JPH10246524A - Freezing device - Google Patents

Freezing device

Info

Publication number
JPH10246524A
JPH10246524A JP5139697A JP5139697A JPH10246524A JP H10246524 A JPH10246524 A JP H10246524A JP 5139697 A JP5139697 A JP 5139697A JP 5139697 A JP5139697 A JP 5139697A JP H10246524 A JPH10246524 A JP H10246524A
Authority
JP
Japan
Prior art keywords
cooling
cooled
pipe
stage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5139697A
Other languages
Japanese (ja)
Inventor
Hisashi Isokami
尚志 磯上
Norihide Saho
典英 佐保
Takeo Nemoto
武夫 根本
Minoru Morita
穣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5139697A priority Critical patent/JPH10246524A/en
Publication of JPH10246524A publication Critical patent/JPH10246524A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a cooling-down time to be shortened by a method wherein a bypass line is arranged between a downstream side of a first stage and a pipe just before member to be cooled, helium gas is flowed at the time of cooling-down and then an entire freezing machine is pre-cooled at a larger portion of freezing capability of a per-cooling expansion machine. SOLUTION: A bypass line 21 having a bypass valve 22 is arranged between a downstream side of a first stage 4 in a pre-cooling cold heat generating circuit and a part just before a cooling pipe 16 for cooling a member 20 to be cooled. At first, a first JT valve 12 is substantially closed and the bypass valve 22 is opened to start a cooling-down operation. Helium gas cooled at a first stage 4 of the pre-cooling expansion machine 1 passes through the bypass line 22 and flows into the pipe 16 for cooling the member to be cooled. Since the cooling pipe 16 and a super-conductive magnet 20 are thermally connected from each other through a magnet frame 19, the super-conductive magnet 20 is cooled with cold heat of helium gas of low temperature. After helium gas of low temperature is discharged out of the cooling pipe 16, the gas flows in an order of a second JT valve 13 and a sixth heat exchanger 11 and these members are cooled by the gas during its flowing stages.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍装置に関する。The present invention relates to a refrigeration system.

【0002】[0002]

【従来の技術】超電導マグネットを使用した核磁気共鳴
診断装置,熱物性測定装置,ジョセフソン素子や各種セ
ンサー等の各種電子機器や、高真空,高排気速度のクラ
イオポンプ,超電導マグネットを使用した電子加速器や
放射光発生装置,超電導マグネットを利用した磁気分離
装置等の冷媒には、極低温の液体ヘリウムを使用する。
2. Description of the Related Art Various electronic devices such as a nuclear magnetic resonance diagnostic device using a superconducting magnet, a thermophysical property measuring device, a Josephson element and various sensors, a cryopump having a high vacuum and a high pumping speed, and an electronic device using a superconducting magnet. Cryogenic liquid helium is used as a refrigerant for accelerators, synchrotron radiation generators, magnetic separators using superconducting magnets, and the like.

【0003】一般にこれらの被冷却装置には、冷媒であ
る液体ヘリウムを溜めておく液体ヘリウムタンクを内装
し、さらに液体ヘリウムはわずかな熱で蒸発し、かつ、
高価であるため、蒸発したヘリウムガスを凝縮する冷凍
装置を装着する。
[0003] Generally, these devices to be cooled are provided with a liquid helium tank for storing liquid helium as a refrigerant, and the liquid helium evaporates with a small amount of heat.
Since it is expensive, a refrigeration unit that condenses the evaporated helium gas is installed.

【0004】この冷凍装置の構造が、例えば、特公平3
−49022号公報に記載されている。これは、三段の予冷
冷凍機と高圧及び低圧配管,複数の熱交換器から成るジ
ュールトムソン液化冷凍機であり、最終熱交換器の高圧
入口、すなわち、予冷膨張機の最低温ステージ下流部と
低圧入口との間にバイパス弁を介装することによって、
クールダウン時間の短縮を図っている。
[0004] The structure of this refrigeration system is, for example, Japanese Patent Publication No.
-49022. This is a Joule-Thomson liquefaction refrigerator consisting of a three-stage pre-cooling refrigerator, high-pressure and low-pressure pipes, and multiple heat exchangers. The high-pressure inlet of the final heat exchanger, that is, the downstream of the lowest temperature stage of the pre-cooling expander, By interposing a bypass valve with the low pressure inlet,
The cool-down time is shortened.

