JP3939090B2 - Multi-tube heat exchanger - Google Patents

Multi-tube heat exchanger Download PDF

Info

Publication number
JP3939090B2
JP3939090B2 JP2000377623A JP2000377623A JP3939090B2 JP 3939090 B2 JP3939090 B2 JP 3939090B2 JP 2000377623 A JP2000377623 A JP 2000377623A JP 2000377623 A JP2000377623 A JP 2000377623A JP 3939090 B2 JP3939090 B2 JP 3939090B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
plate
heat exchanger
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000377623A
Other languages
Japanese (ja)
Other versions
JP2002181468A (en
Inventor
康文 榊原
成樹 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000377623A priority Critical patent/JP3939090B2/en
Publication of JP2002181468A publication Critical patent/JP2002181468A/en
Application granted granted Critical
Publication of JP3939090B2 publication Critical patent/JP3939090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第一流体が通過する内管(伝熱管)群と、第二流体が通過する外管(胴体)とを備え、複数本の伝熱管群が、それらの両端を第一流体導入側及び第一流体排出側にそれぞれ位置する導入側・排出側保持板に保持させて配設されてなる多管式熱交換器に関する。特に、伝熱管群に高速の高温ガス(気体)を、胴体(外管)に冷却水(液体)を通過させて熱交換を行う熱交換器、例えば、内燃機関の排気ガスを冷却水により冷却する排気冷却器(高度の熱交換能が要求される)等に好適な発明である。
【0002】
【背景技術】
上記のごとく高度の熱交換が要求されるものには、図1・2に示すような多管式熱交換器12が多用されている。
【0003】
すなわち、第一流体(高温ガス)が通過する複数本の内管(伝熱管)14と、第二流体(冷却水)が通過する外管(胴体)16とを備え、複数本の伝熱管(伝熱管群)14、14…が、それらの両端を第一流体導入側及び第一流体排出側にそれぞれ位置する導入側・排出側保持板18、20に保持させて配設されている。図例では、胴体16の内部に多数本の伝熱管群14、14…が、胴体16両端の導入側・排出側保持板(チューブシート)18、20を介して配設されている。胴体16の両端には円錐台状の導入側・排出側整流筒部(整流部)22、24を介してフランジ26a、28a付きの導入・排出口(接続パイプ)26、28を備えて、伝熱管群14、14…内を第一流体(高温ガス)が通過可能となっている。また、胴体16の上下には、導入・排出ノズル30、32を備え各伝熱管14の外側に第二流体(冷却水)が通過可能となっている。
【0004】
しかし、図1・2に示すような多管式熱交換器12は、熱交換効率を増大させようとして伝熱管14の数を増やすと、冷却水の流れ抵抗が大きくなったり、又は、ガス流速の低下とそれに伴う熱伝達率の低下等により、結果的に、熱交換効率の増大が図り難かった。
【0005】
また、上記多管式熱交換器12は、製造工数が嵩み、且つ、重量も増大傾向にあった。
【0006】
本発明者らは、上記にかんがみて、熱交換効率の増大が容易であり、且つ、製造工数を削減可能な多管式熱交換器を提供することを目的として、下記構成の多管式熱交換器を先に提案した(特願2000−061541号:出願時未公開)。
【0007】
「胴体の内部に複数本の伝熱管が配設されてなる多管式熱交換器において、 各伝熱管が、扁平断面の伝熱管本体と該伝熱管本体の長手方向の対向面間をつなぐ多数枚の伝熱フィンとからなることを特徴とする。」
本発明は、主として上記構成の多管式熱交換器の改良に係り、更なる製造工数の削減及び熱交換効率の増大が期待できる多管式熱交換器を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記構成の多管式熱交換器に想到した。
【0009】
第一流体が通過する内管(伝熱管)群と、第二流体が通過する外管(胴体)とを備え、複数本の伝熱管群が、それらの両端を第一流体導入側及び第一流体排出側にそれぞれ位置する導入側・排出側保持板に保持させて配設されてなる多管式熱交換器において、
前記伝熱管が、扁平断面の伝熱管本体と該伝熱管本体の長手方向の対向面間をつなぐ、又は、該対向面の双方又は一方から突出する多数枚の伝熱フィンとからなり、前記伝熱フィンにより形成される伝熱管の各分割流路の壁面に、長手方向の所定間隔(所定ピッチ)で板状又は瘤状の突起部が形成されて、前記第一流体に渦流が発生可能とされていることを特徴とする。
【0011】
伝熱管の流路の壁面に所定ピッチで突起部が形成されていることにより、高速ガス等の第一流体が伝熱管を通過するに際して、渦流(縦渦流)が発生する。該渦流の存在により高速ガス等の第一流体がかく乱され相対的に熱伝達率(熱交換効率)が増大する。
【0012】
さらに、上記構成において、各伝熱管が、扁平管からなる伝熱管本体に、該伝熱管本体と別体の波板を挿入接合して伝熱フィンを形成した構成とするとともに、伝熱フィンの壁面の切り起こし(プレス抜き)又はスタンピングにより突起部が形成することが望ましい。波板をプレス加工等により製作する際に、同時に設計(仕様)に応じた任意形状の突起部を簡単に形成でき生産性が良好であるためである。
【0013】
突起部を板状とし、▲1▼その迎え角を20〜80°とすることが、▲2▼その高さ及び幅を流路高さ及び流路幅のそれぞれ0.1〜0.8倍とすることが、▲3▼その流れ方向ピッチを流路高さの1〜5倍とすることが、それぞれ、熱伝達率(熱交換効率)が増大して望ましい。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図例に基づいて説明をする。既述例と対応する部分については、下二桁を同一数字として付した。
【0015】
図3・4に本実施形態を適用する多管式熱交換器112の一例を示す(前述の先願における図3・4から引用したものである。ただし、図符号は異なる。)。
【0016】
すなわち、両端に導入側・導出側保持板(チューブシート)118、120を備えた角筒胴体116内に、複数本の伝熱管114が固定管板118、120を介して配設されている。角筒胴体116の両端には四角錐台状の導入側・導出側整流筒部(整流部)122、124を介してフランジ126a、128a付きの第一流体導入口・排出口(接続パイプ)126、128を備えて、第一流体(高温ガス)が伝熱管群114、114…内を導通可能となっている。
【0017】
ここで、伝熱管114は、扁平管からなる伝熱管本体134と該伝熱管本体134の長手方向の対向面間をつなぐ波板からなる伝熱フィン136とからなる構成である。ここで、波板136は、図例では矩形波状であるが、三角山形波状、台形山形波状、半円形波状であってもよい。
【0018】
また、角筒胴体116の上下には、導入・排出側ノズル130、132を備え伝熱管114の外側に第二流体(冷却水)を導通可能となっている。
【0019】
なお、胴体を、図5(図3の4(5)−4(5)線部位に対応)に示す如く、円筒状胴体116Aとすることも可能であるが、角筒状の方が、前述の如く、部品の種類数を低減できる。すなわち、円筒状とした時、図例の如く、伝熱管として、幅の異なるもの114、114′、114′′を用意する必要がある。
