JPS59125395A - Manufacture of tube for heat exchanger - Google Patents

Manufacture of tube for heat exchanger

Info

Publication number
JPS59125395A
JPS59125395A JP23442182A JP23442182A JPS59125395A JP S59125395 A JPS59125395 A JP S59125395A JP 23442182 A JP23442182 A JP 23442182A JP 23442182 A JP23442182 A JP 23442182A JP S59125395 A JPS59125395 A JP S59125395A
Authority
JP
Japan
Prior art keywords
aluminum plate
protrusions
heat exchanger
right half
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23442182A
Other languages
Japanese (ja)
Inventor
Shuji Imai
修二 今井
Hiroshi Hasunuma
蓮沼 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP23442182A priority Critical patent/JPS59125395A/en
Publication of JPS59125395A publication Critical patent/JPS59125395A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Abstract

PURPOSE:To increase heat exchanging efficiency, by a method wherein a fluid such as a coolant flowing within a duct is mixed equally and at the same time the direction of flow of the fluid is disturbed by a large number of protruded parts. CONSTITUTION:An aluminum plate 1 on which solder made of Al-Mg-Si group alloy is made to adhere is made into a required thickness through rolling and a large number of protruded parts 2 protruded on one side of the aluminum plate 1 is formed on a predetermined position of the belt-shaped aluminum plate 1 through pressing. A tube 5 for a heat exchanger having a fluid duct 4 is formed by a method wherein an uprising edge part 3 is formed by bending both side edge parts of the belt-shaped aluminum plate 1 respectively, protruded parts 2 of a left half-part 1a and a right half-part 1b are made to abutt against the inside of the confronting right half-part 1b and left half-part 1a respectively by bending the aluminum plate 1 and piling up the left half-part 1a and the right half- part 1b with each other, and a fluid duct space is formed inside the bent aluminum plate 1 by butting the tips of the uprising edge parts 3 against each other, which are connected by welding with each other.

Description

【発明の詳細な説明】 この発明は、カー・クーラーの蒸発器J3よびン疑縮器
、あるいはラジェータおよびオイルクーラー等の熱交換
器の累月として使用される偏平状の熱交換器用管の製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the manufacture of flat heat exchanger tubes used as evaporators and condensers of car coolers, or heat exchangers such as radiators and oil coolers. It is about law.

一般に、冷媒、油、水等の流体を使用する熱交換器にお
いては、通風側の熱伝達率の向上、並びに冷媒通路等の
管内側の熱伝達率の向上および内表面積の増加を計るt
cめに種々の構造の管が用いられている。従来の熱交換
器用管としては、たとえば第23図に示すように、冷媒
等の流体通路(14)を有する偏平状のアルミニラップ
>(12)が押出型側の成形と同時に設けられたしのが
あり、この熱交換器用管<15)を蛇tう状に曲げ−(
、相互に対向づる熱交換器用管(1!i)の直管部の曲
にコルゲート・フィン(17)を介在ししめることによ
り、熱交換器(16)を製造していた。しかしながら、
このような従来の熱交換器(16)では、風下側と風下
側(こそ11ぞれ位置J−る流体通路(14)は、熱交
換管(16〉の入口から出口までの全長にわたって同じ
側に配置されており、このため熱交換器用’i’2’<
15)の風上側縁部の流体通路(14)内の流体の熱父
換条件が最もよく、これより漸次風下側【こ至イ)はど
条件が悪くなり、川下側縁部に至ってi、t bンも熱
交換条件が悪かった。このため風下側のでAt体油通路
14)内を通過した流体と、風下側の通路(14)内を
通過した流体とでは熱交換効率tこ大きな差異が生じ、
熱交換器(16)全体としては熱交換性能が悪いという
問題があった。
In general, in heat exchangers that use fluids such as refrigerant, oil, and water, improvements are made to improve the heat transfer coefficient on the ventilation side, as well as on the inside of tubes such as refrigerant passages, and to increase the inner surface area.
Tubes of various constructions are used for c. For example, as shown in Fig. 23, a conventional heat exchanger tube has a flat aluminum wrap (12) having a fluid passage (14) for refrigerant, etc., which is provided at the same time as the extrusion mold side. This heat exchanger tube <15) is bent into a serpentine shape.
The heat exchanger (16) was manufactured by interposing corrugated fins (17) in the curves of the straight pipe portions of the heat exchanger tubes (1!i) facing each other. however,
In such a conventional heat exchanger (16), the fluid passages (14) located on the leeward side and the leeward side (11) are located on the same side over the entire length from the inlet to the outlet of the heat exchange tube (16). Therefore, for the heat exchanger 'i'2'<
The heat exchange conditions of the fluid in the fluid passage (14) at the windward edge of 15) are the best, and the conditions gradually become worse on the leeward side, reaching the downstream edge. Heat exchange conditions were also poor in Tbn. Therefore, a large difference in heat exchange efficiency t occurs between the fluid passing through the leeward side oil passage 14) and the fluid passing through the leeward side passage (14).
There was a problem in that the heat exchanger (16) as a whole had poor heat exchange performance.

