JPH05322343A - Freezer device with reservoir tank - Google Patents

Freezer device with reservoir tank

Info

Publication number
JPH05322343A
JPH05322343A JP12370692A JP12370692A JPH05322343A JP H05322343 A JPH05322343 A JP H05322343A JP 12370692 A JP12370692 A JP 12370692A JP 12370692 A JP12370692 A JP 12370692A JP H05322343 A JPH05322343 A JP H05322343A
Authority
JP
Japan
Prior art keywords
working medium
cold
pressure
valve
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12370692A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Hisashi Isokami
尚志 磯上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12370692A priority Critical patent/JPH05322343A/en
Publication of JPH05322343A publication Critical patent/JPH05322343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To provide a freezer device capable of adjusting a helium gas flow rate of a cold heat generating circuit and a J-T circuit separately in response to a thermal load of a cooled item in the most suitable manner within a short period of time and further capable of performing an efficient and convenient operation. CONSTITUTION:A cold heat generating circuit and a J-T circuit are provided with a reservoir tank 21a and a reservoir tank 21b, separately, and then a helium gas flow rate for the cold heat generating circuit and a helium gas flow rate for J-T circuit are controlled separately, thereby an amount of refrigerant and a liquifying amount for the freezer device are controlled. A freezing amount and a liquifying amount of the freezer device are controlled at a temperature of about 4.5K at an outlet of a J-T 13 valve and then the freezing amount and liquefying amount corresponding to the thermal load can be generated stably, within a short period of time, efficiently and conveniently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極低温冷凍装置に関
し、特に冷凍量、液化量を任意に、効率よく調整できる
冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic refrigerating apparatus, and more particularly to a refrigerating apparatus in which the refrigerating amount and the liquefying amount can be arbitrarily and efficiently adjusted.

【0002】[0002]

【従来の技術】超伝導マグネットを使用した核磁気共鳴
診断装置、熱物性測定装置、ジョセフソン素子や各種セ
ンサー等の各種電子機器や、高真空、高排気速度のクラ
イオポンプ、超伝導マグネットを使用した電子加速器や
放射光発生装置の冷媒には、極低温の液体ヘリウムを使
用する。冷媒の液体ヘリウムは、わずかな熱で蒸発し、
かつ、高価であるため、蒸発したヘリウムガスを凝縮す
る冷凍装置を装着する。
2. Description of the Related Art Various electronic devices such as a nuclear magnetic resonance diagnostic device using a superconducting magnet, a thermophysical property measuring device, a Josephson element and various sensors, a high vacuum and a high pumping speed cryopump, and a superconducting magnet are used. Cryogenic liquid helium is used as the coolant for the electron accelerator and the synchrotron radiation generator. Liquid helium as a refrigerant evaporates with a little heat,
Moreover, since it is expensive, a refrigerating device for condensing the evaporated helium gas is installed.

【0003】しかし、上記した装置の被冷却体、例えば
超電導磁石等を内蔵した液体ヘリウム容器への熱負荷
は、常時変動する場合が多く、冷凍装置の冷凍量もその
熱負荷に合わせて調整することが、冷凍装置の消費電力
を低減することになり、運転効率が向上する。
However, the heat load on the object to be cooled of the above-mentioned device, for example, the liquid helium container containing the superconducting magnet or the like is often varied at all times, and the refrigerating amount of the refrigerating device is also adjusted according to the heat load. This reduces the power consumption of the refrigeration system and improves the operating efficiency.

【0004】この冷凍装置は2段の圧縮機ユニットで加
圧したヘリウムガスを、予冷用の寒冷発生機に膨張ター
ビンやクロード式往復動形膨張機やギフォード・マクマ
ホン(G・M)式往復動形膨張機を使用した寒冷発生回
路と、ジュール・トムソン弁(J・T弁)を極低温部に
有するジュール・トムソン回路(J・T回路)の高圧流
路に同じ配管で供給し、前記予冷用の寒冷発生機の排気
ヘリウムガスを前記2段に配置した圧縮機ユニットの中
圧ラインに戻し、J・T回路の排気ヘリウムガスを前記
2段に配置した圧縮機ユニットの低圧ラインに戻する方
法が特開平1ー159568号公報に記載されている。
In this refrigeration system, helium gas pressurized by a two-stage compressor unit is used as a cold generator for precooling, an expansion turbine, a Claude type reciprocating expander, and a Gifford-McMahon (GM) type reciprocating motion. Type cooling machine using a type expander and the high pressure flow path of the Joule-Thomson circuit (JT circuit) having the Joule-Thomson valve (JT valve) in the cryogenic part are supplied by the same pipe, and the pre-cooling is performed. The exhaust helium gas of the cold generator for the vehicle is returned to the medium pressure line of the compressor unit arranged in the two stages, and the exhaust helium gas of the JT circuit is returned to the low pressure line of the compressor unit arranged in the two stages. The method is described in JP-A-1-159568.

【0005】この場合、被冷却体の熱負荷に対応して、
冷凍装置の常温部の高圧及び低圧配管の少なくとも片方
の配管に流量制御弁を介して連通したリザーバガスタン
クに、冷凍装置内を循環する高圧ガス流量の一部のガス
を出し入れすることにより、該高圧ガス流量を調整し
て、効率的に運転する。
In this case, according to the heat load of the object to be cooled,
The high pressure and low pressure pipes at room temperature of the refrigeration system are connected to at least one of the high pressure and low pressure pipes via a flow control valve into and out of a reservoir gas tank, and a portion of the high pressure gas flow rate of the high pressure gas circulating in the refrigeration system is taken in and out. Adjust gas flow rate to operate efficiently.

【0006】このとき、寒冷発生回路とJ・T回路同一
流路内で2段圧縮機を2回路用に兼用して構成している
ため、寒冷発生回路とJ・T回路のヘリウムガス流量が
ともに変化してしまう。
At this time, since the cold generating circuit and the J / T circuit are configured so that the two-stage compressor is used for two circuits in the same flow path, the helium gas flow rates of the cold generating circuit and the J / T circuit are Both will change.

