capacity is remarkably improved.

【0026】図8に本発明の第四の実施例を示す。本構
造は図1に示した構造とほとんど同じであり、第二J・
T弁で約0.002MPa まで膨張させて超流動ヘリウ
ムをつくる。超流動のヘリウムはそのまま低圧配管16
bに入って圧縮機ユニット5まで戻って行くが、極低温
部で分岐した冷却配管16c中のヘリウムは超流動ヘリ
ウムになる。このため、超電導磁石を冷却するのは、熱
伝導率が大きな超流動ヘリウムであり、磁石に温度差が
つくことを防ぐのに適した構造となっている。極低温部
で配管を分岐させて冷却配管16cを独立させているこ
とによって、冷却配管16cの中の圧力は位置によらず
一定であり、外部から受ける熱負荷は超流動ヘリウムの
高熱伝導率のために全体に伝わるため、冷却配管16c
中の超流動ヘリウムの温度は位置によらず一定である。
したがって、本構造で冷却される磁石内において温度差
はほとんどつかない。さらに約1.8K の超流動ヘリウ
ムで冷却するため、超電導磁石の温度も低く、臨界磁場
や臨界温度を大きくできるため、磁石の強磁場化が可能
であるとともに、冷却安定性が向上する。
FIG. 8 shows a fourth embodiment of the present invention. This structure is almost the same as the structure shown in FIG.
Superfluid helium is produced by expanding it to about 0.002 MPa with the T valve. The superfluid helium is the low-pressure pipe 16 as it is.
Although it enters b and returns to the compressor unit 5, the helium in the cooling pipe 16c branched at the cryogenic portion becomes superfluid helium. Therefore, the superconducting magnet is cooled by superfluid helium, which has a large thermal conductivity, and has a structure suitable for preventing a temperature difference between the magnets. By branching the pipe in the cryogenic part and making the cooling pipe 16c independent, the pressure in the cooling pipe 16c is constant regardless of the position, and the heat load received from the outside is of high thermal conductivity of superfluid helium. Because it is transmitted to the whole, cooling pipe 16c
The temperature of superfluid helium inside is constant regardless of position.
Therefore, there is almost no temperature difference in the magnet cooled by this structure. Further, since the superconducting magnet is cooled with superfluid helium of about 1.8 K, the temperature of the superconducting magnet is low, and the critical magnetic field and the critical temperature can be increased. Therefore, a strong magnetic field of the magnet is possible and cooling stability is improved.

【0027】図9に本発明の第五の実施例を示す。超電
導磁石は磁石を励磁する場合に電流を供給するための電
流リード30を設置する。この電流リード30は、常温
からの伝導伝熱を抑えるために、予冷用寒冷発生機の第
一ステージ3及び第二ステージ4で熱接触させ、さらに
ジュール発熱をなるべく抑えるために、常温と第1ステ
ージ3の間は銅製、第一ステージより極低温側は酸化物
超電導体とする。また、電流リード30と寒冷発生回路
との間には、サファイア,カプトンあるいは窒化アルミ
等の絶縁体を挿入することにより、絶縁を行う。電流リ
ード30の極低温部を磁石外周に設置した磁石枠25あ
るいは冷却配管16cに熱的に接触させることによって
サーマルアンカをとれば、電流リード30から超電導コ
イル24に侵入する伝導伝熱をさらに低減することが可
能である。この場合もサーマルアンカ部に絶縁材を挟む
ことによって絶縁を行う。本実施例の冷凍機は図6の構
造の物を示したが、図1,図7,図8に示した冷凍機の
場合でも効果は同様である。
FIG. 9 shows a fifth embodiment of the present invention. The superconducting magnet is provided with a current lead 30 for supplying an electric current when exciting the magnet. The current lead 30 is brought into thermal contact with the first stage 3 and the second stage 4 of the cold generator for pre-cooling in order to suppress conduction heat transfer from room temperature, and further, in order to suppress Joule heat generation as much as possible, the current lead 30 is kept in contact with the room temperature. The space between the stages 3 is made of copper, and the cryogenic temperature side of the first stage is an oxide superconductor. Insulation is performed by inserting an insulator such as sapphire, Kapton, or aluminum nitride between the current lead 30 and the cold generation circuit. Conducting heat transfer from the current lead 30 to the superconducting coil 24 is further reduced by taking a thermal anchor by thermally contacting the cryogenic portion of the current lead 30 with the magnet frame 25 or the cooling pipe 16c installed on the outer circumference of the magnet. It is possible to In this case as well, insulation is provided by sandwiching an insulating material between the thermal anchor portions. Although the refrigerator of this embodiment has the structure shown in FIG. 6, the same effects are obtained in the refrigerators shown in FIGS. 1, 7, and 8.