また従来の熱交換器(16)では、一方の宣(15)が
純アルミニウムによって梠成さ七し、他方のコルゲー1
〜・フィン(17)がツノルミニウムNの表面にAm−
Mg−8i系合金よりなるろう4Aをイ」着さlだブレ
ージング・シートゝにより41′4成されているが、こ
れではコルゲート・フィン(17)のろう材の接合部分
と管(15)どの間に腐食が使用じ、とくにろう材中の
3iがカソードの働きをりるため、管(15)側が腐食
して、熱交換器(16)の1火能が比較的早く失われる
という問題があった。
In addition, in the conventional heat exchanger (16), one plate (15) is made of pure aluminum, and the other plate is made of corrugated aluminum.
~・The fin (17) is Am− on the surface of tunorminium N.
41'4 is formed by a brazing sheet in which brazing sheet 4A made of Mg-8i alloy is applied, but in this case, the joint of the brazing material of the corrugated fin (17) and the pipe (15) are connected to each other. In particular, since 3i in the brazing filler metal acts as a cathode, the tube (15) side corrodes, causing the heat exchanger (16) to lose its firepower relatively quickly. there were.

またコルゲート・フィン(17)にはルーバーど利1さ
れる多数の胴板状突部がプレス加工により切り起こされ
て形成されているが、上記の△ρ−Mg−3i系合金よ
りなるろう祠を表面に(=I着させたブレージング・シ
ートは非常に硬質であるためプレス加]二においてフィ
ン材成形用金型が摩耗し易く、したがって金型の寿命か
非常に短いという問題があった。
In addition, the corrugated fin (17) is formed by cutting and raising a large number of body plate-shaped protrusions with louver grooves 1 by press working, but the corrugated fin (17) is made of the above-mentioned Δρ-Mg-3i alloy. Since the brazing sheet (= I) attached to the surface is very hard, the mold for forming the fin material is likely to wear out during the pressing process, resulting in a problem that the life of the mold is very short.

この発明は、上記の問題を解決するためになされたもの
で、その椙成を以下図面に示り実施例に基づいて説明J
る。
This invention was made in order to solve the above problem, and its development is shown in the drawings below and will be explained based on an embodiment.
Ru.

第1図〜第8図は、この発明の第1実施例を示すもので
ある。
1 to 8 show a first embodiment of the present invention.

この発明の方法は、つぎの工程よりなるものである。The method of this invention consists of the following steps.

まず表面(こたとえばA4−tylg−8i系合金より
なるろう材をイ」tざぜたアルミニウム板(1)を圧延
して所要の肉厚とし、所期の熱交換器用管(5)の厚み
と幅よりアルミニウム板(1〉の展開幅を決定ツる。つ
いで帯状のアルミニウム板(1)の所定箇所にプレス加
工によりアルミニウム板(1)の片側に突出した多数の
突部(2)を形成する(第1図および第2図)。アルミ
ニウム板(1)に形成する突部(2)は、第6図と第7
図に詳細に示すように、半球形であり、その先端部に接
合面積を増大するためにilL坦部(2a)が形成され
ている。このよ−うな半球形の突部(2)は加工性がよ
く、長いアルミニウム板(1)を連続成形するのに右利
である。
First, an aluminum plate (1) whose surface (for example, a brazing filler metal made of A4-tylg-8i alloy) has been roughened is rolled to the required thickness, and the thickness of the heat exchanger tube (5) is adjusted to the desired thickness. The unfolded width of the aluminum plate (1) is determined from the width.Next, a large number of protrusions (2) protruding from one side of the aluminum plate (1) are formed at predetermined locations on the band-shaped aluminum plate (1) by press working. (Figures 1 and 2).The protrusion (2) formed on the aluminum plate (1) is shown in Figures 6 and 7.
As shown in detail in the figure, it has a hemispherical shape, and an IL flat part (2a) is formed at its tip to increase the bonding area. Such a hemispherical protrusion (2) has good workability and is useful for continuous molding of a long aluminum plate (1).

ついで帯状アルミニウム板(1)の両側縁部をそれぞれ
折り曲げて、突部(2〉と同じ側に突出した立上り縁部
(3)(3)を形成する(第3図)。
Next, both side edges of the strip-shaped aluminum plate (1) are bent, respectively, to form rising edges (3) (3) that protrude on the same side as the protrusion (2>) (FIG. 3).