【0020】
また、伝熱管の構成は、上記の如く、伝熱管本体と伝熱フィンとが別体でなくても、図6(a) 、(b) に示す如く、伝熱管本体134A、134Bの対向面の双方から又は一方から突出させて多数の伝熱フィン136A、136Bを形成させた伝熱管114A、114Bであってもよい。
【0021】
伝熱フィン136A、136Bを双方から突出させる場合は、略中央位置で必ずしも接合している必要はなく、図6(b) に示す如く、互い違いに突出していてもよく、さらには、隙間があってもよい。また、一方から突出させる場合は、通常、他方の対向面に当接させるが、成形性の見地から離隔させてもよい。
【0022】
これらの伝熱管は、一本の金属パイプから多段プレス加工や、図示しないが、一枚の板材(フープ材)からプレス加工やロールフォーミングにより順次形成する。
【0023】
さらに、各伝熱管は図例の如く、外形横断面が扁平断面でなくても、角パイプないし従来のような丸パイプであってもよい。角パイプの方が、後述の突起部を形成させるに際して、突起部を備えた帯板を挿入固定しやすくて望ましい。
【0024】
これらの場合は、パイプ内に所定ピッチで突起板ないし突起瘤を形成した薄帯板を、前述の伝熱フィンの場合と同様に固定すればよい。
【0025】
そして、上記構成において、本実施形態においては、伝熱管本体134と伝熱フィン136とで形成される分割流路137の壁面に長手方向(流れ方向)の所定間隔で突起部140を所定間隔で形成する(図7参照)。
【0026】
ここでは、図7は、説明の便宜上、分割流路が矩形断面(正方形)であり、突起部140を板状として、所定間隔で配置したものをモデル的に示したものである。
【0027】
突起部140は、通常、板状とするが、瘤状(半球状、角錐状、角柱状)であってもよい。板状とする場合は、切り起こし等により、瘤状とする場合は、スタンピング等によりそれぞれ形成する。切り起こしもスタンピングもプレス加工の範疇である。なお、板状とする場合、通常、図例の如く矩形とするが、台形、三角形状140B(図8(b) )、半円状等、平面形状は任意であり、更には、図8(a) に示す如く矢羽(カウンター)状に一対づつ140A、14OA配置させてもよい。すなわち、高温ガス等の流れに渦流を発生させて(ガスかく乱を発生させて)、伝熱率(熱交換効率)の向上に寄与すれば任意である。
【0028】
また突起部140は、図例では、波板の溝底部側ばかりでなく、側面でもよいが、加工上制限を受ける。通常、突起部140は、波板の波底部側から切り起こして形成するためである。
【0029】
そして、突起を矩形板状(突起板)としたとき、突起板の形態特性(▲1▼傾斜角、▲2▼迎え角、▲3▼高さ、▲4▼ピッチ)がそれぞれ下記範囲において、突起による伝熱率改善効果を奏することを、実験シミュレーションにより確認している(図9〜12参照)。
【0030】
なお、各形態要素は、図7の(a) 突起板迎え角α及び突起間ピッチp、(b) 突起板傾斜角β及び突起板高さh、(c) 突起板高さh及び流路高さHを、それぞれ示している。なお、積分平均熱伝達率(全周壁面における)は、傾斜角:90°、迎え角:45°、流路形状:4mm×4mm×220mmL、突起形状:1.5mm×1.5mm×0.5mmtを基準として、それぞれ各形態特性を振って、ガス流量:20g/s、ガス温度:400°の条件でシミュレーションしたものである。そして、各グラフにおける熱伝達率比(縦軸)は、上記条件において突起板がない場合における熱伝達率を1.0として表示してある。
【0031】
シミュレーション結果を示す図9〜12から下記のことが分かる。
【0032】
▲1▼図9:突起板傾斜角は、30〜90°の範囲で、ほとんど伝熱率に影響はないため、製作上の見地からは略90°でもよいが、伝熱率をわずかでも改善したい場合は、45〜75°の範囲とする。
【0033】
▲2▼図10:突起板迎え角は、45°が一番望ましい。すなわち、迎え角が小さい程渦流が発生し易いが、圧力損失(流れ抵抗)が増大するためである(渦流発生と圧力損失のバランスからである。)。したがって、20〜70°、望ましくは30°〜60°の範囲で、流体の特性(流速、粘度等)、及び、突起板の形状に応じて、適宜決めることができる。なお、迎え角のシミュレーション結果は、45°以上を示していないが、45°を越えると、対称的に熱伝達率が漸減するものと推定される。
【0034】
▲3▼図11:突起板高さは、流路高さの0.1〜0.8、望ましくは0.2〜0.7、さらに望ましくは0.4〜0.6である。低過ぎると、渦流が発生し難く、高すぎると流れ抵抗の増大に対して、熱伝達率の上昇が僅かであるからである。
【0035】
▲4▼図12:突起板ピッチは、冷却性能を第1に考えた場合、流路幅の1.0〜2.0倍、望ましくは、1.5倍前後とする。余り、突起板ピッチが長すぎると、渦流れの減衰が顕著に発生するので冷却性能を効果的に上昇させ難くなる。ただし、突起板ピッチが上記のごとく短い場合、圧力損失の増大につながるので、冷却性能と圧力損失のバランスの面からピッチは決定される。なお、上記▲1▼〜▲3▼においても、冷却性能と圧力損失のバランスの面から、各数値範囲は決定される。
【0036】
さらに、本発明者らは、突起板を形成して流路、及び、図8(b) の形態(前述の基準形態に対して突起板の形状を内接三角形状に変えただけのもの)の流路について同様に、シミュレーション実験を行なった。その結果、図8(a) の形態は、突起が無い場合に対して概ね35%の熱伝達率向上、図8(b) の形態は、突起が無い場合に対して概ね53%の熱伝達率向上と、明らかに突起板を形成した場合、熱伝達率(熱交換率:高温ガス冷却効率)が向上することが分かる。
【0037】
次に、本実施形態の熱交換器の製造方法について、説明する。
【0038】
まず、図13に示す如く、伝熱管本体となる扁平管(図例では短冊断面)134と、伝熱フィンとなる金属製の波板136、及び、導入側・排出側保持板(チューブシート)118、120を用意する。ここで、扁平管134の断面は矩形筒状でも長円状であってもよい。また、波板136は、図例では、矩形波状であるが、三角山形波状、円形波状であってもよい。
【0039】
なお、扁平管(伝熱管本体)134、金属波板及び導入側・排出側保持板の各厚みは、使用材料及び耐用期間により異なるが、例えば、ステンレスの場合、前第一者:0.1〜1.0mm(望ましくは0.3〜0.8mm)、前第二者:0.01〜0.8mm(望ましくは0.05〜0.5mm)、後者:0.5〜3mm(望ましくは1〜2mm)とする。
【0040】
上記波板136の調製方法は、特に限定されず、慣用の方法で調製できる。例えば、引き抜きや、波型のダイ上を歯車状ポンチを転がしてコルゲーティング成形(プレス加工)してもよい。
【0041】
そして、この波板136の製作時(プレス加工)に、同時に、突起板140をプレス加工等により形成でき波板の製作工数が、突起板140を形成しない場合に比してほとんど増大しない。
【0042】
次に、波板136の各頂部に蝋材を付着させた状態で扁平管134に挿入した後、扁平管134を圧縮成形して波板136を仮固定して、蝋付け用加熱炉を通して各伝熱管114を調製する。なお、扁平管134(伝熱管114)の導入側端は、ろう付けクリアランスを調整すると共に、ろう付け長さを広くできることから、フレア加工して導入側保持板118に対する接合部強度を増大させておくことが望ましい。
【0043】
次に、上記実施形態における、各伝熱管114を挿入側・排出側保持板118、120に形成された伝熱管保持穴118a、120aに挿入・接合して伝熱管ユニット138を調製する。このときの接合の形態は、通常、ろう付け(ろう説)とする。このとき、使用するロウ材は、例えば、熱交換器の材質をステンレスとする場合、通常、銅ロウ又はニッケルロウを使用する。ロウ付け時の加熱・冷却条件は、ロウ材の種類及び熱容量を考慮して設定する。
【0044】
