WO2016072393A1 - Photovoltaic thermal hybrid panel and photovoltaic thermal hybrid system - Google Patents

Photovoltaic thermal hybrid panel and photovoltaic thermal hybrid system Download PDF

Info

Publication number
WO2016072393A1
WO2016072393A1 PCT/JP2015/080936 JP2015080936W WO2016072393A1 WO 2016072393 A1 WO2016072393 A1 WO 2016072393A1 JP 2015080936 W JP2015080936 W JP 2015080936W WO 2016072393 A1 WO2016072393 A1 WO 2016072393A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
refrigerant
heat
panel
Prior art date
Application number
PCT/JP2015/080936
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 重田
井出 哲也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016072393A1 publication Critical patent/WO2016072393A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a heat collecting plate that absorbs thermal energy from a solar cell module, and a photothermal hybrid panel and a photothermal hybrid system including the solar cell module and the heat collecting plate.
  • a device (generally a photothermal hybrid panel) in which a solar cell module that generates electric energy based on sunlight and a heat collecting plate (heat collecting panel) that generates thermal energy based on sunlight are integrated.
  • a heat collecting plate heat collecting panel
  • the heat collecting plate absorbs heat energy from the solar cell module in which the heat energy is accumulated (that is, the temperature is increased) by receiving sunlight.
  • the thermal energy absorbed by the heat collecting plate moves to the refrigerant pipe arranged with respect to the heat collecting panel.
  • the refrigerant that has obtained thermal energy is transported to a device or system that uses the thermal energy.
  • the heat collection efficiency of the heat collecting plate is solar heat collection that absorbs heat energy directly from sunlight. Lower than the heat collection efficiency of the vessel.
  • Japanese Patent Publication “JP 11-103087 A (published on April 13, 1999)” Japanese Patent Publication “Japanese Patent Laid-Open No. 10-62017 (published March 6, 1998)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2013-100931 (May 23, 2013)”
  • FIGS. 27A and 27B show the configurations of the photothermal hybrid panels 99A and 99B including the fin structures 992A and 992B. Fin structures 992A and 992B arranged outside the refrigerant pipes 991A and 991B absorb the thermal energy of the atmosphere. The thermal energy absorbed by the fin structures 992A and 992B moves to each refrigerant in the refrigerant tubes 991A and 991B. Thereby, the heat collection efficiency of the photothermal hybrid panels 99A and 99B can be improved.
  • the photothermal hybrid panels 99A and 99B In order to absorb large heat energy from air having a small specific heat, it is better to enlarge the fin structures 992A and 992B. However, when the fin structures 992A and 992B are made large (for example, on the order of cm (centimeter)), the photothermal hybrid panels 99A and 99B become too heavy, and various problems may occur. For example, when heavy photothermal hybrid panels 99A and 99B are installed on the roof of a house, a heavy burden is imposed on the roof and the entire house.
  • the fin structures 992A and 992B absorb the thermal energy from the atmosphere, and release the thermal energy accumulated in the solar cell module to the atmosphere.
  • the fin structures 992A and 992B release a very large amount of thermal energy from the solar cell module to the atmosphere, so that the heat collecting panel sufficiently releases the thermal energy based on sunlight from the solar cell module. It cannot be absorbed. Therefore, the heat collection efficiency of the photothermal hybrid panels 99A and 99B may be reduced.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the heat collection efficiency of the photothermal hybrid panel while suppressing an increase in the weight of the photothermal hybrid panel.
  • a photothermal hybrid panel includes a solar cell module, a heat collecting plate, and a refrigerant tube from a light receiving surface side of the solar cell module toward a back surface on the opposite side.
  • a photothermal hybrid panel having a structure arranged in this order, a plurality of raised structures protruding from the solar cell module side to the inside of the refrigerant tube are arranged on the inner surface of the refrigerant tube, The plurality of raised structures (i) are arranged in a plurality of rows in the direction in which the refrigerant pipe extends, and (ii) are alternately arranged with the plurality of raised structures included in adjacent rows.
  • FIG. It is the schematic which shows the structure of the refrigerant pipe with which the photothermal hybrid panel which concerns on Embodiment 1 was equipped, and the protruding structure. It is the schematic which shows the structure of the photothermal hybrid panel which concerns on Embodiment 1.
  • FIG. It is the schematic which shows the structure of the refrigerant
  • FIG. 1 It is a block diagram which shows the structure of the solar-heat utilization system connected with the photothermal hybrid panel which concerns on Embodiment 1.
  • FIG. 2 It is a block diagram which shows the structure of the other solar-heat utilization system connected with the photothermal hybrid panel which concerns on Embodiment 1.
  • FIG. It is the schematic which shows the structure of the refrigerant pipe which concerns on Embodiment 2, and a protruding structure.
  • (A)-(c) is the schematic which shows the structure of the protruding structure which concerns on the modification of Embodiment 2, respectively. It is a figure which shows the cross section of the refrigerant pipe which concerns on Embodiment 3.
  • FIG. 6 is a schematic view showing a cross-sectional structure of a solar cell module according to Embodiment 4.
  • FIG. (A) is the schematic which shows the structure of the solar cell module which concerns on Embodiment 4 seen from the direction which sunlight injects
  • (b) is the outline which shows the structure of the convex part with which the said solar cell module was equipped.
  • FIG. It is a graph which shows the relationship between the width
  • FIG. (A) is a graph which shows the relationship between the area which a convex part occupies in the glass layer with which the solar cell module which concerns on Embodiment 4 was equipped, and the thermal radiation amount of the said solar cell module
  • (b) is the said It is a graph which shows the relationship between the area which a convex part occupies in the glass layer with which the solar cell module was provided, and the absorbed amount of sunlight by the said solar cell module.
  • 6 is a schematic diagram showing a cross-sectional structure of a solar cell module according to Embodiment 5.
  • FIG. (A) is the schematic which shows the solar cell module which concerns on Embodiment 5 seen from the direction which sunlight injects
  • (b) is the schematic which shows the structure of the recessed part formed in the said solar cell module.
  • FIG. 10 is a block diagram illustrating a configuration of a solar cell module according to Embodiment 7.
  • FIG. 10 is a block diagram illustrating a configuration of a photoelectric conversion module array according to a seventh embodiment. It is the schematic which shows the structure of the solar energy power generation system which concerns on Embodiment 7.
  • FIG. 10 is a block diagram illustrating a configuration of a solar power generation system according to a modification of the seventh embodiment.
  • FIG. 20 is a block diagram illustrating a configuration of a solar power generation system according to a modification of the eighth embodiment. It is the schematic which shows the structure of the photothermal hybrid panel which concerns on Embodiment 9. FIG. It is the schematic which shows the structure of the other photothermal hybrid panel which concerns on Embodiment 9. FIG. It is a block diagram which shows the structure of the photothermal hybrid system which concerns on Embodiment 10.
  • FIG. (A) And (b) is a figure which respectively shows the structure of the virtual photothermal hybrid panel provided with the fin structure outside the refrigerant pipe. It is a figure which shows the structure of the conventional refrigerant pipe.
  • FIG. 2 is a schematic diagram showing the configuration of the photothermal hybrid panel 1.
  • the photothermal hybrid panel 1 includes a solar cell module 10 and a heat collection panel 30 (heat collection plate).
  • the solar cell module 10 and the heat collecting panel 30 are fixed by the frame 20.
  • the heat collection panel 30 is arranged in a form capable of conducting heat from the solar cell module 10 at a position facing the back surface (surface opposite to the light receiving surface) of the solar cell module 10.
  • the heat collection panel 30 includes a refrigerant pipe 40 on the surface opposite to the surface facing the solar cell module 10.
  • the solar cell module 10 absorbs sunlight incident on the light receiving surface and converts light energy of the absorbed sunlight into electric power.
  • the electric power generated by the solar cell module 10 is output from the terminal 31 to the solar power generation system 2000 (see FIGS. 20 and 21).
  • the solar cell module 10 includes a solar cell panel, glass, sealing resin (upper side and lower side), and EVA (Ethylene-Vinyl-Acetate).
  • the heat collection panel 30 absorbs (takes out) the thermal energy accumulated in the solar cell module 10.
  • the heat collection panel 30 includes a heat conduction plate, and transmits the thermal energy absorbed from the solar cell module 10 to the refrigerant tube 40.
  • the thermal energy absorbed by the heat collecting panel 30 from the solar cell module 10 moves to the refrigerant (water or antifreeze liquid) flowing through the refrigerant pipe 40.
  • the refrigerant passes through the refrigerant pipe 40 and is transported to the solar heat utilization systems 100 and 200 (see FIGS. 5 and 6).
  • the solar heat utilization systems 100 and 200 will be described at the end of this embodiment.
  • FIG. 3 is a schematic view showing the configuration of the refrigerant pipe 40 provided in the heat collecting panel 30.
  • a plurality of linearly extending refrigerant tubes 40 are arranged on the heat collection panel 30.
  • the refrigerant tube 40 has a hollow cylindrical shape having a semicircular cross section.
  • a refrigerant flows in the refrigerant pipe 40.
  • a plurality of raised structures 50 are formed in each refrigerant pipe 40.
  • the raised structure 50 is raised from the solar cell module 10 side toward the inside of the refrigerant pipe 40.
  • the raised structure 50 increases the heat transfer coefficient between the refrigerant pipe 40 and the refrigerant (easy transfer of thermal energy from the refrigerant pipe 40 to the refrigerant) by increasing the surface area where the refrigerant pipe 40 and the refrigerant are in contact with each other. .
  • the heat collection efficiency of the heat collection panel 30 is improved.
  • FIG. 1 is a schematic diagram showing the configuration of the refrigerant pipe 40 and the raised structure 50.
  • a raised structure 50 is disposed inside the flat surface of the refrigerant pipe 40.
  • the refrigerant pipe 40 is in contact with the heat collecting panel 30 outside the flat surface (see FIG. 3).
  • the periphery of the refrigerant pipe 40 may be covered with a heat insulating material.
  • the raised structure 50 can be formed by press-molding a steel material on the flat surface of the refrigerant tube 40 using a mold.
  • the raised structure 50 thus formed is hollow.
  • a thermal conductive plate provided with the raised structure 50 can be easily produced.
  • the raised structure 50 is formed by press-molding a steel material, the weight of the steel material does not change at all even if a plurality of raised structures 50 are provided. Therefore, the heat collecting panel 30 excellent in heat collecting property while suppressing an increase in weight can be produced.
  • the refrigerant tube 40 is completed by adhering a circular tube member cut in half (along the longitudinal direction) to the flat surface.
  • the raised structure 50 has a shape of a hollow partial cylinder (for example, a hollow semi-cylinder) obtained by cutting the hollow cylinder along the central axis.
  • the raised structure 50 absorbs heat energy from the heat collection panel 30 (this heat energy is a part of heat energy absorbed from the solar cell module 10 by the heat collection panel 30) via the refrigerant tube 40. Then, the thermal energy absorbed by the raised structure 50 moves to the refrigerant flowing in the refrigerant pipe 40.
  • the specific heat of the refrigerant is generally higher than that of air. Therefore, even if the raised structure 50 is small, heat energy can be efficiently transferred to the refrigerant.
  • the raised structures 50 are arranged in two rows in the x direction (that is, the direction in which the refrigerant mainly flows) in which the refrigerant pipe 40 extends.
  • the raised structures 50 belonging to different rows are arranged alternately.
  • the raised structures 50 are arranged in a staggered manner in the refrigerant pipe 40.
  • the refrigerant flows through the refrigerant pipe 40 while interacting with the two rows of raised structures 50 (that is, while colliding with the raised structures 50).
  • the plurality of raised structures 50 increase the area where the refrigerant contacts the flat surface of the refrigerant pipe 40. Therefore, thermal energy moves from the refrigerant tube 40 to the refrigerant more efficiently than the refrigerant tube 40 in which the raised structure 50 is not provided.
  • the raised structure 50 When the raised structure 50 has a specific size, a turbulent refrigerant flow occurs in the refrigerant pipe 40. In this case, since the heat transfer coefficient between the raised structure 50 (and the refrigerant pipe 40) and the refrigerant is increased, larger thermal energy is transferred from the raised structure 50 to the refrigerant. Thereby, the heat collection efficiency of the heat collection panel 30 improves.
  • the width d, the length lf, and the height t of the raised structure 50 satisfy the following conditions, respectively.
  • the width d is less than L / 3
  • the raised structure 50 becomes too small, so that the interaction between the raised structure 50 and the refrigerant becomes too small.
  • the width d exceeds L / 2
  • the raised structures 50 belonging to different columns overlap when viewed in the x-axis direction, so that the interaction between the raised structure 50 and the refrigerant is also reduced. Too much.
  • the position of the raised structure 50 included in one row and the raised structure 50 included in the other row When the overlapping length with the position is larger than 0 (particularly, lf / 2 or more), the interaction between the raised structure 50 and the refrigerant becomes too small. Further, when viewed from a direction parallel to the flat surface of the refrigerant pipe 40 and perpendicular to the x-axis direction, the position of the raised structure 50 included in one row and the raised structure 50 included in the other row Even when the positions are separated from each other, the interaction between the raised structure 50 and the refrigerant becomes too small.
  • the raised structure 50 maintains a state in which it does not overlap with the adjacent raised structure 50 belonging to different rows when viewed in the direction perpendicular to the x-axis direction, as shown in FIG.
  • the length lf can be maximized.
  • the length lf of the raised structure 50 is particularly preferably 3d. The reason will be described below.
  • p 2lf.
  • FIG. 4 is a graph showing the relationship between the ratio f and the heat collection efficiency of the heat collection panel 30.
  • FIG. 4 shows a graph when the length lf of the raised structure 50 is 3d and a graph when the length lf is 5d. Both graphs were obtained by performing numerical simulations based on a combination of common heat transfer engineering equations.
  • the ratio f changes and the contact area between the refrigerant pipe 40 and the raised structure 50 and the fluid (refrigerant) also changes, the ratio f and the heat collection efficiency are considered to have a proportional relationship.
  • the heat collection efficiency is expressed as 5.59f + 0.38, and 3 / 8L
  • the heat collection efficiency is expressed as ⁇ 7.2f + 2.8.
  • the heat collection efficiency is 1.0 or more regardless of whether the value of the length lf is 3d or 5d.
  • the heat collection efficiency of the configuration without the raised structure 50 is 1.0.
  • the heat collection efficiency is approximately 1.0 regardless of the ratio f.
  • the maximum value of the heat collection efficiency is 1.45.
  • the maximum value of the heat collection efficiency is 1.2.
  • the value of the ratio f (that is, the optimum condition) at which the heat collection efficiency becomes the maximum value is 0.1875 regardless of whether the value of the length lf is 3d or 5d.
  • the heat collection efficiency when the value of the length lf is 3d is larger than the heat collection efficiency when the value of the length lf is 5d. Therefore, the value of the length lf of the raised structure 50 is desirably 3d.
  • the raised structures 50 arranged in the refrigerant pipe 40 are arranged in a discrete manner discretely at predetermined intervals in the direction in which the refrigerant pipe 40 extends. Moreover, the inside of the raised structure 50 is a cavity. Therefore, the raised structure 50 is lighter than the uneven structure. In this respect, the raised structure 50 disposed in the refrigerant tube 40 is different from the uneven structure formed in the heat collecting tube described in Patent Document 3.
  • Non-Patent Document 2 describes a refrigerant pipe 98 shown in FIG. As shown in FIG. 28, a plate-like raised structure 982 is disposed on the inner surface of the refrigerant tube 98.
  • the raised structures 982 are alternately arranged on the solar cell module side and on the opposite side of the solar cell module.
  • the raised structure 982 arranged on the side opposite to the solar cell module acquires less heat energy from the solar cell module than the raised structure 982 arranged on the solar cell module side. Therefore, the amount of heat energy that the former raised structure 982 can transfer to the refrigerant is small.
  • all the raised structures 50 are arranged on the solar cell module 10 side. Therefore, all the raised structures 50 can efficiently transfer heat energy to the refrigerant.
  • FIGS. 5 and 6 are block diagrams showing configurations of solar heat utilization systems 100 and 200 connected to the photothermal hybrid panel 1 through a refrigerant transport path.
  • the solar heat utilization systems 100 and 200 can generate hot water to be supplied to a hot water heating facility, a hot water supply facility, and the like, using thermal energy accumulated in the refrigerant.
  • the refrigerant is transported from the heat collecting panel 30 provided in the photothermal hybrid panel 1 to the heat pump 101 provided in the solar heat utilization system 100 through a refrigerant (coolant; antifreeze) transport path. Then, the heat energy accumulated in the refrigerant is transferred to the brine (antifreeze) stored in the brine tank 102 by the heat pump 101.
  • the heat pump 101 can transfer thermal energy from the refrigerant to the brine regardless of whether the temperature of the refrigerant is higher or lower than the temperature of the brine. Therefore, even when the environment around the photothermal hybrid panel 1 is cloudy or raining, or even when the temperature of the outside air is low (below the freezing point), the heat pump 101 has the necessary temperature and amount. Thermal energy can be transferred from the refrigerant to the brine to produce hot water (eg, 60 ° C., 450 L hot water for hot water supply equipment).
  • the conventional solar heat utilization system has not been provided with a heat pump. Therefore, in the above case, necessary hot water could not be generated.
  • the solar heat utilization system 200 shown in FIG. 6 can be used when the refrigerant is water.
  • the water in which the thermal energy is accumulated (that is, hot water) is stored in the hot water storage tank 201 provided in the solar heat utilization system 200 from the heat collection panel 30 through the transport path.
  • the solar heat utilization system 200 uses a heat pump 203 or a gas water heater (not shown) or the like to heat the hot water stored in the hot water storage tank 201, so that the necessary temperature and temperature can be obtained from the hot water stored in the hot water storage tank 201. An amount of hot water can be produced.
  • the hot water stored in the hot water storage tank 201 has thermal energy absorbed by the heat collecting panel 30 from the solar cell module 10 (see FIG. 2).
  • the solar heat utilization system 200 does not require as much energy (so as to produce the same temperature and amount of hot water from unheated water) in order to generate the required temperature and amount of hot water.
  • the raised structure 50 described in the first embodiment has a surface perpendicular to the x direction in which the refrigerant pipe extends (see FIG. 1). Therefore, there is a possibility that the refrigerant flowing in the x direction cannot flow smoothly by colliding with the surface of the raised structure 50. Therefore, in this embodiment, the raised structures 50A to 50D (raised structures) that do not have a surface perpendicular to the x direction will be described.
  • the photothermal hybrid panel 1 includes a raised structure 50 ⁇ / b> A instead of the raised structure 50.
  • the raised structure 50A When viewed from a direction perpendicular to the flat surface of the refrigerant pipe 40, the raised structure 50A has a streamlined shape. That is, the raised structure 50A has a height t at both ends in the x direction, but does not have a width d.
  • the refrigerant collides with one end of the raised structure 50A in the x direction, the direction in which the refrigerant flows gently changes along the curved surface of the raised structure 50A. Therefore, the refrigerant can flow smoothly in the refrigerant pipe 40. Therefore, while the raised structure 50A can generate the turbulent flow of the refrigerant, the load on the raised structure 50A is reduced, so that the reliability of the photothermal hybrid panel 1 is improved and the frequency of repairing the photothermal hybrid panel 1 is increased. Can be reduced.
  • the ranges of desirable values for the width d, length lf, height t, and length p of the raised structure 50A are the width d, length lf, height t, and height of the raised structure 50 described in the first embodiment. It is the same as the range of desirable values for the length p.
  • FIG. 8 are schematic views showing the structure of raised structures 50B to 50D according to modifications of the present embodiment. None of the raised structures 50B to 50D has a surface perpendicular to the x direction in which the refrigerant pipe 40 extends, like the raised structure 50A according to the present embodiment. As shown in FIG. 8A, the raised structure 50B has a flat upper surface. Further, as shown in FIG. 8B, when viewed from a direction perpendicular to the flat surface of the refrigerant tube 40, the raised structure 50C has a shape close to a quadrangle having rounded corners rather than an ellipse. As shown in FIG.
  • the raised structure 50D when viewed from a direction perpendicular to the flat surface of the refrigerant tube 40, the raised structure 50D has the same shape as the raised structure 50C. However, the raised structure 50C does not have a flat upper surface, while the raised structure 50D has a flat upper surface (similar to the raised structure 50B).
  • the refrigerant pipe 40 having a semicircular cross section has been described.
  • a refrigerant tube 40A having a cross section different from a semicircular shape will be described.
  • FIG. 9 is a view showing a cross section of the refrigerant pipe 40A according to the present embodiment.
  • the refrigerant pipe 40A has a trapezoidal cross section. That is, the refrigerant pipe 40A is composed of four flat surfaces. Since the refrigerant pipe 40A is composed of only a flat surface, it can be easily manufactured as compared with the refrigerant pipe 40 composed of a curved surface and a flat surface.
  • the refrigerant pipe 40A may have an arbitrary polygonal cross section.
  • the refrigerant tube 40A may have a semi-elliptical, elliptical, or circular cross section.
  • the refrigerant pipe 40A in which the cut surface of the cross section is configured by a curve does not have a flat surface. Therefore, the raised structure 50 arrange
  • the configuration of the solar cell module 10 provided in the photothermal hybrid panel 1 will be described.
  • FIG. 10 is a schematic view showing a cross-sectional structure of the solar cell module 10.
  • the solar cell module 10 includes sealing resin layers 11 and 12, solar cells 13, an EVA (Ethylene-Vinyl-Acetate) resin layer 14, and a glass layer 15.
  • EVA resin is suitable for the material of the protective layer because it is excellent in stability to ultraviolet rays and weather resistance.
  • the solar cell module 10 includes a convex portion 16 (another raised structure) on the glass layer 15, that is, on the light receiving surface.
  • the forming material of the convex part 16 is the same (glass) as the glass layer 15.
  • the convex part 16 may be formed by baking glass paste or SOG (Spin On Glass).
  • Non-Patent Document 1 describes a glass for solar cells that has been embossed with a size of about several micrometers.
  • the photothermal hybrid panel including the heat collecting panel 30 described in the first to third embodiments, the refrigerant tubes 40 and 40A, and the conventional solar cell module (that is, not including the convex portion 16) is also included in the present invention. include.
  • FIG. 11 is the schematic which shows the structure of the solar cell module 10 seen from the light-receiving surface side.
  • FIG. 11B is a schematic diagram illustrating the configuration of the convex portion 16.
  • the plurality of convex portions 16 are regularly dispersed on the glass layer 15 so as to form a triangular lattice.
  • the convex portion 16 reflects a part of sunlight incident obliquely with respect to the light receiving surface of the solar cell module 10 toward the light receiving surface. Since the convex part 16 reduces the reflection of the sunlight in the glass layer 15, the solar cell module 10 can take in more sunlight. Moreover, as a result of the amount of sunlight taken in by the solar cell module 10 increasing, the heat collection efficiency of the heat collection panel 30 is improved.
  • the convex part 16 can reduce the reflection of sunlight on the light receiving surface of the solar cell module 10. Therefore, the solar cell module 10 can absorb more sunlight and generate more power. In one example, the amount of sunlight absorbed by the solar cell module 10 having the convex portion 16 increased by 0.13% compared to the amount of sunlight absorbed by the solar cell module 10 not having the convex portion 16. .
  • the convex part 16 changes the direction in which a wind flows complicatedly by interacting with the wind which flows on the light-receiving surface of the solar cell module 10. Therefore, the amount of heat radiation from the light receiving surface side of the solar cell module 10 increases. Moreover, the convex part 16 expands the surface area of the glass layer 15 substantially. Therefore, the amount of heat radiation from the light receiving surface side of the solar cell module 10 further increases. As a result, an increase in the temperature of the solar battery cell 13 is suppressed. In one embodiment, the amount of increase in the temperature of the solar cell 13 in the solar cell module 10 having the convex portion 16 is compared with the amount of increase in the temperature of the solar cell 13 in the solar cell module 10 not having the convex portion 16. 22%.
  • the heat collection panel 30 is arrange
  • the convex part 16 is a rectangle.
  • the y direction shown in FIG. 11A represents the direction of the major axis of the convex portion 16.
  • the z direction represents the direction of the short axis of the convex portion 16. Attention is paid to two convex portions 16 that are adjacent (appear) when viewed from the z direction or the y direction.
  • the length phv shown in FIG. 11A is the sum of twice the length lfs of the convex portion 16 and the distance between the two convex portions 16 (the distance in the y direction).
  • the value of the length phv is 20 mm.
  • the length phs shown in FIG. 11B is the sum of the width ds of the convex portion 16 and the interval between the two convex portions 16 (distance in the z direction). Specifically, the value of the length phs is 15.0 mm.
  • the convex portion 16 has a pillar shape having a width ds, a length lfs, and a height ts. Moreover, the convex part 16 has a semicircular cross section. Specifically, the width ds is 2.0 mm. Specifically, the length lfs is 10.0 mm. Specifically, the height ts is 1.0 mm.
  • the shape, size, position, and the like of the convex portion 16 are set so as to efficiently interact with the wind flowing on the light receiving surface of the solar cell module 10.
  • the length lfs and the height ts of the convex portion 16 and the length phs and the length phv indicating the interval between the convex portions 16 are as follows: It is desirable to satisfy.
  • the width ds of the convex portion 16 satisfies the following condition. 1.0mm ⁇ ds ⁇ 70.0mm
  • positioned on the glass layer 15 decreases when the width
  • FIG. 12 is a graph showing the relationship between the width ds of the protrusions 16 and the number of protrusions 16 arranged per unit area (1 square meter) of the glass layer 15.
  • phs 10.0 ds
  • phv 20.0 ds.
  • the value of the width ds of the convex portion 16 is 70.0 mm
  • the number of the convex portions 16 arranged per unit area of the glass layer 15 is approximately one.
  • the value of the width ds of the convex portion 16 is 50.0 mm
  • the number of the convex portions 16 arranged per unit area of the glass layer 15 is approximately two. Therefore, the value of the width ds of the convex portion 16 is preferably 70.0 mm or less, and more preferably 50.0 mm or less.
  • the width ds the greater the number of convex portions 16 arranged on the glass layer 15.
  • the value of the width ds of the convex portion 16 is preferably 1.0 mm or more, and more preferably 2.0 mm or more. Therefore, the width ds more preferably satisfies the condition of 2.0 mm ⁇ ds ⁇ 50.0 mm.
  • FIG. 13A is a graph showing the relationship between the area occupied by the protrusions 16 in the unit area (phv (mm) ⁇ phs (mm)) of the glass layer 15 and the heat dissipation amount of the solar cell module 10. is there.
  • the unit area of the glass layer 15 was set to 1.0
  • the heat radiation amount of the solar cell module 10 not including the convex portion 16 was set to 1.0.
  • the thermal radiation amount of the solar cell module 10 becomes the maximum value 1.22.
  • FIG. 13B shows the relationship between the area occupied by the protrusions 16 in the unit area (phv (mm) ⁇ phs (mm)) of the glass layer 15 and the amount of sunlight absorbed by the solar cell module 10. It is a graph to show.
  • the unit area of the glass layer 15 was set to 1.0, and the amount of sunlight absorbed by the solar cell module 10 not including the convex portion 16 was set to 1.0.
  • the area of the convex portion 16 increases, and the amount of sunlight absorbed by the solar cell module 10 increases monotonously.
  • the optimum value of the area occupied by the convex portion 16 in the unit area (phv (mm) ⁇ phs (mm)) of the glass layer 15 is 0.07.
  • the area occupied by the convex portion 16 is the optimum value 0.07.
  • the solar cell module 10 in which the plurality of convex portions 16 are arranged on the glass layer 15 has been described.
  • a solar cell module 10 ⁇ / b> A in which a plurality of concave portions 17 (recessed structures) are formed on the glass layer 15 will be described.
  • FIG. 14 is a schematic diagram showing a cross-sectional structure of a solar cell module 10A having a glass layer 15 in which a recess 17 is formed.
  • FIG. 15 is the schematic which shows 10 A of solar cell modules seen from the direction which sunlight injects.
  • FIG. 15B is a schematic diagram showing the configuration of the recess 17.
  • the recess 17 is a recess formed by a process of digging the surface of the glass layer 15. As shown in FIG. 15A, the plurality of recesses 17 are regularly dispersed on the glass layer 15 so as to form a triangular lattice.
  • the concave portion 17 reflects a part of sunlight incident obliquely to the light receiving surface of the solar cell module 10A toward the light receiving surface. Since the recessed part 17 reduces the reflection of sunlight in the glass layer 15, the solar cell module 10A can take in a large amount of sunlight. Moreover, as a result of the increase in the amount of sunlight taken in by the solar cell module 10A, the heat collection efficiency of the heat collection panel 30 is improved. In particular, the concave portion 17 can guide more sunlight (for example, five times) into the solar cell module 10A as compared with the convex portion 16 described in the fourth embodiment. Therefore, the solar cell module 10A can absorb more sunlight and generate more power.
  • the concave portion 17 interacts with the wind flowing on the light receiving surface of the solar cell module 10A, thereby changing the direction in which the wind flows in a complicated manner.
  • the recessed part 17 expands the surface area of the glass layer 15 substantially. Therefore, since the heat radiation amount from the light receiving surface side of the solar cell module 10A increases, the temperature of the solar cell 13 is suppressed from increasing, and the photoelectric efficiency of the solar cell 13 is unlikely to decrease.
  • the concave portion 17 when viewed from a direction perpendicular to the light receiving surface, the concave portion 17 has an elliptical shape having a width of 2.0 mm and a length of 10.0 mm.
  • the recess 17 has a semi-elliptical cross section with a depth of 1.0 mm.
  • the concave portion 17 has an ellipsoidal shape cut in the long axis direction.
  • the concave portion 17 has an ellipsoidal shape composed of only a smooth curved surface, the liquid (rain water or the like) that has entered the concave portion 17 tends to flow out of the concave portion 17. The dirt mixed in the liquid flows out from the recess 17 together with the liquid.
  • FIGS. 16A to 16C are schematic views showing the configuration of the recesses 17A to 17C according to the modification of the present embodiment.
  • the recess 17A has a flat bottom surface.
  • the recess 17B when viewed from the direction perpendicular to the light receiving surface of the solar cell module 10A, the recess 17B has a shape close to a quadrangle with rounded corners rather than an ellipse.
  • the recess 17C when viewed from the direction perpendicular to the light receiving surface of the solar cell module 10A, the recess 17C has the same shape as the recess 17B.
  • the recess 17B has a flat bottom surface, while the recess 17C does not have a bottom surface (similar to the recess 17) and has a semicircular cross section.
  • FIG. 17 is a schematic view showing the configuration of the refrigerant pipe 40B arranged on the heat collection panel 30. As shown in FIG.
  • the refrigerant tubes 40 according to Embodiments 1 to 5 were linearly extended on the heat collection panel 30 (see FIG. 3).
  • the refrigerant pipe 40 ⁇ / b> B extends so as to meander on the heat collection panel 30. That is, the refrigerant pipe 40B includes a linearly extending portion and a bent and folded portion.
  • the refrigerant tube 40 ⁇ / b> B passes through the inside of the heat collection panel 30 many times by being folded many times at the end of the heat collection panel 30.
  • the refrigerant pipe 40 ⁇ / b> B is bent along the outline of the heat collection panel 30 at the end of the heat collection panel 30. Therefore, the length of the refrigerant tube 40B covering the unit area (1 square meter) of the heat collection panel 30 can be made longer than the length of the refrigerant tube 40 covering the unit area of the heat collection panel 30. Accordingly, the outlet temperature of the refrigerant flowing through the refrigerant pipe 40B is higher than the outlet temperature of the refrigerant flowing through the refrigerant pipe 40. In other words, the refrigerant pipe 40B can absorb more thermal energy than the refrigerant pipe 40.
  • a solar power generation system 2000 that performs solar power generation using the solar cell module 10 according to the first to sixth embodiments will be described. Before that, the solar cell module 10 according to the present embodiment will be described.
  • FIG. 18 is a block diagram showing the configuration of the solar cell module 10 according to this embodiment.
  • the solar cell module 10 according to the present embodiment includes a plurality of solar cells 13, a cover 1002, and output terminals 1013 and 1014.
  • the plurality of solar cells 13 are arranged in an array and are connected in series with each other.
  • sequence system and connection system of the photovoltaic cell 13 are not limited to the structure shown in FIG.
  • the solar cells 13 may be connected in parallel, or may be connected by a connection method that combines series connection and parallel connection.
  • the number of solar cells 13 included in the solar cell module 10 may be an arbitrary integer of 2 or more.
  • the thermal energy of the solar cell module 10 is absorbed by the heat collection panel 30. Therefore, since the temperature of the solar battery cell 13 does not easily rise, the solar battery cell 13 can maintain high photoelectric conversion efficiency. Therefore, the solar cell module 10 and the solar power generation system 2000 provided with the solar cells 13 also have high photoelectric conversion efficiency.
  • the cover 1002 covers the plurality of solar cells 13.
  • the cover 1002 is composed of a weather resistant cover.
  • the cover 1002 is, for example, a glass layer provided on the light-receiving surface side of the solar battery cell 13 and a back surface base material (surface opposite to the surface on which sunlight is incident) of the solar battery cell 13 (the surface opposite to the surface on which sunlight is incident).
  • glass, a resin sheet, etc. and a sealing material (for example, EVA etc.) are included.
  • the output terminal 1013 is connected to the solar cell 13 at one end of the plurality of solar cells 13 connected in series.
  • the output terminal 1014 is connected to the solar battery cell 13 at the other end of the plurality of solar battery cells 13 connected in series.
  • FIG. 19 is a block diagram illustrating a configuration of the photoelectric conversion module array 2001.
  • FIG. 20 is a schematic diagram showing the configuration of the photovoltaic power generation system 2000.
  • the photovoltaic power generation system 2000 includes a photoelectric conversion module array 2001, a connection box 2002, a power conditioner 2003, a distribution board 2004, and a power meter 2005.
  • the photoelectric conversion module array 2001 includes a plurality of solar cell modules 10.
  • connection box 2002 is connected to the photoelectric conversion module array 2001.
  • the power conditioner 2003 is connected to the connection box 2002.
  • Distribution board 2004 is connected to power conditioner 2003 and electrical equipment 2011.
  • the power meter 2005 is connected to the distribution board 2004 and the commercial power system.
  • the solar power generation system 2000 generally has a function called “Home Energy Management System (HEMS)”, “Building Energy Management System (BEMS)”, or the like. Can be added.
  • the solar power generation system 2000 uses these functions to monitor the power generation amount of the solar power generation system 2000, monitor or control the power consumption of each electrical device connected to the solar power generation system 2000, and the like. . Thereby, the solar power generation system 2000 can reduce the energy consumption by electrical equipment.
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • the photoelectric conversion module array 2001 generates DC power from sunlight by photoelectric conversion, and outputs the generated DC power to the connection box 2002.
  • connection box 2002 supplies the DC power received from the photoelectric conversion module array 2001 to the power conditioner.
  • the power conditioner 2003 converts the DC power received from the connection box 2002 into AC power. Then, the converted AC power is supplied to the distribution board 2004. Note that the power conditioner 2003 may supply part of or all of the DC power received from the connection box 2002 to the distribution board 2004 without converting it to AC power.
  • the power conditioner 2003 When the storage battery 2100 (see FIG. 21) is connected to the power conditioner 2003 (or when the storage battery 2100 is built in the power conditioner 2003), the power conditioner 2003 is received from the connection box 2002. Part or all of the DC power can be stored in the storage battery 2100 (after appropriate power conversion).
  • the storage battery 2100 supplies the power conditioner 2003 with an appropriate amount of power corresponding to the power generation amount of the solar cell module 10 and the power consumption amount of the electric equipment 2011.
  • the power conditioner 2003 supplies the power supplied from the storage battery 2100 to the distribution board 2004 (after appropriately converting the power).
  • the distribution board 2004 supplies at least one of the electric power received from the power conditioner 2003 and the commercial electric power received from the outside via the power meter 2005 to the electric equipment 2011. In addition, when the AC power received from the power conditioner 2003 is larger than the power consumption of the electric equipment 2011, the distribution board 2004 supplies AC power equal to the power consumption to the electric equipment 2011. Then, the distribution board 2004 supplies the remaining AC power to the commercial power system via the power meter 2005.
  • the distribution board 2004 includes the AC power received from the power conditioner 2003 and the AC power received from the commercial power system. In addition, AC power equal to the power consumption of the electrical equipment 2011 is supplied to the electrical equipment 2011.
  • the power meter 2005 measures the power traveling from the commercial power system to the distribution board 2004 and the power traveling from the distribution board 2004 to the commercial power system.
  • FIG. 21 is a block diagram illustrating a configuration of a photovoltaic power generation system 2000 according to a modification of the present embodiment. As shown in FIG. 21, in this modification, a storage battery 2100 is connected to the power conditioner 2003. Note that the storage battery 2100 may be incorporated in the power conditioner 2003.
  • the photovoltaic power generation system 2000 When the output of the photoelectric conversion module array 2001 fluctuates due to the change in the amount of sunlight, the photovoltaic power generation system 2000 according to this modification outputs the electric power stored in the storage battery 2100. Thereby, the solar power generation system 2000 can supply stable power to the commercial power system. Furthermore, the photovoltaic power generation system 2000 according to the present modification supplies the power stored in the storage battery 2100 to the commercial power system even when there is no output from the photoelectric conversion module array 2001 in a time zone without sunlight. can do.
  • FIG. 22 is a block diagram showing a configuration of the photovoltaic power generation system 4000.
  • the photovoltaic power generation system 4000 includes a plurality of subsystems 4001, a plurality of power conditioners 4003, and a transformer 4004.
  • the photovoltaic power generation system 4000 is a larger scale photovoltaic power generation system than the photovoltaic power generation system 2000 shown in FIG.
  • Each of the plurality of subsystems 4001 includes a plurality of module systems 3000.
  • the number of module systems 3000 in the subsystem 4001 may be any integer greater than or equal to two.
  • Each of the plurality of module systems 3000 includes a plurality of photoelectric conversion module arrays 2001, a plurality of connection boxes 3002, and a current collection box 3004.
  • the number of the junction boxes 3002 in the module system 3000 and the photoelectric conversion module arrays 2001 connected thereto may be any integer of 2 or more.
  • the current collection box 3004 is connected to a plurality of connection boxes 3002.
  • the power conditioner 4003 is connected to a plurality of current collection boxes 3004 in the subsystem 4001.
  • the plurality of power conditioners 4003 are each connected to the subsystem 4001.
  • the number of power conditioners 4003 and subsystems 4001 connected thereto may be any integer of 2 or more.
  • the transformer 4004 is connected to a plurality of power conditioners 4003 and a commercial power system.
  • the photoelectric conversion module array 2001 generates direct-current power from sunlight by photoelectric conversion, and outputs the generated direct-current power to the current collection box 3004 via the connection box 3002.
  • a plurality of current collection boxes 3004 in the subsystem 4001 supplies DC power to a plurality of power conditioners 4003.
  • the plurality of power conditioners 4003 converts the DC power received from the current collection box 3004 into AC power. Then, the converted AC power is supplied to the transformer 4004.
  • the power conditioner 4003 when the storage battery 4100 (see FIG. 23) is connected to the power conditioner 4003 (or when the storage battery 4100 is built in the power conditioner 4003), the power conditioner 4003 is received from the current collection box 3004. In addition, part or all of the direct current power can be stored in the storage battery 4100 (after appropriate power conversion).
  • the storage battery 4100 supplies an appropriate amount of power corresponding to the power generation amount of the subsystem 4001 to the power conditioner 4003.
  • the power conditioner 4003 supplies the power supplied from the storage battery 2100 to the transformer 4004 (after appropriate power conversion).
  • the transformer 4004 supplies the AC power received from the power conditioner 4003 to the commercial power system (after changing its voltage level).
  • FIG. 23 is a block diagram illustrating a configuration of a photovoltaic power generation system 4000 according to a modification of the present embodiment. As shown in FIG. 23, in this modification, a storage battery 4100 is connected to the power conditioner 4003. The storage battery 4100 may be built in the power conditioner 2003.
  • the photovoltaic power generation system 4000 according to this modification When the output from the photoelectric conversion module array 2001 fluctuates due to the change in the amount of sunlight, the photovoltaic power generation system 4000 according to this modification outputs the power stored in the storage battery 4100. Thereby, the solar power generation system 4000 can supply stable power to the commercial power system. Furthermore, the photovoltaic power generation system 4000 according to this modification supplies the power stored in the storage battery 4100 to the commercial power system even when there is no output of the photoelectric conversion module array 2001 in a time zone without sunlight. be able to.
  • the photothermal hybrid panel 1 including one solar cell module 10 and one heat collecting panel 30 has been described (see FIG. 2).
  • a photothermal hybrid panel 2 including a plurality of solar cell modules 10 and a photothermal hybrid panel 3 including a plurality of heat collecting panels will be described.
  • FIG. 24 is a schematic diagram showing the configuration of the photothermal hybrid panel 2.
  • the photothermal hybrid panel 2 includes one solar cell module 10 and two heat collection panels 30.
  • the photothermal hybrid panel 2 includes pipes 60 that connect the refrigerant pipes 40 respectively disposed on the two heat collecting panels 30.
  • the pipe 60 includes a fixing jig for fixing the two heat collecting panels 30.
  • Other configurations of the photothermal hybrid panel 2 are the same as the configurations of the photothermal hybrid panel 1 described in the first embodiment.
  • the two heat collecting panels 30 each absorb thermal energy from the solar cell module 10.
  • the heat energy absorbed from the solar cell module 10 by the heat collecting panel 30 is transferred to the refrigerant through the refrigerant tube 40 disposed on the one heat collecting panel 30. Thereafter, the refrigerant flows into the pipe 60.
  • the thermal energy absorbed from the solar cell module 10 by the other heat collecting panel 30 moves to the refrigerant through the refrigerant tube 40. Thereafter, the refrigerant flows into the pipe 60.
  • the refrigerant passes through the pipe 60 and is transported from the photothermal hybrid panel 2 to the solar heat utilization systems 100 and 200 (see FIGS. 5 and 6) described in the first embodiment.
  • a configuration including three or more heat collecting panels 30 is also included in the present invention.
  • FIG. 25 is a schematic diagram showing the configuration of the photothermal hybrid panel 2.
  • the photothermal hybrid panel 3 includes two solar cell modules 10 and one heat collection panel 30.
  • the photothermal hybrid panel 3 includes two terminals 31 for outputting the power generated by the two solar cell modules 10.
  • Other configurations of the photothermal hybrid panel 3 are the same as the configurations of the photothermal hybrid panel 1 described in the first embodiment.
  • Both the two solar cell modules 10 are close to the heat collecting panel 30.
  • the heat collection panel 30 absorbs heat energy from the two solar cell modules 10. Then, the thermal energy absorbed by the heat collection panel 30 moves to the refrigerant pipe.
  • Each of the two solar cell modules 10 has a light receiving surface, and generates electric power by photoelectric conversion. In the photothermal hybrid panel 3, even if one of the two solar cell modules 10 fails, the remaining one can generate electric power.
  • a configuration including three or more solar cell modules 10 is also included in the present invention.
  • a configuration including a plurality of solar cell modules 10 and a plurality of heat collecting panels 30 is also included in the present invention.
  • FIG. 26 shows a configuration of the photothermal hybrid system 1000 according to the present embodiment.
  • the photothermal hybrid system 1000 includes the photothermal hybrid panel 1, a solar heat utilization system 100, and a solar power generation system 2000.
  • the refrigerant that has accumulated thermal energy is transported from the heat collecting panel 30 of the photothermal hybrid panel 1 to the solar heat utilization system 100. Electric power is sent from the solar cell module 10 of the photothermal hybrid panel 1 to the solar power generation system 2000.
  • the photothermal hybrid system 1000 may include the photothermal hybrid panel 2 or 3 instead of the photothermal hybrid panel 1. Further, a solar heat utilization system 200 may be provided instead of the solar heat utilization system 100. Further, instead of the solar power generation system 2000, a solar power generation system 4000 may be provided.
  • the heat collecting plate (heat collecting panel 30) is the solar cell module, the heat collecting plate, and the solar cell module (10, 10A) from the light receiving surface side toward the opposite back surface side.
  • a refrigerant pipe (40) is a heat collecting plate provided with the refrigerant pipe in a structure arranged in this order, and a plurality of protrusions projecting from the solar cell module side to the inside of the refrigerant pipe on the inner surface of the refrigerant pipe.
  • the raised structures (raised structures 50, 40A to 50D) are arranged, and the raised structures are (i) arranged in a plurality of rows in the direction in which the refrigerant pipe extends, and (ii) adjacent Are arranged alternately with the plurality of raised structures included in the row.
  • a plurality of raised structures are arranged in the refrigerant pipe. Therefore, the refrigerant flowing in the refrigerant pipe flows while contacting the raised structure. Since the raised structure substantially expands the area where the refrigerant pipe and the refrigerant are in contact with each other, the amount of heat energy transferred from the refrigerant pipe (and the heat collecting plate) to the refrigerant increases.
  • the plurality of raised structures are disposed on the solar cell module side of the inner surface of the refrigerant tube. Therefore, compared with the structure in which the raised structure is arranged at a position far from the solar cell module, thermal energy is easily transmitted from the heat collecting plate to the raised structure.
  • the plurality of raised structures are arranged in a plurality of rows, and the raised structures included in adjacent rows are alternately arranged. Therefore, for example, the flow of the refrigerant changes the direction by colliding with the raised structure included in one row, and then changing the direction by colliding with the raised structure included in the other row.
  • the raised structure changes the flow direction of the refrigerant in a complicated manner, the amount of heat energy that moves from the refrigerant pipe to the refrigerant increases. Further, as the thermal energy transferred from the refrigerant tube to the refrigerant increases, the thermal energy transferred from the heat collecting plate to the refrigerant tube, and hence the thermal energy transferred from the solar cell module to the heat collecting plate also increases. In other words, the heat collection efficiency of the heat collection plate is improved.
  • the heat collecting plate according to aspect 2 of the present invention is the heat collecting plate according to aspect 1, wherein the volume per unit length of the refrigerant pipe is set to 1, and the volume of the raised structure existing within the unit length of the refrigerant pipe is When the sum is f, 0.111 ⁇ f ⁇ 0.25 may be satisfied.
  • the raised structure has a volume ratio defined as described above as compared with the volume of the refrigerant pipe, turbulence is generated in the refrigerant pipe. Therefore, compared with the case where a laminar flow flows through the refrigerant pipe, the thermal energy that moves from the refrigerant pipe to the refrigerant increases. Therefore, the heat collection efficiency of the heat collection plate is improved. On the other hand, when 0.111 ⁇ f ⁇ 0.25 is not satisfied, the heat collecting efficiency of the heat collecting plate is the same as the heat collecting efficiency of the configuration in which the raised structure is not arranged.
  • the raised structure has a shape of a hollow partial cylinder obtained by cutting the hollow cylinder in the central axis direction. You may correspond with the direction where the above-mentioned refrigerant pipe extends.
  • the raised structure since a refrigerant
  • the raised structure since the raised structure is hollow, it is lightweight. Therefore, it is possible to suppress an increase in the weight of the heat collecting plate (compared to a heat collecting plate having a non-hollow raised structure).
  • the raised structure has an ellipsoidal shape cut in a major axis direction, and the major axis direction is the refrigerant pipe. May coincide with the extending direction.
  • the raised structure gently changes the flow of the refrigerant that collides with the raised structure, so that the refrigerant can flow smoothly in the refrigerant pipe.
  • the heat collecting plate according to aspect 5 of the present invention is the heat collecting plate according to any one of aspects 1 to 4, wherein the refrigerant tube has a half-elliptical shape, an elliptical shape, a circular shape, a quadrangular shape, and a rounded corner. Any one of the quadrangles may be used.
  • the refrigerant pipe since the shape of the cross section of the refrigerant pipe is simple, the refrigerant pipe can be easily manufactured.
  • the half ellipse includes a semicircle, and the quadrangle includes a trapezoid.
  • the refrigerant pipe may extend while meandering on the heat collecting panel.
  • the length of the refrigerant tube close to the heat collection panel can be further extended as compared with the configuration in which the refrigerant tube extends linearly on the heat collection panel. Therefore, thermal energy efficiently moves from the heat collection panel to the refrigerant pipe.
  • the photothermal hybrid panel (1, 2, 3) according to aspect 7 of the present invention may be a combination of the heat collecting plate according to any one of aspects 1 to 9 and the solar cell module.
  • a heat collecting plate according to aspect 8 of the present invention is the heat collecting plate according to aspect 7, wherein a plurality of other raised structures (projections 16) made of the same material as the material of the light receiving surface are formed on the light receiving surface of the solar cell module. May be distributed in a triangular lattice pattern.
  • a plurality of other raised structures are distributed and arranged on the light receiving surface of the solar cell module (for example, on the glass layer). Since the other raised structure substantially expands the area where the light receiving surface and the outside air contact, the heat radiation efficiency on the light receiving surface side of the solar cell module is improved. In addition, since the other raised structure reduces the amount of sunlight reflected on the light receiving surface, the solar cell module can take in more sunlight. Moreover, as a result of the increase in the amount of sunlight taken in by the solar cell, the heat collecting efficiency of the heat collecting plate is improved.
  • the plurality of other raised structures are arranged in a triangular lattice shape. For this reason, the direction of outside air (particularly, outside air flowing in a direction different from the direction in which other adjacent raised structures are arranged) can be changed in a complicated manner by the other raised structures. Thereby, since the amount of thermal energy that moves from the light receiving surface to the outside air increases, the heat dissipation efficiency on the light receiving surface side of the solar cell module is further improved.
  • the solar cell module is more than a configuration in which the other raised structure is not disposed on the light receiving surface and a configuration in which the other raised structure is disposed so as to cover the entire light receiving surface.
  • the heat radiation efficiency on the light receiving surface side can be improved.
  • the heat dissipation efficiency on the light receiving surface side of the solar cell module is the heat dissipation efficiency of the configuration in which the other raised structure is disposed so as to cover the entire light receiving surface. It becomes the following.
  • the heat collecting plate according to aspect 10 of the present invention is the heat collecting plate according to aspect 7, wherein a plurality of hollow structures (recesses 17, 17A to 17C) are formed in a triangular lattice pattern on the light receiving surface of the solar cell module by processing the light receiving surface. It may be formed in a dispersed manner.
  • the plurality of depression structures substantially enlarge the area of the light receiving surface of the solar cell module, the heat dissipation efficiency on the light receiving surface side of the solar cell module is improved.
  • a recessed part reflects sunlight more efficiently toward a light-receiving surface compared with a raised structure, and does not scatter sunlight outside a light-receiving surface very much. Therefore, compared with the structure by which the protruding structure is arrange
  • the photothermal hybrid system (1000) is a photovoltaic power generation system (2000) that sends the power output from the photothermal hybrid panel according to any one of the above aspects 8 to 10 and the solar cell module to an electric power system. 4000).
  • the photothermal hybrid panel according to aspect 12 of the present invention is The solar cell module and the heat collecting panel are integrated.
  • the heat collecting panel has a plurality of refrigerant tubes, A raised structure is disposed in at least one of the refrigerant tubes;
  • the raised structure is halved ellipsoidal shape;
  • the raised structures are arranged in a staggered manner along the direction of the flow of the refrigerant flowing in the refrigerant pipe while maintaining a certain distance p.
  • the ratio f of the volume per length p to the volume per length p of the raised structure may be 0.111 ⁇ f ⁇ 0.25.
  • the photothermal hybrid panel according to aspect 13 of the present invention is
  • the cross section in the short side direction or the long side direction of the refrigerant pipe may have one of an elliptical shape, an elliptical shape, a circular shape, a quadrangular shape, and a quadrangular shape having rounded corners.
  • the photothermal hybrid panel according to aspect 14 of the present invention is The solar cell module and the heat collecting panel are integrated. Having the heat collecting panel of the above aspect 12 or 13, Glass, or a baked glass paste or a baked SOG material is arranged in a triangular lattice shape in a semi-cylindrical convex shape on a part of the glass surface of the solar cell module, When the ratio of fin area / unit area S in unit area S to r is the unit area S formed by horizontal distance phs and vertical distance phv between fins, 0.02 ⁇ r ⁇ It may be 0.5.
  • the solar cell module and the heat collecting panel are integrated. Having the heat collecting panel of the above aspect 12 or 13, It has the glass for solar cell modules of the above aspect 14, Two or more of the heat collecting panels may be installed per one of the solar cell modules.
  • the photothermal hybrid panels according to any one of the above aspects 12 to 15 are arranged in an array,
  • the photoelectric conversion module array constituting the photothermal hybrid panel has a solar power generation system having a connection box connected to an output terminal, a power conditioner, Piping and heat pump connected to the heat collecting panel; A hot water heater, A hot water storage layer connected to the heat pump;
  • the control unit and the solar heat utilization system having the control panel may be integrated.
  • the present invention can be used for a photothermal hybrid panel including a heat collecting plate that absorbs thermal energy from a solar cell module.
  • Photothermal hybrid panel 10 1, 2, 3 Photothermal hybrid panel 10, 10A Solar cell module 16 Convex part (other raised structure) 17 Concave (dented structure) 30 Heat collection panel (heat collection plate) 40, 40A Refrigerant tube 50, 50A, 50B, 50C, 50D Raised structure 100, 200 Solar heat utilization system 1000 Photothermal hybrid system 2000, 4000 Solar power generation system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the invention is to suppress weight increases of a photovoltaic thermal hybrid panel and to improve the thermal collection efficiency of the photovoltaic thermal hybrid panel. Hollow raised structures (50) are arranged in a staggered manner on the side near a solar cell module in a refrigerant tube (40).