つぎに、アルミニウム板(1)をこれの幅の中央部より
突部(2)が内側になるように折り曲げ、アルミニウム
板(1)の左半部(1a)と右半部(1b)とを相互に
重ね合わせて、左半部(1a)の突部(2)と右半部(
1b)の突部(2〉とをこれらに対向する左半部(1a
)および右半部(ill)の内面にそれぞれ当接せしめ
るとともに、立上がり縁部(3>  (3)の成する。
Next, bend the aluminum plate (1) so that the protrusion (2) is inward from the center of its width, and separate the left half (1a) and right half (1b) of the aluminum plate (1). The protrusion (2) of the left half (1a) and the right half (
1b) and the left half (1a
) and the inner surface of the right half (ill), respectively, and a rising edge (3> (3)) is formed.

この状IIで立上がり縁部(3)(3)の先端部同志を
、シーム溶接あるいはアブレット溶接等の溶接により互
いに接合し、流体通路(4)を有する熱交換器用管(5
)を形成”づる(第4図J3よび第5図)。
In this state II, the tips of the rising edges (3) (3) are joined to each other by seam welding, bullet welding, etc., and the heat exchanger tube (5) having the fluid passage (4) is
) is formed (Figure 4 J3 and Figure 5).

そしてこの熱交換器用管(5)を所要の長さとしたのら
、これをたとえば第8図に示づ−ように、蛇行状に屈曲
せしめ、管(5)の直?3部(5a)同志の間にたとえ
ば純アルミニウム板よりなるコル、グー1〜・フィン(
7)を配灯り−るとともに、管(5)の両端にアルミニ
ウム製ヘッダ(8)(8)をそれぞれ絹ミ合わば、この
状rぷてこれらを真空ブレージング法により一体に接合
づることにより熱交換器(6)を製作するしのであり。
After the heat exchanger tube (5) has been made to the required length, it is bent into a meandering shape, for example, as shown in FIG. 8, and the tube (5) is straightened. Part 3 (5a) Between the comrades, for example, a col made of pure aluminum plate, goo 1 ~ fin (
7) and attach aluminum headers (8) to both ends of the tube (5), respectively. This is where the exchanger (6) will be manufactured.

なお、この真空ブレージングによって各部材が相Hに接
合されるとともに、熱交換器用管(55)のアルミニウ
ム板(2)の左゛1′部(1a )(7)突部(2)と
右半部(111)(7)突部(2)とがこれらに対向す
゛る左半部(1a)の内面Jシよび右半部(1b)の内
面に接合される0のである。
In addition, by this vacuum brazing, each member is joined to the phase H, and the left ``1'' portion (1a) (7) of the aluminum plate (2) of the heat exchanger tube (55) is connected to the protrusion (2) and the right half. The portions (111), (7) and the protrusion (2) are joined to the inner surface J of the left half portion (1a) and the inner surface of the right half portion (1b) which are opposed to these.

上記のhγノ、により製造された熱交換器用管(5)は
、内部に流体通路(4)が1つだけ形成されているもの
であるから、通路(4)内を流れる冷媒等の流体が均一
に混合される。しかし流体は熱交換器用管(5)内に形
成された多数の突部く2)(こまってその流れの方向が
乱され、だ1交換効率がさらに増大づ−る。また宣(5
)の内部に多数の突部(2)が形成されている結果、管
(5)の外表面にこれらの突部(2) 1.:対応づる
凹部が多数形成されており、これらの四部によってコル
ゲート・フィン(7)の間隙を通過する風に乱流が生じ
、熱交換効率か11つ人するものである。
Since the heat exchanger tube (5) manufactured by the above hγ method has only one fluid passage (4) formed inside, the fluid such as refrigerant flowing inside the passage (4) is Evenly mixed. However, the flow direction of the fluid is disturbed due to the large number of protrusions formed in the heat exchanger tube (5), which further increases the fluid exchange efficiency.
) as a result of the formation of a large number of protrusions (2) in the interior of the tube (5), these protrusions (2) 1. A large number of corresponding concave portions are formed, and these four portions create turbulence in the wind passing through the gaps between the corrugated fins (7), which increases the heat exchange efficiency.

この発明の方法によりつくられる熱交換器用管(5)に
は、独立式と対向式の2つの態様かある。上記第1実施
例の熱交換器用管(i’5 ) LL独立式である。す
なわら、各突部(2)の高さを管(5)の所期の厚みよ
りアルミニウム様の肉厚分だけ低いものとし、アルミニ
ウムifi (,1)を曲げ加工することにより、各文
部(2)をこれに対向するアルミニウム板(1)の内面
に独立に当接lしめ、突部(2)の先端とアルミニ・シ
ム板(1)の内面とを相互に接合したものである。
There are two types of heat exchanger tubes (5) produced by the method of this invention: independent type and opposed type. The heat exchanger tube (i'5) of the first embodiment is an LL independent type. In other words, by making the height of each protrusion (2) lower than the intended thickness of the tube (5) by the thickness of the aluminum material, and by bending the aluminum ifi (,1), (2) is independently brought into contact with the inner surface of the aluminum plate (1) facing it, and the tip of the protrusion (2) and the inner surface of the aluminum shim plate (1) are joined to each other.