【0028】図10に、本発明の第六の実施例を示す。
本実施例においても冷凍機は図6に示したものと同構造
を示しているが、図1,図7,図8に示したものでも効
果は同様である。本実施例では、予冷用の寒冷発生回路
1の第一ステージによって冷却された約50Kの第一熱
シールド板23の他に、第二ステージ4によって約13
Kに冷却される第二熱シールド板32を設置している。
本構造により、超電導磁石に侵入する輻射熱を低減する
ことが可能である。また、超電導磁石が大きい場合に
は、クライオスタット22の常温部分から超電導磁石を
支える支持体が必要となるが、支持体の途中で第一及び
第二熱シールド板によりサーマルアンカをとれば、支持
体から超電導磁石に侵入する伝導伝熱も低減することが
できる。本実施例は、図9に示したように電流リードを
設置した場合でも効果は同様である。
FIG. 10 shows a sixth embodiment of the present invention.
In this embodiment also, the refrigerator has the same structure as that shown in FIG. 6, but the same effects can be obtained with the refrigerators shown in FIGS. 1, 7, and 8. In the present embodiment, in addition to the first heat shield plate 23 of about 50K cooled by the first stage of the cold generation circuit 1 for precooling, about 13 by the second stage 4.
A second heat shield plate 32 that is cooled to K is installed.
With this structure, it is possible to reduce the radiant heat that enters the superconducting magnet. Further, when the superconducting magnet is large, a support for supporting the superconducting magnet from the room temperature portion of the cryostat 22 is required. However, if the thermal anchor is taken by the first and second heat shield plates in the middle of the support, the support can be Therefore, it is possible to reduce the conduction heat transfer that enters the superconducting magnet. The present embodiment has the same effect even when the current lead is installed as shown in FIG.

【0029】図11に本発明の第七の実施例を示す。本
実施例では熱シールド板と冷凍機の高圧配管を熱的に接
触させることによって熱シールド板の冷却を行ってい
る。本実施例では予冷用寒冷発生回路と熱交換を行う上
流側配管と熱シールド板23とを熱接触させているが、
下流側配管を接触させた場合でも効果は同様である。本
構造により、熱シールド板23の大きさが大きく薄い場
合でも熱シールド板23内部で温度差がほとんどつか
ず、超電導磁石に侵入する輻射熱や伝導伝熱を抑制する
ことができる。
FIG. 11 shows a seventh embodiment of the present invention. In this embodiment, the heat shield plate is cooled by bringing the heat shield plate and the high-pressure pipe of the refrigerator into thermal contact with each other. In this embodiment, the pre-cooling cold generation circuit and the upstream side pipe for heat exchange and the heat shield plate 23 are in thermal contact with each other.
The effect is the same even when the downstream side pipes are brought into contact with each other. With this structure, even if the size of the heat shield plate 23 is large and thin, there is almost no temperature difference inside the heat shield plate 23, and it is possible to suppress radiant heat and conductive heat that enter the superconducting magnet.

【0030】以上の実施例では、冷媒の循環駆動手段と
して常温で作動する圧縮機と膨張弁であるJ・T弁とで
構成した例を示したが、低温で作動する圧縮機と膨張弁
とで構成した場合や、ファンにより冷媒を循環させた場
合でも効果は同様である。
In the above embodiment, an example in which the compressor operating at room temperature and the expansion valve J.T valve are used as the circulation driving means for the refrigerant has been shown, but a compressor operating at low temperature and an expansion valve are used. The same effect can be obtained when the above is used or when the refrigerant is circulated by the fan.

【0031】図12に、低温で作動するファンにより冷
媒を循環させた場合の実施例を示す。低温で作動するフ
ァン33は、真空断熱容器(クライオスタット)22中
に挿入され、ファン33により送られるヘリウムガス
は、予冷用寒冷発生回路1の第二ステージ4で約4〜6
Kに冷却される。極低温に冷却されたヘリウムガスは冷
却配管16c内部を通り、超電導磁石の冷却を行う。外
部からの熱負荷を受けて若干温度上昇したヘリウムガス
は再びファン33に戻り回路内を循環する。
FIG. 12 shows an embodiment in which the refrigerant is circulated by a fan operating at a low temperature. The fan 33 operating at a low temperature is inserted into the vacuum heat insulating container (cryostat) 22, and the helium gas sent by the fan 33 is about 4 to 6 in the second stage 4 of the cold generating circuit 1 for precooling.
Cooled to K. The helium gas cooled to an extremely low temperature passes through the inside of the cooling pipe 16c to cool the superconducting magnet. The helium gas, which has been slightly heated by the heat load from the outside, returns to the fan 33 and circulates in the circuit.