Description

光熱ハイブリッドパネルおよび光熱ハイブリッドシステムPhotothermal hybrid panel and photothermal hybrid system
 本発明は、太陽電池モジュールから熱エネルギーを吸収する集熱板、および、太陽電池モジュールと該集熱板とを備えた光熱ハイブリッドパネルおよび光熱ハイブリッドシステムに関する。 The present invention relates to a heat collecting plate that absorbs thermal energy from a solar cell module, and a photothermal hybrid panel and a photothermal hybrid system including the solar cell module and the heat collecting plate.
 近年、自然エネルギー(再生可能エネルギー)をより効率的に利用することに対する関心が高まってきている。そのため、太陽光が持つエネルギーを電力に変換して利用することだけでなく、太陽光が持つエネルギーを熱エネルギーに変換して利用することにも、需要が増加してきている。 In recent years, interest in using natural energy (renewable energy) more efficiently has increased. Therefore, the demand is increasing not only for converting the energy of sunlight into electric power but also for converting the energy of sunlight into heat energy.
 そこで、太陽光に基づいて電気エネルギーを生成する太陽電池モジュールと、太陽光に基づいて熱エネルギーを生成する集熱板(集熱パネル)とが一体化された装置(一般的に、光熱ハイブリッドパネルと呼ばれる)が開発されている。特許文献1および2には、光熱ハイブリッドパネルの例が記載されている。 Therefore, a device (generally a photothermal hybrid panel) in which a solar cell module that generates electric energy based on sunlight and a heat collecting plate (heat collecting panel) that generates thermal energy based on sunlight are integrated. Has been developed). Patent Documents 1 and 2 describe examples of photothermal hybrid panels.
 光熱ハイブリッドパネルでは、集熱板が、太陽光を受光することによって熱エネルギーが蓄積された(すなわち温度が上昇した)太陽電池モジュールから、熱エネルギーを吸収する。集熱板が吸収した熱エネルギーは、集熱パネルに対して配置された冷媒管に移動する。熱エネルギーを得た冷媒は、熱エネルギーを利用する機器またはシステムに輸送される。 In the photothermal hybrid panel, the heat collecting plate absorbs heat energy from the solar cell module in which the heat energy is accumulated (that is, the temperature is increased) by receiving sunlight. The thermal energy absorbed by the heat collecting plate moves to the refrigerant pipe arranged with respect to the heat collecting panel. The refrigerant that has obtained thermal energy is transported to a device or system that uses the thermal energy.
 これにより、太陽光に基づく熱エネルギーが有効に利用される。加えて、太陽電池モジュールから集熱板に熱エネルギーが吸収されることによって、太陽電池モジュールの温度が上昇することが抑制される。これにより、太陽電池セルの光電変換効率の低下(-0.4%/℃:結晶シリコン太陽電池セルの場合)が低減される。 This allows effective use of thermal energy based on sunlight. In addition, the thermal energy is absorbed from the solar cell module into the heat collecting plate, thereby suppressing the temperature of the solar cell module from rising. Thereby, a decrease in the photoelectric conversion efficiency of the solar battery cell (−0.4% / ° C .: in the case of a crystalline silicon solar battery cell) is reduced.
 光熱ハイブリッドパネルでは、太陽電池モジュールによって、太陽光が持つエネルギーの一部が吸収されるので、一般的に、集熱板の集熱効率は、太陽光から直接的に熱エネルギーを吸収する太陽熱集熱器の集熱効率よりも低い。 In the photothermal hybrid panel, part of the energy of sunlight is absorbed by the solar cell module. Therefore, in general, the heat collection efficiency of the heat collecting plate is solar heat collection that absorbs heat energy directly from sunlight. Lower than the heat collection efficiency of the vessel.
日本国公開特許公報「特開平11-103087号公報(1999年4月13日公開)」Japanese Patent Publication “JP 11-103087 A (published on April 13, 1999)” 日本国公開特許公報「特開平10-62017号公報(1998年3月6日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 10-62017 (published March 6, 1998)” 日本国公開特許公報「特開2013-100931号公報(2013年5月23日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2013-100931 (May 23, 2013)”
 そこで、従来の光熱ハイブリッドパネルの集熱効率をさらに向上させようとした場合、図27の(a)および(b)に示すように、冷媒管の外部に、隆起構造を設けることが考えられる。図27の(a)および(b)は、フィン構造992A、992Bを備えた光熱ハイブリッドパネル99A、99Bの構成を示している。冷媒管991A、991Bの各外部に配置されたフィン構造992A,992Bは、大気が持つ熱エネルギーを吸収する。フィン構造992A、992Bによって吸収された熱エネルギーは、冷媒管991A、991B内の各冷媒に移動する。これにより、光熱ハイブリッドパネル99A、99Bの集熱効率を向上させることができる。 Therefore, when trying to further improve the heat collection efficiency of the conventional photothermal hybrid panel, it is conceivable to provide a raised structure outside the refrigerant pipe as shown in FIGS. 27 (a) and (b). FIGS. 27A and 27B show the configurations of the photothermal hybrid panels 99A and 99B including the fin structures 992A and 992B. Fin structures 992A and 992B arranged outside the refrigerant pipes 991A and 991B absorb the thermal energy of the atmosphere. The thermal energy absorbed by the fin structures 992A and 992B moves to each refrigerant in the refrigerant tubes 991A and 991B. Thereby, the heat collection efficiency of the photothermal hybrid panels 99A and 99B can be improved.
 比熱の小さい空気から大きな熱エネルギーを吸収するためには、フィン構造992A、992Bを大きくする方がよい。しかしながら、フィン構造992A、992Bを大きく(例えば、cm(センチメートル)のオーダ)した場合、光熱ハイブリッドパネル99A、99Bが重くなりすぎて、様々な問題が発生する可能性がある。例えば、重い光熱ハイブリッドパネル99A、99Bが家の屋根に設置された場合、屋根や家全体には、大きな負担がかかる。 In order to absorb large heat energy from air having a small specific heat, it is better to enlarge the fin structures 992A and 992B. However, when the fin structures 992A and 992B are made large (for example, on the order of cm (centimeter)), the photothermal hybrid panels 99A and 99B become too heavy, and various problems may occur. For example, when heavy photothermal hybrid panels 99A and 99B are installed on the roof of a house, a heavy burden is imposed on the roof and the entire house.
 また、フィン構造992A、992Bは、大気から熱エネルギーを吸収する一方、太陽電池モジュールに蓄積された熱エネルギーを大気中に放出する。特に、冬には、フィン構造992A、992Bが、太陽電池モジュールから大気中へと、非常に大きな熱エネルギーを放出するので、集熱パネルは、太陽光に基づく熱エネルギーを太陽電池モジュールから十分に吸収することができない。そのため、光熱ハイブリッドパネル99A、99Bの集熱効率が低下する可能性がある。 Also, the fin structures 992A and 992B absorb the thermal energy from the atmosphere, and release the thermal energy accumulated in the solar cell module to the atmosphere. In particular, in the winter, the fin structures 992A and 992B release a very large amount of thermal energy from the solar cell module to the atmosphere, so that the heat collecting panel sufficiently releases the thermal energy based on sunlight from the solar cell module. It cannot be absorbed. Therefore, the heat collection efficiency of the photothermal hybrid panels 99A and 99B may be reduced.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、光熱ハイブリッドパネルの重量増加を抑制しつつ、該光熱ハイブリッドパネルの集熱効率を向上させることにある。 The present invention has been made in view of the above problems, and an object thereof is to improve the heat collection efficiency of the photothermal hybrid panel while suppressing an increase in the weight of the photothermal hybrid panel.
 上記の課題を解決するために、本発明の一態様に係る光熱ハイブリッドパネルは、太陽電池モジュールの受光面側から反対側の裏面側に向かって、上記太陽電池モジュール、集熱板、および冷媒管が、この順に配置された構造を備えた光熱ハイブリッドパネルであって、上記冷媒管の内面には、上記太陽電池モジュール側から上記冷媒管の内部へ隆起した複数の隆起構造が配置されており、上記複数の隆起構造は、(i)上記冷媒管が延伸する方向に、複数の列で並んでおり、かつ(ii)隣接する列に含まれる上記複数の隆起構造と互い違いに配置されている。 In order to solve the above-described problem, a photothermal hybrid panel according to one aspect of the present invention includes a solar cell module, a heat collecting plate, and a refrigerant tube from a light receiving surface side of the solar cell module toward a back surface on the opposite side. However, in this photothermal hybrid panel having a structure arranged in this order, a plurality of raised structures protruding from the solar cell module side to the inside of the refrigerant tube are arranged on the inner surface of the refrigerant tube, The plurality of raised structures (i) are arranged in a plurality of rows in the direction in which the refrigerant pipe extends, and (ii) are alternately arranged with the plurality of raised structures included in adjacent rows.
 本発明の一態様によれば、光熱ハイブリッドパネルの重量増加を抑制しつつ、該光熱ハイブリッドパネルの集熱効率を向上させることができる。 According to one aspect of the present invention, it is possible to improve the heat collection efficiency of the photothermal hybrid panel while suppressing an increase in the weight of the photothermal hybrid panel.
実施形態1に係る光熱ハイブリッドパネルが備えた冷媒管および隆起構造の構成を示す概略図である。It is the schematic which shows the structure of the refrigerant pipe with which the photothermal hybrid panel which concerns on Embodiment 1 was equipped, and the protruding structure. 実施形態1に係る光熱ハイブリッドパネルの構成を示す概略図である。It is the schematic which shows the structure of the photothermal hybrid panel which concerns on Embodiment 1. FIG. 実施形態1に係る光熱ハイブリッドパネルが備えた集熱パネル上に配置された冷媒管の構成を示す概略図である。It is the schematic which shows the structure of the refrigerant | coolant pipe | tube arrange | positioned on the heat collecting panel with which the photothermal hybrid panel which concerns on Embodiment 1 was equipped. 実施形態1に係る光熱ハイブリッドパネルが備えた隆起構造の体積と、該光熱ハイブリッドパネルが備えた集熱パネルの集熱効率との関係を示すグラフである。It is a graph which shows the relationship between the volume of the protruding structure with which the photothermal hybrid panel which concerns on Embodiment 1 was equipped, and the heat collection efficiency of the heat collection panel with which this photothermal hybrid panel was equipped. 実施形態1に係る光熱ハイブリッドパネルと接続される太陽熱利用システムの構成を示すブロック図である。It is a block diagram which shows the structure of the solar-heat utilization system connected with the photothermal hybrid panel which concerns on Embodiment 1. FIG. 実施形態1に係る光熱ハイブリッドパネルと接続される他の太陽熱利用システムの構成を示すブロック図である。It is a block diagram which shows the structure of the other solar-heat utilization system connected with the photothermal hybrid panel which concerns on Embodiment 1. FIG. 実施形態2に係る冷媒管および隆起構造の構成を示す概略図である。It is the schematic which shows the structure of the refrigerant pipe which concerns on Embodiment 2, and a protruding structure. (a)~(c)は、それぞれ、実施形態2の変形例に係る隆起構造の構成を示す概略図である。(A)-(c) is the schematic which shows the structure of the protruding structure which concerns on the modification of Embodiment 2, respectively. 実施形態3に係る冷媒管の断面を示す図である。It is a figure which shows the cross section of the refrigerant pipe which concerns on Embodiment 3. FIG. 実施形態4に係る太陽電池モジュールの断面構造を示す概略図である。6 is a schematic view showing a cross-sectional structure of a solar cell module according to Embodiment 4. FIG. (a)は、太陽光が入射する方向から見た実施形態4に係る太陽電池モジュールの構成を示す概略図であり、(b)は、上記太陽電池モジュールが備えた凸部の構成を示す概略図である。(A) is the schematic which shows the structure of the solar cell module which concerns on Embodiment 4 seen from the direction which sunlight injects, (b) is the outline which shows the structure of the convex part with which the said solar cell module was equipped. FIG. 実施形態4に係る太陽電池モジュールが備えた凸部の幅と、上記太陽電池モジュールが備えたガラス層に配置されている凸部の数との関係を示すグラフである。It is a graph which shows the relationship between the width | variety of the convex part with which the solar cell module which concerns on Embodiment 4 was equipped, and the number of the convex parts arrange | positioned at the glass layer with which the said solar cell module was equipped. (a)は、実施形態4に係る太陽電池モジュールが備えたガラス層内において凸部が占有する面積と、上記太陽電池モジュールの放熱量との関係を示すグラフであり、(b)は、上記太陽電池モジュールが備えたガラス層内において凸部が占有する面積と、上記太陽電池モジュールによる太陽光の吸収量との関係を示すグラフである。(A) is a graph which shows the relationship between the area which a convex part occupies in the glass layer with which the solar cell module which concerns on Embodiment 4 was equipped, and the thermal radiation amount of the said solar cell module, (b) is the said It is a graph which shows the relationship between the area which a convex part occupies in the glass layer with which the solar cell module was provided, and the absorbed amount of sunlight by the said solar cell module. 実施形態5に係る太陽電池モジュールの断面構造を示す概略図である。6 is a schematic diagram showing a cross-sectional structure of a solar cell module according to Embodiment 5. FIG. (a)は、太陽光が入射する方向から見た実施形態5に係る太陽電池モジュールを示す概略図であり、(b)は、上記太陽電池モジュールに形成された凹部の構成を示す概略図である。(A) is the schematic which shows the solar cell module which concerns on Embodiment 5 seen from the direction which sunlight injects, (b) is the schematic which shows the structure of the recessed part formed in the said solar cell module. is there. (a)~(c)は、それぞれ、実施形態5の変形例に係る凹部の構成を示す概略図である。(A)-(c) is the schematic which shows the structure of the recessed part which concerns on the modification of Embodiment 5, respectively. 実施形態6に係る集熱パネル上に配置されている冷媒管の構成を示す概略図である。It is the schematic which shows the structure of the refrigerant pipe arrange | positioned on the heat collection panel which concerns on Embodiment 6. FIG. 実施形態7に係る太陽電池モジュールの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a solar cell module according to Embodiment 7. 実施形態7に係る光電変換モジュールアレイの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a photoelectric conversion module array according to a seventh embodiment. 実施形態7に係る太陽光発電システムの構成を示す概略図である。It is the schematic which shows the structure of the solar energy power generation system which concerns on Embodiment 7. FIG. 実施形態7の一変形例に係る太陽光発電システムの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a solar power generation system according to a modification of the seventh embodiment. 実施形態8に係る太陽光発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the solar energy power generation system which concerns on Embodiment 8. FIG. 実施形態8の一変形例に係る太陽光発電システムの構成を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration of a solar power generation system according to a modification of the eighth embodiment. 実施形態9に係る光熱ハイブリッドパネルの構成を示す概略図である。It is the schematic which shows the structure of the photothermal hybrid panel which concerns on Embodiment 9. FIG. 実施形態9に係る他の光熱ハイブリッドパネルの構成を示す概略図である。It is the schematic which shows the structure of the other photothermal hybrid panel which concerns on Embodiment 9. FIG. 実施形態10に係る光熱ハイブリッドシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the photothermal hybrid system which concerns on Embodiment 10. FIG. (a)および(b)は、それぞれ、冷媒管の外部にフィン構造を備えた仮想的な光熱ハイブリッドパネルの構成を示す図である。(A) And (b) is a figure which respectively shows the structure of the virtual photothermal hybrid panel provided with the fin structure outside the refrigerant pipe. 従来の冷媒管の構成を示す図である。It is a figure which shows the structure of the conventional refrigerant pipe.
 〔実施形態1〕
 以下、本発明の実施の形態について、図1~図6を用いて、詳細に説明する。
[Embodiment 1]
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
 (光熱ハイブリッドパネル1の構成)
 図2を用いて、本実施形態に係る光熱ハイブリッドパネル1の構成を説明する。図2は、光熱ハイブリッドパネル1の構成を示す概略図である。図2に示すように、光熱ハイブリッドパネル1は、太陽電池モジュール10および集熱パネル30(集熱板)を備えている。太陽電池モジュール10および集熱パネル30は、フレーム20によって固定されている。集熱パネル30は、太陽電池モジュール10の裏面(受光面とは反対側の面)と対向する位置に、太陽電池モジュール10からの熱伝導が可能な形態で配置されている。集熱パネル30は、太陽電池モジュール10に対向する面とは反対側の面上に、冷媒管40を備えている。
(Configuration of photothermal hybrid panel 1)
The configuration of the photothermal hybrid panel 1 according to this embodiment will be described with reference to FIG. FIG. 2 is a schematic diagram showing the configuration of the photothermal hybrid panel 1. As shown in FIG. 2, the photothermal hybrid panel 1 includes a solar cell module 10 and a heat collection panel 30 (heat collection plate). The solar cell module 10 and the heat collecting panel 30 are fixed by the frame 20. The heat collection panel 30 is arranged in a form capable of conducting heat from the solar cell module 10 at a position facing the back surface (surface opposite to the light receiving surface) of the solar cell module 10. The heat collection panel 30 includes a refrigerant pipe 40 on the surface opposite to the surface facing the solar cell module 10.
 太陽電池モジュール10は、受光面に入射した太陽光を吸収し、吸収した太陽光が持つ光エネルギーを電力に変換する。太陽電池モジュール10によって生成された電力は、端子31から太陽光発電システム2000(図20および図21参照)に出力される。太陽電池モジュール10は、太陽電池パネル、ガラス、封止樹脂(上側、下側)、およびEVA(Ethylene-Vinyl-Acetate)を備えている。 The solar cell module 10 absorbs sunlight incident on the light receiving surface and converts light energy of the absorbed sunlight into electric power. The electric power generated by the solar cell module 10 is output from the terminal 31 to the solar power generation system 2000 (see FIGS. 20 and 21). The solar cell module 10 includes a solar cell panel, glass, sealing resin (upper side and lower side), and EVA (Ethylene-Vinyl-Acetate).
 太陽電池モジュール10の受光面に入射した太陽光が持つエネルギーの一部は、熱エネルギーに変換されて、太陽電池モジュール10内に蓄積される。集熱パネル30は、太陽電池モジュール10に蓄積された熱エネルギーを吸収する(取り出す)。集熱パネル30は、熱伝導板を備えており、太陽電池モジュール10から吸収した熱エネルギーを冷媒管40に伝達する。 A part of the energy of sunlight incident on the light receiving surface of the solar cell module 10 is converted into thermal energy and accumulated in the solar cell module 10. The heat collection panel 30 absorbs (takes out) the thermal energy accumulated in the solar cell module 10. The heat collection panel 30 includes a heat conduction plate, and transmits the thermal energy absorbed from the solar cell module 10 to the refrigerant tube 40.
 太陽電池モジュール10から集熱パネル30に吸収された熱エネルギーは、冷媒管40内を流れる冷媒(水または不凍液など)に移動する。冷媒は、冷媒管40を通って、太陽熱利用システム100、200(図5および図6参照)に輸送される。なお、太陽熱利用システム100、200については、本実施形態の最後に説明する。 The thermal energy absorbed by the heat collecting panel 30 from the solar cell module 10 moves to the refrigerant (water or antifreeze liquid) flowing through the refrigerant pipe 40. The refrigerant passes through the refrigerant pipe 40 and is transported to the solar heat utilization systems 100 and 200 (see FIGS. 5 and 6). The solar heat utilization systems 100 and 200 will be described at the end of this embodiment.
 図3は、集熱パネル30が備えた冷媒管40の構成を示す概略図である。図3に示すように、集熱パネル30上には、直線的に延伸する複数の冷媒管40が配置されている。冷媒管40は、半円形の断面を有する中空の筒の形状である。冷媒管40内には、冷媒が流れている。各冷媒管40内には、複数の隆起構造50(隆起構造)が形成されている。 FIG. 3 is a schematic view showing the configuration of the refrigerant pipe 40 provided in the heat collecting panel 30. As shown in FIG. As shown in FIG. 3, a plurality of linearly extending refrigerant tubes 40 are arranged on the heat collection panel 30. The refrigerant tube 40 has a hollow cylindrical shape having a semicircular cross section. A refrigerant flows in the refrigerant pipe 40. In each refrigerant pipe 40, a plurality of raised structures 50 (raised structures) are formed.
 冷媒管40内において、隆起構造50は、太陽電池モジュール10側から、冷媒管40の内部へ向かう方向へ隆起している。隆起構造50は、冷媒管40と冷媒とが接触する表面積を増大させることによって、冷媒管40と冷媒との間の伝熱係数(冷媒管40から冷媒への熱エネルギーの伝わり易さ)を高める。その結果、集熱パネル30の集熱効率が向上する。以下で、冷媒管40および隆起構造50の詳細を説明する。 In the refrigerant pipe 40, the raised structure 50 is raised from the solar cell module 10 side toward the inside of the refrigerant pipe 40. The raised structure 50 increases the heat transfer coefficient between the refrigerant pipe 40 and the refrigerant (easy transfer of thermal energy from the refrigerant pipe 40 to the refrigerant) by increasing the surface area where the refrigerant pipe 40 and the refrigerant are in contact with each other. . As a result, the heat collection efficiency of the heat collection panel 30 is improved. Hereinafter, details of the refrigerant pipe 40 and the raised structure 50 will be described.
 (冷媒管40および隆起構造50の詳細)
 図1を用いて、冷媒管40および隆起構造50の詳細を説明する。図1は、冷媒管40および隆起構造50の構成を示す概略図である。図1に示すように、冷媒管40の断面は、幅L=8.0mm、高さh=4.0mmを有する。冷媒管40の平坦面の内側には、隆起構造50が配置されている。なお、冷媒管40は、この平坦面の外側で、集熱パネル30と接触している(図3参照)。冷媒管40の周囲は、断熱材で覆われていてもよい。
(Details of refrigerant pipe 40 and raised structure 50)
The details of the refrigerant pipe 40 and the raised structure 50 will be described with reference to FIG. FIG. 1 is a schematic diagram showing the configuration of the refrigerant pipe 40 and the raised structure 50. As shown in FIG. 1, the cross section of the refrigerant tube 40 has a width L = 8.0 mm and a height h = 4.0 mm. A raised structure 50 is disposed inside the flat surface of the refrigerant pipe 40. The refrigerant pipe 40 is in contact with the heat collecting panel 30 outside the flat surface (see FIG. 3). The periphery of the refrigerant pipe 40 may be covered with a heat insulating material.
 隆起構造50は、金型を用いて、冷媒管40の平坦面に鋼材を圧着成型することによって、形成することができる。このように形成した隆起構造50は中空になる。上記鋼材として熱伝導性の良い銅板またはアルミニウム板などを用いることによって、隆起構造50を設けた熱伝導板を簡単に作製することができる。また、隆起構造50を鋼材の圧着成型によって形成するので、複数の隆起構造50を設けても鋼材の重量は全く変化しない。従って、重量増加を抑制しつつ集熱性に優れた集熱パネル30を作製することができる。冷媒管40の平坦面に隆起構造50を形成した後、(長手方向に沿って)半分に切断した円管部材を平坦面に接着することによって、冷媒管40が完成する。 The raised structure 50 can be formed by press-molding a steel material on the flat surface of the refrigerant tube 40 using a mold. The raised structure 50 thus formed is hollow. By using a copper plate or an aluminum plate having good thermal conductivity as the steel material, a thermal conductive plate provided with the raised structure 50 can be easily produced. In addition, since the raised structure 50 is formed by press-molding a steel material, the weight of the steel material does not change at all even if a plurality of raised structures 50 are provided. Therefore, the heat collecting panel 30 excellent in heat collecting property while suppressing an increase in weight can be produced. After the raised structure 50 is formed on the flat surface of the refrigerant tube 40, the refrigerant tube 40 is completed by adhering a circular tube member cut in half (along the longitudinal direction) to the flat surface.
 図1に示すように、隆起構造50は、中空円筒を中心軸に沿って切断した中空部分円筒(例えば、中空半円筒)の形状を有している。隆起構造50は、冷媒管40を介して、集熱パネル30から熱エネルギー(この熱エネルギーは、集熱パネル30が太陽電池モジュール10から吸収した熱エネルギーの一部である)を吸収する。そして、隆起構造50が吸収した熱エネルギーは、冷媒管40内を流れる冷媒に移動する。 As shown in FIG. 1, the raised structure 50 has a shape of a hollow partial cylinder (for example, a hollow semi-cylinder) obtained by cutting the hollow cylinder along the central axis. The raised structure 50 absorbs heat energy from the heat collection panel 30 (this heat energy is a part of heat energy absorbed from the solar cell module 10 by the heat collection panel 30) via the refrigerant tube 40. Then, the thermal energy absorbed by the raised structure 50 moves to the refrigerant flowing in the refrigerant pipe 40.
 ここで、冷媒の比熱は、一般的に、空気の比熱よりも高い。そのため、隆起構造50は、小さい場合であっても、熱エネルギーを効率的に冷媒に移動させることができる。隆起構造50の具体的な大きさは、幅d=3.0mm、長さlf=10.0mm、高さt=2.0mmである。このように、隆起構造50のサイズはmm(ミリメートル)のオーダであるので、隆起構造50は(中空ではない形状を有している場合であっても)比較的軽量に作成することができる。 Here, the specific heat of the refrigerant is generally higher than that of air. Therefore, even if the raised structure 50 is small, heat energy can be efficiently transferred to the refrigerant. The specific size of the raised structure 50 is a width d = 3.0 mm, a length lf = 10.0 mm, and a height t = 2.0 mm. Thus, since the size of the raised structure 50 is on the order of mm (millimeters), the raised structure 50 can be made relatively lightweight (even if it has a non-hollow shape).