第9図と第10図をよ、上記対向式の熱交換器用管(5
〉を示づものである。りなわら、各突部(2)の高さを
熱交換器用管(5)の所期の厚みの1/2とするととも
に、アルミニウム板く1)をこれの幅の中央部より折り
曲げて、アルミニウム板(1)の左半部(1a)と右半
部(1b)どを相互に重ね合わせたさい、左半部(1a
)の突部(2〉と右半部(1b)の突部(2)とが互い
に対向りるように、突部(2)を形成づる。そしてアル
ミニウム板(1)の左半部(1a )の突部(2)と右
半部(11))の突部(2)とを互いに突き合わせ、こ
れらの突部(2>(2>同志を接合したちのぐある。
As shown in Figures 9 and 10, the above-mentioned opposed type heat exchanger tubes (5
〉. At the same time, the height of each protrusion (2) is set to 1/2 of the intended thickness of the heat exchanger tube (5), and the aluminum plate 1) is bent from the center of its width. When the left half (1a) and right half (1b) of the board (1) are stacked on top of each other, the left half (1a)
) is formed so that the protrusion (2) of the right half (1b) faces each other.Then, the protrusion (2) of the left half (1a) of the aluminum plate (1) is ) and the protrusion (2) of the right half (11)) are brought into contact with each other, and these protrusions (2>(2>) are joined together.

第11図と第12図は、この発明の第3実施例を示すも
のであり、熱交換器用管(5)は上記第1実施例の場合
と同様に独立式であるが、第1実施例の場合と異なる点
は、突部(2)のあ 配列にマ、る。りなわら、第1実施例の場合は、熱交換
器用管(5)の長さ方向の突部(2)の列と幅方向の突
部(2)の列とが互いに自交状であるのに対し、この第
3実施例の場合は、長さ方向の突起(2)の列に対して
幅方向の突起(2)の列を90度以上の角度をもってい
わば傾斜状態に配置しているものである。このように突
起(2)の列を傾斜状態に配置すると、熱交換器用管(
5)とコルゲート・フィン(7)との接合が均一になる
ので好ましい。
11 and 12 show a third embodiment of the present invention, in which the heat exchanger tube (5) is an independent type as in the first embodiment, but The difference from the above case lies in the arrangement of the protrusions (2). However, in the case of the first embodiment, the rows of protrusions (2) in the length direction and the rows of protrusions (2) in the width direction of the heat exchanger tube (5) are orthogonal to each other. On the other hand, in the case of this third embodiment, the row of projections (2) in the width direction is arranged at an angle of 90 degrees or more with respect to the row of projections (2) in the length direction, so to speak. It is. When the rows of protrusions (2) are arranged in an inclined state in this way, the heat exchanger tubes (
5) and the corrugated fin (7) are bonded uniformly, which is preferable.

第13図と第14図は、この発明の第4実施例を示すも
のであり、熱交換器用管(1〉は上記第2実施例の場合
と同様に対向式であるが、第2実施例の場合とは突部(
2)の配列が異なっている。この突部(2)の配列は上
記第3実施例の場合と同様であり、熱交換器用管(5)
の長さ方向の突部(2)の列と幅方向の突部(2)の列
とが傾斜状態に並べられている。
13 and 14 show a fourth embodiment of the present invention, in which the heat exchanger tubes (1> are of the opposed type as in the second embodiment, but the second embodiment In the case of , the protrusion (
2) The arrangement is different. The arrangement of the protrusions (2) is the same as in the third embodiment, and the heat exchanger tubes (5)
A row of protrusions (2) in the length direction and a row of protrusions (2) in the width direction are arranged in an inclined manner.

第15図と第16図は、この発明の方法においてアルミ
ニウム板(1)に形成する突部(2)の変形例を示−1
’bのである。第1〜第4実施例にJ31プる半球形の
突部(2)と異なり、この突部(2)は円錐台形を有し
ているものである。
Figures 15 and 16 show modified examples of the protrusions (2) formed on the aluminum plate (1) in the method of the present invention.
'b's. Unlike the hemispherical protrusion (2) in J31 in the first to fourth embodiments, this protrusion (2) has a truncated conical shape.

このような円錐台形の突部(2)は、これをアルミニウ
ム板〈1)に多数形成することにより、熱交換器用?3
’ (5)の内圧による)1しみ変形を有効に防止りる
ことができるものである。
By forming a large number of such truncated conical protrusions (2) on the aluminum plate (1), they can be used for heat exchangers. 3
'1 stain deformation (due to internal pressure) in (5) can be effectively prevented.