【0007】このため、膨張機側の流量を増減させる
と、J・T弁の通過流量も変化することになり最適ヒー
トバランス状態に到達させるためには複雑な調整が必要
となる。従って、調整後の高圧ガス流量を最適配分する
配分操作の簡便さにかける。
Therefore, if the flow rate on the expander side is increased or decreased, the flow rate passing through the J.T valve also changes, and complicated adjustment is required to reach the optimum heat balance state. Therefore, the distribution operation for optimally distributing the adjusted high-pressure gas flow rate is simplified.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
たごとく従来の技術は、寒冷発生回路とJ・T回路のヘ
リウムガス流量を別々に調整しながら冷却する方法に関
しては触れられていない。また、寒冷発生回路とJ・T
回路の運転圧力が異なる回路に対する適切な圧力に制御
されたリザーバタンクも設置されていない。
However, as described above, the conventional technique does not mention a method of cooling while separately adjusting the helium gas flow rates of the cold generation circuit and the JT circuit. In addition, the cold generation circuit and JT
The operating pressure of the circuit is different. Also, the reservoir tank controlled to the appropriate pressure for the circuit is not installed.

【0009】本発明の目的は、被冷却体の熱負荷に対応
して、寒冷発生回路とJ・T回路のヘリウムガス流量を
別々に、短時間で最適に調整し冷凍装置を効率的に簡便
に運転できる冷凍装置を提供することにある。
An object of the present invention is to optimize the refrigeration system efficiently by separately adjusting the helium gas flow rates of the cold generation circuit and the JT circuit in a short time in response to the heat load of the object to be cooled. The object of the present invention is to provide a refrigeration system that can be operated at any time.

【0010】[0010]

【課題を解決するための手段】上記目的は、運転圧力が
異なる寒冷発生回路とJ・T回路に別々の圧縮機を配置
し、それぞれの常温部の高圧及び低圧配管の少なくとも
片方の配管に、圧力制御弁を介して連通したガスリザー
バタンクを別々に設け、冷凍装置内の寒冷発生回路とJ
・T回路を循環する高圧ガス流量の一部のガスを出し入
れして、該両回路に適切な高圧ガス流量を供給すること
により達成する。
[Means for Solving the Problems] The above object is to dispose separate compressors in a cold generation circuit and a J.T circuit having different operating pressures, and in at least one of the high-pressure and low-pressure pipes at normal temperatures, A separate gas reservoir tank that communicates via a pressure control valve is provided separately, and the cold generation circuit in the refrigeration system and the J
This is achieved by taking in and out a part of the high-pressure gas flow rate circulating in the T circuit and supplying an appropriate high-pressure gas flow rate to both circuits.

【0011】本発明のリザーバタンク付き冷凍装置は、
予冷用の寒冷発生手段と寒冷発生手段に第1の作動媒体
を供給する第1のガス圧縮手段とを含む寒冷発生回路
と、冷凍または液化用の冷凍発生手段と冷凍発生手段に
第2の作動媒体を供給する第2のガス圧縮手段を含む冷
凍発生回路を備えたものにおいて、(1)少なくとも第
1作動媒体を弁を介して出し入れする作動媒体貯蔵手段
を前記第1のガス圧縮手段に連通したこと、(2)第1
作動媒体を弁を介して出し入れする第1作動媒体貯蔵手
段を第1のガス圧縮手段に連通し、第2作動媒体を弁を
介して出し入れする第2作動媒体貯蔵手段を第2のガス
圧縮手段に連通したこと、または(3)第1作動媒体を
弁を介して出し入れする第1作動媒体貯蔵手段を第1の
ガス圧縮手段に連通し、第2作動媒体を弁を介して出し
入れする第2作動媒体貯蔵手段を第2のガス圧縮手段に
連通し、第1、第2作動媒体貯蔵手段を弁を介して連通
したことを特徴する。
The refrigerating apparatus with a reservoir tank according to the present invention is
A cold generating circuit including a cold generating means for precooling and a first gas compression means for supplying a first working medium to the cold generating means, a freezing generating means for freezing or liquefaction, and a second operation for the freezing generating means. A refrigeration generating circuit including a second gas compressing means for supplying a medium, wherein (1) at least a working medium storing means for taking in and out a first working medium via a valve communicates with the first gas compressing means. What you did, (2) First
The first working medium storage means for taking in and out the working medium via the valve communicates with the first gas compression means, and the second working medium storage means for taking the second working medium in and out via the valve is the second gas compression means. Or (3) a first working medium storage means for taking in and out the first working medium via a valve is communicated with the first gas compression means, and a second working medium is taken in and out via the valve The working medium storage means is communicated with the second gas compression means, and the first and second working medium storage means are communicated with each other via a valve.

【0012】また本発明のリザーバタンク付き冷凍装置
は、寒冷発生手段と寒冷発生手段に作動媒体を供給する
ガス圧縮手段とを含む寒冷発生回路を備えたものにおい
て、作動媒体を弁を介して出し入れする作動媒体貯蔵手
段をガス圧縮手段に連通したことを特徴する。
The refrigerating apparatus with a reservoir tank according to the present invention is provided with a cold generating circuit including a cold generating means and a gas compression means for supplying a working medium to the cold generating means, and the working medium is taken in and out via a valve. The working medium storage means for communicating with the gas compression means.

【0013】上記各本発明においては、(1)冷凍装置
内の温度、圧力、熱負荷に応じて該弁群を通過する第
1、第2作動媒体量を調整すること、(2)寒冷発生回
路と、冷凍発生回路を任意に隔離できること、(3)冷
凍装置内の温度、圧力、熱負荷に応じて前記弁群を通過
する作動媒体量を調整すること、等が好ましい。
In each of the above inventions, (1) adjusting the amounts of the first and second working media passing through the valve group according to the temperature, pressure, and heat load in the refrigeration system, and (2) generation of cold. It is preferable that the circuit and the refrigeration generation circuit can be arbitrarily isolated, and (3) the amount of working medium passing through the valve group can be adjusted according to the temperature, pressure, and heat load in the refrigeration system.

