JPH04324073A - Cryogenic refrigerating plant - Google Patents

Cryogenic refrigerating plant

Info

Publication number
JPH04324073A
JPH04324073A JP9220291A JP9220291A JPH04324073A JP H04324073 A JPH04324073 A JP H04324073A JP 9220291 A JP9220291 A JP 9220291A JP 9220291 A JP9220291 A JP 9220291A JP H04324073 A JPH04324073 A JP H04324073A
Authority
JP
Japan
Prior art keywords
pulse tube
compressor
length
temperature end
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9220291A
Other languages
Japanese (ja)
Inventor
Takahiro Nakamura
隆広 中村
Masato Osumi
正人 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9220291A priority Critical patent/JPH04324073A/en
Publication of JPH04324073A publication Critical patent/JPH04324073A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1414Pulse-tube cycles characterised by pulse tube details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To make the mounting of a replaced pulse tube unnecessary and develope the maximum refrigerating capacity even when a compressor, having a different output, is mounted on a cryogenic refrigerating plant for the replacement of the compressor. CONSTITUTION:A compressor 8 is communicated with a cold heat accumulator 13, a low-temperature end heat exchanger 15, a pulse tube 16, an orifice valve 18, a baffer tank 19 and the like sequentially while gaseous refrigerant is moved reciprocally between the baffer tank 19 and said compressor 8. Said pulse tube 16 is constituted so that the length of the same is adjustable.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、パルス管を使用して1
50〜20K(−123〜−253℃)の極低温を得る
ことで、各種赤外線センサー及び高温超電導デバイス等
の冷却用に利用される極低温冷凍装置に関する。
[Industrial Application Field] The present invention uses a pulse tube to
The present invention relates to a cryogenic refrigeration system that obtains a cryogenic temperature of 50 to 20 K (-123 to -253° C.) and is used for cooling various infrared sensors, high-temperature superconducting devices, and the like.

【0002】0002

【従来の技術】本出願人が特願平1−335564号で
出願した従来の極低温冷凍装置では、図3に示すように
、圧縮機1を順次、蓄冷器2、低温端熱交換器3、パル
ス管4、オリフィス弁5及びバッファータンク6等に連
通し、このバッファータンク6と前記圧縮機1との間で
、ガス状冷媒を往復移動させることで、パルス管4の高
温端部7で放熱し、低温端熱交換器3で極低温を生じさ
せている。
2. Description of the Related Art In a conventional cryogenic refrigeration system filed by the present applicant in Japanese Patent Application No. 1-335564, as shown in FIG. , the pulse tube 4, the orifice valve 5, the buffer tank 6, etc., and by reciprocating the gaseous refrigerant between the buffer tank 6 and the compressor 1, the high temperature end 7 of the pulse tube 4 Heat is radiated and a cryogenic temperature is generated in the low temperature end heat exchanger 3.

【0003】しかしながらこの種従来の極低温冷凍装置
では、パルス管4は長さ調整が不能のため冷凍能力の異
なる極低温冷凍装置には対応できず、出力の異なる圧縮
機1を交換装着した場合には、これに対応してパルス管
4も長さの異なるものと交換装着する欠点がある。即ち
前記極低温冷凍装置では、圧縮機1の出力に比較してパ
ルス管4が長すぎるとその形態が大型化するだけでなく
ガス状冷媒の高低圧比がとれなくなり冷凍能力の低下す
る不都合が生じ、逆にパルス管4が短かすぎるとその高
温端と低温端との温度差が大きくとれなくなりやはり冷
凍能力の低下する不都合が生じるため、圧縮機1を出力
の異なるものと交換装着した場合にはこの圧縮機1の能
力を最大限に発揮させるべくパルス管4も最適長のもの
と交換装着する欠点がある。
However, in this kind of conventional cryogenic refrigeration equipment, the length of the pulse tube 4 cannot be adjusted, so it cannot be used with cryogenic refrigeration equipment with different refrigerating capacities. This has the disadvantage that the pulse tube 4 must be replaced with one of a different length. That is, in the cryogenic refrigeration system, if the pulse tube 4 is too long compared to the output of the compressor 1, not only will the shape become large, but the high-low pressure ratio of the gaseous refrigerant will not be maintained, resulting in a reduction in the refrigerating capacity. On the other hand, if the pulse tube 4 is too short, it will not be possible to maintain a large temperature difference between the high temperature end and the low temperature end, resulting in a reduction in refrigerating capacity. However, in order to maximize the performance of the compressor 1, the pulse tube 4 has to be replaced with one of the optimum length.