第17図〜第20図は、この発明の第5実施例を承り−
もである。この実施例においてはアルミニウム板(1)
に平面よりみて長円形の突部(2)を多数形成し、かつ
これらの長円形突部(2)の向きを、隣り合う突部(2
)の列同志交互に異なるようにするとともに、熱交換器
用管(5)の長さ方向の長円形突部(2)の列に対して
幅方向の突部(2)のり14を傾斜状態に配置したもの
であ・る。このような長円形の突部(2)は方向性をイ
1しているので、通路(4)内を流れる冷媒等の流体が
これらの突部(2)に当たることにより、その流れの方
向を大きく変えられ、”−’−MこれによつC流体が均
一に混合されるので好ましい。したがってこのような長
円形の突部(2)は、熱交換器用11く5)の幅が大き
くかつ内圧が小さい場合に、少ない突部(2)で放熱性
能の向上を計ることができるものである。
Figures 17 to 20 show the fifth embodiment of the present invention.
It is also. In this example, aluminum plate (1)
A large number of oval protrusions (2) are formed when viewed from the plane, and the directions of these oval protrusions (2) are set to match the adjacent protrusions (2).
) rows are alternately different from each other, and the glue 14 of the protrusions (2) in the width direction is inclined with respect to the row of oval protrusions (2) in the length direction of the heat exchanger tube (5). This is what was placed. These oval protrusions (2) have directional properties, so when fluid such as refrigerant flowing in the passage (4) hits these protrusions (2), the direction of the flow is changed. It is preferable that the width of the heat exchanger 11 and 5) is large and that the C fluid is mixed uniformly. When the internal pressure is low, the heat dissipation performance can be improved with a small number of protrusions (2).

第21図と第22図は、この発明の方法にJ3いてアル
ミニウム板(1)に形成する突部(2)の変形例を示づ
−ものである。上記第5実施例の場合と異なり、この突
部(2)は平面よりみて菱形を有しているものである。
FIGS. 21 and 22 show a modification of the protrusion (2) formed on the aluminum plate (1) by the method of the present invention. Unlike the case of the fifth embodiment, this protrusion (2) has a rhombus shape when viewed from above.

このような菱形の突部(2)は、これをアルミニウム板
(1)に形成づることにより、冷媒等流体の通路(4)
内にJ3fノる抵抗を小さくザることができるので好ま
しい。
By forming such a diamond-shaped protrusion (2) on the aluminum plate (1), the passage (4) for fluid such as refrigerant is formed.
This is preferable because the resistance inside J3f can be made small.

なお、アルミニウム板(1)に形成する突部(2)の形
状は上記以外のものであっても勿論よいし、これらの突
部(2)を正配列あるいは千鳥配列等のい慢゛れの配列
に並べてもよい。
Note that the shape of the protrusions (2) formed on the aluminum plate (1) may of course be other than the above, and these protrusions (2) may be arranged in a regular arrangement or a staggered arrangement. You can also arrange them in an array.