【0014】[0014]

【作用】予冷用の寒冷発生機に例えばギフォード・マク
マホン(G・M)式往復動形膨張機を使用し、予冷用の
寒冷発生回路と隔離したJ・T回路で冷凍装置を構成し
た場合、両回路の高圧ガス流量はそれぞれクローズドの
回路に配置したリザーバガスタンクのガスホールド量を
任意の値に制御し、両回路内のガス流量および運転圧力
を適切な値に、短時間内に制御する。それによって、J
・T弁出口の温度約4.5Kの冷凍量を制御し、熱負荷
に見合った冷凍量を安定に、かつ短時間内に、効率よく
簡便に発生できる冷凍装置となる。
When a Gifford-McMahon (GM) reciprocating expander is used as the cold generator for pre-cooling and the refrigerating device is configured by the JT circuit separated from the cold generating circuit for pre-cooling, The high-pressure gas flow rate of both circuits controls the gas hold amount of the reservoir gas tanks arranged in the closed circuits to arbitrary values, and controls the gas flow rate and operating pressure in both circuits to appropriate values within a short time. Thereby, J
A refrigerating device that controls the refrigerating amount at a temperature of about 4.5 K at the outlet of the T valve to stably generate the refrigerating amount corresponding to the heat load in a short time, efficiently and simply.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0016】予冷用の寒冷発生回路に配置した寒冷発生
機1は、例えば、ギフォード・マクマホン膨張機で構成
される。圧縮機、アフタークーラ、油分離器(図示せ
ず)から成るヘリウム圧縮機ユニット2の圧力約20a
tmの高圧ガスは寒冷発生機1中に流入して内部で断熱
膨張し、第1ステージ3、第2ステージ4でそれぞれ温
度約40K、15Kの寒冷を発生する。
The cold generator 1 arranged in the cold generating circuit for precooling is composed of, for example, a Gifford-McMahon expander. Pressure of about 20a of helium compressor unit 2 consisting of compressor, aftercooler and oil separator (not shown)
The high-pressure gas at tm flows into the cold generator 1 and adiabatically expands inside, generating cold at temperatures of about 40K and 15K at the first stage 3 and the second stage 4, respectively.

【0017】圧力約5atmの膨張後のガスは、再び、
圧縮機ユニット2に戻る。一方、予冷用の寒冷発生回路
と隔離した液化用のJ・T回路の圧縮機、アフタークー
ラ、油分離器(図示せず)から成る圧縮機ユニット5で
加圧された圧力約16atmの高圧のヘリウムガスは、
高圧配管16aを通り第1熱交換器6、熱交換器7、第
2熱交換器8、第1吸着器9、熱交換器10、第3熱交
換器11、第2吸着器12、を通り温度約6K以下に冷
却され、ジュール・トムソン弁(以下J・T弁)13で
断熱膨張してその一部のガスが液化し、液体ヘリウム槽
14に溜まり超電導マグネット15等の被冷却体を冷却
する。
The expanded gas at a pressure of about 5 atm is again
Return to compressor unit 2. On the other hand, a high pressure of about 16 atm pressurized by a compressor unit 5 including a JT circuit compressor for liquefaction, an aftercooler, and an oil separator (not shown) separated from the cold generation circuit for precooling. Helium gas is
Pass through the high-pressure pipe 16a and the first heat exchanger 6, the heat exchanger 7, the second heat exchanger 8, the first adsorber 9, the heat exchanger 10, the third heat exchanger 11, and the second adsorber 12. The temperature is cooled to about 6K or less, adiabatic expansion is performed by the Joule-Thomson valve (hereinafter referred to as JT valve) 13, a part of the gas is liquefied, and it is accumulated in the liquid helium tank 14 to cool the object to be cooled such as the superconducting magnet 15 To do.

【0018】圧力約1.2atmの未液化のヘリウムガ
ス、液体ヘリウム17の蒸発ガスは低圧配管16b内に
流入し、第3熱交換器11、第2熱交換器8、第1熱交
換器6、を通り、ほぼ常温となって、圧縮機ユニット5
に戻る。
Unliquefied helium gas having a pressure of about 1.2 atm and vaporized gas of liquid helium 17 flow into the low-pressure pipe 16b, and the third heat exchanger 11, the second heat exchanger 8, the first heat exchanger 6 , It becomes almost room temperature, and the compressor unit 5
Return to.

【0019】圧縮機ユニット2の高圧配管19a、低圧
配管19bは、高圧配管19aの内圧で制御される圧力
調整弁20a、圧力調整弁20bおよびバイパス弁20
c、弁20dを介して、リザーバタンク21aと連通し
ている。高圧配管19aには安全弁22aを配置してい
る。
The high-pressure pipe 19a and the low-pressure pipe 19b of the compressor unit 2 have a pressure adjusting valve 20a, a pressure adjusting valve 20b and a bypass valve 20 which are controlled by the internal pressure of the high-pressure pipe 19a.
It communicates with the reservoir tank 21a through the valve c and the valve 20d. A safety valve 22a is arranged in the high pressure pipe 19a.

【0020】圧縮機ユニット5の高圧配管16a、低圧
配管16bは、低圧配管16bの内圧で制御される圧力
調整弁23a、圧力調整弁23bを介して、リザーバタ
ンク21bと連通している。高圧配管16aには安全弁
22bを配置している。
The high-pressure pipe 16a and the low-pressure pipe 16b of the compressor unit 5 communicate with the reservoir tank 21b via a pressure adjusting valve 23a and a pressure adjusting valve 23b controlled by the internal pressure of the low-pressure pipe 16b. A safety valve 22b is arranged in the high pressure pipe 16a.

【0021】液体ヘリウム槽14の液面は、温度、液面
計24で測定し、その測定信号は計測線25で信号処理
・制御装置26に入力される。ここで、計測値、処理値
に従って、各制御弁、バイパス弁、JT弁、および各圧
縮機ユニットの運転周波数制御器27a、27b,を制
御する。
The liquid level of the liquid helium tank 14 is measured by the temperature and liquid level gauge 24, and the measurement signal is input to the signal processing / control device 26 via the measurement line 25. Here, each control valve, the bypass valve, the JT valve, and the operating frequency controllers 27a and 27b of each compressor unit are controlled according to the measured value and the processed value.

【0022】クライオスッタト18内は真空断熱されて
いる。各吸着器ではヘリウムガス中の不純物を除去す
る。冷凍装置は以上の構成である。
The interior of the cryostat 18 is vacuum-insulated. Impurities in the helium gas are removed in each adsorber. The refrigeration system has the above configuration.