 図1に示すように、隆起構造50は、冷媒管40が延伸するx方向(すなわち、冷媒が主に流れる方向)に、2列で並んでいる。この2列の間隔はs=2.0mmである。また、x方向において、互いに異なる列に属する隆起構造50は、互い違いに並んでいる。換言すれば、冷媒管40内において、隆起構造50は千鳥状に並んでいる。冷媒は、2列の隆起構造50と相互作用しながら(すなわち、隆起構造50と衝突しながら)、冷媒管40内を流れる。また、複数の隆起構造50は、冷媒が冷媒管40の平坦面に接触する面積を増大させる。そのため、隆起構造50が設けられていない冷媒管40に比べて、冷媒管40から冷媒に、熱エネルギーがより効率的に移動する。 As shown in FIG. 1, the raised structures 50 are arranged in two rows in the x direction (that is, the direction in which the refrigerant mainly flows) in which the refrigerant pipe 40 extends. The interval between the two rows is s = 2.0 mm. In the x direction, the raised structures 50 belonging to different rows are arranged alternately. In other words, the raised structures 50 are arranged in a staggered manner in the refrigerant pipe 40. The refrigerant flows through the refrigerant pipe 40 while interacting with the two rows of raised structures 50 (that is, while colliding with the raised structures 50). Further, the plurality of raised structures 50 increase the area where the refrigerant contacts the flat surface of the refrigerant pipe 40. Therefore, thermal energy moves from the refrigerant tube 40 to the refrigerant more efficiently than the refrigerant tube 40 in which the raised structure 50 is not provided.
 隆起構造50が特定の大きさを有する場合、冷媒管40内において冷媒の乱流が発生する。この場合、隆起構造50(および冷媒管40)と冷媒との間における伝熱係数が高まるので、隆起構造50から冷媒に、より大きな熱エネルギーが移動する。これにより、集熱パネル30の集熱効率が向上する。 When the raised structure 50 has a specific size, a turbulent refrigerant flow occurs in the refrigerant pipe 40. In this case, since the heat transfer coefficient between the raised structure 50 (and the refrigerant pipe 40) and the refrigerant is increased, larger thermal energy is transferred from the raised structure 50 to the refrigerant. Thereby, the heat collection efficiency of the heat collection panel 30 improves.
 (隆起構造50の望ましい大きさ)
 前述したように、隆起構造50が特定の大きさを有する場合、冷媒管40内で乱流が発生し、集熱パネル30の集熱効率が高くなる。ここでは、隆起構造50が具体的にどのような大きさを有する場合、集熱パネル30の集熱効率が高くなるかを説明する。
(Desirable size of the raised structure 50)
As described above, when the raised structure 50 has a specific size, turbulent flow is generated in the refrigerant pipe 40, and the heat collection efficiency of the heat collection panel 30 is increased. Here, what size the raised structure 50 specifically has will be described as to whether the heat collection efficiency of the heat collection panel 30 is high.
 一般的に、隆起構造50と冷媒との相互作用が強くなるほど、集熱パネル30の集熱効率は高くなる。そこで、隆起構造50と冷媒との相互作用を大きくする観点では、隆起構造50の幅d、長さlf、高さtは、それぞれ、以下の条件を満たすことが望ましい。
L/3≦d≦L/2(特に、d=0.375L)
3d≦lf≦10d
h/3≦t≦h/2(特に、t=h/2)
 幅dがL/3未満である場合、隆起構造50が小さくなりすぎるので、隆起構造50と冷媒との相互作用が小さくなりすぎる。一方、幅dがL/2を超えている場合、互いに異なる列に属する隆起構造50が、x軸方向に見たときに重なりを持つため、やはり隆起構造50と冷媒との相互作用が小さくなりすぎる。
Generally, the stronger the interaction between the raised structure 50 and the refrigerant, the higher the heat collection efficiency of the heat collection panel 30. Therefore, from the viewpoint of increasing the interaction between the raised structure 50 and the refrigerant, it is desirable that the width d, the length lf, and the height t of the raised structure 50 satisfy the following conditions, respectively.
L / 3 ≦ d ≦ L / 2 (particularly d = 0.375L)
3d ≦ lf ≦ 10d
h / 3 ≦ t ≦ h / 2 (especially t = h / 2)
When the width d is less than L / 3, the raised structure 50 becomes too small, so that the interaction between the raised structure 50 and the refrigerant becomes too small. On the other hand, when the width d exceeds L / 2, the raised structures 50 belonging to different columns overlap when viewed in the x-axis direction, so that the interaction between the raised structure 50 and the refrigerant is also reduced. Too much.
 また、冷媒管40の平坦面に平行で、かつ、x軸方向に垂直な方向から見たとき、1方の列に含まれる隆起構造50の位置と、他方の列に含まれる隆起構造50の位置とが重なる長さが、0より大きい(特に、lf/2以上である)場合、隆起構造50と冷媒との相互作用が小さくなりすぎる。また、冷媒管40の平坦面に平行で、かつ、x軸方向に垂直な方向から見たとき、1方の列に含まれる隆起構造50の位置と、他方の列に含まれる隆起構造50の位置とが離間している場合にも、隆起構造50と冷媒との相互作用が小さくなりすぎる。 Further, when viewed from a direction parallel to the flat surface of the refrigerant pipe 40 and perpendicular to the x-axis direction, the position of the raised structure 50 included in one row and the raised structure 50 included in the other row When the overlapping length with the position is larger than 0 (particularly, lf / 2 or more), the interaction between the raised structure 50 and the refrigerant becomes too small. Further, when viewed from a direction parallel to the flat surface of the refrigerant pipe 40 and perpendicular to the x-axis direction, the position of the raised structure 50 included in one row and the raised structure 50 included in the other row Even when the positions are separated from each other, the interaction between the raised structure 50 and the refrigerant becomes too small.
 従って、隆起構造50の1ピッチの長さp(図1参照。x方向に隣接する隆起構造50同士の間隔)は、p=2lfの条件を満たすことが望ましい。この条件が満たされる場合、隆起構造50は、図1に示すように、x軸方向に垂直な方向に見たときに、異なる列に属して隣接する隆起構造50と重なりを持たない状態を維持しつつ、長さlfを最大化できる。 Therefore, it is desirable that the length p of one pitch of the raised structure 50 (see FIG. 1; the interval between the raised structures 50 adjacent in the x direction) satisfies the condition of p = 2lf. When this condition is satisfied, the raised structure 50 maintains a state in which it does not overlap with the adjacent raised structure 50 belonging to different rows when viewed in the direction perpendicular to the x-axis direction, as shown in FIG. However, the length lf can be maximized.
 なお、隆起構造50の長さlfの値は、特に、3dであることが望ましい。以下で、その理由を説明する。 It should be noted that the length lf of the raised structure 50 is particularly preferably 3d. The reason will be described below.
 長さpあたりの冷媒管40の容積V1は、2×V1=L/2×h×π×pである。また、1つの隆起構造50の体積V2は、2×V2=d/2×t×π×lf×2である。従って、長さpあたりの冷媒管40の容積V1と、1つの隆起構造50の体積V2との比率fは、f=V2/V1=(d・t)/(L・h)である。ここで、p=2lfとおいた。 The volume V1 of the refrigerant tube 40 per length p is 2 × V1 = L / 2 × h × π × p. The volume V2 of one raised structure 50 is 2 × V2 = d / 2 × t × π × lf × 2. Therefore, the ratio f between the volume V1 of the refrigerant tube 40 per length p and the volume V2 of one raised structure 50 is f = V2 / V1 = (d · t) / (L · h). Here, p = 2lf.
 図4は、比率fと、集熱パネル30の集熱効率との関係を示すグラフである。図4には、隆起構造50の長さlfの値が3dである場合のグラフと、長さlfの値が5dである場合のグラフとが示されている。どちらのグラフも、一般的な伝熱工学の式の組み合わせに基づいて、数値シミュレーションを行うことによって得られた。ここで、比率fが変化するとともに、冷媒管40および隆起構造50と流体(冷媒)との接触面積も変化するので、比率fと集熱効率とは、比例関係を有すると考えられる。 FIG. 4 is a graph showing the relationship between the ratio f and the heat collection efficiency of the heat collection panel 30. FIG. 4 shows a graph when the length lf of the raised structure 50 is 3d and a graph when the length lf is 5d. Both graphs were obtained by performing numerical simulations based on a combination of common heat transfer engineering equations. Here, since the ratio f changes and the contact area between the refrigerant pipe 40 and the raised structure 50 and the fluid (refrigerant) also changes, the ratio f and the heat collection efficiency are considered to have a proportional relationship.
 伝熱工学の式によれば、L/3≦d≦3/8Lかつh/3≦t≦h/2という条件が満たされる場合、集熱効率は5.59f+0.38と表され、3/8L≦d≦L/2かつt=h/2という条件が満たされる場合、集熱効率は-7.2f+2.8と表される。図4に示すように、0.111≦f≦025である場合、長さlfの値が3dであるか5dであるかによらず、集熱効率は、1.0以上である。ここで、隆起構造50を備えない構成の集熱効率が1.0である。なお、隆起構造50の長さlfの値が10dである場合、集熱効率は、比率fによらずほぼ1.0となる。 According to the formula of heat transfer engineering, when the conditions of L / 3 ≦ d ≦ 3 / 8L and h / 3 ≦ t ≦ h / 2 are satisfied, the heat collection efficiency is expressed as 5.59f + 0.38, and 3 / 8L When the condition of ≦ d ≦ L / 2 and t = h / 2 is satisfied, the heat collection efficiency is expressed as −7.2f + 2.8. As shown in FIG. 4, when 0.111 ≦ f ≦ 025, the heat collection efficiency is 1.0 or more regardless of whether the value of the length lf is 3d or 5d. Here, the heat collection efficiency of the configuration without the raised structure 50 is 1.0. In addition, when the value of the length lf of the raised structure 50 is 10d, the heat collection efficiency is approximately 1.0 regardless of the ratio f.
 図4に示すように、長さlfの値が3dである場合、集熱効率の最大値は1.45である。また、長さlfの値が5dである場合、集熱効率の最大値は1.2である。集熱効率が最大値となる比率fの値(すなわち最適条件)は、長さlfの値が3dであるか5dであるかによらず、0.1875である。また、0.111≦f≦025の範囲内において、長さlfの値が3dである場合における集熱効率は、長さlfの値が5dである場合における集熱効率よりも大きい。従って、隆起構造50の長さlfの値は、3dであることが望ましい。 As shown in FIG. 4, when the value of the length lf is 3d, the maximum value of the heat collection efficiency is 1.45. Further, when the value of the length lf is 5d, the maximum value of the heat collection efficiency is 1.2. The value of the ratio f (that is, the optimum condition) at which the heat collection efficiency becomes the maximum value is 0.1875 regardless of whether the value of the length lf is 3d or 5d. Further, within the range of 0.111 ≦ f ≦ 025, the heat collection efficiency when the value of the length lf is 3d is larger than the heat collection efficiency when the value of the length lf is 5d. Therefore, the value of the length lf of the raised structure 50 is desirably 3d.
 (隆起構造50と従来の隆起構造との対比)
 特許文献3に記載の集熱管内に形成された凹凸構造は、集熱管が延伸する方向に、一様に形成されている。
(Contrast between the raised structure 50 and the conventional raised structure)
The uneven structure formed in the heat collection tube described in Patent Document 3 is uniformly formed in the direction in which the heat collection tube extends.
 一方、冷媒管40内に配置された隆起構造50は、冷媒管40が延伸する方向に、所定の間隔をおいて、飛び飛びに(離散的に)配置されている。また、隆起構造50の内部は空洞である。そのため、隆起構造50は、上記凹凸構造よりも軽量である。この点で、冷媒管40内に配置された隆起構造50と、特許文献3に記載の集熱管内に形成された凹凸構造とは相違する。 On the other hand, the raised structures 50 arranged in the refrigerant pipe 40 are arranged in a discrete manner discretely at predetermined intervals in the direction in which the refrigerant pipe 40 extends. Moreover, the inside of the raised structure 50 is a cavity. Therefore, the raised structure 50 is lighter than the uneven structure. In this respect, the raised structure 50 disposed in the refrigerant tube 40 is different from the uneven structure formed in the heat collecting tube described in Patent Document 3.
 非特許文献2には、図28に示す冷媒管98が記載されている。図28に示すように、冷媒管98の内面には、板状の隆起構造982が配置されている。隆起構造982は、太陽電池モジュール側と、太陽電池モジュールとは反対側に、互い違いに配置されている。太陽電池モジュールとは反対側に配置されている隆起構造982は、太陽電池モジュール側に配置されている隆起構造982よりも少ない熱エネルギーを、太陽電池モジュールから取得する。そのため、前者の隆起構造982が冷媒に伝熱することができる熱エネルギーの量は少ない。 Non-Patent Document 2 describes a refrigerant pipe 98 shown in FIG. As shown in FIG. 28, a plate-like raised structure 982 is disposed on the inner surface of the refrigerant tube 98. The raised structures 982 are alternately arranged on the solar cell module side and on the opposite side of the solar cell module. The raised structure 982 arranged on the side opposite to the solar cell module acquires less heat energy from the solar cell module than the raised structure 982 arranged on the solar cell module side. Therefore, the amount of heat energy that the former raised structure 982 can transfer to the refrigerant is small.
 一方、冷媒管40内では、全ての隆起構造50が、太陽電池モジュール10側に配置されている。そのため、全ての隆起構造50が、効率的に、熱エネルギーを冷媒に伝熱することができる。 On the other hand, in the refrigerant pipe 40, all the raised structures 50 are arranged on the solar cell module 10 side. Therefore, all the raised structures 50 can efficiently transfer heat energy to the refrigerant.
 (太陽熱利用システム100、200の構成)
 図5および図6を用いて、太陽熱利用システム100、200の構成を説明する。図5、図6は、冷媒の輸送路で光熱ハイブリッドパネル1と接続されている太陽熱利用システム100、200の構成を示すブロック図である。太陽熱利用システム100、200は、冷媒に蓄積されている熱エネルギーを用いて、温水暖房設備や給湯設備などに供給するための温水を生成することができる。
(Configuration of solar heat utilization system 100, 200)
The configuration of the solar heat utilization systems 100 and 200 will be described with reference to FIGS. 5 and 6. FIGS. 5 and 6 are block diagrams showing configurations of solar heat utilization systems 100 and 200 connected to the photothermal hybrid panel 1 through a refrigerant transport path. The solar heat utilization systems 100 and 200 can generate hot water to be supplied to a hot water heating facility, a hot water supply facility, and the like, using thermal energy accumulated in the refrigerant.
 図5に示すように、冷媒は、光熱ハイブリッドパネル1が備えた集熱パネル30から、冷媒(クーラント;不凍液)の輸送路を通って、太陽熱利用システム100が備えたヒートポンプ101まで輸送される。そして、ヒートポンプ101によって、冷媒に蓄積されている熱エネルギーが、ブラインタンク102に貯蔵されているブライン(不凍液)に移動される。 As shown in FIG. 5, the refrigerant is transported from the heat collecting panel 30 provided in the photothermal hybrid panel 1 to the heat pump 101 provided in the solar heat utilization system 100 through a refrigerant (coolant; antifreeze) transport path. Then, the heat energy accumulated in the refrigerant is transferred to the brine (antifreeze) stored in the brine tank 102 by the heat pump 101.
 ヒートポンプ101は、冷媒の温度がブラインの温度よりも高いか低いかに関わらず、冷媒からブラインへ、熱エネルギーを移動させることができる。そのため、光熱ハイブリッドパネル1の周りの環境が曇っていたり雨が降っている場合、または、外気の気温が低い(ただし、氷点下以上)場合であっても、ヒートポンプ101は、必要な温度および量の温水(例えば、60℃、450Lの給湯設備用の温水)を生成するために熱エネルギーを、冷媒からブラインへ移動させることができる。なお、従来の太陽熱利用システムは、ヒートポンプを備えていなかった。そのため、上記のような場合、必要な温水を生成することができなかった。 The heat pump 101 can transfer thermal energy from the refrigerant to the brine regardless of whether the temperature of the refrigerant is higher or lower than the temperature of the brine. Therefore, even when the environment around the photothermal hybrid panel 1 is cloudy or raining, or even when the temperature of the outside air is low (below the freezing point), the heat pump 101 has the necessary temperature and amount. Thermal energy can be transferred from the refrigerant to the brine to produce hot water (eg, 60 ° C., 450 L hot water for hot water supply equipment). The conventional solar heat utilization system has not been provided with a heat pump. Therefore, in the above case, necessary hot water could not be generated.
 図6に示す太陽熱利用システム200は、冷媒が水である場合に使用することができる。熱エネルギーが蓄積された水(すなわち温水)は、集熱パネル30から、輸送路を通って、太陽熱利用システム200が備えた貯湯槽201内に貯蔵される。太陽熱利用システム200は、ヒートポンプ203またはガス湯沸かし器(図示せず)などを用いて、貯湯槽201内に貯蔵された温水を加熱することによって、貯湯槽201に貯蔵された温水から、必要な温度および量の温水を生成することができる。 The solar heat utilization system 200 shown in FIG. 6 can be used when the refrigerant is water. The water in which the thermal energy is accumulated (that is, hot water) is stored in the hot water storage tank 201 provided in the solar heat utilization system 200 from the heat collection panel 30 through the transport path. The solar heat utilization system 200 uses a heat pump 203 or a gas water heater (not shown) or the like to heat the hot water stored in the hot water storage tank 201, so that the necessary temperature and temperature can be obtained from the hot water stored in the hot water storage tank 201. An amount of hot water can be produced.
 太陽熱利用システム200では、貯湯槽201に貯蔵されている温水は、集熱パネル30が太陽電池モジュール10(図2参照)から吸収した熱エネルギーを持っている。そのため、太陽熱利用システム200は、必要な温度および量の温水を生成するために、(予め加熱されていない水から同じ温度および量の温水を生成するほどには)多くのエネルギーを必要としない。 In the solar heat utilization system 200, the hot water stored in the hot water storage tank 201 has thermal energy absorbed by the heat collecting panel 30 from the solar cell module 10 (see FIG. 2). Thus, the solar heat utilization system 200 does not require as much energy (so as to produce the same temperature and amount of hot water from unheated water) in order to generate the required temperature and amount of hot water.
 〔実施形態2〕
 本発明の他の実施形態について、図7~図8に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 前記実施形態1で説明した隆起構造50は、冷媒管が延伸するx方向に垂直な面を有する(図1参照)。そのため、x方向に流れる冷媒は、隆起構造50の上記面に衝突することによって、スムーズに流れることができない可能性がある。そこで、本実施形態では、x方向に垂直な面を有さない隆起構造50A~50D(隆起構造)について説明する。 The raised structure 50 described in the first embodiment has a surface perpendicular to the x direction in which the refrigerant pipe extends (see FIG. 1). Therefore, there is a possibility that the refrigerant flowing in the x direction cannot flow smoothly by colliding with the surface of the raised structure 50. Therefore, in this embodiment, the raised structures 50A to 50D (raised structures) that do not have a surface perpendicular to the x direction will be described.
 (隆起構造50Aの構成)
 図7に示すように、本実施形態に係る光熱ハイブリッドパネル1は、隆起構造50の代わりに、隆起構造50Aを備えている。冷媒管40の平坦面に垂直な方向から見たとき、隆起構造50Aは、流線形を有している。すなわち、隆起構造50Aは、x方向における両端において、高さtを有するが、幅dを有していない。
(Configuration of raised structure 50A)
As shown in FIG. 7, the photothermal hybrid panel 1 according to the present embodiment includes a raised structure 50 </ b> A instead of the raised structure 50. When viewed from a direction perpendicular to the flat surface of the refrigerant pipe 40, the raised structure 50A has a streamlined shape. That is, the raised structure 50A has a height t at both ends in the x direction, but does not have a width d.
 そのため、冷媒が、x方向における隆起構造50Aの一方の端に衝突した場合、冷媒の流れる方向は、隆起構造50Aの曲面に沿って緩やかに変化する。そのため、冷媒は、冷媒管40内をスムーズに流れることができる。従って、隆起構造50Aが冷媒の乱流を発生させることができる一方、隆起構造50Aにかかる負荷が軽減されるので、光熱ハイブリッドパネル1の信頼性が向上するとともに、光熱ハイブリッドパネル1を補修する頻度を削減することができる。 Therefore, when the refrigerant collides with one end of the raised structure 50A in the x direction, the direction in which the refrigerant flows gently changes along the curved surface of the raised structure 50A. Therefore, the refrigerant can flow smoothly in the refrigerant pipe 40. Therefore, while the raised structure 50A can generate the turbulent flow of the refrigerant, the load on the raised structure 50A is reduced, so that the reliability of the photothermal hybrid panel 1 is improved and the frequency of repairing the photothermal hybrid panel 1 is increased. Can be reduced.
 ただし、本実施形態でも、集熱パネル30の集熱効率を高めるために、冷媒管40内では、乱流が発生することが望ましい。そのため、隆起構造50Aの幅d、長さlf、高さtは、それぞれ、冷媒管40内で乱流が発生するような値(d=3.0mm、lf=10.0mm、t=2.0mm)に設定されている。なお、本実施形態における集熱効率の最大値は、前記実施形態で説明した最大値(図4参照)とは異なる。しかしながら、隆起構造50Aの幅d、長さlf、高さt、および長さpの望ましい値の範囲は、実施形態1で説明した隆起構造50の幅d、長さlf、高さt、および長さpの望ましい値の範囲と同じである。 However, also in this embodiment, in order to increase the heat collection efficiency of the heat collection panel 30, it is desirable that turbulent flow is generated in the refrigerant pipe 40. Therefore, the width d, the length lf, and the height t of the raised structure 50A are values that cause turbulent flow in the refrigerant pipe 40 (d = 3.0 mm, lf = 10.0 mm, t = 2. 0 mm). Note that the maximum value of the heat collection efficiency in the present embodiment is different from the maximum value described in the above embodiment (see FIG. 4). However, the ranges of desirable values for the width d, length lf, height t, and length p of the raised structure 50A are the width d, length lf, height t, and height of the raised structure 50 described in the first embodiment. It is the same as the range of desirable values for the length p.
 (変形例)
 隆起構造50A以外にも、様々な流線形の隆起構造があり得る。
(Modification)
In addition to the raised structure 50A, there can be various streamlined raised structures.
 図8の(a)~(c)は、本実施形態の変形例に係る隆起構造50B~50Dの構成を示す概略図である。隆起構造50B~50Dは、いずれも、本実施形態に係る隆起構造50Aと同様、冷媒管40が延伸するx方向に垂直な面を有していない。図8の(a)に示すように、隆起構造50Bは、平坦な上面を有する。また、図8の(b)に示すように、冷媒管40の平坦面に垂直な方向から見たとき、隆起構造50Cは、楕円形というよりは、丸い角を有する四角形に近い形状である。図8の(c)に示すように、冷媒管40の平坦面に垂直な方向から見たとき、隆起構造50Dは、隆起構造50Cと同じ形状である。しかしながら、隆起構造50Cは平坦な上面を有していない一方、隆起構造50Dは(隆起構造50Bと同様に)平坦な上面を有する。 (A) to (c) of FIG. 8 are schematic views showing the structure of raised structures 50B to 50D according to modifications of the present embodiment. None of the raised structures 50B to 50D has a surface perpendicular to the x direction in which the refrigerant pipe 40 extends, like the raised structure 50A according to the present embodiment. As shown in FIG. 8A, the raised structure 50B has a flat upper surface. Further, as shown in FIG. 8B, when viewed from a direction perpendicular to the flat surface of the refrigerant tube 40, the raised structure 50C has a shape close to a quadrangle having rounded corners rather than an ellipse. As shown in FIG. 8C, when viewed from a direction perpendicular to the flat surface of the refrigerant tube 40, the raised structure 50D has the same shape as the raised structure 50C. However, the raised structure 50C does not have a flat upper surface, while the raised structure 50D has a flat upper surface (similar to the raised structure 50B).
 〔実施形態3〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 前記実施形態1では、半円形の断面を有する冷媒管40を説明した。本実施形態では、半円形とは異なる形状の断面を有する冷媒管40Aを説明する。 In the first embodiment, the refrigerant pipe 40 having a semicircular cross section has been described. In the present embodiment, a refrigerant tube 40A having a cross section different from a semicircular shape will be described.
 (冷媒管40Aの構成)
 図9は、本実施形態に係る冷媒管40Aの断面を示す図である。図9に示すように、冷媒管40Aは、台形の断面を有する。すなわち、冷媒管40Aは、4つの平坦面で構成されている。冷媒管40Aは、平坦面のみで構成されているので、曲面と平坦面とで構成される冷媒管40と比較して、容易に作製することができる。
(Configuration of refrigerant pipe 40A)
FIG. 9 is a view showing a cross section of the refrigerant pipe 40A according to the present embodiment. As shown in FIG. 9, the refrigerant pipe 40A has a trapezoidal cross section. That is, the refrigerant pipe 40A is composed of four flat surfaces. Since the refrigerant pipe 40A is composed of only a flat surface, it can be easily manufactured as compared with the refrigerant pipe 40 composed of a curved surface and a flat surface.