【0004】0004

【発明が解決しようとする課題】本発明は前述の欠点を
解消し、極低温冷凍装置に対し、出力の異なる圧縮機を
交換装着した場合にもパルス管の交換装着を不要として
最大の冷凍能力を発揮させるものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks and achieves maximum refrigeration capacity by eliminating the need to replace pulse tubes even when compressors with different outputs are installed in cryogenic refrigeration equipment. It is something that allows you to demonstrate your abilities.

【0005】[0005]

【課題を解決するための手段】本発明は圧縮機を順次、
蓄冷器、低温端熱交換器、パルス管、オリフィス弁及び
バッファータンク等に連通し、このバッファータンクと
前記圧縮機との間で、ガス状冷媒を往復移動させてなる
ものであって、前記パルス管を管長について調整自在に
構成したものである。
[Means for Solving the Problems] The present invention sequentially connects a compressor to
It communicates with a regenerator, a low-temperature end heat exchanger, a pulse tube, an orifice valve, a buffer tank, etc., and moves a gaseous refrigerant back and forth between the buffer tank and the compressor, and the pulse The pipe is constructed so that its length can be adjusted freely.

【0006】[0006]

【作用】本発明によれば、極低温冷凍装置は出力の異な
る圧縮機を交換装着した場合にもパルス管を長さ調整す
るだけで最大限の冷凍能力を発揮できるようになる。
[Function] According to the present invention, even when compressors with different outputs are replaced and installed, the cryogenic refrigeration system can exhibit the maximum refrigerating capacity simply by adjusting the length of the pulse tube.

【0007】[0007]

【実施例】次に本発明の一実施例について説明する。[Embodiment] Next, an embodiment of the present invention will be described.

【0008】8は極低温冷凍装置本体に配管9で接続さ
れる圧縮機で、シリンダー10にピストン11を収納し
、このピストン11を図示しない駆動装置で往復動作さ
せることで、ガス状冷媒を圧縮又は吸引膨張させる。 12は圧縮機8に連通した予冷用熱交換器で、水冷又は
空冷される。13は予冷用熱交換器12に連通した蓄冷
器で、蓄冷材14を収納している。15は蓄冷器13に
連通した低温端熱交換器で、ステンレス鋼製のパルス管
16の冷媒導入側に一体形成される。17はパルス管1
6の他端に一体形成した高温端熱交換器で、パルス管1
6内で発生した圧縮熱をこの高温端熱交換器17から水
冷又は空冷により放熱する。18は高温端熱交換器17
に連通したオリフィス弁、19はオリフィス弁18に連
通したバッファータンクである。
Reference numeral 8 denotes a compressor connected to the main body of the cryogenic refrigeration system through a pipe 9. A piston 11 is housed in a cylinder 10, and the piston 11 is reciprocated by a drive device (not shown) to compress the gaseous refrigerant. Or inflate by suction. 12 is a pre-cooling heat exchanger connected to the compressor 8 and is water-cooled or air-cooled. A regenerator 13 communicates with the precooling heat exchanger 12 and stores a regenerator material 14 . A low-temperature end heat exchanger 15 is connected to the regenerator 13 and is integrally formed on the refrigerant introduction side of the pulse tube 16 made of stainless steel. 17 is pulse tube 1
A high temperature end heat exchanger integrally formed at the other end of pulse tube 1
The compression heat generated in the high temperature end heat exchanger 17 is radiated by water cooling or air cooling. 18 is a high temperature end heat exchanger 17
19 is a buffer tank that communicates with the orifice valve 18.