【0023】以下、リザーバタンク回りの制御弁、バイ
パス弁、JT弁、および各圧縮機ユニットの運転周波数
制御器の操作手順に付いて説明する。
The operation procedure of the control valve around the reservoir tank, the bypass valve, the JT valve, and the operating frequency controller of each compressor unit will be described below.

【0024】被冷却体を含め冷凍装置が、常温状態にあ
るときから冷凍装置の運転を開始する。まず、予冷用の
寒冷発生回路の寒冷発生機1は常温状態にあり、寒冷発
生機内にヘリウムガスをあまり吸い込むことができな
い。このため、容積型、定圧縮比型のヘリウム圧縮機ユ
ニット2の吐出圧力は、低温定常状態の圧力よりも高く
なる。
The operation of the refrigeration system is started when the refrigeration system including the object to be cooled is in a normal temperature state. First, the cold generator 1 of the cold generating circuit for precooling is in a normal temperature state, and helium gas cannot be sucked into the cold generator so much. Therefore, the discharge pressure of the positive displacement type and constant compression ratio type helium compressor unit 2 is higher than the pressure in the low temperature steady state.

【0025】この圧力状態では、吸入圧力も高くなり圧
縮機ユニット2の吸入圧力と吐出圧力の差圧が大きくな
る。これによって、この差圧条件で断熱膨張する寒冷発
生機1の第1ステージ3、第2ステージ4の寒冷発生量
が増加する。しかし、各ステージ温度は、液化運転時の
温度よりも高い。
In this pressure state, the suction pressure also increases and the differential pressure between the suction pressure and the discharge pressure of the compressor unit 2 increases. As a result, the amount of cold generation in the first stage 3 and the second stage 4 of the cold generator 1 that adiabatically expands under this differential pressure condition increases. However, the temperature of each stage is higher than the temperature during the liquefaction operation.

【0026】一方、圧縮機ユニット5で加圧された圧力
約16atmの高圧のヘリウムガスは、高圧配管16a
を通り熱交換器7、熱交換器10で寒冷発生機1の第1
ステージ3、第2ステージ4の寒冷により冷却され、第
2熱交換器8、第1吸着器9、第3熱交換器11、第2
吸着器12、J・T弁13、液体ヘリウム槽14、超電
導マグネット15、および、第1熱交換器6を順次冷却
し、徐々に温度を下げる。 冷凍装置の温度が下がるに
したがって、従来の寒冷発生機では、ヘリウムガスの吸
込み量が増加し、ガスの補給が無ければ、容積型、定圧
縮比型のヘリウム圧縮機ユニット2の吐出圧力は、順次
低下する。この圧力状態では、吸入圧力も低くなり圧縮
機ユニット2の吸入圧力と吐出圧力の差圧が小さくな
る。これによって、この差圧条件で断熱膨張する寒冷発
生機1の第1ステージ3、第2ステージ4の寒冷発生量
が順次低下する。これによって、冷凍装置の冷却速度は
低下し迅速な予冷運転が出来ない。
On the other hand, the high-pressure helium gas pressurized by the compressor unit 5 and having a pressure of about 16 atm is supplied to the high-pressure pipe 16a.
Through the heat exchanger 7 and the heat exchanger 10 of the cold generator 1.
The stage 3 and the second stage 4 are cooled by the cold, and the second heat exchanger 8, the first adsorber 9, the third heat exchanger 11 and the second heat exchanger 8 are cooled.
The adsorber 12, the J · T valve 13, the liquid helium tank 14, the superconducting magnet 15, and the first heat exchanger 6 are sequentially cooled, and the temperature is gradually lowered. As the temperature of the refrigerating apparatus decreases, in the conventional cold generator, the suction amount of helium gas increases, and if gas is not replenished, the discharge pressure of the positive displacement type and constant compression ratio type helium compressor units 2 is: It decreases gradually. In this pressure state, the suction pressure also decreases, and the differential pressure between the suction pressure and the discharge pressure of the compressor unit 2 decreases. As a result, the amount of cold generation in the first stage 3 and the second stage 4 of the cold generator 1 that undergoes adiabatic expansion under this differential pressure condition sequentially decreases. As a result, the cooling rate of the refrigeration system is reduced, and rapid precooling operation cannot be performed.

【0027】ここで、高圧配管19aの内圧の低下を感
知して圧力調整弁20b、および弁20dが開き、不足
したヘリウムガスを中圧のリザーバタンク21aから圧
縮機ユニット2の吸入側に補給し、吐出圧力を所定の値
に保持して、寒冷発生量の低減を防止する。この時、さ
らに運転周波数制御器27bにより、圧縮機ユニット2
の運転周波数を増加させると、さらに寒冷発生量が増加
し、寒冷発生量の低減を防止できる。これらの運転操作
は信号処理・制御装置26で制御される。
Here, the pressure adjusting valve 20b and the valve 20d are opened by sensing the decrease in the internal pressure of the high-pressure pipe 19a, and the insufficient helium gas is replenished from the medium-pressure reservoir tank 21a to the suction side of the compressor unit 2. , The discharge pressure is maintained at a predetermined value to prevent a reduction in cold generation. At this time, the operating frequency controller 27b further controls the compressor unit 2
If the operating frequency is increased, the amount of cold generation further increases, and it is possible to prevent the amount of cold generation from decreasing. These driving operations are controlled by the signal processing / control device 26.

【0028】また、冷凍装置の温度が下がるにしたがっ
て、液化回路のガスホールド量が増加し、ガスの補給が
無ければ、容積型、定圧縮比型のヘリウム圧縮機ユニッ
ト5の吐出圧力は、順次低下する。
Further, as the temperature of the refrigerating apparatus lowers, the gas holding amount of the liquefaction circuit increases, and if there is no gas replenishment, the discharge pressure of the positive displacement type and the constant compression ratio type helium compressor units 5 will be in order. descend.

【0029】この圧力状態では、吸入圧力が低くなり所
定の圧力を維持できなくなる。このため、低圧配管16
bの内圧の低下を感知して圧力調整弁23bが開き、不
足したヘリウムガスを中圧のリザーバタンク21bから
圧縮機ユニット5の吸入側に補給し、吸入圧力を所定の
値に保持する。
In this pressure state, the suction pressure becomes low and the predetermined pressure cannot be maintained. Therefore, the low pressure pipe 16
The pressure adjusting valve 23b is opened upon detecting the decrease in the internal pressure of b, and the insufficient helium gas is replenished from the medium pressure reservoir tank 21b to the suction side of the compressor unit 5 to maintain the suction pressure at a predetermined value.