 なお、本実施形態の一変形例では、冷媒管40Aは、任意の多角形の断面を有していてもよい。あるいは、冷媒管40Aは、半楕円形、楕円形、または円形等の断面を有していてもよい。ただし、断面の切り口が曲線で構成されているような冷媒管40Aは、平坦面を有さない。そのため、そのような冷媒管40A内に配置される隆起構造50は、冷媒管40Aの曲面に沿って形成されてよい。 In one modification of the present embodiment, the refrigerant pipe 40A may have an arbitrary polygonal cross section. Alternatively, the refrigerant tube 40A may have a semi-elliptical, elliptical, or circular cross section. However, the refrigerant pipe 40A in which the cut surface of the cross section is configured by a curve does not have a flat surface. Therefore, the raised structure 50 arrange | positioned in such a refrigerant pipe 40A may be formed along the curved surface of the refrigerant pipe 40A.
 〔実施形態4〕
 本発明の他の実施形態について、図10~図13に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本実施形態では、光熱ハイブリッドパネル1が備えた太陽電池モジュール10の構成を説明する。 In the present embodiment, the configuration of the solar cell module 10 provided in the photothermal hybrid panel 1 will be described.
 (太陽電池モジュール10の構成)
 図10を用いて、太陽電池モジュール10の構成を説明する。図10は、太陽電池モジュール10の断面構造を示す概略図である。図10に示すように、太陽電池モジュール10は、封止用樹脂層11、12、太陽電池セル13、EVA(Ethylene-Vinyl-Acetate)樹脂層14、およびガラス層15を備えている。EVA樹脂は、紫外線に対する安定性に優れており、かつ耐候性にも優れているので、保護層の材料に適している。
(Configuration of solar cell module 10)
The configuration of the solar cell module 10 will be described with reference to FIG. FIG. 10 is a schematic view showing a cross-sectional structure of the solar cell module 10. As shown in FIG. 10, the solar cell module 10 includes sealing resin layers 11 and 12, solar cells 13, an EVA (Ethylene-Vinyl-Acetate) resin layer 14, and a glass layer 15. EVA resin is suitable for the material of the protective layer because it is excellent in stability to ultraviolet rays and weather resistance.
 図10に示すように、太陽電池モジュール10は、ガラス層15上、すなわち受光面上に、凸部16(他の隆起構造)を備えている。凸部16の形成材料は、ガラス層15と同じ(ガラス)である。凸部16は、ガラスペーストまたはSOG(Spin On Glass)を焼成することによって形成されてもよい。非特許文献1には、数マイクロメートル程度の大きさのエンボス加工が施された太陽電池用ガラスが記載されている。なお、前記実施形態1~3で説明した集熱パネル30と、冷媒管40、40Aと、従来の(すなわち凸部16を備えていない)太陽電池モジュールとを備えた光熱ハイブリッドパネルも、本発明に含まれる。 As shown in FIG. 10, the solar cell module 10 includes a convex portion 16 (another raised structure) on the glass layer 15, that is, on the light receiving surface. The forming material of the convex part 16 is the same (glass) as the glass layer 15. The convex part 16 may be formed by baking glass paste or SOG (Spin On Glass). Non-Patent Document 1 describes a glass for solar cells that has been embossed with a size of about several micrometers. The photothermal hybrid panel including the heat collecting panel 30 described in the first to third embodiments, the refrigerant tubes 40 and 40A, and the conventional solar cell module (that is, not including the convex portion 16) is also included in the present invention. include.
 (凸部16の構成)
 図11の(a)(b)を用いて、凸部16の構成を説明する。図11の(a)は、受光面側から見た太陽電池モジュール10の構成を示す概略図である。また、図11の(b)は、凸部16の構成を示す概略図である。
(Configuration of convex portion 16)
The structure of the convex part 16 is demonstrated using (a) and (b) of FIG. (A) of FIG. 11 is the schematic which shows the structure of the solar cell module 10 seen from the light-receiving surface side. FIG. 11B is a schematic diagram illustrating the configuration of the convex portion 16.
 図11の(a)に示すように、複数の凸部16は、ガラス層15上において、三角格子を形成するように、規則的に分散している。凸部16は、太陽電池モジュール10の受光面に対して斜めに入射した太陽光の一部を受光面に向けて反射する。凸部16は、ガラス層15における太陽光の反射を低減するので、太陽電池モジュール10は、太陽光をより多量に取り込むことができる。また、太陽電池モジュール10が取り込む太陽光の量が増大する結果、集熱パネル30の集熱効率が向上する。 As shown in FIG. 11A, the plurality of convex portions 16 are regularly dispersed on the glass layer 15 so as to form a triangular lattice. The convex portion 16 reflects a part of sunlight incident obliquely with respect to the light receiving surface of the solar cell module 10 toward the light receiving surface. Since the convex part 16 reduces the reflection of the sunlight in the glass layer 15, the solar cell module 10 can take in more sunlight. Moreover, as a result of the amount of sunlight taken in by the solar cell module 10 increasing, the heat collection efficiency of the heat collection panel 30 is improved.
 このように、凸部16は、太陽電池モジュール10の受光面における太陽光の反射を低減することができる。従って、太陽電池モジュール10は、より多くの太陽光を吸収し、より多くの電力を生成することができる。一実施例では、凸部16を備えた太陽電池モジュール10による太陽光の吸収量は、凸部16を備えない太陽電池モジュール10による太陽光の吸収量と比較して、0.13%増加した。 Thus, the convex part 16 can reduce the reflection of sunlight on the light receiving surface of the solar cell module 10. Therefore, the solar cell module 10 can absorb more sunlight and generate more power. In one example, the amount of sunlight absorbed by the solar cell module 10 having the convex portion 16 increased by 0.13% compared to the amount of sunlight absorbed by the solar cell module 10 not having the convex portion 16. .
 さらに、凸部16は、太陽電池モジュール10の受光面上を流れる風と相互作用することによって、風が流れる向きを複雑に変化させる。そのため、太陽電池モジュール10の受光面側からの放熱量が増大する。また、凸部16は、実質的に、ガラス層15の表面積を拡大する。そのため、太陽電池モジュール10の受光面側からの放熱量がさらに増大する。その結果、太陽電池セル13の温度が上昇することが抑制される。一実施例では、凸部16を備えた太陽電池モジュール10における太陽電池セル13の温度の上昇量は、凸部16を備えない太陽電池モジュール10における太陽電池セル13の温度の上昇量と比較して、22%低減された。 Furthermore, the convex part 16 changes the direction in which a wind flows complicatedly by interacting with the wind which flows on the light-receiving surface of the solar cell module 10. Therefore, the amount of heat radiation from the light receiving surface side of the solar cell module 10 increases. Moreover, the convex part 16 expands the surface area of the glass layer 15 substantially. Therefore, the amount of heat radiation from the light receiving surface side of the solar cell module 10 further increases. As a result, an increase in the temperature of the solar battery cell 13 is suppressed. In one embodiment, the amount of increase in the temperature of the solar cell 13 in the solar cell module 10 having the convex portion 16 is compared with the amount of increase in the temperature of the solar cell 13 in the solar cell module 10 not having the convex portion 16. 22%.
 なお、集熱パネル30は、太陽電池モジュール10の受光面とは反対側に配置されているので、主に、太陽電池モジュール10の受光面とは反対側に存在する部材(例えば、太陽電池セル13)から、熱エネルギーを吸収する。そのため、凸部16が太陽電池モジュール10の受光面側における放熱量を増大させた場合であっても、集熱パネル30の集熱効率はほとんど低下しない。 In addition, since the heat collection panel 30 is arrange | positioned on the opposite side to the light-receiving surface of the solar cell module 10, it is mainly the member (for example, photovoltaic cell) which exists in the opposite side to the light-receiving surface of the solar cell module 10. 13) absorbs thermal energy. Therefore, even if the convex part 16 increases the heat radiation amount on the light receiving surface side of the solar cell module 10, the heat collection efficiency of the heat collection panel 30 hardly decreases.
 図11の(a)に示すように、太陽電池モジュール10の受光面に垂直な方向から見たとき、凸部16は長方形である。ここで、図11の(a)に示すy方向は、凸部16の長軸の方向を表す。また、z方向は、凸部16の短軸の方向を表す。z方向またはy方向から見たときに隣接している(ように見える)2つの凸部16に着目する。図11の(a)に示す長さphvは、凸部16の長さlfsの2倍と、上記2つの凸部16の間隔(y方向の距離)との和である。長さphvの値は、具体的には20mmである。また、図11の(b)に示す長さphsは、凸部16の幅dsと、上記2つの凸部16の間隔(z方向の距離)との和である。長さphsの値は、具体的には15.0mmである。 As shown to (a) of FIG. 11, when it sees from the direction perpendicular | vertical to the light-receiving surface of the solar cell module 10, the convex part 16 is a rectangle. Here, the y direction shown in FIG. 11A represents the direction of the major axis of the convex portion 16. The z direction represents the direction of the short axis of the convex portion 16. Attention is paid to two convex portions 16 that are adjacent (appear) when viewed from the z direction or the y direction. The length phv shown in FIG. 11A is the sum of twice the length lfs of the convex portion 16 and the distance between the two convex portions 16 (the distance in the y direction). Specifically, the value of the length phv is 20 mm. Further, the length phs shown in FIG. 11B is the sum of the width ds of the convex portion 16 and the interval between the two convex portions 16 (distance in the z direction). Specifically, the value of the length phs is 15.0 mm.
 図11の(b)に示すように、凸部16は、幅ds、長さlfs、高さtsを有する柱の形状である。また、凸部16は、半円形の断面を有する。幅dsは、具体的には2.0mmである。長さlfsは、具体的には10.0mmである。高さtsは、具体的には1.0mmである。 As shown in FIG. 11B, the convex portion 16 has a pillar shape having a width ds, a length lfs, and a height ts. Moreover, the convex part 16 has a semicircular cross section. Specifically, the width ds is 2.0 mm. Specifically, the length lfs is 10.0 mm. Specifically, the height ts is 1.0 mm.
 凸部16の形状、大きさ、および配置される位置などは、太陽電池モジュール10の受光面上を流れる風と効率的に相互作用するように、設定されていることが望ましい。凸部16と風との相互作用を大きくする観点では、凸部16の長さlfs、高さts、および、凸部16の間隔を示す長さphs、長さphvは、それぞれ、以下の条件を満たすことが望ましい。
2.5ds≦lfs≦7.5ds
2.0ds≦ts≦1.5ds
2.0ds≦phs≦10.0ds
2.0lfs≦phv≦20.0ds
 また、凸部16の幅dsは、以下の条件を満たすことが望ましい。
1.0mm≦ds≦70.0mm
 ここで、幅dsが大きすぎる場合、ガラス層15上に配置される凸部16の数が少なくなるので、凸部16の効果は小さくなる。凸部16は、ガラス層15の単位面積あたりに、少なくとも1~2つが配置されることが望ましい。
It is desirable that the shape, size, position, and the like of the convex portion 16 are set so as to efficiently interact with the wind flowing on the light receiving surface of the solar cell module 10. From the viewpoint of increasing the interaction between the convex portion 16 and the wind, the length lfs and the height ts of the convex portion 16 and the length phs and the length phv indicating the interval between the convex portions 16 are as follows: It is desirable to satisfy.
2.5ds ≦ lfs ≦ 7.5ds
2.0ds ≦ ts ≦ 1.5ds
2.0ds ≦ phs ≦ 10.0ds
2.0lfs ≦ phv ≦ 20.0ds
Further, it is desirable that the width ds of the convex portion 16 satisfies the following condition.
1.0mm ≦ ds ≦ 70.0mm
Here, since the number of the convex parts 16 arrange | positioned on the glass layer 15 decreases when the width | variety ds is too large, the effect of the convex part 16 becomes small. It is desirable that at least one or two convex portions 16 are disposed per unit area of the glass layer 15.
 図12は、凸部16の幅dsと、ガラス層15の単位面積(1平方メートル)当たりに配置されている凸部16の数との関係を示すグラフである。ここで、phs=10.0ds、phv=20.0dsとおいた。凸部16の幅dsの値が70.0mmであるとき、ガラス層15の単位面積あたりに配置される凸部16の数はほぼ1つである。また、凸部16の幅dsの値が50.0mmであるとき、ガラス層15の単位面積あたりに配置される凸部16の数はほぼ2つである。従って、凸部16の幅dsの値は、70.0mm以下であることが好ましく、50.0mm以下であることがより好ましい。 FIG. 12 is a graph showing the relationship between the width ds of the protrusions 16 and the number of protrusions 16 arranged per unit area (1 square meter) of the glass layer 15. Here, phs = 10.0 ds and phv = 20.0 ds. When the value of the width ds of the convex portion 16 is 70.0 mm, the number of the convex portions 16 arranged per unit area of the glass layer 15 is approximately one. Moreover, when the value of the width ds of the convex portion 16 is 50.0 mm, the number of the convex portions 16 arranged per unit area of the glass layer 15 is approximately two. Therefore, the value of the width ds of the convex portion 16 is preferably 70.0 mm or less, and more preferably 50.0 mm or less.
 一方、幅dsが小さいほど、ガラス層15上に配置される凸部16の数は多くなる。しかしながら、幅dsが小さすぎる場合、凸部16は、小さすぎるために、目立った効果を示さない。従って、凸部16の幅dsの値は、1.0mm以上であることが好ましく、2.0mm以上であることがより好ましい。それゆえ、幅dsは、2.0mm≦ds≦50.0mmという条件を満たすことがより好ましい。 On the other hand, the smaller the width ds, the greater the number of convex portions 16 arranged on the glass layer 15. However, when the width ds is too small, the convex portion 16 is too small to show a noticeable effect. Accordingly, the value of the width ds of the convex portion 16 is preferably 1.0 mm or more, and more preferably 2.0 mm or more. Therefore, the width ds more preferably satisfies the condition of 2.0 mm ≦ ds ≦ 50.0 mm.
 次に、図13の(a)(b)を用いて、ガラス層15の単位面積(phv(mm)×phs(mm))内において凸部16が占有する面積(lfs(mm)×ds(mm))の最適値を計算する。 Next, using (a) and (b) of FIG. 13, the area (lfs (mm) × ds () occupied by the convex portion 16 in the unit area (phv (mm) × phs (mm)) of the glass layer 15. mm)).
 図13の(a)は、ガラス層15の単位面積(phv(mm)×phs(mm))内において凸部16が占有する面積と、太陽電池モジュール10の放熱量との関係を示すグラフである。ここで、ガラス層15の単位面積を1.0とし、凸部16を備えない太陽電池モジュール10の放熱量を1.0とした。図13の(a)に示すように、凸部16の面積が0.07であるとき、太陽電池モジュール10の放熱量は最大値1.22となる。 FIG. 13A is a graph showing the relationship between the area occupied by the protrusions 16 in the unit area (phv (mm) × phs (mm)) of the glass layer 15 and the heat dissipation amount of the solar cell module 10. is there. Here, the unit area of the glass layer 15 was set to 1.0, and the heat radiation amount of the solar cell module 10 not including the convex portion 16 was set to 1.0. As shown to (a) of FIG. 13, when the area of the convex part 16 is 0.07, the thermal radiation amount of the solar cell module 10 becomes the maximum value 1.22.
 なお、ガラス層15の単位面積(phv(mm)×phs(mm))内において凸部16が占有する面積が1.0(すなわち、lfs=phvかつds=phs)である場合、太陽電池モジュール10の放熱量は、1.05となる。凸部16の面積が0.02以上かつ0.5以下である場合、太陽電池モジュール10の放熱量が1.05以上となるので、凸部16の面積が0.02以上かつ0.5以下であることが好ましい。 When the area occupied by the convex portion 16 in the unit area (phv (mm) × phs (mm)) of the glass layer 15 is 1.0 (that is, lfs = phv and ds = phs), the solar cell module The heat radiation amount of 10 is 1.05. When the area of the convex part 16 is 0.02 or more and 0.5 or less, since the heat radiation amount of the solar cell module 10 is 1.05 or more, the area of the convex part 16 is 0.02 or more and 0.5 or less. It is preferable that
 図13の(b)は、ガラス層15の単位面積(phv(mm)×phs(mm))内において凸部16が占有する面積と、太陽電池モジュール10による太陽光の吸収量との関係を示すグラフである。ここで、ガラス層15の単位面積を1.0とし、凸部16を備えない太陽電池モジュール10による太陽光の吸収量を1.0とした。図13の(b)に示すように、凸部16の面積が増大するとともに、太陽電池モジュール10による太陽光の吸収量は、単調に増加する。 FIG. 13B shows the relationship between the area occupied by the protrusions 16 in the unit area (phv (mm) × phs (mm)) of the glass layer 15 and the amount of sunlight absorbed by the solar cell module 10. It is a graph to show. Here, the unit area of the glass layer 15 was set to 1.0, and the amount of sunlight absorbed by the solar cell module 10 not including the convex portion 16 was set to 1.0. As shown in FIG. 13B, the area of the convex portion 16 increases, and the amount of sunlight absorbed by the solar cell module 10 increases monotonously.
 以上のことから、ガラス層15の単位面積(phv(mm)×phs(mm))内において凸部16が占有する面積の最適値は、0.07である。例えば、lfs=5.0ds、phs=7.5ds、phv=10.0dsである場合、凸部16が占有する面積は、最適値0.07となる。 From the above, the optimum value of the area occupied by the convex portion 16 in the unit area (phv (mm) × phs (mm)) of the glass layer 15 is 0.07. For example, when lfs = 5.0 ds, phs = 7.5 ds, and phv = 10.0 ds, the area occupied by the convex portion 16 is the optimum value 0.07.
 〔実施形態5〕
 本発明の他の実施形態について、図14~図16に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 前記実施形態4では、ガラス層15上に、複数の凸部16が配置されている太陽電池モジュール10を説明した。一方、本実施形態では、ガラス層15上に、複数の凹部17(窪み構造)が形成されている太陽電池モジュール10Aを説明する。 In the fourth embodiment, the solar cell module 10 in which the plurality of convex portions 16 are arranged on the glass layer 15 has been described. On the other hand, in the present embodiment, a solar cell module 10 </ b> A in which a plurality of concave portions 17 (recessed structures) are formed on the glass layer 15 will be described.
 (凹部17の構成)
 図14および図15の(a)(b)を用いて、凹部17の構成を説明する。図14は、凹部17が形成されたガラス層15を有する太陽電池モジュール10Aの断面構造を示す概略図である。また、図15の(a)は、太陽光が入射する方向から見た太陽電池モジュール10Aを示す概略図である。図15の(b)は、凹部17の構成を示す概略図である。
(Configuration of recess 17)
The structure of the recessed part 17 is demonstrated using (a) (b) of FIG. 14 and FIG. FIG. 14 is a schematic diagram showing a cross-sectional structure of a solar cell module 10A having a glass layer 15 in which a recess 17 is formed. Moreover, (a) of FIG. 15 is the schematic which shows 10 A of solar cell modules seen from the direction which sunlight injects. FIG. 15B is a schematic diagram showing the configuration of the recess 17.
 図14に示すように、凹部17は、ガラス層15の表面を掘り込む加工によって形成された窪みである。図15の(a)に示すように、複数の凹部17は、ガラス層15上において、三角格子を形成するように、規則的に分散している。 As shown in FIG. 14, the recess 17 is a recess formed by a process of digging the surface of the glass layer 15. As shown in FIG. 15A, the plurality of recesses 17 are regularly dispersed on the glass layer 15 so as to form a triangular lattice.
 凹部17は、太陽電池モジュール10Aの受光面に対して斜めに入射した太陽光の一部を受光面に向けて反射する。凹部17は、ガラス層15における太陽光の反射を低減するので、太陽電池モジュール10Aは、太陽光を多量に取り込むことができる。また、太陽電池モジュール10Aが取り込む太陽光の量が増大した結果、集熱パネル30の集熱効率が向上する。特に、凹部17は、前記実施形態4で説明した凸部16と比較して、より多くの太陽光(例えば5倍)を太陽電池モジュール10A内に導くことができる。従って、太陽電池モジュール10Aは、より多くの太陽光を吸収し、より多くの電力を生成することができる。 The concave portion 17 reflects a part of sunlight incident obliquely to the light receiving surface of the solar cell module 10A toward the light receiving surface. Since the recessed part 17 reduces the reflection of sunlight in the glass layer 15, the solar cell module 10A can take in a large amount of sunlight. Moreover, as a result of the increase in the amount of sunlight taken in by the solar cell module 10A, the heat collection efficiency of the heat collection panel 30 is improved. In particular, the concave portion 17 can guide more sunlight (for example, five times) into the solar cell module 10A as compared with the convex portion 16 described in the fourth embodiment. Therefore, the solar cell module 10A can absorb more sunlight and generate more power.
 さらに、凹部17は、太陽電池モジュール10Aの受光面上を流れる風と相互作用することによって、風が流れる向きを複雑に変化させる。また、凹部17は、実質的に、ガラス層15の表面積を拡大させる。そのため、太陽電池モジュール10Aの受光面側からの放熱量が増大するので、太陽電池セル13の温度が上昇することが抑制され、太陽電池セル13の光電効率が低下し難くなる。 Furthermore, the concave portion 17 interacts with the wind flowing on the light receiving surface of the solar cell module 10A, thereby changing the direction in which the wind flows in a complicated manner. Moreover, the recessed part 17 expands the surface area of the glass layer 15 substantially. Therefore, since the heat radiation amount from the light receiving surface side of the solar cell module 10A increases, the temperature of the solar cell 13 is suppressed from increasing, and the photoelectric efficiency of the solar cell 13 is unlikely to decrease.
 図15の(b)に示すように、受光面に垂直な方向から見たとき、凹部17は、幅2.0mm、長さ10.0mmを有する楕円の形状である。また、凹部17は、深さ1.0mmの半楕円の形状の断面を有する。換言すれば、凹部17は、長軸方向に切断された楕円体の形状である。凹部17内に、汚れの混入した液体がたまった場合、太陽電池モジュール10内に吸収される太陽光の量が減少する可能性がある。しかしながら、凹部17は、滑らかな曲面のみで構成された楕円体の形状であるので、凹部17内に入った液体(雨水など)が、凹部17から流出しやすい。液体内に混入した汚れは、液体とともに凹部17から流出する。 As shown in FIG. 15 (b), when viewed from a direction perpendicular to the light receiving surface, the concave portion 17 has an elliptical shape having a width of 2.0 mm and a length of 10.0 mm. The recess 17 has a semi-elliptical cross section with a depth of 1.0 mm. In other words, the concave portion 17 has an ellipsoidal shape cut in the long axis direction. When the contaminated liquid accumulates in the recess 17, the amount of sunlight absorbed in the solar cell module 10 may be reduced. However, since the concave portion 17 has an ellipsoidal shape composed of only a smooth curved surface, the liquid (rain water or the like) that has entered the concave portion 17 tends to flow out of the concave portion 17. The dirt mixed in the liquid flows out from the recess 17 together with the liquid.
 (変形例)
 図16の(a)~(c)は、本実施形態の変形例に係る凹部17A~17Cの構成を示す概略図である。図16の(a)に示すように、凹部17Aは、平坦な底面を有する。また、図16の(b)に示すように、太陽電池モジュール10Aの受光面に垂直な方向から見たとき、凹部17Bは、楕円形というよりは、角が丸い四角形に近い形状である。図16の(c)に示すように、太陽電池モジュール10Aの受光面に垂直な方向から見たとき、凹部17Cは、凹部17Bと同じ形状である。しかしながら、凹部17Bは平坦な底面を有する一方、凹部17Cは(凹部17と同様に)底面を有しておらず、半円形の断面を有する。
(Modification)
FIGS. 16A to 16C are schematic views showing the configuration of the recesses 17A to 17C according to the modification of the present embodiment. As shown in FIG. 16A, the recess 17A has a flat bottom surface. As shown in FIG. 16B, when viewed from the direction perpendicular to the light receiving surface of the solar cell module 10A, the recess 17B has a shape close to a quadrangle with rounded corners rather than an ellipse. As shown in FIG. 16C, when viewed from the direction perpendicular to the light receiving surface of the solar cell module 10A, the recess 17C has the same shape as the recess 17B. However, the recess 17B has a flat bottom surface, while the recess 17C does not have a bottom surface (similar to the recess 17) and has a semicircular cross section.
 〔実施形態6〕
 本発明の他の実施形態について、図17に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 6]
Another embodiment of the present invention will be described below with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 (冷媒管40Bの構成)
 図17を用いて、本実施形態に係る冷媒管40Bの構成を説明する。図17は、集熱パネル30上に配置されている冷媒管40Bの構成を示す概略図である。
(Configuration of refrigerant pipe 40B)
The configuration of the refrigerant pipe 40B according to this embodiment will be described with reference to FIG. FIG. 17 is a schematic view showing the configuration of the refrigerant pipe 40B arranged on the heat collection panel 30. As shown in FIG.
 前記実施形態1~5に係る冷媒管40は、集熱パネル30上で、直線的に延伸していた(図3参照)。一方、図17に示すように、冷媒管40Bは、集熱パネル30上で、蛇行するように延伸する。すなわち、冷媒管40Bは、直線的に延伸する部分と、屈曲して折り返す部分とを含んでいる。 The refrigerant tubes 40 according to Embodiments 1 to 5 were linearly extended on the heat collection panel 30 (see FIG. 3). On the other hand, as shown in FIG. 17, the refrigerant pipe 40 </ b> B extends so as to meander on the heat collection panel 30. That is, the refrigerant pipe 40B includes a linearly extending portion and a bent and folded portion.
 図17に示すように、冷媒管40Bは、集熱パネル30の端で何度も折り返すことによって、集熱パネル30の内側を何度も通過している。また、冷媒管40Bは、集熱パネル30の端では、集熱パネル30の輪郭に沿って屈曲している。そのため、集熱パネル30の単位面積(1平方メートル)当たりをカバーする冷媒管40Bの長さを、集熱パネル30の単位面積当たりをカバーする冷媒管40の長さよりも長くすることができる。従って、冷媒管40B内を流れる冷媒の出口温度は、冷媒管40を流れる冷媒の出口温度よりも高くなる。換言すれば、冷媒管40Bは、冷媒管40よりも多くの熱エネルギーを吸収することができる。 As shown in FIG. 17, the refrigerant tube 40 </ b> B passes through the inside of the heat collection panel 30 many times by being folded many times at the end of the heat collection panel 30. In addition, the refrigerant pipe 40 </ b> B is bent along the outline of the heat collection panel 30 at the end of the heat collection panel 30. Therefore, the length of the refrigerant tube 40B covering the unit area (1 square meter) of the heat collection panel 30 can be made longer than the length of the refrigerant tube 40 covering the unit area of the heat collection panel 30. Accordingly, the outlet temperature of the refrigerant flowing through the refrigerant pipe 40B is higher than the outlet temperature of the refrigerant flowing through the refrigerant pipe 40. In other words, the refrigerant pipe 40B can absorb more thermal energy than the refrigerant pipe 40.