こうして調製した伝熱管ユニット138の導入側・排出側保持板118、120の外周にロウ材を塗布した後、胴体を形成する角筒体116に部分挿入後、整流部118を形成する角錐台筒の大径側に挿入し、また、他方、フランジ126a、128aが一体化された導入口・排出口(接続パイプ)126、128を小径側に挿入して、それぞれ接合(本固定)する。
【0045】
これらの接合(本固定)手段は、酸化劣化が少なく接合強度も確保し易いTIG溶接やレーザ溶接が望ましいが、他のアーク溶接や、抵抗溶接、さらには、耐熱性接着剤による接合であってもよい。
【0046】
なお、上記において、胴体(外管)116を半割にして後付けすることも可能である。この場合は、胴体116以外の部分を前記抵抗溶接/ロウ接等により一体化した後、別工程で抵抗溶接で胴体116を一体化する。このため、製造工数は、嵩むが、ロウ接熱効率及びロウ接後における表面側と内側との冷却速度の格差に基づく金属割れの問題が発生し難く望ましい。
【0047】
以上の説明では、ストレート状の伝熱管(内管)群に高速の高温ガス(気体)を、胴体(外管)に冷却水(液体)を通過させて熱交換を行う熱交換器を例に採ったが、第一流体と第二流体の組み合わせは熱交換可能な温度差さえあれば任意である。なお、熱交換器に通過させる自動車の排気ガスは、通常、ガス流速:0〜50m/s、ガス温度:120〜700℃である。
【0048】
しかし、通常、第一流体(内管通過)と第二流体(外管通過)の選択は、下記基準に基づいて行なうことが望ましい。(化学工学協会編「化学工学辞典」(昭和49年5月30日)丸善、p365〜366参照)
内管(管内)を通すべき流体:腐食性流体、管壁の汚れの大きい流体、高圧流体、特殊材質を要求するような高温流体。
【0049】
外管(管外)を通すべき流体:流量の小なる流体、粘度の大なる流体、許容圧力損失の小なる流体。
【0050】
また、伝熱管群は、途中でベンデング(屈曲)していても、さらには、U字形に屈曲して同一側に両端が位置しているものにも本発明は適用可能である。
【0051】
当然、整流部(整流室)を一端のみに設け仕切り板で仕切って導入・導出口が同一側にある熱交換器等、あらゆる形式の多管式熱交換器に、本発明は適用できるものである。
【図面の簡単な説明】
【図1】従来の多管式熱交換器の一例を示す縦断面図
【図2】図1の2−2線矢視断面図
【図3】本発明の一実施形態と適用する多管式熱交換器の一例を示す縦断面図
【図4】図3の4(5)−4(5)線部位における一形態の横断面図
【図5】同じく他の形態における横断面図
【図6】本発明を適用可能なパイプ材から形成する一体成形伝熱管の各形態を示す横断面図
【図7】突起板を形成した伝熱管流路の説明用モデル図及び突起板の各形態要素を表示するモデル図
【図8】突起板の他の配置形態(a) 及び他の形状(b) の各例を示すモデル図
【図9】シミュレーション実験における熱伝達率に対する突起板傾斜角の影響を示すグラフ図
【図10】同じく熱伝達率に対する突起板迎え角の影響を示すグラフ図
【図11】同じく熱伝達率に対する突起板高さの影響を示すグラフ図
【図12】同じく熱伝達率に対する突起板ピッチの影響を示すグラフ図
【図13】本発明を適用する多管式熱交換器における伝熱管ユニットの製造工程図
【符号の説明】
12、112 多管式熱交換器
14、114 伝熱管
16、116 外管(胴体)
18、118 導入側保持板
20、120 排出側保持板
22、122 導入側整流筒部
24、124 排出側整流筒部
26、126 導入口(接続パイプ)
28、128 排出口(接続パイプ)
134 扁平管(伝熱管本体)
136 波板(伝熱フィン)
137 分割流路(高温ガス流路)
138 伝熱管ユニット
140 突起部(突起板)
[0001]
BACKGROUND OF THE INVENTION
The present invention includes an inner tube (heat transfer tube) group through which a first fluid passes and an outer tube (fuselage) through which a second fluid passes, and a plurality of heat transfer tube groups introduce the first fluid at both ends thereof. The present invention relates to a multi-tubular heat exchanger that is disposed while being held by an introduction side / discharge side holding plate respectively positioned on the side and the first fluid discharge side. In particular, heat exchangers that exchange heat by passing high-speed high-temperature gas (gas) through the heat transfer tube group and cooling water (liquid) through the body (outer tube), for example, cooling the exhaust gas of an internal combustion engine with cooling water It is an invention suitable for an exhaust cooler (which requires a high degree of heat exchange capability).
[0002]
[Background]
As described above, a multi-tube heat exchanger 12 as shown in FIGS.
[0003]
In other words, a plurality of inner pipes (heat transfer pipes) 14 through which the first fluid (hot gas) passes and an outer pipe (fuselage) 16 through which the second fluid (cooling water) passes are provided. .. (Heat transfer tube group) 14, 14... Are disposed with their both ends held by the introduction side / discharge side holding plates 18, 20 located on the first fluid introduction side and the first fluid discharge side, respectively. In the illustrated example, a large number of heat transfer tube groups 14, 14... Are disposed inside the body 16 via introduction / discharge side holding plates (tube sheets) 18 and 20 at both ends of the body 16. Both ends of the body 16 are provided with inlet / outlet ports (connection pipes) 26 and 28 with flanges 26a and 28a via frustoconical introduction / discharge side rectification cylinder portions (rectification portions) 22 and 24, respectively. The first fluid (hot gas) can pass through the heat tube groups 14, 14. In addition, on the upper and lower sides of the body 16, introduction / discharge nozzles 30 and 32 are provided, and a second fluid (cooling water) can pass outside the heat transfer tubes 14.