【0030】J・T弁13入口の温度が約20Kに達す
ると、ジュール・トムソン効果により、断熱膨張後のJ
・T弁出口温度が入口の温度より低下し、冷却速度が早
くなる。J・T弁13入口の温度が約6Kに達すると、
断熱膨張後のガスの一部が液化し、液体ヘリウム槽14
に液体ヘリウムが溜まり始める。
When the temperature at the inlet of the J · T valve 13 reaches about 20K, the J after the adiabatic expansion is caused by the Joule-Thomson effect.
・ T valve outlet temperature becomes lower than inlet temperature, and cooling rate becomes faster. When the temperature at the J / T valve 13 inlet reaches about 6K,
Part of the gas after adiabatic expansion is liquefied and the liquid helium tank 14
Liquid helium begins to collect in.

【0031】超電導マグネット15を覆うまでは急速に
液体ヘリウムをためる必要があるので、この時、更に運
転周波数制御器27aにより、圧縮機ユニット2の運転
周波数を増加させると、液化回路の流量が増加し更に液
化量増加し、短時間内に所定の液体ヘリウム量をためる
ことができる。この時ヘリウムが液化すると低圧配管1
6b内のヘリウム戻りがス量が減少するので、低圧配管
16bの内圧が低下し、この低下を感知して圧力調整弁
23bが開き、不足したヘリウムガスを中圧のリザーバ
タンク21bから圧縮機ユニット5の吸入側に補給し、
吸入圧力を所定の値に保持する。
Since liquid helium must be accumulated rapidly until the superconducting magnet 15 is covered, if the operating frequency controller 27a further increases the operating frequency of the compressor unit 2 at this time, the flow rate of the liquefaction circuit increases. Further, the liquefied amount is further increased, and a predetermined amount of liquid helium can be accumulated within a short time. If helium is liquefied at this time, low-pressure pipe 1
Since the amount of helium returned in 6b is reduced, the internal pressure of the low-pressure pipe 16b is reduced, and the pressure adjustment valve 23b is opened by detecting this decrease, and the insufficient helium gas is discharged from the medium pressure reservoir tank 21b to the compressor unit. Supply to the suction side of 5,
Hold the suction pressure at a predetermined value.

【0032】所定の液体ヘリウムが所定の温度、液面ま
で貯まったのちは、信号処理・制御装置26により、液
面維持に必要な冷凍運転状態に移り、運転消費電力を節
減する。すなわち、運転周波数制御器27a、27bに
より、圧縮機ユニット2、5の運転周波数を減少して吐
出ガス流量を減少し、必要であれば更に、弁20dが閉
じバイパス弁20cが開いて、圧縮機ユニット2のヘリ
ウムガスを中圧のリザーバタンク21aに所定の量戻
し、吸入圧力を低下させ、更に吐出ガス流量を減少させ
る。
After the predetermined liquid helium is stored up to the predetermined temperature and the liquid surface, the signal processing / control device 26 shifts to the refrigerating operation state necessary for maintaining the liquid surface to save the operation power consumption. That is, the operating frequencies of the compressor units 2 and 5 are reduced by the operating frequency controllers 27a and 27b to reduce the discharge gas flow rate, and if necessary, the valve 20d is further closed and the bypass valve 20c is opened so that the compressor is closed. The helium gas in the unit 2 is returned to the medium pressure reservoir tank 21a by a predetermined amount to reduce the suction pressure and further reduce the discharge gas flow rate.

【0033】一方、液体ヘリウム槽14への熱侵入量の
増加や超電導マグネット15の発熱の増加などにより熱
負荷が1時的に増加した場合、液体ヘリウムレベルが減
少し、更に液体ヘリウムの蒸発量が増加するため低圧配
管16bの圧力が上昇する。この場合の運転操作は、速
やかに圧力調整弁23aが開き、液化用のJ・T回路の
ガスがリザーバタンク21bに戻り吸入圧力を低下させ
る。更に、信号処理・制御装置26により、吐出ガス流
量を減少させる。更に、信号処理・制御装置26の制御
により、運転周波数制御器27a、27bで圧縮機ユニ
ット2、5の運転周波数を増加させ液化量を増加させ
る。
On the other hand, when the heat load temporarily increases due to an increase in the amount of heat entering the liquid helium tank 14 or an increase in heat generation of the superconducting magnet 15, the liquid helium level decreases and the amount of liquid helium vaporized further. Is increased, the pressure in the low pressure pipe 16b is increased. In the driving operation in this case, the pressure adjusting valve 23a is quickly opened, the gas in the J.T circuit for liquefaction returns to the reservoir tank 21b, and the suction pressure is lowered. Further, the signal processing / control device 26 reduces the discharge gas flow rate. Further, under the control of the signal processing / control device 26, the operating frequencies of the compressor units 2 and 5 are increased by the operating frequency controllers 27a and 27b to increase the liquefaction amount.

【0034】必要であれば更に、弁20dが開きバイパ
ス弁20c閉じて、圧縮機ユニット2のヘリウムガスを
中圧のリザーバタンク21aから圧縮機ユニット2にガ
スを補給し、吸入圧力を上げて、更に寒冷発生量を増や
し、液化量を増加させることができる短時間内に所定の
液面に戻すことできる。
If necessary, the valve 20d is further opened and the bypass valve 20c is closed to supply the helium gas of the compressor unit 2 from the medium pressure reservoir tank 21a to the compressor unit 2 to increase the suction pressure, Further, it is possible to return the liquid to a predetermined liquid level within a short time in which the amount of cold generation can be increased and the amount of liquefaction can be increased.

【0035】また、冷凍装置スタート時には、バイパス
弁20dを閉じ、バイパス弁20cが開いて、圧縮機ユ
ニット2のヘリウムガスを中圧のリザーバタンク21a
に所定の量戻し、吸入圧力を低下させる方が、初期回転
圧縮負荷が少ない。
At the start of the refrigeration system, the bypass valve 20d is closed and the bypass valve 20c is opened, so that the helium gas in the compressor unit 2 is stored in the medium-pressure reservoir tank 21a.
The initial rotational compression load is smaller when the suction pressure is reduced by returning the predetermined amount to the predetermined value.