 〔実施形態7〕
 本発明の他の実施形態について、図18~図20に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 7]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本実施形態では、前記実施形態1~6に係る太陽電池モジュール10を用いて太陽光発電を行う太陽光発電システム2000について説明する。その前に、本実施形態に係る太陽電池モジュール10について説明する。 In the present embodiment, a solar power generation system 2000 that performs solar power generation using the solar cell module 10 according to the first to sixth embodiments will be described. Before that, the solar cell module 10 according to the present embodiment will be described.
 図18は、本実施形態に係る太陽電池モジュール10の構成を示すブロック図である。図18に示すように、本実施形態に係る太陽電池モジュール10は、複数の太陽電池セル13と、カバー1002と、出力端子1013、1014とを備えている。複数の太陽電池セル13は、アレイ状に配列されており、互いに直列接続されている。 FIG. 18 is a block diagram showing the configuration of the solar cell module 10 according to this embodiment. As shown in FIG. 18, the solar cell module 10 according to the present embodiment includes a plurality of solar cells 13, a cover 1002, and output terminals 1013 and 1014. The plurality of solar cells 13 are arranged in an array and are connected in series with each other.
 なお、太陽電池セル13の配列方式および接続方式は、図18に示す構成に限定されない。太陽電池セル13は、並列接続されていてもよいし、直列接続と並列接続とを組み合わせた接続方式で接続されていてもよい。なお、太陽電池モジュール10に含まれる太陽電池セル13の数は、2以上の任意の整数であってよい。前記実施形態1で説明したように、太陽電池モジュール10の熱エネルギーは集熱パネル30によって吸収される。そのため、太陽電池セル13の温度は上昇しにくいので、太陽電池セル13は、高い光電変換効率を維持することができる。従って、太陽電池セル13を備えた太陽電池モジュール10および太陽光発電システム2000も、高い光電変換効率を有する。 In addition, the arrangement | sequence system and connection system of the photovoltaic cell 13 are not limited to the structure shown in FIG. The solar cells 13 may be connected in parallel, or may be connected by a connection method that combines series connection and parallel connection. Note that the number of solar cells 13 included in the solar cell module 10 may be an arbitrary integer of 2 or more. As described in the first embodiment, the thermal energy of the solar cell module 10 is absorbed by the heat collection panel 30. Therefore, since the temperature of the solar battery cell 13 does not easily rise, the solar battery cell 13 can maintain high photoelectric conversion efficiency. Therefore, the solar cell module 10 and the solar power generation system 2000 provided with the solar cells 13 also have high photoelectric conversion efficiency.
 カバー1002は、複数の太陽電池セル13を覆っている。カバー1002は、耐候性のカバーから構成されている。カバー1002は、例えば、太陽電池セル13の受光面側に設けられたガラス層と、太陽電池セル13の裏面(太陽光が入射する面とは反対側の面)に設けられた裏面基材(例えば、ガラス、樹脂シート等)と、封止材(例えばEVA等)とを含む。 The cover 1002 covers the plurality of solar cells 13. The cover 1002 is composed of a weather resistant cover. The cover 1002 is, for example, a glass layer provided on the light-receiving surface side of the solar battery cell 13 and a back surface base material (surface opposite to the surface on which sunlight is incident) of the solar battery cell 13 (the surface opposite to the surface on which sunlight is incident). For example, glass, a resin sheet, etc.) and a sealing material (for example, EVA etc.) are included.
 出力端子1013は、直列接続された複数の太陽電池セル13の一方の端にある太陽電池セル13に接続される。また、出力端子1014は、直列接続された複数の太陽電池セル13の他方の端にある太陽電池セル13に接続される。 The output terminal 1013 is connected to the solar cell 13 at one end of the plurality of solar cells 13 connected in series. The output terminal 1014 is connected to the solar battery cell 13 at the other end of the plurality of solar battery cells 13 connected in series.
 (太陽光発電システム2000の構成)
 図19および図20を用いて、本実施形態に係る太陽光発電システム2000の構成を説明する。図19は、光電変換モジュールアレイ2001の構成を示すブロック図である。また、図20は、太陽光発電システム2000の構成を示す概略図である。図20に示すように、太陽光発電システム2000は、光電変換モジュールアレイ2001と、接続箱2002と、パワーコンディショナ2003と、分電盤2004と、電力メータ2005とを備えている。ここで、図19に示すように、光電変換モジュールアレイ2001は、複数の太陽電池モジュール10から構成される。
(Configuration of photovoltaic power generation system 2000)
The configuration of the photovoltaic power generation system 2000 according to the present embodiment will be described with reference to FIGS. 19 and 20. FIG. 19 is a block diagram illustrating a configuration of the photoelectric conversion module array 2001. FIG. 20 is a schematic diagram showing the configuration of the photovoltaic power generation system 2000. As illustrated in FIG. 20, the photovoltaic power generation system 2000 includes a photoelectric conversion module array 2001, a connection box 2002, a power conditioner 2003, a distribution board 2004, and a power meter 2005. Here, as shown in FIG. 19, the photoelectric conversion module array 2001 includes a plurality of solar cell modules 10.
 接続箱2002は、光電変換モジュールアレイ2001に接続される。パワーコンディショナ2003は、接続箱2002に接続される。分電盤2004は、パワーコンディショナ2003および電気機器類2011に接続される。電力メータ2005は、分電盤2004および商用電力系統に接続される。 The connection box 2002 is connected to the photoelectric conversion module array 2001. The power conditioner 2003 is connected to the connection box 2002. Distribution board 2004 is connected to power conditioner 2003 and electrical equipment 2011. The power meter 2005 is connected to the distribution board 2004 and the commercial power system.
 なお、太陽光発電システム2000には、一般に「ホーム・エネルギー・マネジメント・システム(HEMS:Home Energy Management System)」、「ビルディング・エネルギー・マネージメント・システム(BEMS:Building Energy Management System)」等と呼ばれる機能を付加することができる。太陽光発電システム2000は、これらの機能を用いて、太陽光発電システム2000の発電量の監視や、太陽光発電システム2000に接続される各電気機器類の消費電力量の監視または制御等を行う。これにより、太陽光発電システム2000は、電気機器類によるエネルギー消費量を削減することができる。 The solar power generation system 2000 generally has a function called “Home Energy Management System (HEMS)”, “Building Energy Management System (BEMS)”, or the like. Can be added. The solar power generation system 2000 uses these functions to monitor the power generation amount of the solar power generation system 2000, monitor or control the power consumption of each electrical device connected to the solar power generation system 2000, and the like. . Thereby, the solar power generation system 2000 can reduce the energy consumption by electrical equipment.
 (太陽光発電システム2000の動作)
 光電変換モジュールアレイ2001は、光電変換によって、太陽光から直流電力を生成し、生成した直流電力を接続箱2002に出力する。
(Operation of the photovoltaic power generation system 2000)
The photoelectric conversion module array 2001 generates DC power from sunlight by photoelectric conversion, and outputs the generated DC power to the connection box 2002.
 接続箱2002は、光電変換モジュールアレイ2001から受け取った直流電力をパワーコンディショナに供給する。 The connection box 2002 supplies the DC power received from the photoelectric conversion module array 2001 to the power conditioner.
 パワーコンディショナ2003は、接続箱2002から受け取った直流電力を交流電力に変換する。そして、変換した交流電力を分電盤2004に供給する。なお、パワーコンディショナ2003は、接続箱2002から受け取った直流電力の一部または全部を交流電力に変換せず、直流電力のままで分電盤2004に供給してもよい。 The power conditioner 2003 converts the DC power received from the connection box 2002 into AC power. Then, the converted AC power is supplied to the distribution board 2004. Note that the power conditioner 2003 may supply part of or all of the DC power received from the connection box 2002 to the distribution board 2004 without converting it to AC power.
 また、パワーコンディショナ2003に蓄電池2100(図21参照)が接続されている場合(または、蓄電池2100がパワーコンディショナ2003に内蔵されている場合)、パワーコンディショナ2003は、接続箱2002から受け取った直流電力の一部または全部を、(適切に電力変換した後で)蓄電池2100に蓄電することができる。蓄電池2100は、太陽電池モジュール10の発電量や電気機器類2011の電力消費量に応じた適切な量の電力を、パワーコンディショナ2003に供給する。パワーコンディショナ2003は、蓄電池2100から供給された電力を、(適切に電力変換した後で)分電盤2004に供給する。 When the storage battery 2100 (see FIG. 21) is connected to the power conditioner 2003 (or when the storage battery 2100 is built in the power conditioner 2003), the power conditioner 2003 is received from the connection box 2002. Part or all of the DC power can be stored in the storage battery 2100 (after appropriate power conversion). The storage battery 2100 supplies the power conditioner 2003 with an appropriate amount of power corresponding to the power generation amount of the solar cell module 10 and the power consumption amount of the electric equipment 2011. The power conditioner 2003 supplies the power supplied from the storage battery 2100 to the distribution board 2004 (after appropriately converting the power).
 分電盤2004は、パワーコンディショナ2003から受け取った電力、および、電力メータ2005を介して外部から受け取った商用電力のうち、少なくとも一方を電気機器類2011へ供給する。また、分電盤2004は、パワーコンディショナ2003から受け取った交流電力が電気機器類2011の消費電力よりも大きい場合、その消費電力に等しい交流電力を電気機器類2011へ供給する。そして、分電盤2004は、残りの交流電力を、電力メータ2005を介して、商用電力系統へ供給する。 The distribution board 2004 supplies at least one of the electric power received from the power conditioner 2003 and the commercial electric power received from the outside via the power meter 2005 to the electric equipment 2011. In addition, when the AC power received from the power conditioner 2003 is larger than the power consumption of the electric equipment 2011, the distribution board 2004 supplies AC power equal to the power consumption to the electric equipment 2011. Then, the distribution board 2004 supplies the remaining AC power to the commercial power system via the power meter 2005.
 また、分電盤2004は、パワーコンディショナ2003から受けとった交流電力が電気機器類2011の消費電力よりも少ない場合、パワーコンディショナ2003から受け取った交流電力と、商用電力系統から受け取った交流電力とを合わせて、電気機器類2011の消費電力に等しい交流電力を、電気機器類2011へ供給する。 Further, when the AC power received from the power conditioner 2003 is less than the power consumption of the electrical equipment 2011, the distribution board 2004 includes the AC power received from the power conditioner 2003 and the AC power received from the commercial power system. In addition, AC power equal to the power consumption of the electrical equipment 2011 is supplied to the electrical equipment 2011.
 電力メータ2005は、商用電力系統から分電盤2004へ向かう電力、および、分電盤2004から商用電力系統へ向かう電力をそれぞれ計測する。 The power meter 2005 measures the power traveling from the commercial power system to the distribution board 2004 and the power traveling from the distribution board 2004 to the commercial power system.
 (変形例)
 図21は、本実施形態の一変形例に係る太陽光発電システム2000の構成を示すブロック図である。図21に示すように、本変形例では、パワーコンディショナ2003に、蓄電池2100が接続されている。なお、蓄電池2100は、パワーコンディショナ2003に内蔵されていてもよい。
(Modification)
FIG. 21 is a block diagram illustrating a configuration of a photovoltaic power generation system 2000 according to a modification of the present embodiment. As shown in FIG. 21, in this modification, a storage battery 2100 is connected to the power conditioner 2003. Note that the storage battery 2100 may be incorporated in the power conditioner 2003.
 日照量が変化することによって、光電変換モジュールアレイ2001の出力が変動した場合、本変形例に係る太陽光発電システム2000は、蓄電池2100に蓄電された電力を出力する。これにより、太陽光発電システム2000は、商用電力系統に安定した電力を供給することができる。さらに、本変形例に係る太陽光発電システム2000は、日照のない時間帯において、光電変換モジュールアレイ2001からの出力がない場合であっても、蓄電池2100に蓄電された電力を商用電力系統に供給することができる。 When the output of the photoelectric conversion module array 2001 fluctuates due to the change in the amount of sunlight, the photovoltaic power generation system 2000 according to this modification outputs the electric power stored in the storage battery 2100. Thereby, the solar power generation system 2000 can supply stable power to the commercial power system. Furthermore, the photovoltaic power generation system 2000 according to the present modification supplies the power stored in the storage battery 2100 to the commercial power system even when there is no output from the photoelectric conversion module array 2001 in a time zone without sunlight. can do.
 〔実施形態8〕
 本発明の他の実施形態について、図22~図23に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 8]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本実施形態では、前記実施形態7で説明した太陽光発電システム2000よりも大規模な太陽光発電システム4000について説明する。 In this embodiment, a photovoltaic power generation system 4000 that is larger than the photovoltaic power generation system 2000 described in the seventh embodiment will be described.
 (太陽光発電システム4000の構成)
 図22を用いて、本実施形態に係る太陽光発電システム4000の構成を説明する。図22は、太陽光発電システム4000の構成を示すブロック図である。図22に示すように、太陽光発電システム4000は、複数のサブシステム4001と、複数のパワーコンディショナ4003と、変圧器4004とを備える。
(Configuration of photovoltaic power generation system 4000)
The configuration of the photovoltaic power generation system 4000 according to the present embodiment will be described using FIG. FIG. 22 is a block diagram showing a configuration of the photovoltaic power generation system 4000. As shown in FIG. 22, the photovoltaic power generation system 4000 includes a plurality of subsystems 4001, a plurality of power conditioners 4003, and a transformer 4004.
 太陽光発電システム4000は、図2に示す太陽光発電システム2000よりも大規模な太陽光発電システムである。 The photovoltaic power generation system 4000 is a larger scale photovoltaic power generation system than the photovoltaic power generation system 2000 shown in FIG.
 複数のサブシステム4001の各々は、複数のモジュールシステム3000から構成される。サブシステム4001内のモジュールシステム3000の数は、2以上の任意の整数であってよい。 Each of the plurality of subsystems 4001 includes a plurality of module systems 3000. The number of module systems 3000 in the subsystem 4001 may be any integer greater than or equal to two.
 複数のモジュールシステム3000の各々は、複数の光電変換モジュールアレイ2001と、複数の接続箱3002と、集電箱3004とを含む。モジュールシステム3000内の接続箱3002およびそれに接続される光電変換モジュールアレイ2001の数は、2以上の任意の整数であってよい。 Each of the plurality of module systems 3000 includes a plurality of photoelectric conversion module arrays 2001, a plurality of connection boxes 3002, and a current collection box 3004. The number of the junction boxes 3002 in the module system 3000 and the photoelectric conversion module arrays 2001 connected thereto may be any integer of 2 or more.
 集電箱3004は、複数の接続箱3002に接続される。また、パワーコンディショナ4003は、サブシステム4001内の複数の集電箱3004に接続される。 The current collection box 3004 is connected to a plurality of connection boxes 3002. The power conditioner 4003 is connected to a plurality of current collection boxes 3004 in the subsystem 4001.
 複数のパワーコンディショナ4003は、それぞれサブシステム4001に接続される。太陽光発電システム4000において、パワーコンディショナ4003およびそれに接続されるサブシステム4001の数は、2以上の任意の整数であってよい。 The plurality of power conditioners 4003 are each connected to the subsystem 4001. In the photovoltaic power generation system 4000, the number of power conditioners 4003 and subsystems 4001 connected thereto may be any integer of 2 or more.
 変圧器4004は、複数のパワーコンディショナ4003および商用電力系統に接続される。 The transformer 4004 is connected to a plurality of power conditioners 4003 and a commercial power system.
 (太陽光発電システム4000の動作)
 光電変換モジュールアレイ2001は、光電変換によって、太陽光から直流電力を生成し、生成した直流電力を、接続箱3002を介して、集電箱3004に出力する。サブシステム4001内の複数の集電箱3004は、直流電力を複数のパワーコンディショナ4003に供給する。複数のパワーコンディショナ4003は、集電箱3004から受け取った直流電力を交流電力に変換する。そして、変換した交流電力を変圧器4004に供給する。
(Operation of the photovoltaic power generation system 4000)
The photoelectric conversion module array 2001 generates direct-current power from sunlight by photoelectric conversion, and outputs the generated direct-current power to the current collection box 3004 via the connection box 3002. A plurality of current collection boxes 3004 in the subsystem 4001 supplies DC power to a plurality of power conditioners 4003. The plurality of power conditioners 4003 converts the DC power received from the current collection box 3004 into AC power. Then, the converted AC power is supplied to the transformer 4004.
 また、パワーコンディショナ4003に蓄電池4100(図23参照)が接続されている場合(または、蓄電池4100がパワーコンディショナ4003に内蔵されている場合)、パワーコンディショナ4003は、集電箱3004から受け取った直流電力の一部または全部を、(適切に電力変換した後で)蓄電池4100に蓄電することができる。蓄電池4100は、サブシステム4001の発電量に応じた適切な量の電力を、パワーコンディショナ4003に供給する。パワーコンディショナ4003は、蓄電池2100から供給された電力を、(適切に電力変換した後で)変圧器4004に供給する。 In addition, when the storage battery 4100 (see FIG. 23) is connected to the power conditioner 4003 (or when the storage battery 4100 is built in the power conditioner 4003), the power conditioner 4003 is received from the current collection box 3004. In addition, part or all of the direct current power can be stored in the storage battery 4100 (after appropriate power conversion). The storage battery 4100 supplies an appropriate amount of power corresponding to the power generation amount of the subsystem 4001 to the power conditioner 4003. The power conditioner 4003 supplies the power supplied from the storage battery 2100 to the transformer 4004 (after appropriate power conversion).
 変圧器4004は、パワーコンディショナ4003から受け取った交流電力を、(その電圧レベルを変化させた後で)商用電力系統へ供給する。 The transformer 4004 supplies the AC power received from the power conditioner 4003 to the commercial power system (after changing its voltage level).
 (変形例)
 図23は、本実施形態の一変形例に係る太陽光発電システム4000の構成を示すブロック図である。図23に示すように、本変形例では、パワーコンディショナ4003に、蓄電池4100が接続されている。なお、蓄電池4100は、パワーコンディショナ2003に内蔵されていてもよい。
(Modification)
FIG. 23 is a block diagram illustrating a configuration of a photovoltaic power generation system 4000 according to a modification of the present embodiment. As shown in FIG. 23, in this modification, a storage battery 4100 is connected to the power conditioner 4003. The storage battery 4100 may be built in the power conditioner 2003.
 日照量が変化することによって、光電変換モジュールアレイ2001からの出力が変動した場合、本変形例に係る太陽光発電システム4000は、蓄電池4100に蓄電された電力を出力する。これにより、太陽光発電システム4000は、商用電力系統に安定した電力を供給することができる。さらに、本変形例に係る太陽光発電システム4000は、日照のない時間帯において、光電変換モジュールアレイ2001の出力がない場合であっても、蓄電池4100に蓄電された電力を商用電力系統に供給することができる。 When the output from the photoelectric conversion module array 2001 fluctuates due to the change in the amount of sunlight, the photovoltaic power generation system 4000 according to this modification outputs the power stored in the storage battery 4100. Thereby, the solar power generation system 4000 can supply stable power to the commercial power system. Furthermore, the photovoltaic power generation system 4000 according to this modification supplies the power stored in the storage battery 4100 to the commercial power system even when there is no output of the photoelectric conversion module array 2001 in a time zone without sunlight. be able to.
 〔実施形態9〕
 本発明の他の実施形態について、図24に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 9]
Another embodiment of the present invention will be described below with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 前記実施形態1では、1枚の太陽電池モジュール10と、1枚の集熱パネル30とを備えた光熱ハイブリッドパネル1について説明した(図2参照)。本実施形態では、複数枚の太陽電池モジュール10を備えた光熱ハイブリッドパネル2、および、複数枚の集熱パネルを備えた光熱ハイブリッドパネル3について説明する。 In the first embodiment, the photothermal hybrid panel 1 including one solar cell module 10 and one heat collecting panel 30 has been described (see FIG. 2). In the present embodiment, a photothermal hybrid panel 2 including a plurality of solar cell modules 10 and a photothermal hybrid panel 3 including a plurality of heat collecting panels will be described.
 (光熱ハイブリッドパネル2の構成)
 図24を用いて、光熱ハイブリッドパネル2の構成を説明する。図24は、光熱ハイブリッドパネル2の構成を示す概略図である。図24に示すように、光熱ハイブリッドパネル2は、1枚の太陽電池モジュール10と、2枚の集熱パネル30とを備えている。また、光熱ハイブリッドパネル2は、2枚の集熱パネル30上にそれぞれ配置された冷媒管40同士を接続する配管60を備えている。配管60は、2枚の集熱パネル30を固定するための固定治具を含む。光熱ハイブリッドパネル2のその他の構成は、前記実施形態1で説明した光熱ハイブリッドパネル1の構成と同じである。
(Configuration of photothermal hybrid panel 2)
The configuration of the photothermal hybrid panel 2 will be described with reference to FIG. FIG. 24 is a schematic diagram showing the configuration of the photothermal hybrid panel 2. As shown in FIG. 24, the photothermal hybrid panel 2 includes one solar cell module 10 and two heat collection panels 30. In addition, the photothermal hybrid panel 2 includes pipes 60 that connect the refrigerant pipes 40 respectively disposed on the two heat collecting panels 30. The pipe 60 includes a fixing jig for fixing the two heat collecting panels 30. Other configurations of the photothermal hybrid panel 2 are the same as the configurations of the photothermal hybrid panel 1 described in the first embodiment.
 2枚の集熱パネル30は、それぞれ、太陽電池モジュール10から熱エネルギーを吸収する。一方の集熱パネル30上に配置された冷媒管40を介して、その集熱パネル30によって太陽電池モジュール10から吸収された熱エネルギーが、冷媒に移動する。その後、冷媒は、配管60に流入する。一方、他方の集熱パネル30によって太陽電池モジュール10から吸収された熱エネルギーが、冷媒管40を介して、冷媒に移動する。その後、冷媒は、配管60に流入する。冷媒は、配管60を通って、光熱ハイブリッドパネル2から、前記実施形態1で説明した太陽熱利用システム100、200(図5および図6参照)まで輸送される。 The two heat collecting panels 30 each absorb thermal energy from the solar cell module 10. The heat energy absorbed from the solar cell module 10 by the heat collecting panel 30 is transferred to the refrigerant through the refrigerant tube 40 disposed on the one heat collecting panel 30. Thereafter, the refrigerant flows into the pipe 60. On the other hand, the thermal energy absorbed from the solar cell module 10 by the other heat collecting panel 30 moves to the refrigerant through the refrigerant tube 40. Thereafter, the refrigerant flows into the pipe 60. The refrigerant passes through the pipe 60 and is transported from the photothermal hybrid panel 2 to the solar heat utilization systems 100 and 200 (see FIGS. 5 and 6) described in the first embodiment.
 なお、3枚以上の集熱パネル30を備えた構成も、本発明に含まれる。 A configuration including three or more heat collecting panels 30 is also included in the present invention.
 (光熱ハイブリッドパネル3の構成)
 図25を用いて、光熱ハイブリッドパネル3の構成を説明する。図25は、光熱ハイブリッドパネル2の構成を示す概略図である。図24に示すように、光熱ハイブリッドパネル3は、2枚の太陽電池モジュール10と、1枚の集熱パネル30とを備えている。また、光熱ハイブリッドパネル3は、2枚の太陽電池モジュール10が生成した電力を出力するための2つの端子31を備えている。光熱ハイブリッドパネル3のその他の構成は、前記実施形態1で説明した光熱ハイブリッドパネル1の構成と同じである。
(Configuration of photothermal hybrid panel 3)
The configuration of the photothermal hybrid panel 3 will be described with reference to FIG. FIG. 25 is a schematic diagram showing the configuration of the photothermal hybrid panel 2. As shown in FIG. 24, the photothermal hybrid panel 3 includes two solar cell modules 10 and one heat collection panel 30. The photothermal hybrid panel 3 includes two terminals 31 for outputting the power generated by the two solar cell modules 10. Other configurations of the photothermal hybrid panel 3 are the same as the configurations of the photothermal hybrid panel 1 described in the first embodiment.