[0004]
However, when the number of heat transfer tubes 14 is increased to increase the heat exchange efficiency, the multi-tube heat exchanger 12 as shown in FIGS. As a result, it has been difficult to increase the heat exchange efficiency due to a decrease in the heat transfer rate and the accompanying decrease in the heat transfer coefficient.
[0005]
Further, the multi-tubular heat exchanger 12 has a large manufacturing man-hour and a tendency to increase its weight.
[0006]
In view of the above, the inventors of the present invention have provided a multi-tube heat exchanger having the following configuration in order to provide a multi-tube heat exchanger that can easily increase the heat exchange efficiency and can reduce the number of manufacturing steps. An exchange was previously proposed (Japanese Patent Application No. 2000-061541: unpublished at the time of filing).
[0007]
“In a multi-tube heat exchanger in which a plurality of heat transfer tubes are arranged inside the fuselage, each heat transfer tube is connected between the heat transfer tube main body having a flat cross section and the opposing surfaces in the longitudinal direction of the heat transfer tube main body. It consists of a single heat transfer fin. "
The present invention mainly relates to an improvement of a multi-tube heat exchanger having the above-described configuration, and an object of the present invention is to provide a multi-tube heat exchanger that can be expected to further reduce manufacturing steps and increase heat exchange efficiency. is there.
[0008]
[Means for Solving the Problems]
As a result of diligent efforts to solve the above-mentioned problems, the present inventors have conceived a multitubular heat exchanger having the following configuration.
[0009]
An inner tube (heat transfer tube) group through which the first fluid passes and an outer tube (fuselage) through which the second fluid passes, and a plurality of heat transfer tube groups are connected to the first fluid introduction side and the first In the multi-tube heat exchanger that is arranged to be held by the introduction side / discharge side holding plate respectively positioned on the fluid discharge side,
The heat transfer tube is composed of a heat transfer tube main body having a flat cross section and a plurality of heat transfer fins connecting between the opposing surfaces in the longitudinal direction of the heat transfer tube main body or projecting from both or one of the opposing surfaces. Plate-like or knob-like protrusions are formed at predetermined intervals (predetermined pitches) in the longitudinal direction on the wall surfaces of the respective divided flow paths of the heat transfer tubes formed by the heat fins , and eddy currents can be generated in the first fluid. It is characterized by being.
[0011]
Since the protrusions are formed at a predetermined pitch on the wall surface of the flow path of the heat transfer tube, a vortex flow (longitudinal vortex flow) is generated when the first fluid such as high-speed gas passes through the heat transfer tube. Due to the presence of the vortex, the first fluid such as high-speed gas is disturbed, and the heat transfer coefficient (heat exchange efficiency) is relatively increased.
