WO1998044306A1 - Heat exchanger tube and method of its manufacture - Google Patents

Heat exchanger tube and method of its manufacture Download PDF

Info

Publication number
WO1998044306A1
WO1998044306A1 PCT/JP1998/001370 JP9801370W WO9844306A1 WO 1998044306 A1 WO1998044306 A1 WO 1998044306A1 JP 9801370 W JP9801370 W JP 9801370W WO 9844306 A1 WO9844306 A1 WO 9844306A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat plate
tube
heat exchanger
folded
portions
Prior art date
Application number
PCT/JP1998/001370
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuki Hosoya
Akimichi Watanabe
Hirotaka Kado
Original Assignee
Sanden Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corporation filed Critical Sanden Corporation
Priority to EP98911038A priority Critical patent/EP0907062A4/en
Publication of WO1998044306A1 publication Critical patent/WO1998044306A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Definitions

  • the present invention relates to a heat exchanger tube and a method of manufacturing the same, and more particularly to a heat exchanger tube suitable for a vehicle heat exchanger and a method of manufacturing the same, and further relates to a heat exchanger including the heat exchanger tube.
  • a tube for a heat exchanger more specifically, a heat exchange tube through which a heat exchange medium flows in a heat exchanger
  • a tube for a heat exchanger has conventionally been formed by, for example, bending a single flat plate material in the width direction by rolling. It was produced by joining the tips of the ends of the.
  • a heat exchange tube 301 is formed in which the tips are butt-joined at a joint portion 302. The tips are joined, for example, by electrolytic welding.
  • a flat plate as a tube forming material is bent intricately, a joint 312 is provided at the center in the width direction of the tube, and brazed at this portion to form a heat exchange tube.
  • a method for forming 3 1 1 is also known (Japanese Unexamined Patent Publication No.
  • a method of brazing by heating in a furnace with the core portion temporarily assembled is usually adopted.
  • the flux does not rotate sufficiently at the brazing point.
  • poor brazing may occur, and a defective portion may occur due to leakage of the heat exchange medium.
  • the structure with a joint 312 extending in the direction transverse to the inside of the tube at the center of the tube 311 in the width direction ensures high strength of the tube 311.
  • the core part when brazing the core part body is used. Tightening force due to the difference in the coefficient of thermal expansion between the main body and the brazing jig (a jig for temporarily fixing the core assembly) is applied to the core, causing the tube to be crushed or the brazing failure to occur. Location) may occur.
  • an object of the present invention is to provide a heat exchanger tube having a sufficiently high joining strength at a joining portion, ensuring a sufficiently high pressure resistance, and easily and accurately changing the inner dimensions of the tube.
  • a tube for a heat exchanger and a method of manufacturing the same which can respond sufficiently, can sufficiently apply a flux to a necessary portion even at the time of brazing, and can easily adopt a reinforcing structure at a central portion in a width direction of the tube.
  • a heat exchanger tube according to the present invention includes two flat plates facing each other and forming a flow path for a heat exchange medium therebetween, and at least one flat plate of at least one flat plate.
  • a width direction end portion formed by folding the end portion, and a folded portion having a thickness of an integral multiple of the thickness of the plate forming the end portion, wherein the folded portion corresponds to the other flat plate portion And the widthwise ends thereof are joined to each other.
  • This heat exchanger tube has a bent portion integrally connecting the two flat portions at one widthwise end of the two flat portions, and the folded portion has the other width of the two flat portions.
  • the folded portions may be formed at the end portions in the direction, and the folded portions may be joined to each other. Or, the above-mentioned folded portion is 6
  • the folded portion may be formed by folding at least one width direction end of at least one flat plate portion at least once, and at least one width direction of at least one flat plate portion may be formed. It is also possible to adopt a configuration formed by bending the end multiple times. When the folded part is formed by bending multiple times, the first folded part makes surface contact with the inner surface of the flat tube, and the subsequent folded part makes surface contact with the previous folded part. Wrapped. Such a folded portion can be formed by, for example, press working.
  • an abutting portion is formed at the center in the width direction of one of the flat portions so as to protrude toward the other flat portion to a position substantially in contact with the other flat portion by bending the one flat portion itself.
  • the structure can also be used.
  • the folded portion can be joined to the corresponding end of the other flat plate by brazing.
  • the following configuration may be further added to such a heat exchanger tube.