【0036】また、寒冷発生回路とJ・T回路のリザー
バタンク21a、21bを隔離することにより、超電導
マグネット15等の構成物例えば接着剤のアウトガス等
の不純物が寒冷発生回路に混入することを防止でき、寒
冷発生機の運転信頼性を向上させることができる。
By separating the cold generating circuit from the reservoir tanks 21a and 21b of the JT circuit, it is possible to prevent the components such as the superconducting magnet 15 from being mixed with impurities such as adhesive outgas. Therefore, the operational reliability of the cold generator can be improved.

【0037】また、リザーバタンク21bの必要最低圧
力は、1.2atmあれば良いが、リザーバタンク21
aの必要最低圧力は5.5atm程度必要である。した
がって、リザーバタンク21a、21bを隔離し、それ
ぞれ所定の圧力に設定することにより、安定して圧縮機
ユニットにガスの補給ができるので、冷凍装置の安定し
た適切な冷凍量を確保できる。
The minimum required pressure of the reservoir tank 21b may be 1.2 atm.
The minimum required pressure of a is about 5.5 atm. Therefore, by isolating the reservoir tanks 21a and 21b and setting the pressures to predetermined values, the compressor unit can be stably replenished with gas, and a stable and appropriate refrigeration amount of the refrigeration system can be secured.

【0038】以上、本実施例によれば、予冷用の寒冷発
生回路と隔離したJ・T回路の高圧ガス流量を適正な値
に、それぞれ別々に短時間内に制御できる。これによっ
て、冷凍装置では、予冷時間が短くて済み、J・T弁出
口の温度約4.5Kの冷凍量および液化量を制御し、熱
負荷に見合った冷凍量および液化量を安定に、かつ短時
間内に、効率よく簡便に発生することができ、単位冷凍
量当りの圧縮機入力電力量も小さくて済む効果がある。
As described above, according to the present embodiment, the high-pressure gas flow rate of the JT circuit isolated from the cold generation circuit for precooling can be controlled to an appropriate value separately within a short time. As a result, in the refrigeration apparatus, the precooling time is short, the refrigeration amount and the liquefaction amount at the J.T valve outlet temperature of about 4.5K are controlled, and the refrigeration amount and the liquefaction amount corresponding to the heat load are stably and It can be efficiently and simply generated within a short time, and the compressor input electric power amount per unit refrigeration amount can be small.

【0039】また,本実施例によれば、予冷用の寒冷発
生回路と隔離したJ・T回路のリザーバタンクを隔離で
きるので、J・T回路内の被冷却体から生じる不純ガス
で、リザーバタンクを介して予冷用の寒冷発生回路内を
汚染することがないので、寒冷発生回路内の寒冷発生機
が不純ガスでトラブルことがなく、信頼性の高い冷凍装
置を提供できる効果がある。この場合、両リザーバタン
クを弁を介して必要に応じて連通しても良い。
Further, according to this embodiment, since the reservoir tank of the JT circuit which is isolated from the cold generation circuit for precooling can be isolated, the reservoir tank can be filled with the impure gas generated from the cooled object in the JT circuit. Since the inside of the cold generation circuit for pre-cooling is not contaminated via the cold cooling circuit, the cold generator in the cold generation circuit is free from troubles due to impure gas, and there is an effect that a highly reliable refrigeration system can be provided. In this case, both reservoir tanks may be connected via a valve as needed.

【0040】なお、本実施例では、寒冷発生機にG・M
サイクルの膨張機を適用した例で説明したが、ソルベイ
サイクル、スターリングサイクル、ビルマイヤサイク
ル、タービン式、クロード式膨張機を適用した冷凍サイ
クルやブレイトンサイクルでも同等な効果がある。ま
た,予冷用の寒冷発生回路の寒冷発生ステージは3段以
上でも良く、J・T回路のJ・T弁が2段以上ある場合
でも同等な効果がある。
In the present embodiment, the cold generator has G / M.
Although the example in which the cycle expander is applied has been described, the same effect can be obtained even in the refrigeration cycle and the Brayton cycle to which the Solvay cycle, the Stirling cycle, the Villemeier cycle, the turbine type, and the Claude type expander are applied. Further, the cold generation stage of the cold generation circuit for precooling may have three or more stages, and the same effect can be obtained even if the J / T valve of the J / T circuit has two or more stages.

【0041】また、本実施例では、超電導マグネットを
被冷却体にした場合について説明したが、ジョセフソン
素子や各種センサー等の各種電子機器や、高真空、高排
気速度のクライオパネルを被冷却体にしても、同等な効
果がある。
In the present embodiment, the case where the superconducting magnet is used as the cooled object has been described. However, various electronic devices such as Josephson elements and various sensors, and a cryopanel having a high vacuum and a high evacuation speed are cooled. However, it has the same effect.

【0042】また、本実施例では、液体ヘリウムの液面
を基準にして冷凍量、液化量の増減を制御したが、液面
が振動している場合には液面計で正確な液面を感知でき
ないので、その場合は、J・T回路低圧配管の圧力やJ
・T回路のリザーバタンクの内圧を基準にして冷凍量、
液化量の増減を制御しても、同等な効果がある。
Further, in this embodiment, the increase and decrease of the refrigeration amount and the liquefaction amount were controlled with reference to the liquid level of liquid helium. However, if the liquid level is vibrating, an accurate liquid level can be obtained with a liquid level gauge. Since it cannot be detected, in that case, the pressure in the J / T circuit low-pressure pipe or J
・ Refrigeration amount based on the internal pressure of the reservoir tank of the T circuit,
Even if the increase / decrease of the liquefaction amount is controlled, the same effect can be obtained.

【0043】また、本実施例では、予冷用の寒冷発生回
路とJ・T回路のリザーバタンクを隔離した場合につい
て説明したが、J・T回路内から発生する不純ガスが非
常に少ない場合には、両回路のリザーバタンクを1個の
タンクで共有しても、同等な効果がある。
In this embodiment, the case where the cold generation circuit for pre-cooling and the reservoir tank of the J.T circuit are separated has been described. However, when the impure gas generated from the J.T circuit is very small. Even if the reservoir tanks of both circuits are shared by one tank, the same effect can be obtained.