【0005】予冷用膨張機は内部に存在するディスプレ
ーサが、例えば、往復運動することにより、内部に供給
されたヘリウムガスが膨張されるため単独で寒冷を発生
させることができる。これに対して熱交換器は、寒冷発
生源あるいは低温冷媒と温度交換を行うことによりはじ
めて温度低下を行うことが可能となる。したがって、本
公知例の場合、運転し始めて定常運転となるまでに、す
なわち、クールダウン中は、予冷用膨張機は温度が低下
するが、熱交換器群を有する配管の方は予冷膨張機第三
ステージより下側で温度が低下しない。すなわち、最終
熱交換器の温度が下がらなくなる。実際にはこの熱交換
器の非効率分でしか温度低下がおこらないため熱交換器
の温度効率が良ければ良いほどクールダウンの時間はか
かる。そこで前述のバイパス弁を設置することによって
低温ガスを熱交換器低圧側に流し込むことによって熱交
換器のクールダウン時間を早めている。
[0005] In the precooling expander, the helium gas supplied to the inside is expanded, for example, by the reciprocating motion of the displacer inside the precooling expander. On the other hand, the temperature of the heat exchanger can be reduced only by exchanging the temperature with the cold generation source or the low-temperature refrigerant. Therefore, in the case of this known example, the temperature of the pre-cooling expander decreases from the start of operation to the steady-state operation, that is, during the cool down, but the pipe having the heat exchanger group is the pre-cool expander. The temperature does not decrease below the three stages. That is, the temperature of the final heat exchanger does not decrease. Actually, the temperature is reduced only by the inefficiency of the heat exchanger, so that the better the temperature efficiency of the heat exchanger is, the longer it takes to cool down. Therefore, by installing the above-mentioned bypass valve, the cool-down time of the heat exchanger is hastened by flowing the low-temperature gas to the low-pressure side of the heat exchanger.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記に示した
従来例では、バイパス弁によるクールダウンは最終段の
膨張機ステージの冷凍能力を利用して最終熱交換器の温
度を下げるためのものであり、熱容量の小さな最終熱交
換器のみを冷却する場合は本構造でも十分であるが、例
えば冷却部が超電導磁石本体といったような熱容量が比
較的大きなものがくっついている場合には、装置全体の
クールダウン時間は長くなってしまう。
However, in the conventional example described above, the cool-down by the bypass valve is for lowering the temperature of the final heat exchanger by utilizing the refrigerating capacity of the final expander stage. Yes, this structure is sufficient to cool only the final heat exchanger with a small heat capacity.However, if a cooling unit with a relatively large heat capacity such as a superconducting magnet body is attached, The cooldown time will be longer.

【0007】[0007]

【課題を解決するための手段】一般に、冷凍機は熱力学
から考えても理論的に温度が高いほど冷凍能力は高くな
る。つまり、予冷用に装備した複数段膨張機(冷凍機)
は上側のステージほど温度が高く、冷凍能力も大きい。
例えば公知例に示した三段予冷膨張機の場合には、最も
上部にある第一ステージの温度が高く冷凍能力も大き
く、最も下部にある第三ステージの温度が低くて冷凍能
力は小さい。したがって、最も冷凍能力の大きな第一ス
テージの下流部と被冷却体直前配管との間にバイパスラ
インを設け、クールダウン時に、バイパスラインを通し
てヘリウムガスを流せば、予冷膨張機の冷凍能力の大き
な部分で冷凍機全体を予冷することができるため、クー
ルダウン時間が短くなる。さらに、膨張機の各ステージ
の下流部と冷却部との間にバイパスラインを設けておく
ことにより、各バイパス弁の開度を調整することによ
り、効率良くクールダウンを行うことが可能となる。
Generally, the refrigerating capacity of a refrigerator becomes higher as the temperature becomes higher theoretically, even from the viewpoint of thermodynamics. In other words, a multi-stage expander (refrigerator) equipped for pre-cooling
The higher the temperature, the higher the refrigeration capacity of the upper stage.
For example, in the case of the three-stage pre-cooling expander shown in the known example, the temperature of the uppermost first stage is higher and the refrigerating capacity is higher, and the temperature of the lowermost third stage is lower and the refrigerating capacity is lower. Therefore, by providing a bypass line between the downstream part of the first stage having the highest refrigeration capacity and the pipe immediately before the cooled object, and flowing helium gas through the bypass line at the time of cooling down, the refrigeration capacity of the pre-cooling expander is large. Can pre-cool the entire refrigerator, thereby shortening the cool-down time. Furthermore, by providing a bypass line between the downstream part of each stage of the expander and the cooling unit, it is possible to efficiently cool down by adjusting the opening of each bypass valve.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施例を図1に
より説明する。予冷用の寒冷発生回路に配置した寒冷発
生機1は、例えば、二段ギフォード・マクマホン膨張機
(GM膨張機)で構成される。ヘリウム圧縮機ユニット2
の高圧ガスは寒冷発生機1中に流入して内部で断熱膨張
し、第一ステージ3,第二ステージ5でそれぞれ温度約
40K,10Kの寒冷を発生する。膨張後のガスは、再
び、圧縮機ユニット2に戻る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. The cold generator 1 arranged in the cold generating circuit for pre-cooling is, for example, a two-stage Gifford McMahon expander.
(GM expander). Helium compressor unit 2
The high-pressure gas flows into the cold generator 1 and adiabatically expands therein, thereby generating cold at temperatures of about 40K and 10K in the first stage 3 and the second stage 5, respectively. The expanded gas returns to the compressor unit 2 again.