この発明による熱交換器用管の製造法は、1、述のよう
に、表面にろう材を付着させた所定幅の帯状アルミニウ
ム板(1)の所定箇所にプレス加−丁によりアルミニウ
ム板(1)の片側に突出しIζ多数の突部(2)を形成
し、帯状アルミニウム板(1)の両側縁部をそれぞ’t
t折り曲()゛て、突部(2)と同じ側に突出した立」
二かりキークラ 部(3)(3)を形成し、ついでアルミニ丞ム板(1)
をこれの幅の中央部より突部く2)が内側になるように
折り曲げ、アルミニウム板(1)の左半部(1a)と右
」2部<11))とを相互に市ね合わせて、左手部(1
a)の突部(2)と右半部(1b)の突部とを互いにイ
ζ4さ合わlるか、J、たけこれらの文部(2)(2)
を対向づる左半部〈1a)および右半部(1b)の内面
にそれぞれ当接じしめるとともに、立上がり縁部(3)
(3)の先端部同志をυいに突き合わけて、折曲げ状態
のアルミニウム板(1)の内側に流体通路用空間部を形
成し、このυ(態で立上がり縁部(3)(3)の先端部
同志をUいに接合するとともに、アルミニウム板(1)
の左半部(1a)の突部(2)と右半部(1b)の突部
(2)同志、あるいはこれらの突部(2)〈2)と対向
する左半部(1a)の内面および右半部(1b )の内
面とをろう付けに、より接合りるもので、この発明の方
法により製造された熱交換器用管(5)は、内部に流体
通路(4)が1つだけ形成されているものであるから、
通路く4)内を流れる冷媒等の流体が均一に混合され、
したがって従来のように熱交換器(6)仕 の黒「側と風下側で熱交換効率が変わることによる熱交
換器(6〉の性能の低下を防止することができる。1)
かも流体は熱交換器用管(5)内に形成された多数の突
部〈2)によってその流れの方向か乱され、熱交換効率
がさらに増大づ−る。まノζ管(5)の内部に多数の突
部く2)が形成されている結果、管く5)の外表面にこ
れらの突部(2)に対応J゛る凹部b(多数形成されて
J5す、これらの四部によってコルゲート・フィン(7
)の間隙を通過づる風に乱流が生じ、熱交換効率が増大
するものて・ある。まlζ熱交換器用管く5)は表面に
ろう拐を付着ざゼたアルミニウム板(1)によりつくら
れているから、この管(5〉に接合するコルグー1〜・
フィン(7)の素材として純アルミニウムよりなる薄板
を使用することができ、したがって熱交換2;:(6)
の管(5)とフィン(7)の接合部分の腐食は従来の場
合とは逆にフィン(7)側に生ずることになり、このた
め管(5)の腐食を有効に防止Jることがでさ′て、熱
交換器(6)は長期の使用にも耐えることができる。ま
た純ノ)ルミニウム板はプレージンク・シートよりも軟
質であるから、コルゲート・フィン(7)の素材に開板
状突部を形成するプレス加工を容易に行なうことがぐぎ
、フィン月成形用金型の摩耗をできるだけ防止すること
ができて、金型のメチ命を大幅に増大り゛ることができ
るという効果を秦づる。
The method for manufacturing a heat exchanger tube according to the present invention is as follows: 1. As described above, the aluminum plate (1) is formed by press-cutting the aluminum plate (1) at a predetermined location on a belt-shaped aluminum plate (1) having a predetermined width and having a brazing filler metal adhered to the surface. A large number of protrusions (2) are formed on one side of the plate, and both side edges of the strip-shaped aluminum plate (1) are
T-fold () and a protruding stand on the same side as the protrusion (2).
Form two key crack parts (3) (3), then aluminum plate (1)
Bend this so that the protruding part 2) is inward from the center of the width, and align the left half (1a) and right half (11) of the aluminum plate (1) with each other. , left hand (1
Combine the protrusion (2) of a) and the protrusion of the right half (1b) with each other.
are brought into contact with the inner surfaces of the opposing left half (1a) and right half (1b), respectively, and the rising edge (3)
(3) are butted against each other with a υ angle to form a space for a fluid passage inside the bent aluminum plate (1), and in this υ (state) the rising edge (3) (3) is formed. ) are joined together in a U-shape, and the aluminum plate (1) is
The protrusion (2) on the left half (1a) and the protrusion (2) on the right half (1b), or the inner surface of the left half (1a) facing these protrusions (2) <2) The heat exchanger tube (5) manufactured by the method of the present invention has only one fluid passage (4) inside. Because it is formed,
4) Fluid such as refrigerant flowing through the passage is mixed uniformly,
Therefore, it is possible to prevent the performance of the heat exchanger (6) from deteriorating due to the difference in heat exchange efficiency between the black side and the leeward side of the heat exchanger (6) as in the past.1)
Moreover, the flow direction of the fluid is disturbed by a large number of protrusions (2) formed in the heat exchanger tube (5), and the heat exchange efficiency is further increased. As a result of the large number of protrusions 2) formed inside the mano-ζ tube (5), the outer surface of the tube 5) has a number of concave portions (b) corresponding to these protrusions (2). J5, these four parts create a corrugated fin (7
), turbulence occurs in the wind passing through the gap, increasing heat exchange efficiency. Since the heat exchanger tube 5) is made of an aluminum plate (1) with a wax coating on its surface, the Korgu 1~.
A thin plate made of pure aluminum can be used as the material for the fin (7), and therefore heat exchange 2;: (6)
Contrary to the conventional case, corrosion at the joint between the pipe (5) and the fin (7) occurs on the fin (7) side, so corrosion of the pipe (5) cannot be effectively prevented. Therefore, the heat exchanger (6) can withstand long-term use. In addition, since pure aluminum sheets are softer than plastic zinc sheets, it is easy to press the material of the corrugated fin (7) to form open plate-like protrusions. This has the effect of being able to prevent mold wear as much as possible and significantly increasing the life of the mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第ε3図はこの発明の第1実施例を示すもので
、第1図は突部を形成したアルミニウム板の平面図、第
2図は同正面図、第3図は立上がり縁部を形成した突部
付きアルミニウム板と の*面図、第4図は熱交換器用管の拡大正面図第5図は
同拡大平面図、第6図は第4図の突部の部分拡大平面I
、第7図は第6図A−A線に沿う拡大断面図、第8図は
この発明の方法による熱交換器用管を用いた熱交換器の
部分切欠き斜視図、第9図はこの発明の第2実施例を示
ず熱交換器用管の拡大1面図、第10図は同拡大平面図
、第11図はこの発明の第3実施例を示ず熱交換器用管
の拡大正面図、第12図は同拡大平面図、第13図はこ
の発明の第4実施例を示す熱交換器用管の拡大1f面図
、第14図1,1間拡大平面図、第15図は突部の変形
例を承すrjl1分拡大平面図、第16図は第15図B
 −B線に沿う拡大断面図、第17図は第5実施例の拡
大正面図、第18図は同拡大平面図、第19図は第17
図における突部の部分拡大平面図、第20図は第19図
C−C線に沿う拡大断面図、第21図は突部の変形例を
示づ部分拡大平面図、ある。 (1)・・・アルミニウム板、(1a)・・・左半部、
(11) )・・・右半部、(2)・・・突部、(3)
・・・立上がり縁部、(4)・・・流体通路、(5)・
・・熱交換器用管、(6)・・・熱交換器、(7)・・
・コルゲート・フィン。 以上 特許出願人  昭和アルミニウム株式会社第1図 第51訊 第1X図 5 a 第12図 第14図 第15図 l 第18図 第19内 第21図
Figures 1 to ε3 show a first embodiment of the present invention, in which Figure 1 is a plan view of an aluminum plate on which protrusions are formed, Figure 2 is a front view of the same, and Figure 3 is a rising edge. Fig. 4 is an enlarged front view of the heat exchanger tube, Fig. 5 is an enlarged plan view of the same, and Fig. 6 is a partial enlarged plane I of the protrusions in Fig. 4.
, FIG. 7 is an enlarged sectional view taken along line A-A in FIG. 6, FIG. 8 is a partially cutaway perspective view of a heat exchanger using a heat exchanger tube according to the method of the present invention, and FIG. 9 is a diagram showing the present invention. FIG. 10 is an enlarged plan view of the heat exchanger tube without showing the second embodiment of the present invention, and FIG. 11 is an enlarged front view of the heat exchanger tube without showing the third embodiment of the present invention. Fig. 12 is an enlarged plan view of the same, Fig. 13 is an enlarged 1f side view of a heat exchanger tube showing a fourth embodiment of the present invention, Fig. 14 is an enlarged plan view between 1 and 1, and Fig. 15 is an enlarged plan view of the protrusion. 1 minute enlarged plan view of rjl that accepts a modified example, Figure 16 is Figure 15B
17 is an enlarged front view of the fifth embodiment, FIG. 18 is an enlarged plan view thereof, and FIG. 19 is an enlarged sectional view taken along line B.
FIG. 20 is an enlarged sectional view taken along the line CC in FIG. 19, and FIG. 21 is a partially enlarged plan view showing a modified example of the protrusion. (1)...aluminum plate, (1a)...left half,
(11) )...Right half, (2)...Protrusion, (3)
...Rising edge, (4)...Fluid passage, (5)...
... Heat exchanger tube, (6) ... Heat exchanger, (7) ...
・Corrugate fin. Applicant for the above patents: Showa Aluminum Co., Ltd. Figure 1, Figure 51, Figure 1X, Figure 5 a, Figure 12, Figure 14, Figure 15, l, Figure 18, Figure 19, Figure 21