【0009】以上の構成の極低温冷凍装置では、圧縮機
8のピストン11で圧縮されたガス状冷媒は、予冷用熱
交換器12及び蓄冷器13を通る間に冷却されパルス管
16に流入しこのパルス管16の残留冷媒を圧縮してそ
の圧縮熱を高温端熱交換器17で放熱し、オリフィス弁
18を通る間に断熱膨張により冷却してバッファータン
ク19に流入し、その後ピストン11が引き上げられた
場合に、ガス状冷媒は復帰移動してパルス管16内で断
熱膨張し更に低温化して低温端熱交換器15及び蓄冷器
13を冷却し圧縮機8に戻り、斯る往復移動サイクルを
繰り返すことにより、低温端熱交換器15に150〜2
0K(−123〜−253℃)の極低温が得られる。
In the cryogenic refrigeration system configured as described above, the gaseous refrigerant compressed by the piston 11 of the compressor 8 is cooled while passing through the precooling heat exchanger 12 and the regenerator 13, and then flows into the pulse tube 16. The residual refrigerant in the pulse tube 16 is compressed and the heat of compression is radiated in the high temperature end heat exchanger 17, cooled by adiabatic expansion while passing through the orifice valve 18, and flows into the buffer tank 19, after which the piston 11 is pulled up. When the gaseous refrigerant moves back and expands adiabatically within the pulse tube 16, the temperature is further lowered, cools the low-temperature end heat exchanger 15 and the regenerator 13, and returns to the compressor 8, completing such a reciprocating cycle. By repeating this, 150 to 2
A cryogenic temperature of 0K (-123 to -253°C) is obtained.

【0010】而して、前記パルス管16はその管長につ
いて調整自在に構成してある。図2に示すように、パル
ス管16の長さ調整機構20は、金属製のベローズ部2
1と、該ベローズ部21の伸縮長の調整手段22,22
とから構成してある。伸縮長の調整手段22,22は、
具体的には長さ調整用ボルト等から構成し、この長さ調
整用ボルト22,22を一対の硬質パルス管部23,2
4の鍔部23a,24aに螺入して回転操作することで
、パルス管部23,24の相対間隙Xを調節してベロー
ズ部21の伸縮長を調整すべく構成してある。この長さ
調整ボルト22,22については、一方の硬質パルス管
部23だけに螺入し他方の硬質パルス管部24に対して
は挿入孔に軸方向ストッパーで係止するだけの構成とし
て一方の硬質パルス管部23だけを調整移動させるもの
等、種々の態様のものが実施される。
The pulse tube 16 is constructed such that its length can be adjusted freely. As shown in FIG. 2, the length adjustment mechanism 20 of the pulse tube 16 includes a metal bellows portion 2.
1, and means 22, 22 for adjusting the expansion/contraction length of the bellows portion 21.
It is composed of. The expansion/contraction length adjusting means 22, 22 are as follows:
Specifically, it consists of length adjustment bolts, etc., and these length adjustment bolts 22, 22 are connected to a pair of hard pulse tube parts 23, 2.
By screwing into the flanges 23a, 24a of No. 4 and rotating them, the relative gap X between the pulse tube sections 23, 24 can be adjusted, and the length of expansion and contraction of the bellows section 21 can be adjusted. The length adjustment bolts 22, 22 are configured so that they are screwed into only one hard pulse tube section 23, and are simply locked into the insertion hole with an axial stopper for the other hard pulse tube section 24. Various embodiments may be implemented, such as one in which only the hard pulse tube section 23 is adjusted and moved.

【0011】前記極低温冷凍装置では、出力の異なる圧
縮機8を交換装着した場合にも、パルス管16の長さ調
整機構20を操作するだけで簡単に対応でき、よって、
圧縮機8の出力に比較してパルス管16が長すぎてガス
状冷媒の高低圧比がとれなくなることも逆にパルス管1
6が短かすぎてその高温端と低温端との温度差がとれな
くなることも防止でき、従って、圧縮機8及び極低温冷
凍装置はその能力を最大限に発揮できるようになる。
[0011] In the cryogenic refrigeration system, even when compressors 8 with different outputs are replaced, this can be easily handled by simply operating the length adjustment mechanism 20 of the pulse tube 16.
Conversely, the pulse tube 16 may be too long compared to the output of the compressor 8, making it impossible to maintain the high-low pressure ratio of the gaseous refrigerant.
It is also possible to prevent the temperature difference between the high temperature end and the low temperature end of the compressor 6 from being too short and the temperature difference between the high temperature end and the low temperature end thereof cannot be maintained, so that the compressor 8 and the cryogenic refrigeration equipment can demonstrate their capabilities to the maximum.

【0012】0012

【発明の効果】本発明は以上のように構成したから、極
低温冷凍装置は出力の異なる圧縮機を交換装着した場合
にもパルス管を長さ調整するだけで最大限の冷凍能力を
発揮できるようになる。
[Effects of the Invention] Since the present invention is configured as described above, the cryogenic refrigeration system can achieve maximum refrigeration capacity by simply adjusting the length of the pulse tube even when replacing and installing compressors with different outputs. It becomes like this.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の概略的構成図である。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.