【0009】一方、予冷用の寒冷発生回路と隔離したJ
・T回路の圧縮機ユニット3で約1.6MPa に加圧さ
れた高圧のヘリウムガスは、高圧配管14を通り第一熱
交換器6,第二熱交換器7,第三熱交換器8,第四熱交
換器9,第五熱交換器10に入る。第五熱交換器10出
口後の高圧流路内には第一JT弁12が存在し、ここで
圧力約0.25〜0.8MPaまで膨張する。その後第六
熱交換器11に入り、温度約5Kの超臨界ヘリウムとな
って冷却部配管16に流れ込む。
On the other hand, J isolated from a cold generation circuit for pre-cooling
The high-pressure helium gas pressurized to about 1.6 MPa by the compressor unit 3 of the T circuit passes through the high-pressure pipe 14, the first heat exchanger 6, the second heat exchanger 7, the third heat exchanger 8, The fourth heat exchanger 9 and the fifth heat exchanger 10 are entered. The first JT valve 12 is present in the high-pressure flow path after the fifth heat exchanger 10 outlet, and expands to a pressure of about 0.25 to 0.8 MPa. After that, it enters the sixth heat exchanger 11, becomes supercritical helium at a temperature of about 5K, and flows into the cooling unit piping 16.

【0010】例えば超電導磁石で代表される被冷却体2
0は、冷凍機の冷却配管16と磁石枠19とが熱的に接
続され、冷却配管16中に極低温のヘリウムが流れるこ
とによって冷却される。
[0010] For example, a cooled object 2 represented by a superconducting magnet
At 0, the cooling pipe 16 of the refrigerator is thermally connected to the magnet frame 19, and the cooling pipe 16 is cooled by flowing extremely low temperature helium.

【0011】冷却部配管16を流れて、外部からの熱侵
入による熱負荷を受けて若干温度上昇したヘリウムガス
は、そのまま低圧配管内に流入し、第二JT弁13で圧
力約0.12MPa まで膨張して一部が液化し、第六熱
交換器11に入る。その後、第五熱交換器10,第三熱
交換器8,第一熱交換器6を通り、ほぼ常温となって、
低圧配管15より圧縮機ユニット3に戻る。
The helium gas, which flows through the cooling pipe 16 and slightly rises in temperature due to a heat load caused by heat from the outside, flows into the low-pressure pipe as it is, and reaches a pressure of about 0.12 MPa by the second JT valve 13. It expands and partially liquefies, and enters the sixth heat exchanger 11. After that, it passes through the fifth heat exchanger 10, the third heat exchanger 8, and the first heat exchanger 6, and becomes almost normal temperature.
Return to the compressor unit 3 from the low pressure pipe 15.

【0012】クライオスッタト18内は真空断熱され、
極低温部は液体窒素槽あるいは、寒冷発生回路の第一ス
テージ4によって冷却された熱シールド板17によっ
て、外部からの輻射熱を遮蔽している。
The inside of the cryostat 18 is vacuum insulated,
The cryogenic portion shields radiant heat from the outside by a liquid nitrogen bath or a heat shield plate 17 cooled by the first stage 4 of the cold generation circuit.

【0013】予冷用の寒冷発生回路の第一ステージ4の
下流側と被冷却体20を冷却する冷却配管16直前との
間に、バイパス弁22を持ったバイパスライン21が設
けてある。
A bypass line 21 having a bypass valve 22 is provided between the downstream side of the first stage 4 of the cold generation circuit for pre-cooling and immediately before the cooling pipe 16 for cooling the object 20 to be cooled.