【0044】また、本実施例では、予冷用の寒冷発生回
路とJ・T回路を有した冷凍装置について説明したが、
予冷用の寒冷発生回路とこれに連通した制御弁、リザー
バタンクで構成した冷凍装置でも、同等な効果がある。
Further, in this embodiment, the refrigerating apparatus having the cold generating circuit for precooling and the JT circuit has been described.
The same effect can be obtained with a refrigerating device including a cold generating circuit for precooling, a control valve communicating with the cold generating circuit, and a reservoir tank.

【0045】また、本実施例では、1台の冷凍装置の場
合について説明したが、複数台の冷凍装置を設置する場
合には、それぞれの予冷用の寒冷発生回路とJ・T回路
同士に共有のリザーバタンクを配置しても、同等な効果
がある。
Further, in the present embodiment, the case of one refrigerating apparatus has been described, but when a plurality of refrigerating apparatuses are installed, the cold generating circuit for precooling and the JT circuit are shared with each other. Even if the reservoir tank of is arranged, the same effect can be obtained.

【0046】また、本実施例では、寒冷発生回路とJ・
T回路の作動流体にヘリウムガスを使用したが、寒冷発
生回路の作動流体にヘリウムガスを使用し、J・T回路
の作動流体に窒素ガスを使用した冷凍装置においても、
冷凍温度が違う以外は、同等な効果がある。
Further, in this embodiment, the cold generation circuit and J.
Although helium gas was used as the working fluid of the T circuit, helium gas was used as the working fluid of the cold generation circuit and nitrogen gas was used as the working fluid of the JT circuit.
It has the same effect except that the freezing temperature is different.

【0047】[0047]

【発明の効果】本発明によれば、予冷用の寒冷発生回路
と隔離したJ・T回路の高圧ガス流量を効率よく冷凍量
を発生できる適正な値に、それぞれ別々に短時間内に制
御できる。これによって、冷凍装置の予冷時間が短くて
済み、J・T弁出口の温度約4.5Kの冷凍量および液
化量を制御し、熱負荷に見合った冷凍量および液化量を
安定に、かつ短時間内に、効率よく簡便に発生すること
ができ、単位冷凍量当りの圧縮機入力電力量も小さくて
済む冷凍装置を提供できる効果がある。
According to the present invention, the high-pressure gas flow rate of the JT circuit isolated from the cold generation circuit for pre-cooling can be individually controlled within a short time to an appropriate value at which the refrigeration amount can be efficiently generated. .. As a result, the precooling time of the refrigeration system can be shortened, the refrigeration amount and liquefaction amount at the J / T valve outlet temperature of about 4.5K can be controlled, and the refrigeration amount and liquefaction amount corresponding to the heat load can be stably and shortened. There is an effect that it is possible to provide a refrigeration system that can be efficiently and simply generated within a time period and that requires only a small amount of compressor input power per unit refrigeration amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の冷凍装置の構成の説明図で
ある。
FIG. 1 is an explanatory diagram of a configuration of a refrigerating apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…寒冷発生機、2、5…圧縮機ユニット、21a、2
1b…リザーバタンク、20a、20b、23a、23
b…流量調整弁、20c…バイパス弁、20d…弁、
6、7、8、11、12…熱交換器、13…J・T弁、
17…液体ヘリウム、15…超電導マグネット。
1 ... Cold generator 2, 5 ... Compressor unit, 21a, 2
1b ... Reservoir tank, 20a, 20b, 23a, 23
b ... flow control valve, 20c ... bypass valve, 20d ... valve,
6, 7, 8, 11, 12 ... Heat exchanger, 13 ... J · T valve,
17 ... Liquid helium, 15 ... Superconducting magnet.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】予冷用の寒冷発生手段と該寒冷発生手段に
第1の作動媒体を供給する第1のガス圧縮手段とを含む
寒冷発生回路と、冷凍または液化用の冷凍発生手段と該
冷凍発生手段に第2の作動媒体を供給する第2のガス圧
縮手段を含む冷凍発生回路を備えた冷凍装置において、
少なくとも第1作動媒体を弁を介して出し入れする作動
媒体貯蔵手段を前記第1のガス圧縮手段に連通したこと
を特徴するリザーバタンク付き冷凍装置。
1. A cold generating circuit including a cold generating means for precooling and a first gas compression means for supplying a first working medium to the cold generating means, a freezing generating means for freezing or liquefying, and the freezing. A refrigerating apparatus provided with a refrigeration generating circuit including a second gas compressing means for supplying a second working medium to the generating means,
A refrigeration apparatus with a reservoir tank, characterized in that at least a working medium storage means for taking in and out a first working medium via a valve is connected to the first gas compression means.
【請求項2】寒冷発生手段と該寒冷発生手段に作動媒体
を供給するガス圧縮手段とを含む寒冷発生回路を備えた
冷凍装置において、作動媒体を弁を介して出し入れする
作動媒体貯蔵手段を前記ガス圧縮手段に連通したことを
特徴するリザーバタンク付き冷凍装置。
2. A refrigeration system provided with a cold generation circuit including a cold generation means and a gas compression means for supplying a working medium to the cold generation means, and a working medium storage means for taking the working medium in and out through a valve. A refrigeration system with a reservoir tank, characterized in that it communicates with a gas compression means.
【請求項3】予冷用の寒冷発生手段と該寒冷発生手段に
第1の作動媒体を供給する第1のガス圧縮手段とを含む
寒冷発生回路と、冷凍または液化用の冷凍発生手段と該
冷凍発生手段に第2の作動媒体を供給する第2のガス圧
縮手段を含む冷凍発生回路を備えた冷凍装置において、
第1作動媒体を弁を介して出し入れする第1作動媒体貯
蔵手段を前記第1のガス圧縮手段に連通し、第2作動媒
体を弁を介して出し入れする第2作動媒体貯蔵手段を前
記第2のガス圧縮手段に連通したことを特徴するリザー
バタンク付き冷凍装置。
3. A cold generating circuit including a cold generating means for precooling and a first gas compression means for supplying a first working medium to the cold generating means, a freezing generating means for freezing or liquefying, and the freezing. A refrigerating apparatus provided with a refrigeration generating circuit including a second gas compressing means for supplying a second working medium to the generating means,
The second working medium storage means for communicating the first working medium storage means for loading and unloading the first working medium via the valve with the first gas compression means and the second working medium storage means for loading and unloading the second working medium for the second gas are provided. Refrigerating apparatus with a reservoir tank, which is in communication with the gas compressing means.
【請求項4】予冷用の寒冷発生手段と該寒冷発生手段に
第1の作動媒体を供給する第1のガス圧縮手段とを含む
寒冷発生回路と、冷凍または液化用の冷凍発生手段と該
冷凍発生手段に第2の作動媒体を供給する第2のガス圧
縮手段を含む冷凍発生回路を備えた冷凍装置において、
第1作動媒体を弁を介して出し入れする第1作動媒体貯
蔵手段を前記第1のガス圧縮手段に連通し、第2作動媒
体を弁を介して出し入れする第2作動媒体貯蔵手段を前
記第2のガス圧縮手段に連通し、前記第1、第2作動媒
体貯蔵手段を弁を介して連通したことを特徴するリザー
バタンク付き冷凍装置。
4. A cold generating circuit including a cold generating means for precooling and a first gas compression means for supplying a first working medium to the cold generating means, a freezing generating means for freezing or liquefying, and the freezing. A refrigerating apparatus provided with a refrigeration generating circuit including a second gas compressing means for supplying a second working medium to the generating means,
The second working medium storage means for communicating the first working medium storage means for loading and unloading the first working medium via the valve with the first gas compression means and the second working medium storage means for loading and unloading the second working medium for the second gas are provided. Refrigerating apparatus with a reservoir tank, wherein the first and second working medium storage means are communicated with each other via a valve.
【請求項5】請求項1乃至4いずれか記載において、該
冷凍装置内の温度、圧力、熱負荷に応じて該弁群を通過
する前記第1、第2作動媒体量を調整することを特徴す
るリザーバタンク付き冷凍装置。
5. The method according to any one of claims 1 to 4, wherein the first and second working medium amounts passing through the valve group are adjusted according to the temperature, pressure and heat load in the refrigeration system. Refrigerator with reservoir tank.
【請求項6】請求項1乃至5いずれか記載において、前
記寒冷発生回路と、前記冷凍発生回路を任意に隔離でき
ることを特徴とするリザーバタンク付き冷凍装置。
6. The refrigerating apparatus with a reservoir tank according to claim 1, wherein the cold generation circuit and the freezing generation circuit can be arbitrarily isolated.
【請求項7】請求項2記載において、該冷凍装置内の温
度、圧力、熱負荷に応じて該弁群を通過する該作動媒体
量を調整することを特徴するリザーバタンク付き冷凍装
置。
7. The refrigerating apparatus with a reservoir tank according to claim 2, wherein the amount of the working medium passing through the valve group is adjusted according to the temperature, pressure and heat load in the refrigerating apparatus.
JP12370692A 1992-05-15 1992-05-15 Freezer device with reservoir tank Pending JPH05322343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12370692A JPH05322343A (en) 1992-05-15 1992-05-15 Freezer device with reservoir tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12370692A JPH05322343A (en) 1992-05-15 1992-05-15 Freezer device with reservoir tank