  • a structure in which an inner fin is provided between the flat plate portions can be adopted.o
  • At least one of the flat portions is provided with a plurality of protrusions protruding inward of the tube, and the protrusions facing each other or the protrusions and the plate portion provided with the protrusions are opposed to each other.
  • the inner surface of the flat plate portion can be configured to abut against each other.
  • the flat plate portion may be formed so as to bulge outward from the tube so that a substantially central portion in a width direction thereof becomes a vertex, so that a structure for improving the pressure resistance of the tube can be adopted.
  • a structure may be provided in which grooves extending in directions intersecting with each other are provided on each opposing surface of the flat plate portion.
  • a heat exchanger according to the present invention has a structure of a tube for a heat exchanger as described above.
  • the type of the heat exchanger is not particularly limited.
  • the present invention can be applied to a heat exchanger of a type in which tubes and fins are alternately arranged.
  • the method for producing a heat exchanger tube according to the present invention includes: (a) folding one end of the flat plate having a predetermined width to at least one end in the width direction; (B) bending the central portion in the width direction of the flat plate so that the folded portion is on the inner side, and heat exchange between (C) joining at least one of the folded portions formed at the end of one of the flat portions to the corresponding end of the other flat portion; It consists of a special method.
  • the method for manufacturing a tube for a heat exchanger includes the steps of: (a) folding each end to at least both ends in the width direction of at least one of two flat plates each having a predetermined width; A folded portion having an integral multiple of the thickness of the plate forming the end portion is formed. (B) The folded portion of the flat plate having the folded portions formed at both ends in the width direction corresponds to the other flat plate.
  • the method is characterized by joining the ends with each other
  • the folded portion can be formed by turning the width direction end of the flat plate once, or can be formed by turning a plurality of times.
  • the folded portion is formed by folding a plurality of times, the first folded portion is brought into surface contact with the flat plate, and the subsequent folded portion is brought into surface contact with the preceding folded portion.
  • Such a folded portion is formed by, for example, press processing.
  • one of the two flat portions forming the tube is bent into one of the two flat portions so that the other flat portion is substantially directed toward the other flat portion. Butts can be formed to protrude to a position where they come into contact. Further, the folded portion can be joined to a corresponding end of the flat plate portion facing the folded portion by brazing.
  • a step of interposing an inner fin between the flat plates for forming a tube can be added.
  • a plurality of protruding portions protruding inward of the tube when forming the tube may be formed on the flat plate.
  • grooves extending in directions intersecting with each other at the time of forming the tubes may be formed on the surfaces of the respective flat plate portions which are surfaces facing each other when the tubes are formed.
  • the folded portion is brought into surface contact with the corresponding widthwise end portion of the other flat plate portion (this portion may also be formed in the folded portion). Since bonding can be performed in a state, the bonding area is sufficiently large, high bonding strength is secured, and high pressure resistance can be realized.
  • the folded portion is turned one or more times so that the folded pieces are overlapped in a face-to-face contact state so as to have an integral multiple of the thickness of the plate forming the width direction end of the flat plate. Since it is formed, the high strength of the folded portion itself is ensured, and the high bonding strength is ensured by the bonding surface in the surface contact state as described above, and the high pressure resistance of the entire tube can be realized.
  • the thickness of the folded portion corresponds to the height of the flow path in the tube, and the thickness of the folded portion can be defined by the number of times of folding in the folded portion.
  • the thickness of the folded portion especially the thickness of the folded portion that contributes to the determination of the inner dimensions of the tube, can be determined by the number of times of folding, that is, the number of stacked folded pieces, greatly increasing the degree of freedom in design. Increase.
  • the thickness is determined by the thickness of the folded pieces, and the first folded piece and the tube inner surface forming surface of the flat plate part. By the contact, the dimensions are exactly determined by the thickness of the folded piece X the number of folded pieces. Therefore, the inner dimensions of the tube to be formed are also accurately determined to the target dimensions, and a highly accurate tube can be obtained.
  • the butted portion when the butted portion is provided, the butted portion can be formed by bending the flat plate portion itself, so that no portion requiring brazing or the like is generated at the center in the width direction of the tube, and the flux is not generated. It is possible to eliminate the possibility of insufficient application of the coating, poor brazing resulting therefrom, and the occurrence of defective spots due to leakage.
  • the tube can be reinforced at the center in the width direction while maintaining the above-mentioned effects, and when the core portion is brazed, the tube may be deformed and the core portion may be deformed. This makes it possible to prevent the occurrence of defective brazing or defective leakage due to the difference in the coefficient of thermal expansion from the brazing jig.