【0014】まず、第一JT弁12をほぼ閉じてバイパ
ス弁22を開けてクールダウンを開始する。予冷膨張機
1の第一ステージ4で冷却されたヘリウムガスは、バイ
パスライン22を通って被冷却体冷却用配管16に流れ
込む。冷却配管16と超電導磁石20とは、磁石枠19
を介して熱的に接続されているため低温のヘリウムガス
の寒冷により超電導磁石20は冷却される。低温のヘリ
ウムガスは前記冷却配管16を出た後、第二JT弁1
3、および第六熱交換器11という順に流れていき、通
過過程でこれらの冷却を行う。また、この過程において
若干第一JT弁12を開けておけば第二ステージ5で冷
却されたヘリウムガスで第五熱交換器10を冷却するこ
とが可能となる。被冷却体冷却用配管16,第五熱交換
器10及び第六熱交換器11の全体の温度が約40Kに
下がれば、バイパス弁22を閉じて第一JT弁12及び
第二JT弁13を調整した後、40K以下のクールダウ
ンを行う。一般に金属材料は40K以下の温度で比熱が
極端に小さくなるため、これ以降はバイパス弁なしでも
ある程度早い冷却が可能である。冷凍機全体はこのまま
温度が低下し、極低温冷却配管16温度4〜5K付近で
定常運転に入る。
First, the first JT valve 12 is almost closed and the bypass valve 22 is opened to start cooling down. The helium gas cooled in the first stage 4 of the precooling expander 1 flows into the cooling object cooling pipe 16 through the bypass line 22. The cooling pipe 16 and the superconducting magnet 20 are connected to the magnet frame 19
, The superconducting magnet 20 is cooled by the cold helium gas at low temperature. After the low-temperature helium gas exits the cooling pipe 16, the second JT valve 1
The third heat exchanger 11 and the sixth heat exchanger 11 flow in this order, and cool them during the passage process. If the first JT valve 12 is slightly opened in this process, the fifth heat exchanger 10 can be cooled by the helium gas cooled in the second stage 5. When the entire temperature of the cooling object cooling pipe 16, the fifth heat exchanger 10, and the sixth heat exchanger 11 drops to about 40K, the bypass valve 22 is closed and the first JT valve 12 and the second JT valve 13 are closed. After the adjustment, perform a cool down of 40K or less. In general, the specific heat of a metal material becomes extremely small at a temperature of 40 K or less, so that a certain amount of cooling can be performed without a bypass valve thereafter. The temperature of the entire refrigerator is reduced as it is, and the refrigerator enters a steady operation at a temperature around 4 to 5 K of the cryogenic cooling pipe 16.

【0015】本実施例では、被冷却体20として、超電
導磁石を取り上げ、超電導磁石を冷却配管を用いて伝導
冷却的に冷却する構造を示したが、本冷凍装置により製
造した液体ヘリウムに超電導磁石を浸漬して冷却する構
造でも、効果は同様である。
In this embodiment, a superconducting magnet is taken as the object to be cooled 20 and the structure in which the superconducting magnet is cooled by conduction cooling using a cooling pipe is shown. The same effect can be obtained with a structure in which is immersed and cooled.

【0016】また、本実施例では、第二JT弁13を被
冷却体20を冷却するための冷却配管16の下流側に設
置したが、上流側に設置して第二JT弁13で極低温の
液体ヘリウムを生成し、冷却配管16内を生成させた液
体ヘリウムを流すことによって被冷却体20を冷却する
構造にした場合でも効果は同様である。さらにJT弁が
1つの場合、すなわち第二JT弁13及び第六熱交換器
11が存在しない場合でも、本発明による効果は同様で
ある。
In this embodiment, the second JT valve 13 is installed downstream of the cooling pipe 16 for cooling the object 20 to be cooled. The same effect can be obtained when the cooling target 20 is cooled by generating the liquid helium of the above and flowing the liquid helium generated in the cooling pipe 16. Furthermore, even when there is one JT valve, that is, when the second JT valve 13 and the sixth heat exchanger 11 are not present, the effect of the present invention is the same.

【0017】図2に、本発明の他の実施例を示す。図1
に示した実施例の構造に加え、膨張機の最終ステージ4
の下流側と被冷却体直前配管との間にさらにバイパス弁
24を含むバイパスライン23を追設している。
FIG. 2 shows another embodiment of the present invention. FIG.
In addition to the structure of the embodiment shown in FIG.
A bypass line 23 including a bypass valve 24 is additionally provided between the downstream side of the pipe and the pipe immediately before the object to be cooled.