【0032】以上、図1から図12までに示した実施例
では、超電導マグネットを被冷却体にした場合について
説明したが、ジョセフソン素子や各種センサ等の各種電
子機器や、高真空,高排気速度のクライオパネルを被冷
却体にしても、効果は同様である。
As described above, in the embodiments shown in FIGS. 1 to 12, the case where the superconducting magnet is used as the cooled object has been described. However, various electronic devices such as Josephson elements and various sensors, high vacuum, high exhaust The effect is the same even when the cryopanel of speed is used as the cooled object.

【0033】なお、実施例では、寒冷発生機にG・Mサ
イクルの膨張機を適用した例で説明したが、ソルベイサ
イクル,スターリングサイクル,ビルマイヤサイクル,
タービン式,クロード式膨張機を適用した冷凍サイクル
やブレイトンサイクルでも同等な効果がある。
In the embodiment, an example in which a G / M cycle expander is applied to a cold generator has been described, but a Solvay cycle, a Stirling cycle, a Villemeier cycle,
The same effect can be obtained in a refrigeration cycle or Brayton cycle using a turbine type or Claude type expander.

【0034】[0034]

【発明の効果】本発明によれば、低温のヘリウムガスが
流れる冷却配管で超電導磁石を冷却することができるた
め、磁石内で温度差がほとんどつかず、大きな超電導磁
石の場合でも液体ヘリウムなしで安定に冷却を行うこと
ができるようになる。
According to the present invention, since the superconducting magnet can be cooled by the cooling pipe through which the low temperature helium gas flows, there is almost no temperature difference in the magnet, and even in the case of a large superconducting magnet, liquid helium is not required. It becomes possible to perform stable cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である冷凍機付き超電導磁石
のブロック図。
FIG. 1 is a block diagram of a superconducting magnet with a refrigerator that is an embodiment of the present invention.

【図2】本発明の実施例の超電導磁石及び冷却配管の説
明図。
FIG. 2 is an explanatory diagram of a superconducting magnet and a cooling pipe according to an embodiment of the present invention.

【図3】本発明の第二実施例の超電導磁石及び冷却配管
の説明図。
FIG. 3 is an explanatory diagram of a superconducting magnet and a cooling pipe according to a second embodiment of the present invention.

【図4】本発明の第三実施例の超電導磁石及び冷却配管
の説明図。
FIG. 4 is an explanatory diagram of a superconducting magnet and a cooling pipe according to a third embodiment of the present invention.

【図5】本発明の実施例の超電導磁石及び冷却配管の接
続部分の説明図。
FIG. 5 is an explanatory diagram of a connecting portion of a superconducting magnet and a cooling pipe according to an embodiment of the present invention.

【図6】本発明の第二実施例の冷凍機付き超電導磁石の
ブロック図。
FIG. 6 is a block diagram of a superconducting magnet with a refrigerator according to a second embodiment of the present invention.

【図7】本発明の第三実施例の冷凍機付き超電導磁石の
ブロック図。
FIG. 7 is a block diagram of a superconducting magnet with a refrigerator according to a third embodiment of the present invention.

【図8】本発明の第四実施例の冷凍機付き超電導磁石の
ブロック図。
FIG. 8 is a block diagram of a superconducting magnet with a refrigerator according to a fourth embodiment of the present invention.

【図9】本発明の第五実施例の冷凍機付き超電導磁石の
ブロック図。
FIG. 9 is a block diagram of a superconducting magnet with a refrigerator according to a fifth embodiment of the present invention.

【図10】本発明の第六実施例の冷凍機付き超電導磁石
のブロック図。
FIG. 10 is a block diagram of a refrigerator-equipped superconducting magnet according to a sixth embodiment of the present invention.

【図11】本発明の第七実施例の冷凍機付き超電導磁石
のブロック図。
FIG. 11 is a block diagram of a superconducting magnet with a refrigerator according to a seventh embodiment of the present invention.