[0012]
Further, in the above configuration, each heat transfer tube has a structure in which a heat transfer fin is formed by inserting and joining a corrugated plate separate from the heat transfer tube main body to a heat transfer tube main body formed of a flat tube, It is desirable that the protrusions be formed by cutting (pressing out) or stamping the wall surface. This is because, when the corrugated plate is manufactured by press working or the like, a protrusion having an arbitrary shape according to the design (specification) can be easily formed at the same time, and the productivity is good.
[0013]
The protrusion is plate-shaped, and (1) the angle of attack is 20 to 80 °. (2) The height and width are 0.1 to 0.8 times the channel height and channel width, respectively. (3) It is desirable that the pitch in the flow direction is 1 to 5 times the height of the flow path in order to increase the heat transfer coefficient (heat exchange efficiency).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. About the part corresponding to the above-mentioned example, the last two digits were attached | subjected as the same number.
[0015]
FIGS. 3 and 4 show an example of the multi-tube heat exchanger 112 to which the present embodiment is applied (cited from FIGS. 3 and 4 in the above-mentioned prior application. However, the reference numerals are different).
[0016]
That is, a plurality of heat transfer tubes 114 are arranged via the fixed tube plates 118 and 120 in a rectangular tube body 116 provided with introduction side / extraction side holding plates (tube sheets) 118 and 120 at both ends. The first fluid inlet / outlet (connecting pipe) 126 with flanges 126a and 128a are provided at both ends of the rectangular cylinder body 116 via square-pyramidal inlet / outlet side rectifying cylinders (rectifiers) 122 and 124, respectively. 128, the first fluid (hot gas) can be conducted through the heat transfer tube groups 114, 114.
[0017]
Here, the heat transfer tube 114 is configured by a heat transfer tube main body 134 formed of a flat tube and a heat transfer fin 136 formed of a corrugated plate connecting between opposing surfaces in the longitudinal direction of the heat transfer tube main body 134. Here, the corrugated plate 136 has a rectangular wave shape in the illustrated example, but may have a triangular mountain wave shape, a trapezoidal mountain wave shape, or a semicircular wave shape.
[0018]
In addition, the inlet / outlet nozzles 130 and 132 are provided above and below the rectangular tube body 116 so that the second fluid (cooling water) can be conducted to the outside of the heat transfer tube 114.
[0019]
As shown in FIG. 5 (corresponding to the portion 4 (5) -4 (5) in FIG. 3), the body can be a cylindrical body 116A. As described above, the number of types of parts can be reduced. That is, when it is cylindrical, it is necessary to prepare 114, 114 ', 114''having different widths as heat transfer tubes as shown in the figure.
[0020]
In addition, as described above, the heat transfer tube is configured so that the heat transfer tube main body 134A and the heat transfer fins are opposed to each other as shown in FIGS. 6 (a) and 6 (b) even if the heat transfer tube main body and the heat transfer fin are not separate. The heat transfer tubes 114A and 114B may be formed by projecting from both or from one side to form a large number of heat transfer fins 136A and 136B.
[0021]
When the heat transfer fins 136A and 136B are protruded from both sides, it is not always necessary to join the heat transfer fins 136A and 136B. Instead, the heat transfer fins 136A and 136B may protrude alternately as shown in FIG. 6 (b). May be. Further, when protruding from one side, it is usually brought into contact with the other facing surface, but may be separated from the viewpoint of formability.
[0022]
These heat transfer tubes are sequentially formed from a single metal pipe by multi-stage pressing or, although not shown, from a single plate material (hoop material) by pressing or roll forming.
[0023]
Further, each heat transfer tube may be a square pipe or a conventional round pipe as shown in the figure, even if the outer cross section is not a flat cross section. The square pipe is desirable because it is easier to insert and fix the band plate provided with the protrusion when forming the protrusion described later.
[0024]
In these cases, it is only necessary to fix a thin strip plate in which a projection plate or a protrusion is formed at a predetermined pitch in the pipe in the same manner as in the case of the heat transfer fin described above.
[0025]
In the above configuration, in the present embodiment, the protrusions 140 are formed at predetermined intervals in the longitudinal direction (flow direction) on the wall surface of the divided flow path 137 formed by the heat transfer tube main body 134 and the heat transfer fins 136. Form (see FIG. 7).
[0026]
Here, for convenience of explanation, FIG. 7 shows a model in which the divided flow path has a rectangular cross section (square), and the protrusions 140 are plate-shaped and arranged at predetermined intervals.
[0027]
The protrusion 140 is usually plate-shaped, but may be a knob (hemispherical, pyramidal, prismatic). In the case of a plate shape, it is formed by cutting and raising, and in the case of a knob shape, it is formed by stamping or the like. Cutting and stamping are categories of press working. In the case of a plate shape, it is generally rectangular as shown in the figure, but the planar shape is arbitrary, such as trapezoidal, triangular shape 140B (FIG. 8 (b)), semicircular shape, etc. As shown in a), a pair of 140A and 14OA may be arranged in the shape of an arrow (counter). That is, it is optional if vortex is generated in the flow of high-temperature gas or the like (gas turbulence is generated) and contributes to improvement of the heat transfer rate (heat exchange efficiency).
[0028]
Further, in the illustrated example, the protrusion 140 may be a side surface as well as the groove bottom side of the corrugated plate, but is subject to processing limitations. Usually, the protrusion 140 is formed by cutting and raising from the wave bottom side of the corrugated plate.
[0029]
And, when the projection is a rectangular plate shape (projection plate), the shape characteristics ((1) inclination angle, (2) angle of attack, (3) height, (4) pitch) of the projection plate are within the following ranges respectively. It has been confirmed by an experimental simulation that the heat transfer rate is improved by the protrusions (see FIGS. 9 to 12).