Claims (1)

【特許請求の範囲】 表面にろう祠を付着させた所定幅の帯状アルミニウム板
(1)の所定箇所にプレス加工によリアルミニウム板〈
1)の片側に突出した多数の突部〈2)を形成し、帯状
アルミニウム板(1)の両側縁部をそれぞれ折り曲げて
、突部(2)と同じ側に突出した立上がり縁部(3)つ (3)を形成し、ついでアルミニイム板(1)をこれの
幅の中央部より突部(2)が内側になるように折り曲げ
、アルミニウム板(1)の左半部(1a)と右半部(1
b)とを相互に重ね  3合4つけて、左生部(1a)
の突部(2)と右半部 部(1b)の突部とを互いに付き合わせるか、またはこ
れらの突部(2)(2)を対向づるノに半部(1a)お
よび右半部(1b)の内面にそれぞれ当接せしめるとと
もに、立上がり縁部(3)(3)の先端部同志を11い
に突き合わせて、折曲げ状態のアルミニウム板(1)の
内側に流体通路用空間部を形成し、この状態で立」ニが
り縁部(3)<3)の先端部同志を互いに接合するとと
もに、アルミニウム板(1)のり、半部(1a)の突部
(2)と右半部(1b)の突部(2)同志、あるいはこ
れらの突部(2)(2)と対向する左半部(1a)の内
面あよひ右半部(1b)の内面とをろうイ」1プにより
接合することを特徴とする熱交換器用質の製造法。
[Claims] A real aluminum plate is formed by press working at a predetermined location on a band-shaped aluminum plate (1) of a predetermined width with a wax abrasions attached to the surface.
A large number of protrusions (2) protruding from one side of 1) are formed, and both edges of the strip-shaped aluminum plate (1) are bent respectively to form a rising edge (3) protruding from the same side as the protrusions (2). (3), then bend the aluminum plate (1) from the center of its width so that the protrusion (2) is on the inside, and then fold the left half (1a) and the right half of the aluminum plate (1). Part (1
Stack b) on top of each other, attach 3 and 4, and make the left birth part (1a).
The protrusions (2) and the protrusions of the right half (1b) are brought into contact with each other, or the protrusions (2) (2) of the half (1a) and the right half (1b) are made to face each other. 1b), and the tips of the rising edges (3) (3) are brought into contact with each other to form a fluid passage space inside the bent aluminum plate (1). Then, in this state, join the tips of the vertical edges (3)<3) to each other, and glue the aluminum plate (1) to the protrusion (2) of the half part (1a) and the right half part ( 1b) or the inner surface of the left half (1a) facing the protrusions (2) (2) and the inner surface of the right half (1b). A method for manufacturing a material for heat exchanger, characterized by joining by.
JP23442182A 1982-12-29 1982-12-29 Manufacture of tube for heat exchanger Pending JPS59125395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23442182A JPS59125395A (en) 1982-12-29 1982-12-29 Manufacture of tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23442182A JPS59125395A (en) 1982-12-29 1982-12-29 Manufacture of tube for heat exchanger