Publications (1)

Publication Number Publication Date
JPH05322343A true JPH05322343A (en) 1993-12-07

Family

ID=14867336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12370692A Pending JPH05322343A (en) 1992-05-15 1992-05-15 Freezer device with reservoir tank

Country Status (1)

Country Link
JP (1) JPH05322343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227775A (en) * 2010-05-12 2015-12-17 ブルックス オートメーション インコーポレイテッド System for cryogenic cooling
JP2016118372A (en) * 2014-12-22 2016-06-30 住友重機械工業株式会社 Cryogenic temperature refrigerator and operation method of cryogenic temperature refrigerator
KR20160089401A (en) * 2013-12-19 2016-07-27 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 Hybrid brayton-gifford-mcmahon expander

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227775A (en) * 2010-05-12 2015-12-17 ブルックス オートメーション インコーポレイテッド System for cryogenic cooling
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling
KR20160089401A (en) * 2013-12-19 2016-07-27 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 Hybrid brayton-gifford-mcmahon expander
JP2017500526A (en) * 2013-12-19 2017-01-05 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッドSumitomo(SHI)Cryogenics of America,Inc. Hybrid Brayton Gifford McMahon expander
KR20190025767A (en) * 2013-12-19 2019-03-11 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 Hybrid brayton-gifford-mcmahon expander
US10794616B2 (en) 2013-12-19 2020-10-06 Sumitomo (Shi) Cryogenic Of America, Inc. Hybrid Brayton—Gifford-McMahon expander
JP2016118372A (en) * 2014-12-22 2016-06-30 住友重機械工業株式会社 Cryogenic temperature refrigerator and operation method of cryogenic temperature refrigerator

Similar Documents

Publication Publication Date Title
TWI571941B (en) System and method for cryogenic cooling
JPH0515764A (en) Vacuum container with cooling device
US3850004A (en) Cryogenic helium refrigeration system
JP2773793B2 (en) Cryogenic refrigerator
JPH05322343A (en) Freezer device with reservoir tank
JP2910499B2 (en) Refrigeration equipment
JPH10246524A (en) Freezing device
JPH09229503A (en) Cryogenic freezer device
US6484516B1 (en) Method and system for cryogenic refrigeration
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JP3638557B2 (en) Cryogenic cooling method and apparatus
JP2600506B2 (en) Refrigeration equipment
JPH06323663A (en) Refrigerator
JP3670536B2 (en) Cryogenic cooling device
JPH1073333A (en) Cryogenic cooling apparatus
JPH06323664A (en) Refrigerator
JP3589434B2 (en) Cryogenic refrigeration equipment
JP3596825B2 (en) Low pressure control device for cryogenic refrigerator
JPS61226904A (en) Very low temperature cooling method and very low temperature cooling device
JP3765945B2 (en) Operation control device for refrigerator
JPS62280571A (en) Method and device for precooling liquefying refrigerator
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPH06323661A (en) Refrigerator
JPH02622Y2 (en)
JPH09236340A (en) Cryogenic refrigerating device