[0030]
In addition, each form element is shown in FIG. 7 (a) projection plate attack angle α and projection pitch p, (b) projection plate inclination angle β and projection plate height h, (c) projection plate height h and flow path. The height H is shown respectively. The integral average heat transfer coefficient (on the entire peripheral wall surface) is as follows: inclination angle: 90 °, angle of attack: 45 °, channel shape: 4 mm × 4 mm × 220 mmL, protrusion shape: 1.5 mm × 1.5 mm × 0. The simulation was performed under the conditions of gas flow rate: 20 g / s and gas temperature: 400 °, with each form characteristic varied with 5 mmt as a reference. The heat transfer coefficient ratio (vertical axis) in each graph is displayed with 1.0 as the heat transfer coefficient when there is no protruding plate under the above conditions.
[0031]
The following can be understood from FIGS.
[0032]
(1) Fig. 9: Projection plate inclination angle is in the range of 30 to 90 °, and there is almost no effect on the heat transfer rate, so it may be about 90 ° from a manufacturing standpoint, but the heat transfer rate is slightly improved. If it is desired, the range is 45 to 75 °.
[0033]
(2) FIG. 10: The projection plate angle of attack is most preferably 45 °. That is, the smaller the angle of attack, the easier the vortex to occur, but the pressure loss (flow resistance) increases (because of the balance between vortex generation and pressure loss). Therefore, it can be appropriately determined in the range of 20 to 70 °, preferably 30 ° to 60 °, according to the characteristics of the fluid (flow velocity, viscosity, etc.) and the shape of the protruding plate. In addition, although the simulation result of the angle of attack does not indicate 45 ° or more, when it exceeds 45 °, it is estimated that the heat transfer coefficient gradually decreases in a symmetrical manner.
[0034]
(3) FIG. 11: The height of the protruding plate is 0.1 to 0.8, preferably 0.2 to 0.7, more preferably 0.4 to 0.6 of the flow path height. If it is too low, it is difficult for eddy currents to be generated, and if it is too high, the heat transfer coefficient is only slightly increased against the increase in flow resistance.
[0035]
(4) FIG. 12: The projection plate pitch is 1.0 to 2.0 times the flow path width, preferably about 1.5 times, when the cooling performance is considered first. If the protruding plate pitch is too long, the vortex flow is significantly attenuated, and it is difficult to effectively increase the cooling performance. However, when the protrusion plate pitch is short as described above, the pressure loss is increased. Therefore, the pitch is determined in terms of the balance between the cooling performance and the pressure loss. In the above (1) to (3), each numerical range is determined from the viewpoint of the balance between the cooling performance and the pressure loss.
[0036]
Furthermore, the present inventors have formed a protruding plate to form the flow path and the form of FIG. 8 (b) (only the protruding plate is changed to an inscribed triangle shape with respect to the above-described reference shape). Similarly, a simulation experiment was performed on the flow paths. As a result, the form of FIG. 8 (a) improves the heat transfer rate by about 35% with respect to the case without protrusions, and the form of FIG. 8 (b) has a heat transfer of about 53% with respect to cases without protrusions. It can be seen that the heat transfer rate (heat exchange rate: high-temperature gas cooling efficiency) is improved when the rate plate is improved and the protruding plate is clearly formed.
[0037]
Next, the manufacturing method of the heat exchanger of this embodiment is demonstrated.
[0038]
First, as shown in FIG. 13, a flat tube (a strip cross section in the illustrated example) 134 serving as a heat transfer tube main body, a metal corrugated plate 136 serving as a heat transfer fin, and an introduction side / discharge side holding plate (tube sheet). 118 and 120 are prepared. Here, the cross section of the flat tube 134 may be a rectangular tube shape or an oval shape. The corrugated plate 136 has a rectangular wave shape in the illustrated example, but may have a triangular mountain wave shape or a circular wave shape.
[0039]
The thicknesses of the flat tube (heat transfer tube main body) 134, the metal corrugated plate, and the introduction side / discharge side holding plate vary depending on the material used and the service life. For example, in the case of stainless steel, the former first party: 0.1 -1.0 mm (preferably 0.3-0.8 mm), former second: 0.01-0.8 mm (preferably 0.05-0.5 mm), latter: 0.5-3 mm (preferably 1 to 2 mm).
[0040]
The method for preparing the corrugated plate 136 is not particularly limited, and can be prepared by a conventional method. For example, drawing or corrugating molding (pressing) may be performed by rolling a gear-shaped punch on a corrugated die.
[0041]
When the corrugated plate 136 is manufactured (pressing), the protruding plate 140 can be simultaneously formed by pressing or the like, and the number of manufacturing steps of the corrugated plate is hardly increased as compared with the case where the protruding plate 140 is not formed.
[0042]
Next, after being inserted into the flat tube 134 with the brazing material attached to the top of each corrugated plate 136, the flat tube 134 is compression-molded to temporarily fix the corrugated plate 136, and then passed through the brazing heating furnace. A heat transfer tube 114 is prepared. In addition, since the introduction side end of the flat tube 134 (heat transfer tube 114) can adjust the brazing clearance and increase the brazing length, it can be flared to increase the joint strength to the introduction side holding plate 118. It is desirable to keep it.
[0043]
Next, the heat transfer tube unit 138 is prepared by inserting and joining the heat transfer tubes 114 in the above embodiment into the heat transfer tube holding holes 118 a and 120 a formed in the insertion side / discharge side holding plates 118 and 120. The form of joining at this time is usually a brazing theory. At this time, for example, when the heat exchanger is made of stainless steel, copper brazing or nickel brazing is usually used. The heating and cooling conditions during brazing are set in consideration of the type of brazing material and the heat capacity.
[0044]
After the brazing material is applied to the outer periphery of the introduction side / discharge side holding plates 118 and 120 of the heat transfer tube unit 138 thus prepared, the pyramid cylinder that forms the rectifying unit 118 after being partially inserted into the rectangular cylinder 116 that forms the body On the other hand, introduction ports / discharge ports (connection pipes) 126 and 128, in which flanges 126a and 128a are integrated, are inserted on the small diameter side and joined (mainly fixed), respectively.
[0045]
These joining (main fixing) means are preferably TIG welding or laser welding which is easy to secure joining strength with little oxidation deterioration, but other arc welding, resistance welding, and further joining with a heat resistant adhesive. Also good.