【0018】第一ステージ以下が約50K以下になった
ときにバイパス弁22を閉じて、新たにバイパス弁24
を開く。これにより、最終熱交換器及び被冷却体は約1
0Kまで冷却される。この後、バイパス弁24を閉じて
定常運転に入る。
When the temperature of the first stage and below becomes about 50K or less, the bypass valve 22 is closed and a new bypass valve 24 is opened.
open. As a result, the final heat exchanger and the object to be cooled are about 1
Cool to 0K. Thereafter, the bypass valve 24 is closed to enter a steady operation.

【0019】以上の実施例では、二段の膨張機の例を示
したが、三段以上の膨張機を用いて、最高温ステージ及
び最終ステージにバイパスラインを設置した場合でも効
果は同様である。さらに、三段以上の膨張機においてす
べてのステージにバイパスラインを設け、高温段側から
順番にバイパス弁を操作すれば効果は一層高まる。
In the above embodiment, an example of a two-stage expander has been described. However, the same effect can be obtained when three or more expanders are used and a bypass line is installed in the highest temperature stage and the final stage. . Further, if three or more expanders are provided with bypass lines in all stages and the bypass valves are sequentially operated from the high-temperature side, the effect is further enhanced.

【0020】また、以上の実施例では、バイパスライン
21,23の接続口を被冷却体20の直前、すなわち上
流側に接続したが、下流側に接続した場合でも効果は同
等である。
In the above embodiment, the connection ports of the bypass lines 21 and 23 are connected immediately before the body 20 to be cooled, that is, on the upstream side. However, the effects are the same when the connection ports are connected on the downstream side.

【0021】以上の実施例では、超電導マグネットを被
冷却体にした場合について説明したが、ジョセフソン素
子や各種センサー等の各種電子機器や、高真空,高排気
速度のクライオパネルを被冷却体にしても、効果は同様
である。
In the above embodiment, the case where the superconducting magnet is used as the object to be cooled has been described. However, various electronic devices such as a Josephson element and various sensors, and a cryopanel having a high vacuum and a high pumping speed are used as the object to be cooled. However, the effect is the same.

【0022】また、実施例では、寒冷発生機に二段のG
Mサイクルの膨張機を適用した例で説明したが、三段の
GMサイクル,ソルベイサイクル,スターリングサイク
ル,ビルマイヤサイクル,タービン式,クロード式膨張
機を適用した冷凍サイクルやブレイトンサイクルでも同
等な効果がある。
Further, in the embodiment, the two-stage G
Although the explanation has been given of the example in which the M cycle expander is applied, the same effect can be obtained in a refrigeration cycle or a Brayton cycle in which a three-stage GM cycle, a Solvay cycle, a Stirling cycle, a Billmeyer cycle, a turbine type, or a Claude type expander are applied. is there.

【0023】[0023]

【発明の効果】本発明によれば、効率良く循環ヘリウム
ガスをクールダウンに使用することができるため、冷凍
機のクールダウン時間を短縮することができる。
According to the present invention, since the circulating helium gas can be efficiently used for cool down, the cool down time of the refrigerator can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である冷凍装置の説明図。FIG. 1 is an explanatory diagram of a refrigeration apparatus according to one embodiment of the present invention.

【図2】本発明の第二実施例である冷凍装置の説明図。FIG. 2 is an explanatory view of a refrigeration apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…膨張機、2,3…圧縮機ユニット、6,7,8,
9,10,11…熱交換器、12,13…J・T弁、1
6…冷却配管、17…熱シールド板、18…真空容器、
19…磁石枠、20…超電導コイル、21…バイパスラ
イン、22…バイパス弁。
1 ... expander, 2,3… compressor unit, 6,7,8,
9, 10, 11 ... heat exchanger, 12, 13 ... J · T valve, 1
6: cooling pipe, 17: heat shield plate, 18: vacuum vessel,
19: magnet frame, 20: superconducting coil, 21: bypass line, 22: bypass valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 穣 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Minoru Morita 502, Kandachicho, Tsuchiura-shi, Ibaraki Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】予冷用の寒冷発生回路と、循環する冷媒の
流路となる配管と、配管を内蔵した一連の熱交換器と、
冷媒ガスを圧縮する圧縮手段と、前記冷媒ガスを膨張さ
せるステージを複数段設けた膨張手段と、被冷却体を冷
却する冷却部とからなる冷凍装置において、前記膨張手
段の前記ステージの内の最も温度の高いステージと、前
記冷却部との間を、バイパスするバイパス弁を設置した
ことを特徴とする冷凍装置。
1. A cold generation circuit for pre-cooling, a pipe serving as a flow path of a circulating refrigerant, a series of heat exchangers containing the pipe,
In a refrigeration apparatus including compression means for compressing the refrigerant gas, expansion means provided with a plurality of stages for expanding the refrigerant gas, and a cooling unit for cooling the object to be cooled, most of the stages of the expansion means A refrigeration apparatus comprising a bypass valve that bypasses between a high-temperature stage and the cooling unit.
JP5139697A 1997-03-06 1997-03-06 Freezing device Pending JPH10246524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5139697A JPH10246524A (en) 1997-03-06 1997-03-06 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5139697A JPH10246524A (en) 1997-03-06 1997-03-06 Freezing device