Publications (1)

Publication Number Publication Date
JPS59125395A true JPS59125395A (en) 1984-07-19

Family

ID=16970751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23442182A Pending JPS59125395A (en) 1982-12-29 1982-12-29 Manufacture of tube for heat exchanger

Country Status (1)

Country Link
JP (1) JPS59125395A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228981U (en) * 1988-08-12 1990-02-23
WO1998044306A1 (en) * 1997-03-28 1998-10-08 Sanden Corporation Heat exchanger tube and method of its manufacture
KR19990057634A (en) * 1997-12-30 1999-07-15 신영주 Heat exchanger tube manufacturing method
EP1179719A2 (en) * 2000-08-08 2002-02-13 Modine Manufacturing Company Method of making a tube for a heat exchanger
JP2002090081A (en) * 2000-09-11 2002-03-27 Valeo Engine Cooling Ab Fluid transportation tube and cooler for automobile comprising the same
US6892806B2 (en) * 2000-06-17 2005-05-17 Behr Gmbh & Co. Heat exchanger for motor vehicles
JP2010275872A (en) * 2009-05-26 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
CN103353246A (en) * 2013-05-30 2013-10-16 大连理工大学 Recuperative heat exchanger of powder
JP2020133480A (en) * 2019-02-19 2020-08-31 株式会社Subaru Cooling device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228981U (en) * 1988-08-12 1990-02-23
WO1998044306A1 (en) * 1997-03-28 1998-10-08 Sanden Corporation Heat exchanger tube and method of its manufacture
KR19990057634A (en) * 1997-12-30 1999-07-15 신영주 Heat exchanger tube manufacturing method
US6892806B2 (en) * 2000-06-17 2005-05-17 Behr Gmbh & Co. Heat exchanger for motor vehicles
US7347254B2 (en) 2000-06-17 2008-03-25 Behr Gmbh & Co. Heat exchanger for motor vehicles
EP1179719A2 (en) * 2000-08-08 2002-02-13 Modine Manufacturing Company Method of making a tube for a heat exchanger
EP1179719A3 (en) * 2000-08-08 2002-03-20 Modine Manufacturing Company Method of making a tube for a heat exchanger
JP2002090081A (en) * 2000-09-11 2002-03-27 Valeo Engine Cooling Ab Fluid transportation tube and cooler for automobile comprising the same
JP4638583B2 (en) * 2000-09-11 2011-02-23 チタンエックス エンジン クーリング ホールディング アクチボラグ Fluid transport tube and automotive cooler comprising the tube
JP2010275872A (en) * 2009-05-26 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
CN103353246A (en) * 2013-05-30 2013-10-16 大连理工大学 Recuperative heat exchanger of powder
JP2020133480A (en) * 2019-02-19 2020-08-31 株式会社Subaru Cooling device
US11905910B2 (en) 2019-02-19 2024-02-20 Subaru Corporation Cooling apparatus

Similar Documents

Publication Publication Date Title
US7117936B2 (en) Tube for heat exchanger
JP4122578B2 (en) Heat exchanger
JP4171760B2 (en) Flat tube and manufacturing method of flat tube
JP2000346582A (en) Heat exchanger
JPH06117790A (en) Heat exchanger
US9593889B2 (en) Heat exchanger construction
JPH0486489A (en) Tube for heating exchanger
JP4926972B2 (en) Pipe manufactured from profile-rolled metal product and manufacturing method thereof
US20030131979A1 (en) Oil cooler
JP2006078163A (en) Flat tube, plate body for manufacturing flat tube, and heat exchanger
JP4122670B2 (en) Heat exchanger
JPS59125395A (en) Manufacture of tube for heat exchanger
JPS58221390A (en) Heat exchanger
JP3870865B2 (en) Heat exchanger
JP4011694B2 (en) Plate fin type heat exchanger with knob
JP2528121B2 (en) Heat exchanger
JP2003106790A (en) Exhaust heat exchanger
JP2002048491A (en) Heat exchanger for cooling
JP3403544B2 (en) Heat exchanger
EP1331462A2 (en) Automotive heat exchanger
CN110567309A (en) flat tube for heat exchanger and heat exchanger
JPH08170888A (en) Tube for integrated heat-exchanger
JPH10160377A (en) Heat exchanger
EP0097612A2 (en) Heat exchanger
JP2001263976A (en) Heat exchanger