[0046]
In the above, the body (outer tube) 116 can be halved and retrofitted. In this case, after the parts other than the body 116 are integrated by resistance welding / brazing or the like, the body 116 is integrated by resistance welding in a separate process. For this reason, although the number of manufacturing steps is increased, it is desirable that the problem of metal cracking based on the difference in the cooling efficiency between the surface side and the inner side after brazing is difficult to occur.
[0047]
In the above description, a heat exchanger that performs heat exchange by passing high-speed high-temperature gas (gas) through a group of straight heat transfer tubes (inner tubes) and cooling water (liquid) through a body (outer tube) is taken as an example. The combination of the first fluid and the second fluid is arbitrary as long as there is a temperature difference capable of heat exchange. In addition, the exhaust gas of the automobile passed through the heat exchanger is usually gas flow rate: 0 to 50 m / s, and gas temperature: 120 to 700 ° C.
[0048]
However, it is usually desirable to select the first fluid (passing through the inner tube) and the second fluid (passing through the outer tube) based on the following criteria. (See Chemical Engineering Association, “Chemical Engineering Dictionary” (May 30, 1974) Maruzen, p. 365-366)
Fluid that should be passed through the inner pipe (pipe): Corrosive fluid, fluid with large dirt on the pipe wall, high-pressure fluid, and high-temperature fluid that requires special materials.
[0049]
Fluid to be passed through the outer tube (outside the tube): Fluid with a small flow rate, fluid with a large viscosity, fluid with a small allowable pressure loss.
[0050]
Moreover, even if the heat transfer tube group is bent (bent) in the middle, the present invention can also be applied to a tube bent in a U shape and having both ends positioned on the same side.
[0051]
Naturally, the present invention can be applied to all types of multi-tubular heat exchangers such as a heat exchanger in which a rectifying section (rectifying chamber) is provided only at one end and partitioned by a partition plate and the inlet / outlet port is on the same side. is there.
[Brief description of the drawings]
1 is a longitudinal sectional view showing an example of a conventional multi-tube heat exchanger. FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 1. FIG. 3 is a multi-tube type applied to an embodiment of the present invention. FIG. 4 is a longitudinal cross-sectional view showing an example of a heat exchanger. FIG. 4 is a cross-sectional view of one embodiment taken along the line 4 (5) -4 (5) in FIG. FIG. 7 is a cross-sectional view showing each form of an integrally formed heat transfer tube formed from a pipe material to which the present invention can be applied. FIG. 7 is a model diagram for explaining a heat transfer tube flow path formed with a projection plate and each form element of the projection plate. Model diagram to be displayed [Fig. 8] Model diagram showing examples of other arrangements of projection plate (a) and other shapes (b) [Fig. 9] Effect of projection plate inclination angle on heat transfer coefficient in simulation experiment FIG. 10 is a graph showing the influence of the angle of attack of the projection plate on the heat transfer coefficient. FIG. 11 is also the heat transfer coefficient. FIG. 12 is a graph showing the influence of the protrusion plate pitch on the heat transfer coefficient. FIG. 13 is a manufacturing process of the heat transfer tube unit in the multi-tube heat exchanger to which the present invention is applied. Figure [Explanation of symbols]
12, 112 Multi-tube heat exchangers 14, 114 Heat transfer tubes 16, 116 Outer tube (fuselage)
18, 118 Inlet side holding plate 20, 120 Discharge side holding plate 22, 122 Inlet side rectifying cylinder portion 24, 124 Discharge side rectifying cylinder portion 26, 126 Inlet (connection pipe)
28, 128 outlet (connection pipe)
134 Flat tube (heat transfer tube body)
136 Corrugated sheet (heat transfer fin)
137 Split channel (hot gas channel)
138 Heat Transfer Tube Unit 140 Projection (Projection Plate)

Claims (7)

第一流体が通過する内管(伝熱管)群と、第二流体が通過する外管(胴体)とを備え、複数本の伝熱管群が、それらの両端を第一流体導入側及び第一流体排出側にそれぞれ位置する導入側・排出側保持板に保持させて配設されてなる多管式熱交換器において、
前記伝熱管が、扁平断面の伝熱管本体と該伝熱管本体の長手方向の対向面間をつなぐ、又は、該対向面の双方又は一方から突出する多数枚の伝熱フィンとからなり、前記伝熱フィンにより形成される伝熱管の各分割流路の壁面に、長手方向の所定間隔(所定ピッチ)で板状又は瘤状の突起部が形成されて、前記第一流体に渦流が発生可能とされていることを特徴とする多管式熱交換器。
An inner tube (heat transfer tube) group through which the first fluid passes and an outer tube (fuselage) through which the second fluid passes, and a plurality of heat transfer tube groups are connected to the first fluid introduction side and the first In the multi-tube heat exchanger that is arranged to be held by the introduction side / discharge side holding plate respectively positioned on the fluid discharge side,
The heat transfer tube is composed of a heat transfer tube main body having a flat cross section and a plurality of heat transfer fins connecting between the opposing surfaces in the longitudinal direction of the heat transfer tube main body or projecting from both or one of the opposing surfaces. Plate-like or knob-like protrusions are formed at predetermined intervals (predetermined pitches) in the longitudinal direction on the wall surfaces of the respective divided flow paths of the heat transfer tubes formed by the heat fins, and eddy currents can be generated in the first fluid. A multi-tube heat exchanger characterized by being made .