【図12】本発明の第八実施例の冷凍機付き超電導磁石
のブロック図。
FIG. 12 is a block diagram of a superconducting magnet with a refrigerator according to an eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…膨張機、2,5…圧縮機ユニット、6,7,9,1
0,12,15…熱交換器、13,17…J・T弁、1
6c…冷却配管、22…真空容器、23…熱シールド
板、24…超電導コイル、25…磁石枠、26…液体ヘ
リウムタンク。
1 ... Expander, 2, 5 ... Compressor unit, 6, 7, 9, 1
0, 12, 15 ... Heat exchanger, 13, 17 ... J · T valve, 1
6c ... Cooling piping, 22 ... Vacuum container, 23 ... Heat shield plate, 24 ... Superconducting coil, 25 ... Magnet frame, 26 ... Liquid helium tank.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被冷却体と,前記被冷却体を冷却するため
の冷却手段と,前記被冷却体及び前記冷却手段を内装す
る断熱真空容器で構成され、前記被冷却体は前記冷却手
段内を循環する冷媒流路外に位置し、前記被冷却体と前
記冷却手段とが熱的に接触した直冷式の極低温装置にお
いて、前記冷却手段が、予冷用の寒冷発生回路と,循環
する冷媒の流路となる配管と,配管を内蔵した一連の熱
交換器と,冷媒を循環させるための冷媒循環駆動手段と
から成り、低温の冷媒が流れる配管の少なくとも一部
が、前記被冷却体と熱的に接触していることを特徴とす
る極低温装置。
1. A body to be cooled, cooling means for cooling the body to be cooled, and an adiabatic vacuum container containing the body to be cooled and the cooling means, the body to be cooled being in the cooling means. In a direct cooling type cryogenic device, which is located outside the refrigerant flow path for circulating the cooling target and the cooling means is in thermal contact with the cooling means, the cooling means circulates with a cold generation circuit for precooling. At least a part of a pipe through which a low-temperature refrigerant flows is composed of the pipe to be a refrigerant flow path, a series of heat exchangers containing the pipe, and a refrigerant circulation drive means for circulating the refrigerant. A cryogenic device characterized by being in thermal contact with.
JP7023700A 1995-02-13 1995-02-13 Device for cooling to extremely low temperature Pending JPH08222429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023700A JPH08222429A (en) 1995-02-13 1995-02-13 Device for cooling to extremely low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7023700A JPH08222429A (en) 1995-02-13 1995-02-13 Device for cooling to extremely low temperature

Publications (1)

Publication Number Publication Date
JPH08222429A true JPH08222429A (en) 1996-08-30

Family

ID=12117670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023700A Pending JPH08222429A (en) 1995-02-13 1995-02-13 Device for cooling to extremely low temperature

Country Status (1)