 2枚の太陽電池モジュール10は、どちらも、集熱パネル30と近接している。集熱パネル30は、2枚の太陽電池モジュール10から、熱エネルギーを吸収する。そして、集熱パネル30によって吸収された熱エネルギーは、冷媒管に移動する。 Both the two solar cell modules 10 are close to the heat collecting panel 30. The heat collection panel 30 absorbs heat energy from the two solar cell modules 10. Then, the thermal energy absorbed by the heat collection panel 30 moves to the refrigerant pipe.
 2枚の太陽電池モジュール10は、それぞれ、受光面を有しており、光電変換によって、電力を生成する。光熱ハイブリッドパネル3では、2枚の太陽電池モジュール10のうち1枚が故障した場合であっても、残りの1枚が電力を生成することができる。 Each of the two solar cell modules 10 has a light receiving surface, and generates electric power by photoelectric conversion. In the photothermal hybrid panel 3, even if one of the two solar cell modules 10 fails, the remaining one can generate electric power.
 なお、3枚以上の太陽電池モジュール10を備えた構成も、本発明に含まれる。また、複数枚の太陽電池モジュール10と、複数枚の集熱パネル30とを備えた構成も、本発明に含まれる。 A configuration including three or more solar cell modules 10 is also included in the present invention. A configuration including a plurality of solar cell modules 10 and a plurality of heat collecting panels 30 is also included in the present invention.
 〔実施形態10〕
 本発明の他の実施形態について、図26に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 10]
Another embodiment of the present invention will be described below with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 (光熱ハイブリッドシステム1000の構成)
 図26に、本実施形態に係る光熱ハイブリッドシステム1000の構成を示す。図26に示すように、光熱ハイブリッドシステム1000は、光熱ハイブリッドパネル1と、太陽熱利用システム100と、太陽光発電システム2000とを備えている。
(Configuration of Photothermal Hybrid System 1000)
FIG. 26 shows a configuration of the photothermal hybrid system 1000 according to the present embodiment. As shown in FIG. 26, the photothermal hybrid system 1000 includes the photothermal hybrid panel 1, a solar heat utilization system 100, and a solar power generation system 2000.
 光熱ハイブリッドシステム1000では、熱エネルギーを蓄積した冷媒が、光熱ハイブリッドパネル1の集熱パネル30から、太陽熱利用システム100へ輸送される。また、電力が、光熱ハイブリッドパネル1の太陽電池モジュール10から、太陽光発電システム2000へ送出される。 In the photothermal hybrid system 1000, the refrigerant that has accumulated thermal energy is transported from the heat collecting panel 30 of the photothermal hybrid panel 1 to the solar heat utilization system 100. Electric power is sent from the solar cell module 10 of the photothermal hybrid panel 1 to the solar power generation system 2000.
 なお、光熱ハイブリッドシステム1000は、光熱ハイブリッドパネル1の代わりに、光熱ハイブリッドパネル2または3を備えていてもよい。また、太陽熱利用システム100の代わりに、太陽熱利用システム200を備えていてもよい。また、太陽光発電システム2000の代わりに、太陽光発電システム4000を備えていてもよい。 The photothermal hybrid system 1000 may include the photothermal hybrid panel 2 or 3 instead of the photothermal hybrid panel 1. Further, a solar heat utilization system 200 may be provided instead of the solar heat utilization system 100. Further, instead of the solar power generation system 2000, a solar power generation system 4000 may be provided.
 〔まとめ〕
 本発明の態様1に係る集熱板(集熱パネル30)は、太陽電池モジュール(10、10A)の受光面側から反対側の裏面側に向かって、上記太陽電池モジュール、集熱板、および冷媒管(40)が、この順に配置される構造における上記冷媒管を備えた集熱板であって、上記冷媒管の内面には、上記太陽電池モジュール側から上記冷媒管の内部へ隆起した複数の隆起構造(隆起構造50、40A~50D)が配置されており、上記複数の隆起構造は、(i)上記冷媒管が延伸する方向に、複数の列で並んでおり、かつ(ii)隣接する列に含まれる上記複数の隆起構造と互い違いに配置されている。
[Summary]
The heat collecting plate (heat collecting panel 30) according to aspect 1 of the present invention is the solar cell module, the heat collecting plate, and the solar cell module (10, 10A) from the light receiving surface side toward the opposite back surface side. A refrigerant pipe (40) is a heat collecting plate provided with the refrigerant pipe in a structure arranged in this order, and a plurality of protrusions projecting from the solar cell module side to the inside of the refrigerant pipe on the inner surface of the refrigerant pipe The raised structures (raised structures 50, 40A to 50D) are arranged, and the raised structures are (i) arranged in a plurality of rows in the direction in which the refrigerant pipe extends, and (ii) adjacent Are arranged alternately with the plurality of raised structures included in the row.
 上記の構成によれば、冷媒管内には、複数の隆起構造が配置されている。そのため、冷媒管内を流れる冷媒は、隆起構造に接触しながら流れる。隆起構造は、実質的に、冷媒管と冷媒とが接触する面積を拡大するので、冷媒管(および集熱板)から冷媒へ、移動する熱エネルギーの量が増大する。また、複数の隆起構造は、冷媒管の内面の太陽電池モジュール側に配置されている。そのため、隆起構造が太陽電池モジュールから遠い位置に配置された構成と比較して、集熱板から隆起構造に、熱エネルギーが伝達されやすい。 According to the above configuration, a plurality of raised structures are arranged in the refrigerant pipe. Therefore, the refrigerant flowing in the refrigerant pipe flows while contacting the raised structure. Since the raised structure substantially expands the area where the refrigerant pipe and the refrigerant are in contact with each other, the amount of heat energy transferred from the refrigerant pipe (and the heat collecting plate) to the refrigerant increases. The plurality of raised structures are disposed on the solar cell module side of the inner surface of the refrigerant tube. Therefore, compared with the structure in which the raised structure is arranged at a position far from the solar cell module, thermal energy is easily transmitted from the heat collecting plate to the raised structure.
 さらに、上記の構成によれば、複数の隆起構造は複数の列で並んでおり、かつ、隣接する列に含まれる隆起構造同士は、互い違いに配置されている。そのため、冷媒の流れは、例えば、一方の列に含まれる隆起構造に衝突して向きを変え、その後、他方の列に含まれる隆起構造に衝突することによってさらに向きを変える。 Furthermore, according to the above configuration, the plurality of raised structures are arranged in a plurality of rows, and the raised structures included in adjacent rows are alternately arranged. Therefore, for example, the flow of the refrigerant changes the direction by colliding with the raised structure included in one row, and then changing the direction by colliding with the raised structure included in the other row.
 このように、隆起構造が、冷媒の流れる向きを複雑に変化させるので、冷媒管から冷媒へと移動する熱エネルギーの量が増大する。また、冷媒管から冷媒へ移動する熱エネルギーが多くなるほど、集熱板から冷媒管へ移動する熱エネルギー、ひいては、太陽電池モジュールから集熱板へ移動する熱エネルギーも多くなる。換言すれば、集熱板の集熱効率が向上する。 Thus, since the raised structure changes the flow direction of the refrigerant in a complicated manner, the amount of heat energy that moves from the refrigerant pipe to the refrigerant increases. Further, as the thermal energy transferred from the refrigerant tube to the refrigerant increases, the thermal energy transferred from the heat collecting plate to the refrigerant tube, and hence the thermal energy transferred from the solar cell module to the heat collecting plate also increases. In other words, the heat collection efficiency of the heat collection plate is improved.
 本発明の態様2に係る集熱板は、上記態様1において、上記冷媒管の単位長さあたりの容積を1とおき、上記冷媒管の上記単位長さ内に存在する上記隆起構造の体積の合計をfとおくとき、0.111≦f≦0.25であってもよい。 The heat collecting plate according to aspect 2 of the present invention is the heat collecting plate according to aspect 1, wherein the volume per unit length of the refrigerant pipe is set to 1, and the volume of the raised structure existing within the unit length of the refrigerant pipe is When the sum is f, 0.111 ≦ f ≦ 0.25 may be satisfied.
 上記の構成によれば、隆起構造が、冷媒管の容積と比較して、上記のように規定された体積比率を持つ場合、冷媒管内において乱流を発生させる。そのため、冷媒管内を層流が流れる場合と比較して、冷媒管から冷媒へと移動する熱エネルギーが増大する。従って、集熱板の集熱効率が向上する。一方、0.111≦f≦0.25が満たされない場合、集熱板の集熱効率は、隆起構造が配置されていない構成の集熱効率と同じになる。 According to the above configuration, when the raised structure has a volume ratio defined as described above as compared with the volume of the refrigerant pipe, turbulence is generated in the refrigerant pipe. Therefore, compared with the case where a laminar flow flows through the refrigerant pipe, the thermal energy that moves from the refrigerant pipe to the refrigerant increases. Therefore, the heat collection efficiency of the heat collection plate is improved. On the other hand, when 0.111 ≦ f ≦ 0.25 is not satisfied, the heat collecting efficiency of the heat collecting plate is the same as the heat collecting efficiency of the configuration in which the raised structure is not arranged.
 本発明の態様3に係る集熱板は、上記態様1または2において、上記隆起構造は、中空円筒を中心軸方向に切断した中空部分円筒の形状を有しており、上記中心軸方向は、上記冷媒管が延伸する方向と一致していてもよい。 In the heat collecting plate according to aspect 3 of the present invention, in the aspect 1 or 2, the raised structure has a shape of a hollow partial cylinder obtained by cutting the hollow cylinder in the central axis direction. You may correspond with the direction where the above-mentioned refrigerant pipe extends.
 上記の構成によれば、中心軸方向に切断された中空円筒形を有する隆起構造の端面に冷媒が衝突するので、冷媒の乱流が発生し易くなる。また、隆起構造は中空であるので軽量である。そのため、(中空でない隆起構造を備えた集熱板と比較して)集熱板の重量が増加することを抑制化することができる。
本発明の態様4に係る集熱板は、上記態様1または2において、上記隆起構造は、長軸方向に切断された楕円体の形状を有しており、上記長軸方向は、上記冷媒管が延伸する方向と一致していてもよい。
According to said structure, since a refrigerant | coolant collides with the end surface of the protruding structure which has the hollow cylindrical shape cut | disconnected in the center axis direction, it becomes easy to generate | occur | produce a turbulent flow of a refrigerant | coolant. Moreover, since the raised structure is hollow, it is lightweight. Therefore, it is possible to suppress an increase in the weight of the heat collecting plate (compared to a heat collecting plate having a non-hollow raised structure).
In the heat collecting plate according to aspect 4 of the present invention, in the aspect 1 or 2, the raised structure has an ellipsoidal shape cut in a major axis direction, and the major axis direction is the refrigerant pipe. May coincide with the extending direction.
 上記の構成によれば、隆起構造は、該隆起構造に衝突する冷媒の流れを緩やかに変化させるので、冷媒は、冷媒管内をスムーズに流れることができる。 According to the above configuration, the raised structure gently changes the flow of the refrigerant that collides with the raised structure, so that the refrigerant can flow smoothly in the refrigerant pipe.
 本発明の態様5に係る集熱板は、上記態様1から4のいずれかにおいて、上記冷媒管の断面が、半分の楕円形、楕円形、円形、四角形、および、丸みを帯びた角を有する四角形のうちいずれか1つの形状であってよい。 The heat collecting plate according to aspect 5 of the present invention is the heat collecting plate according to any one of aspects 1 to 4, wherein the refrigerant tube has a half-elliptical shape, an elliptical shape, a circular shape, a quadrangular shape, and a rounded corner. Any one of the quadrangles may be used.
 上記の構成によれば、冷媒管の断面の形状が単純であるので、冷媒管を容易に作製することができる。なお、半分の楕円形は半円形を含み、四角形は台形を含んでいる。 According to the above configuration, since the shape of the cross section of the refrigerant pipe is simple, the refrigerant pipe can be easily manufactured. The half ellipse includes a semicircle, and the quadrangle includes a trapezoid.
 本発明の態様6に係る集熱板は、上記態様1から5のいずれかにおいて、上記冷媒管は、上記集熱パネル上で、蛇行しながら延伸していてもよい。 In the heat collecting plate according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the refrigerant pipe may extend while meandering on the heat collecting panel.
 上記の構成によれば、冷媒管が、集熱パネル上で、直線的に延伸している構成と比較して、集熱パネルに近接する冷媒管の長さをより延長することができる。従って、集熱パネルから冷媒管へ、熱エネルギーが効率的に移動する。 According to the above configuration, the length of the refrigerant tube close to the heat collection panel can be further extended as compared with the configuration in which the refrigerant tube extends linearly on the heat collection panel. Therefore, thermal energy efficiently moves from the heat collection panel to the refrigerant pipe.
 本発明の態様7に係る光熱ハイブリッドパネル(1、2、3)は、上記態様1から9のいずれかの集熱板と、上記太陽電池モジュールとの組み合わせであってよい。 The photothermal hybrid panel (1, 2, 3) according to aspect 7 of the present invention may be a combination of the heat collecting plate according to any one of aspects 1 to 9 and the solar cell module.
 上記の構成によれば、上記態様1から6のいずれかの集熱板と同じ効果を奏することができる。 According to said structure, there can exist the same effect as the heat collecting plate in any one of the said aspects 1-6.
 本発明の態様8に係る集熱板は、上記態様7において、上記太陽電池モジュールの受光面上には、当該受光面の形成材料と同じ材料から成る複数の他の隆起構造(凸部16)が三角格子状に分散して配置されていてもよい。 A heat collecting plate according to aspect 8 of the present invention is the heat collecting plate according to aspect 7, wherein a plurality of other raised structures (projections 16) made of the same material as the material of the light receiving surface are formed on the light receiving surface of the solar cell module. May be distributed in a triangular lattice pattern.
 上記の構成によれば、太陽電池モジュールの受光面上(例えば、ガラス層の上)に、複数の他の隆起構造が分散して配置されている。他の隆起構造は、実質的に、受光面と外気とが接触する面積を拡大するので、太陽電池モジュールの受光面側における放熱効率が向上する。また、他の隆起構造は、受光面において反射する太陽光の量を低減するので、太陽電池モジュールは、太陽光をより取り込むことができる。また、太陽電池によって取り込まれる太陽光の量が増大する結果、集熱板の集熱効率が向上する。 According to the above configuration, a plurality of other raised structures are distributed and arranged on the light receiving surface of the solar cell module (for example, on the glass layer). Since the other raised structure substantially expands the area where the light receiving surface and the outside air contact, the heat radiation efficiency on the light receiving surface side of the solar cell module is improved. In addition, since the other raised structure reduces the amount of sunlight reflected on the light receiving surface, the solar cell module can take in more sunlight. Moreover, as a result of the increase in the amount of sunlight taken in by the solar cell, the heat collecting efficiency of the heat collecting plate is improved.
 さらに、上記の構成によれば、複数の他の隆起構造は、三角格子状に配置されている。そのため、外気(特に、隣接する他の隆起構造が並んでいる方向とは異なる方向に流れる外気)は、他の隆起構造によって、その向きを複雑に変化させられる。これにより、受光面から外気に移動する熱エネルギーの量が増大するので、太陽電池モジュールの受光面側における放熱効率がさらに向上する。 Furthermore, according to the above configuration, the plurality of other raised structures are arranged in a triangular lattice shape. For this reason, the direction of outside air (particularly, outside air flowing in a direction different from the direction in which other adjacent raised structures are arranged) can be changed in a complicated manner by the other raised structures. Thereby, since the amount of thermal energy that moves from the light receiving surface to the outside air increases, the heat dissipation efficiency on the light receiving surface side of the solar cell module is further improved.
 本発明の態様9に係る集熱板は、上記態様8において、上記受光面の面積を1とおき、上記他の隆起構造が配置されている上記受光面内の領域の面積をrとおくとき、0.02≦r≦0.5を満たしてもよい。 In the heat collecting plate according to aspect 9 of the present invention, when the area of the light receiving surface is set to 1 and the area of the light receiving surface in which the other raised structure is disposed is r in the aspect 8 0.02 ≦ r ≦ 0.5 may be satisfied.
 上記の構成によれば、受光面上に上記他の隆起構造が配置されていない構成、および、受光面の全体を覆うように上記他の隆起構造が配置されている構成よりも、太陽電池モジュールの受光面側における放熱効率を向上させることができる。一方、0.02≦r≦0.5が満たされない場合、太陽電池モジュールの受光面側における放熱効率は、受光面の全体を覆うように上記他の隆起構造が配置されている構成の放熱効率以下になる。 According to the above configuration, the solar cell module is more than a configuration in which the other raised structure is not disposed on the light receiving surface and a configuration in which the other raised structure is disposed so as to cover the entire light receiving surface. The heat radiation efficiency on the light receiving surface side can be improved. On the other hand, when 0.02 ≦ r ≦ 0.5 is not satisfied, the heat dissipation efficiency on the light receiving surface side of the solar cell module is the heat dissipation efficiency of the configuration in which the other raised structure is disposed so as to cover the entire light receiving surface. It becomes the following.
 本発明の態様10に係る集熱板は、上記態様7において、上記太陽電池モジュールの受光面上には、当該受光面に対する加工によって複数の窪み構造(凹部17、17A~17C)が三角格子状に分散して形成されていてもよい。 The heat collecting plate according to aspect 10 of the present invention is the heat collecting plate according to aspect 7, wherein a plurality of hollow structures (recesses 17, 17A to 17C) are formed in a triangular lattice pattern on the light receiving surface of the solar cell module by processing the light receiving surface. It may be formed in a dispersed manner.
 上記の構成によれば、複数の窪み構造が、実質的に、太陽電池モジュールの受光面の面積を拡大させるので、太陽電池モジュールの受光面側における放熱効率が向上する。また、凹部は、隆起構造と比較して、太陽光を受光面内に向けてより効率的に反射し、太陽光を受光面外にあまり散乱させない。そのため、受光面上に隆起構造が配置されている構成と比較して、太陽電池モジュールによる太陽光の吸収量をより増大させることができる。 According to the above configuration, since the plurality of depression structures substantially enlarge the area of the light receiving surface of the solar cell module, the heat dissipation efficiency on the light receiving surface side of the solar cell module is improved. Moreover, a recessed part reflects sunlight more efficiently toward a light-receiving surface compared with a raised structure, and does not scatter sunlight outside a light-receiving surface very much. Therefore, compared with the structure by which the protruding structure is arrange | positioned on the light-receiving surface, the absorption amount of sunlight by a solar cell module can be increased more.
 本発明の態様11に係る光熱ハイブリッドシステム(1000)は、上記態様8から10のいずれかの光熱ハイブリッドパネルと、上記太陽電池モジュールから出力される電力を電力系統に送出する太陽光発電システム(2000、4000)と、を備えていてもよい。 The photothermal hybrid system (1000) according to the aspect 11 of the present invention is a photovoltaic power generation system (2000) that sends the power output from the photothermal hybrid panel according to any one of the above aspects 8 to 10 and the solar cell module to an electric power system. 4000).
 上記の構成によれば、上記態様8から10のいずれかの光熱ハイブリッドパネルと同様の効果を奏することができる。 According to said structure, there can exist an effect similar to the photothermal hybrid panel in any one of the said aspects 8-10.
 〔本発明の別の表現〕
 本発明の態様12に係る光熱ハイブリッドパネルは、
 太陽電池モジュールと集熱パネルが一体となっており、
 前記集熱パネルは複数の冷媒管を持ち、
 前記冷媒管の少なくとも一本の内部に隆起構造が配置されており、
 前記隆起構造は半分にされた楕円体形状であり、
 前記隆起構造は、冷媒管に流れる冷媒の流れの方向に沿って、一定の距離pを保ちながら千鳥状に配置されており、
 前記長さp当たりの体積と隆起構造の長さp当たりの体積の比率fが、0.111≦f≦0.25であってよい。
[Another expression of the present invention]
The photothermal hybrid panel according to aspect 12 of the present invention is
The solar cell module and the heat collecting panel are integrated.
The heat collecting panel has a plurality of refrigerant tubes,
A raised structure is disposed in at least one of the refrigerant tubes;
The raised structure is halved ellipsoidal shape;
The raised structures are arranged in a staggered manner along the direction of the flow of the refrigerant flowing in the refrigerant pipe while maintaining a certain distance p.
The ratio f of the volume per length p to the volume per length p of the raised structure may be 0.111 ≦ f ≦ 0.25.
 本発明の態様13に係る光熱ハイブリッドパネルは、
 冷媒管の短辺方向もしくは長辺方向の断面が、半分にした楕円形、楕円形、円形、四角形状、丸みを帯びた角を有する四角形状のいずれかを持っていてよい。
The photothermal hybrid panel according to aspect 13 of the present invention is
The cross section in the short side direction or the long side direction of the refrigerant pipe may have one of an elliptical shape, an elliptical shape, a circular shape, a quadrangular shape, and a quadrangular shape having rounded corners.
 本発明の態様14に係る光熱ハイブリッドパネルは、
 太陽電池モジュールと集熱パネルが一体となっており、
 上記態様12もしくは13の集熱パネルを有し、
 太陽電池モジュールのガラス面上の一部に、ガラス、もしくは、焼成されたガラスペーストや焼成されたSOG材料が、半円柱の凸形状で、三角格子状に配置されており、
 フィンとフィンの間の水平距離phsと垂直距離phvで形成される単位面積Sに対して、単位面積S内のフィンの面積/単位面積Sの比率をrとしたとき、0.02≦r≦0.5であってよい。
The photothermal hybrid panel according to aspect 14 of the present invention is
The solar cell module and the heat collecting panel are integrated.
Having the heat collecting panel of the above aspect 12 or 13,
Glass, or a baked glass paste or a baked SOG material is arranged in a triangular lattice shape in a semi-cylindrical convex shape on a part of the glass surface of the solar cell module,
When the ratio of fin area / unit area S in unit area S to r is the unit area S formed by horizontal distance phs and vertical distance phv between fins, 0.02 ≦ r ≦ It may be 0.5.
 本発明の態様15に係る光熱ハイブリッドパネルでは、
 太陽電池モジュールと集熱パネルが一体となっており、
 上記態様12もしくは13の集熱パネルを有し、
 上記態様14の太陽電池モジュール用ガラスを有し、
 前記太陽電池モジュール1枚につき、前記集熱パネルが2枚以上の複数枚設置されていてよい。
In the photothermal hybrid panel according to the aspect 15 of the present invention,
The solar cell module and the heat collecting panel are integrated.
Having the heat collecting panel of the above aspect 12 or 13,
It has the glass for solar cell modules of the above aspect 14,
Two or more of the heat collecting panels may be installed per one of the solar cell modules.
 本発明の態様16に係る光熱ハイブリッドシステムでは、
 上記態様12から15のいずれかの光熱ハイブリッドパネルがアレイ状に配列され、
 前記光熱ハイブリッドパネルを構成する光電変換モジュールアレイは、出力端子と接続された接続箱、パワーコンディショナを有する太陽光発電システムを有しており、
 集熱パネルに接続された配管およびヒートポンプと、
 温水暖房装置と、
 前記ヒートポンプに接続された貯湯層と、
 制御部と制御パネルを持つ太陽熱利用システムとが一体となっていてよい。
In the photothermal hybrid system according to the sixteenth aspect of the present invention,
The photothermal hybrid panels according to any one of the above aspects 12 to 15 are arranged in an array,
The photoelectric conversion module array constituting the photothermal hybrid panel has a solar power generation system having a connection box connected to an output terminal, a power conditioner,
Piping and heat pump connected to the heat collecting panel;
A hot water heater,
A hot water storage layer connected to the heat pump;
The control unit and the solar heat utilization system having the control panel may be integrated.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、太陽電池モジュールから熱エネルギーを吸収する集熱板を備えた光熱ハイブリッドパネルに利用することができる。 The present invention can be used for a photothermal hybrid panel including a heat collecting plate that absorbs thermal energy from a solar cell module.
 1、2、3 光熱ハイブリッドパネル
 10、10A 太陽電池モジュール
 16 凸部(他の隆起構造)
 17 凹部(窪み構造)
 30 集熱パネル(集熱板)
 40、40A 冷媒管
 50、50A、50B、50C、50D 隆起構造
 100、200 太陽熱利用システム
 1000 光熱ハイブリッドシステム
 2000、4000 太陽光発電システム
1, 2, 3 Photothermal hybrid panel 10, 10A Solar cell module 16 Convex part (other raised structure)
17 Concave (dented structure)
30 Heat collection panel (heat collection plate)
40, 40A Refrigerant tube 50, 50A, 50B, 50C, 50D Raised structure 100, 200 Solar heat utilization system 1000 Photothermal hybrid system 2000, 4000 Solar power generation system