前記各伝熱管が、扁平管からなる伝熱管本体に、該伝熱管本体と別体の波板を挿入接合して伝熱フィンを形成した構成であるとともに、前記伝熱フィンの壁面の切り起こし又はスタンピングにより前記板状又は瘤状の突起部が形成されていることを特徴とする請求項1記載の多管式熱交換器。Each of the heat transfer tubes has a configuration in which a heat transfer fin is formed by inserting and joining a corrugated plate separate from the heat transfer tube main body to a heat transfer tube main body formed of a flat tube, and cutting the wall surface of the heat transfer fin. The multi-tubular heat exchanger according to claim 1, wherein the plate-like or knob-like protrusion is formed by stamping. 前記突起部が板状で、その迎え角が20〜80°であることを特徴とする請求項1又は2記載の多管式熱交換器。The multitubular heat exchanger according to claim 1 or 2, wherein the protrusion is plate-shaped and the angle of attack is 20 to 80 °. 前記突起部が板状で、その高さ及び幅が流路高さ及び流路幅のそれぞれ0.1〜0.8倍であることを特徴とする請求項1、2又は3記載の多管式熱交換器。The multi-tube according to claim 1, 2 or 3, wherein the protrusion is plate-shaped and the height and width thereof are 0.1 to 0.8 times the height of the flow path and the width of the flow path, respectively. Type heat exchanger. 前記突起部が板状で、その流れ方向ピッチが流路高さもしくは流路幅の1〜5倍であることを特徴とする請求項1〜4のいずれかに記載の多管式熱交換器。The multi-tube heat exchanger according to any one of claims 1 to 4, wherein the protrusions are plate-like and the flow direction pitch is 1 to 5 times the flow path height or flow path width. . 前記突起部が板状で、その平面形状が矩形であることを特徴とする請求項1〜5のいずれかに記載の多管式熱交換器。The multitubular heat exchanger according to any one of claims 1 to 5, wherein the protrusion is plate-shaped and the planar shape thereof is rectangular. 請求項2〜6のいずれかに記載の多管式熱交換器を製造する方法であって、扁平管からなる伝熱管本体に、該伝熱管本体と別体の波板を挿入接合して伝熱フィンを形成して前記各伝熱管を製作するに際して、前記波板として壁面の切り起こし又はスタンピングにより前記板状又は瘤状の突起部を形成したものを使用することを特徴とする多管式熱交換器の製造方法。A method of manufacturing a multi-tube heat exchanger according to any one of claims 2 to 6, wherein a corrugated plate separate from the heat transfer tube main body is inserted and joined to a heat transfer tube main body made of a flat tube. When producing each heat transfer tube by forming a heat fin, a multi-tube type using the corrugated plate formed with the plate-like or knob-like projections by cutting or raising a wall surface or stamping is used. Manufacturing method of heat exchanger.
JP2000377623A 2000-12-12 2000-12-12 Multi-tube heat exchanger Expired - Lifetime JP3939090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000377623A JP3939090B2 (en) 2000-12-12 2000-12-12 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000377623A JP3939090B2 (en) 2000-12-12 2000-12-12 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2002181468A JP2002181468A (en) 2002-06-26
JP3939090B2 true JP3939090B2 (en) 2007-06-27

Family

ID=18846319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000377623A Expired - Lifetime JP3939090B2 (en) 2000-12-12 2000-12-12 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP3939090B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107604B2 (en) * 2007-04-27 2012-12-26 株式会社ティラド Heat exchanger manufacturing method and heat exchanger
JP5077154B2 (en) * 2008-09-04 2012-11-21 株式会社豊田自動織機 Plate heat exchanger for boiling cooling
FR2956949B1 (en) 2010-03-04 2013-04-19 Pelle Equipements COOKING DEVICE FOR FOOD PRODUCTS BASED ON PASTE AND COOKING FILET.
JP2012137251A (en) 2010-12-27 2012-07-19 Maruyasu Industries Co Ltd Multitubular heat exchanger
FR2973490B1 (en) * 2011-03-31 2018-05-18 Valeo Systemes Thermiques THERMAL EXCHANGER TUBE, HEAT EXCHANGER AND CORRESPONDING PROCESSING METHOD
PL69033Y1 (en) * 2012-09-14 2017-04-28 Revent Int Ab Hot air furnace
JP7467192B2 (en) 2020-03-25 2024-04-15 三菱重工業株式会社 Apparatus for obtaining a gaseous product and method for obtaining a gaseous product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122083U (en) * 1979-02-22 1980-08-29
JPH0525175U (en) * 1991-08-23 1993-04-02 東洋ラジエーター株式会社 Tube of heat exchanger for evaporator
JPH08121984A (en) * 1994-10-21 1996-05-17 Hitachi Ltd Heat transferring pipe for azeotropic mixed refrigerant and heat exchanger for mixed refrigerant, freezer and air conditioner using heat transfer pipe
JP3912889B2 (en) * 1998-03-12 2007-05-09 サンデン株式会社 Tube for heat exchanger and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002181468A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP3774843B2 (en) Multi-tube heat exchanger
US4730669A (en) Heat exchanger core construction utilizing a diamond-shaped tube-to-header joint configuration
JP4171760B2 (en) Flat tube and manufacturing method of flat tube
JP2001241872A (en) Multitubular heat exchanger
EP2241851A2 (en) Fin, heat exchanger and heat exchanger assembly
CZ116693A3 (en) Pipe used in a heat-exchange apparatus for conveying refrigerant and process for producing thereof
JPH06117790A (en) Heat exchanger
US5092397A (en) Fin for a heat exchanger and heat exchanging system using the fin
JP2009063228A (en) Flat heat transfer tube
US11162742B2 (en) Air fin for a heat exchanger
JP2008096048A (en) Inner fin for exhaust gas heat exchanger
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
JPH0590173U (en) Fin tube heat exchanger
JP3783996B2 (en) Heat exchanger
JP3939090B2 (en) Multi-tube heat exchanger
JPH0571876B2 (en)
JP4011694B2 (en) Plate fin type heat exchanger with knob
US4381033A (en) Header construction
JP2927051B2 (en) Heat exchanger
JPS58164995A (en) Heat exchanger and manufacture thereof
JPS59125395A (en) Manufacture of tube for heat exchanger
US20060086490A1 (en) Fin tube assembly for air-cooled condensing system and method of making same
JP3048600B2 (en) Condenser
JP2002350071A (en) Double pipe heat exchanger
JPH0345301B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250