Country Link
JP (1) JPH08222429A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301773A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Nmr probe
JP2006128465A (en) * 2004-10-29 2006-05-18 Toshiba Corp Cooling device of superconducting coil
JP2007205709A (en) * 2005-12-22 2007-08-16 Siemens Magnet Technology Ltd Closed-loop pre-cooling method of cryogenically cooled apparatus, and its device
JP2009246231A (en) * 2008-03-31 2009-10-22 Toshiba Corp Cryogenic cooling control apparatus and method of controlling the same
JP2013508259A (en) * 2009-10-26 2013-03-07 コンセホ・スペリオル・デ・インベスティガシオネス・シエンティフィカス(Csic) Helium recovery plant
WO2013080986A1 (en) * 2011-12-01 2013-06-06 株式会社日立製作所 Superconducting electromagnet device, cooling method therefor, and magnetic resonance imaging device
WO2014109941A1 (en) * 2013-01-11 2014-07-17 Sumitomo (Shi) Cryogenics Of America, Inc. Mri cool down apparatus
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device
CN104884878A (en) * 2013-01-03 2015-09-02 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefaction device and corresponding method
JP2015227775A (en) * 2010-05-12 2015-12-17 ブルックス オートメーション インコーポレイテッド System for cryogenic cooling
JP2017215089A (en) * 2016-05-31 2017-12-07 株式会社前川製作所 Cooling device and cooling method
CN110993247A (en) * 2019-12-19 2020-04-10 中国科学院合肥物质科学研究院 T-stage high-field superconducting magnet system for space-propelled ground simulation environment
CN111261361A (en) * 2020-01-19 2020-06-09 中国科学院电工研究所 Temperature control device for conduction cooling high-temperature superconducting magnet
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration
US10699829B2 (en) 2015-09-04 2020-06-30 Tokamak Energy Ltd Cryogenics for HTS magnets
US11137181B2 (en) 2015-06-03 2021-10-05 Sumitomo (Shi) Cryogenic Of America, Inc. Gas balanced engine with buffer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301773A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Nmr probe
JP2006128465A (en) * 2004-10-29 2006-05-18 Toshiba Corp Cooling device of superconducting coil
JP2007205709A (en) * 2005-12-22 2007-08-16 Siemens Magnet Technology Ltd Closed-loop pre-cooling method of cryogenically cooled apparatus, and its device
JP2009246231A (en) * 2008-03-31 2009-10-22 Toshiba Corp Cryogenic cooling control apparatus and method of controlling the same
JP2013508259A (en) * 2009-10-26 2013-03-07 コンセホ・スペリオル・デ・インベスティガシオネス・シエンティフィカス(Csic) Helium recovery plant
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling
US10156386B2 (en) 2010-05-12 2018-12-18 Brooks Automation, Inc. System and method for cryogenic cooling
JP2015227775A (en) * 2010-05-12 2015-12-17 ブルックス オートメーション インコーポレイテッド System for cryogenic cooling
WO2013080986A1 (en) * 2011-12-01 2013-06-06 株式会社日立製作所 Superconducting electromagnet device, cooling method therefor, and magnetic resonance imaging device
US8988176B2 (en) 2011-12-01 2015-03-24 Hitachi, Ltd. Superconducting electromagnet device, cooling method therefor, and magnetic resonance imaging device
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration
CN104884878A (en) * 2013-01-03 2015-09-02 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefaction device and corresponding method
CN104884878B (en) * 2013-01-03 2017-08-11 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefying plant and corresponding method
WO2014109941A1 (en) * 2013-01-11 2014-07-17 Sumitomo (Shi) Cryogenics Of America, Inc. Mri cool down apparatus
JP2016513978A (en) * 2013-01-11 2016-05-19 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッドSumitomo(SHI)Cryogenics of America,Inc. MRI cooling device
CN105008821A (en) * 2013-01-11 2015-10-28 住友(Shi)美国低温研究有限公司 MRI cool down apparatus
US9897350B2 (en) 2013-01-11 2018-02-20 Sumitomo (Shi) Cryogenics Of America Inc. MRI cool down apparatus
DE112014000403B4 (en) 2013-01-11 2018-04-05 Sumitomo (Shi) Cryogenics Of America, Inc. MRI shut cooler
GB2524185A (en) * 2013-01-11 2015-09-16 Sumitomo Shi Cryogenics Am Inc MRI cool down apparatus
GB2524185B (en) * 2013-01-11 2019-04-17 Sumitomo Shi Cryogenics Of America Inc MRI cool down apparatus
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device
US11137181B2 (en) 2015-06-03 2021-10-05 Sumitomo (Shi) Cryogenic Of America, Inc. Gas balanced engine with buffer
US10699829B2 (en) 2015-09-04 2020-06-30 Tokamak Energy Ltd Cryogenics for HTS magnets
JP2017215089A (en) * 2016-05-31 2017-12-07 株式会社前川製作所 Cooling device and cooling method
CN110993247A (en) * 2019-12-19 2020-04-10 中国科学院合肥物质科学研究院 T-stage high-field superconducting magnet system for space-propelled ground simulation environment
CN111261361A (en) * 2020-01-19 2020-06-09 中国科学院电工研究所 Temperature control device for conduction cooling high-temperature superconducting magnet

Similar Documents

Publication Publication Date Title
US6347522B1 (en) Cooling system for HTS machines
Radenbaugh Refrigeration for superconductors
US7474099B2 (en) NMR apparatus with commonly cooled probe head and cryogenic container and method for the operation thereof
EP2562489B1 (en) Cooling system and cooling method
CN100347871C (en) Low-temp. cooling system with cooling and normal operation mode
JPH08222429A (en) Device for cooling to extremely low temperature
EP1586833A2 (en) Cooling apparatus
JPS59122868A (en) Cascade-turbo helium refrigerating liquefier utilizing neon gas
JP4595121B2 (en) Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
JPH0626459A (en) Cryogenic cooling device and cooling method thereon
US6640552B1 (en) Cryogenic superconductor cooling system
US20090275476A1 (en) Cryostat assembly
CA2445686C (en) Multilevel refrigeration for high temperature superconductivity
JPH0515764A (en) Vacuum container with cooling device
EP0937953A1 (en) Refrigerator
JPH10246524A (en) Freezing device
JPH09113052A (en) Freezer
JPH1026427A (en) Cooler
JP2007078310A (en) Cryogenic cooling device
Green Helium refrigeration during the 50 years since the 1968 brookhaven summer study
JPH09106906A (en) Conductive cooling superconducting magnet
JP2014202457A (en) Cooling means and cooling system each provided with heat medium circulating function
WO2024111338A1 (en) Joule-thomson refrigerator
Green Methods of speeding up the cool-down of superconducting magnets that are cooled using Small coolers at temperatures below 30 K
US20170343246A1 (en) Closed cycle cryogen recirculation system and method