Claims (5)

  1.  太陽電池モジュールの受光面側から反対側の裏面側に向かって、上記太陽電池モジュール、集熱板、および冷媒管が、この順に配置された構造を備えた光熱ハイブリッドパネルであって、
     上記冷媒管の内面には、上記太陽電池モジュール側から上記冷媒管の内部へ隆起した複数の隆起構造が配置されており、
     上記複数の隆起構造は、(i)上記冷媒管が延伸する方向に、複数の列で並んでおり、かつ(ii)隣接する列に含まれる上記複数の隆起構造と互い違いに配置されている
    ことを特徴とする光熱ハイブリッドパネル。
    From the light-receiving surface side of the solar cell module toward the opposite back side, the solar cell module, the heat collecting plate, and the refrigerant tube are photothermal hybrid panels having a structure arranged in this order,
    A plurality of raised structures protruding from the solar cell module side to the inside of the refrigerant tube are disposed on the inner surface of the refrigerant tube,
    The plurality of raised structures are (i) arranged in a plurality of rows in the direction in which the refrigerant pipe extends, and (ii) arranged alternately with the plurality of raised structures included in adjacent rows. Photothermal hybrid panel characterized by
  2.  前記太陽電池モジュールの受光面上には、当該受光面の形成材料と同じ材料から成る複数の他の隆起構造が三角格子状に分散して配置されている
    ことを特徴とする、請求項1に記載の光熱ハイブリッドパネル。
    2. The solar cell module according to claim 1, wherein a plurality of other raised structures made of the same material as the material for forming the light receiving surface are arranged in a triangular lattice pattern on the light receiving surface of the solar cell module. The described photothermal hybrid panel.
  3.  上記隆起構造は、中空円筒を中心軸方向に切断した中空部分円筒の形状を有しており、
     上記中心軸方向は、上記冷媒管が延伸する方向と一致している
    ことを特徴とする請求項1または2に記載の光熱ハイブリッドパネル。
    The raised structure has a shape of a hollow part cylinder obtained by cutting the hollow cylinder in the central axis direction,
    The photothermal hybrid panel according to claim 1 or 2, wherein the central axis direction coincides with a direction in which the refrigerant pipe extends.
  4.  上記冷媒管の単位長さあたりの容積を1とおき、上記冷媒管の上記単位長さ内に存在する上記隆起構造の体積の合計をfとおくとき、
     0.111≦f≦0.25である
    ことを特徴とする請求項1から3のいずれか1項に記載の光熱ハイブリッドパネル。
    When the volume per unit length of the refrigerant pipe is set as 1, and the total volume of the raised structure existing in the unit length of the refrigerant pipe is set as f,
    The photothermal hybrid panel according to claim 1, wherein 0.111 ≦ f ≦ 0.25.
  5.  請求項1から4のいずれか1項に記載の光熱ハイブリッドパネルと、
     上記太陽電池モジュールから出力される電力を電力系統に送出する太陽光発電システムと、を備えた
    ことを特徴とする光熱ハイブリッドシステム。
    The photothermal hybrid panel according to any one of claims 1 to 4,
    A photovoltaic thermal power generation system comprising: a photovoltaic power generation system that sends electric power output from the solar cell module to an electric power system.
PCT/JP2015/080936 2014-11-07 2015-11-02 Photovoltaic thermal hybrid panel and photovoltaic thermal hybrid system WO2016072393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014227452 2014-11-07
JP2014-227452 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016072393A1 true WO2016072393A1 (en) 2016-05-12