Publications (1)

Publication Number Publication Date
JPH10246524A true JPH10246524A (en) 1998-09-14

Family

ID=12885791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5139697A Pending JPH10246524A (en) 1997-03-06 1997-03-06 Freezing device

Country Status (1)

Country Link
JP (1) JPH10246524A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301773A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Nmr probe
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same
KR100871843B1 (en) 2007-10-31 2008-12-03 두산중공업 주식회사 Multi-gm cold head integrated cooling device
JP2011141074A (en) * 2010-01-06 2011-07-21 Toshiba Corp Cryogenic refrigerator
JP2014092300A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Freezer
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling
CN108679875A (en) * 2018-04-10 2018-10-19 中科磁凌(北京)科技有限公司 Room temperature magnetic refrigeration system with multiple refrigeration temperature areas
CN117214224A (en) * 2023-11-09 2023-12-12 西安聚能超导磁体科技有限公司 Closed circulation sample testing temperature changing system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301773A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Nmr probe
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same
KR100871843B1 (en) 2007-10-31 2008-12-03 두산중공업 주식회사 Multi-gm cold head integrated cooling device
JP2011141074A (en) * 2010-01-06 2011-07-21 Toshiba Corp Cryogenic refrigerator
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling
JP2014092300A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Freezer
CN108679875A (en) * 2018-04-10 2018-10-19 中科磁凌(北京)科技有限公司 Room temperature magnetic refrigeration system with multiple refrigeration temperature areas
CN108679875B (en) * 2018-04-10 2020-08-07 中科磁凌(北京)科技有限公司 Room temperature magnetic refrigeration system with multiple refrigeration temperature areas
CN117214224A (en) * 2023-11-09 2023-12-12 西安聚能超导磁体科技有限公司 Closed circulation sample testing temperature changing system
CN117214224B (en) * 2023-11-09 2024-02-09 西安聚能超导磁体科技有限公司 Closed circulation sample testing temperature changing system

Similar Documents

Publication Publication Date Title
Radenbaugh Refrigeration for superconductors
JP6975015B2 (en) Cryogenic system
US20230107973A1 (en) Dilution refrigeration device and method
EP0578241B1 (en) Cryogenic refrigeration system and refrigeration method therefor
JP3123126B2 (en) Vacuum container with cooler
JPH08222429A (en) Device for cooling to extremely low temperature
JPH10246524A (en) Freezing device
JPH09113052A (en) Freezer
US6484516B1 (en) Method and system for cryogenic refrigeration
JP2910499B2 (en) Refrigeration equipment
Gistau et al. The Tore Supra 300 W–1.75 K Refrigerator
JP2945806B2 (en) Pre-cooling device for refrigeration load installed in liquefaction refrigeration system
US11913714B2 (en) Dilution refrigerator with continuous flow helium liquefier
JP2600506B2 (en) Refrigeration equipment
Wagner Refrigeration
JPH06323664A (en) Refrigerator
JPH06323663A (en) Refrigerator
CA3235548A1 (en) Dilution refrigerator with continuous flow helium liquefier
JPS63315868A (en) Cryogenic refrigerator device
Ren et al. Cryogenic Technology
JPH09106906A (en) Conductive cooling superconducting magnet
JPH05322343A (en) Freezer device with reservoir tank
JPH06323661A (en) Refrigerator
JP2513711B2 (en) Neon refrigeration cycle
JPS6069462A (en) Method of cooling cryogenic cooling device