  • FIG. 1 is a front view of a heat exchanger according to one embodiment of the present invention.
  • FIG. 2 is a partial perspective view of the heat exchanger tube according to one embodiment of the present invention.
  • FIG. 3 is a partial perspective view of a tube for a heat exchanger according to another embodiment of the present invention.
  • FIG. 4 is a partial perspective view of a tube for a heat exchanger according to still another embodiment of the present invention.
  • FIG. 5 is a partial perspective view of a heat exchanger tube according to still another embodiment of the present invention.
  • FIG. 6 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG.
  • FIG. 7 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG.
  • FIG. 8 is a process flow chart showing a method of manufacturing the heat exchanger tube of FIG.
  • FIG. 9 is a process diagram showing a method of manufacturing the heat exchanger tube of FIG.
  • FIG. 10 is a partial perspective view of each heat exchanger tube according to still another embodiment of the present invention.
  • FIG. 11 is a partial perspective view of a heat exchanger tube according to still another embodiment of the present invention.
  • FIG. 12 is a partial perspective view of each heat exchanger tube according to still another embodiment of the present invention.
  • FIG. 13 is a partial perspective view of a heat exchanger tube according to still another embodiment of the present invention.
  • FIG. 14 is a process flow chart showing a method of manufacturing the heat exchanger tube of FIG. 10A.
  • FIG. 15 is a process diagram D—showing a method of manufacturing the heat exchanger tube of FIG. 11;
  • FIG. 16 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG. 12A.
  • FIG. 17 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG.
  • FIG. 18 is a partial perspective view of a tube showing a modification of the heat exchanger tube shown in FIG.
  • Fig. 19 is a tube section showing a modification of the heat exchanger tube shown in Fig. 10A.
  • FIG. 19 is a tube section showing a modification of the heat exchanger tube shown in Fig. 10A.
  • FIG. 20A is a partial perspective view of a tube showing another modification of the heat exchanger tube shown in FIG. 2, and FIG. 20B is a cross-sectional view of the tube of FIG. 20A taken along line XXB—XXB.
  • FIG. 20A is a partial perspective view of a tube showing another modification of the heat exchanger tube shown in FIG. 2, and FIG. 20B is a cross-sectional view of the tube of FIG. 20A taken along line XXB—XXB.
  • FIG. 21A is a partial perspective view of a tube showing another modification of the heat exchanger tube shown in FIG. 10A, and FIG. 21B is a line XXIB-XXIB of the tube of FIG. 21A.
  • FIG. 21A is a partial perspective view of a tube showing another modification of the heat exchanger tube shown in FIG. 10A
  • FIG. 21B is a line XXIB-XXIB of the tube of FIG. 21A.
  • FIG. 22A is a partial perspective view of a tube showing still another modification of the heat exchanger tube shown in FIG. 2, and FIG. 22B is an enlarged front view of the tube of FIG. 22A. is there.
  • FIG. 23A is a partial perspective view of a tube showing still another modification of the heat exchanger tube shown in FIG. 10A, and FIG. 23B is an enlarged front view of the tube of FIG. 23A. Confuse.
  • FIG. 24 is a partial plan view of the flat material before tube processing shown in FIG. 22A or FIG. 23A.
  • FIG. 25 is a sectional view of a tube showing still another modified example of the heat exchanger tube shown in FIG.
  • FIG. 26 is a sectional view of a tube showing still another modified example of the heat exchanger tube shown in FIG. 10A.
  • FIG. 27 is a partial perspective view of a conventional heat exchanger tube.
  • FIG. 28 is a partial perspective view of another conventional heat exchanger tube.
  • FIG. 1 shows a heat exchanger 1 according to one embodiment of the present invention.
  • the heat exchanger 1 has two tank sections 2 and 3 on the inlet and outlet sides, and is provided between the tank sections 2 and 3 and communicates with both tank sections 2 and 3. It has a plurality of heat exchange tubes 4 and corrugated fins 5, and the heat exchange tubes 4 and the fins 5 are arranged alternately.
  • side plates 7 and 8 are provided on the outermost layer of the core 6 having the heat exchange tubes 4 and the fins 5. Also, the outer surface of one side plate 8 and the side surface of one tank 2 Brackets 9 and 10 are joined.
  • the tanks 2 and 3 are provided with fittings 11 and 12 for connecting pipes or other devices, respectively.