【図2】本発明の一実施例の要部の断面図である。FIG. 2 is a sectional view of essential parts of an embodiment of the present invention.

【図3】従来例の構成図である。FIG. 3 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

8  圧縮機 13  蓄冷器 15  低温端熱交換器 16  パルス管 18  オリフィス弁 19  バッファータンク 21  ベローズ部 22  調整手段 8 Compressor 13 Regenerator 15 Low temperature end heat exchanger 16 Pulse tube 18 Orifice valve 19 Buffer tank 21 Bellows part 22 Adjustment means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機を順次、蓄冷器、低温端熱交換
器、パルス管、オリフィス弁及びバッファータンク等に
連通し、このバッファータンクと前記圧縮機との間で、
ガス状冷媒を往復移動させてなるものであって、前記パ
ルス管を管長について調整自在に構成したことを特徴と
する極低温冷凍装置。
Claim 1: A compressor is sequentially connected to a regenerator, a low-temperature end heat exchanger, a pulse tube, an orifice valve, a buffer tank, etc., and between the buffer tank and the compressor,
1. A cryogenic refrigeration device that is constructed by reciprocating a gaseous refrigerant, and is characterized in that the pulse tube is configured to be freely adjustable in terms of tube length.
【請求項2】  前記パルス管は、ベローズ部と、該ベ
ローズ部の伸縮長の調整手段とを備えてなることを特徴
とする請求項1記載の極低温冷凍装置。
2. The cryogenic refrigeration apparatus according to claim 1, wherein the pulse tube includes a bellows portion and means for adjusting an expansion/contraction length of the bellows portion.
JP9220291A 1991-04-23 1991-04-23 Cryogenic refrigerating plant Pending JPH04324073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9220291A JPH04324073A (en) 1991-04-23 1991-04-23 Cryogenic refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9220291A JPH04324073A (en) 1991-04-23 1991-04-23 Cryogenic refrigerating plant

Publications (1)

Publication Number Publication Date
JPH04324073A true JPH04324073A (en) 1992-11-13

Family

ID=14047864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9220291A Pending JPH04324073A (en) 1991-04-23 1991-04-23 Cryogenic refrigerating plant

Country Status (1)

Country Link
JP (1) JPH04324073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007881A (en) * 2008-06-24 2010-01-14 Fuji Electric Systems Co Ltd Refrigerating device and charged particle beam device
US8534346B1 (en) 2006-11-16 2013-09-17 Climatecraft Technologies, Inc. Flexible heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534346B1 (en) 2006-11-16 2013-09-17 Climatecraft Technologies, Inc. Flexible heat exchanger
JP2010007881A (en) * 2008-06-24 2010-01-14 Fuji Electric Systems Co Ltd Refrigerating device and charged particle beam device

Similar Documents

Publication Publication Date Title
US5317878A (en) Cryogenic cooling apparatus
EP1158256A2 (en) Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
US7249465B2 (en) Method for operating a cryocooler using temperature trending monitoring
JPH04324073A (en) Cryogenic refrigerating plant
JPH05126426A (en) Cryogenic refrigerator
JP2734893B2 (en) Cryogenic refrigerator
JP2877592B2 (en) Cryogenic refrigeration equipment
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
JPH079000Y2 (en) Cryogenic refrigerator
JPH03194364A (en) Cryostatic freezer
JPH03286967A (en) Pulse pipe type freezer
JP2723342B2 (en) Cryogenic refrigerator
JP2003214719A (en) Cryogenic cooling method and device
KR200251008Y1 (en) Refrigeration cycle device for refrigerator
JPH05332655A (en) Mounting device for cryogenic refrigerator
Usami et al. Analysis of a high efficiency 4K GM refrigerator operating at a lower pressure ratio
JP3153624B2 (en) Cryogenic refrigeration system
JP2636240B2 (en) Helium liquefaction method
Poncet et al. Developments on single and double stage GM type pulse tube cryorefrigerators
Tendolkar et al. Performance Comparison of Stirling-Type Single-Stage Pulse Tube Refrigerators of Inline and ‘U’Configurations
JPH03500081A (en) Low temperature freezing equipment
JPH05288417A (en) Freezer device
JP3309462B2 (en) Refrigeration equipment
JPH11108476A (en) Cryostatic cooling device
JPH07269967A (en) Refrigerator