Family

ID=55909118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080936 WO2016072393A1 (en) 2014-11-07 2015-11-02 Photovoltaic thermal hybrid panel and photovoltaic thermal hybrid system

Country Status (1)

Country Link
WO (1) WO2016072393A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243283A (en) * 1996-03-04 1997-09-19 Kubota Corp Heat exchanging metallic tube equipped with inner surface projection
JP2002102974A (en) * 2000-09-11 2002-04-09 Valeo Engine Cooling Ab Fluid transportation tube, manufacturing method and device therefor
JP2002350071A (en) * 2001-05-24 2002-12-04 Maruyasu Industries Co Ltd Double pipe heat exchanger
JP2003234491A (en) * 2002-02-06 2003-08-22 Sharp Corp Heat collecting apparatus built-in type solar battery module and its manufacturing method
JP2014501900A (en) * 2010-11-22 2014-01-23 ソレール ドゥジェ Hybrid solar panel
JP2014064042A (en) * 2011-08-30 2014-04-10 El-Seed Corp Production method for glass substrate with uneven structure film using dry etching, glass substrate with uneven structure film, solar cell, and manufacturing method for solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243283A (en) * 1996-03-04 1997-09-19 Kubota Corp Heat exchanging metallic tube equipped with inner surface projection
JP2002102974A (en) * 2000-09-11 2002-04-09 Valeo Engine Cooling Ab Fluid transportation tube, manufacturing method and device therefor
JP2002350071A (en) * 2001-05-24 2002-12-04 Maruyasu Industries Co Ltd Double pipe heat exchanger
JP2003234491A (en) * 2002-02-06 2003-08-22 Sharp Corp Heat collecting apparatus built-in type solar battery module and its manufacturing method
JP2014501900A (en) * 2010-11-22 2014-01-23 ソレール ドゥジェ Hybrid solar panel
JP2014064042A (en) * 2011-08-30 2014-04-10 El-Seed Corp Production method for glass substrate with uneven structure film using dry etching, glass substrate with uneven structure film, solar cell, and manufacturing method for solar cell

Similar Documents

Publication Publication Date Title
Kandeal et al. Photovoltaics performance improvement using different cooling methodologies: A state-of-art review
EP2239787A1 (en) Thermoelectric solar plate
CN202025783U (en) Solar photovoltaic thermoelectric heating module and photovoltaic thermoelectric hot water system
CN106605363B (en) Two-stage parabolic condenser
US20170155360A1 (en) Solar module
Sachit et al. Current progress on flat-plate water collector design in photovoltaic thermal (PV/T) systems: A Review
Tan et al. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration
Li et al. Performance analysis on a crystalline silicon photovoltaic cell under non-uniform illumination distribution with a high electrical efficiency
CN203574606U (en) Air-cooling and water-cooling combined solar cell structure
CN102664212A (en) Serpentine channel solar cell waste-heat recovery unit
KR20150030822A (en) Apparatus for controlling temperature of photovoltaic panel
WO2016072393A1 (en) Photovoltaic thermal hybrid panel and photovoltaic thermal hybrid system
CN115218254B (en) Combined heat and power solar heating system
CN204303844U (en) The cooling system of photovoltaic hollow glass
CN203482116U (en) Light-concentrating semiconductor thermoelectric power generation apparatus
Ewe et al. Overview on recent PVT systems with jet impingement
CN204156806U (en) Integral type solar photovoltaic cell panel temperature-controlling system
CN103124151A (en) Solar photo-thermal comprehensive utilization electric vehicle charging station obvious in energy-saving effect
KR101966213B1 (en) PVT module structure including solar thermal syetem with surface coating for absorbing efficiceny
Joy et al. Experimental Investigation and Comparative Study of PV Thermal Water-Ethylene Glycol Collector and PV System
CN201869132U (en) Solar energy system arranged on buildings
CN105634404A (en) One-chip solar photovoltaic cell panel temperature control integrated piece
CN204349837U (en) A kind of Fresnel optically focused temperature difference electricity generation device
CN220693104U (en) PVT photovoltaic photo-thermal backboard
CN214250117U (en) Photoelectric and photo-thermal solar energy absorption plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15857312

Country of ref document: EP

Kind code of ref document: A1