  • the heat exchange tube 4 of such a heat exchanger 1 is configured, for example, as shown in FIGS. 2 to 5 or FIGS. 10 to 13 (heat exchange tubes 21, 31, 41, 51). , 1 2 1 a, 1 2 1 b, 1 2 1 c, 1 3 1, 1 4 1 a, 1 4 1 b, 1 4 1 c, 1 5
  • the heat exchange tubes 21 of the embodiment shown in FIG. 2 are opposed to each other at intervals and form two heat exchange medium flow paths 22 between them, and two flat plate portions 23 a and 23 b, and both flat plate portions 23 a,
  • the folded portions 25a and 25b are formed by bending each flat plate portion 23a and 23b so that each end is folded.
  • the inner surface side of the folded portions 25a and 25b and the tube inner surface side of the flat plate portions 23a and 23b are in surface contact with each other and face each other.
  • the folded portions 25a and 25b are folded so that the outer surfaces thereof are formed on surfaces extending parallel to each other.
  • Such folded portions 25a and 25b are formed by press working.
  • the two folded portions 25a and 25b are joined to each other on the outer surface side (opposed surface side) extending parallel to each other by brazing (joining portion 26).
  • the heat exchange tube 31 of the embodiment shown in FIG. 3 includes two flat plate portions 3 3 a and 3 3 b forming a heat exchange medium flow path 32, similar to the above heat exchange tube 21, and both flat plate portions 3. 3a,
  • the flat plate portion 33 b is bent at the center in the width direction of the one flat plate portion 33 b so that the flat plate portion 33 b is substantially bent toward the other flat plate portion 33 a.
  • a butting portion 37 is formed to protrude to a position where it contacts the inner surface of 3a. The tip end surface of the butted portion 37 may be joined to the inner surface of the flat plate portion 33a, or may simply be in contact.
  • the heat exchange tubes 41 of the embodiment shown in FIG. 4 are opposed to each other at intervals and form two heat exchange medium flow paths 42 between them, and two flat plate portions 4 3 a and 4 3 b, and both flat plate portions 4 3 a, 43b, at both ends in the width direction, each of which has a folded portion 44a, 44b and 45a, 45b which are bent so as to be folded, and the corresponding folded portion.
  • the pieces 44a and 45a and the pieces 44b and 45b are joined to each other on the outer surface side of the turn by brazing (joints 46a and 46b).
  • the heat exchange tube 51 of the embodiment shown in FIG. 5 includes two flat plate portions 53 a and 53 b forming a heat exchange medium flow path 52 similar to that shown in FIG. a, 53b, each having a folded portion 54a, 54b, 55a, 55b, and corresponding folded portions 54a, 55a, and 54. b and 55 are joined to each other on the outer side of the turn by brazing (joints 56a and 56b).
  • the flat plate portion 53 b is bent at the center in the width direction of the one flat plate portion 53 b so that the flat plate portion 53 b is substantially flattened toward the other flat plate portion 53 a.
  • a butted portion 57 is formed to protrude to a position where it abuts the inner surface of 3a. The tip end surface of the butted portion 57 may be joined to the inner surface of the flat plate portion 53a, or may be merely in contact.
  • the heat exchange tubes 21, 31, 41, 51 shown in FIGS. 2 to 5 are manufactured by the method shown in FIGS. 6 to 9, respectively.
  • FIG. 6 shows a method of manufacturing the heat exchange tube 21 shown in FIG.
  • a flat plate 63 having a predetermined width is formed from a wide flat plate 61 as a tube forming material by cutting using a suitable cutter device 62 or the like.
  • both ends in the width direction of one flat plate 63 having a predetermined width are bent so as to be folded toward the same surface (the upper surface side in FIG. 6), and the folded portions 25 a and 25 are provided at the both ends.
  • Form b shows a method of manufacturing the heat exchange tube 21 shown in FIG.
  • the central part in the width direction of the flat plate 63 is bent toward the above-mentioned surface (the upper surface side in FIG. 6) to form a bent part 24, which faces each other at intervals and has a heat exchange medium between them.
  • the two flat portions 23 a and 23 b forming the flow path 22 are formed.
  • the heat exchange tubes 21 shown in FIG. 2 are completed by joining the folded portions 25a and 25b to each other on the outer surface side of the folded portions (joined portions 26).
  • FIG. 7 shows a method of manufacturing the heat exchange tube 31 shown in FIG.
  • a flat plate 71 having a predetermined width slightly larger than that shown in FIG. 6 is formed from the wide flat plate 61 as a material by cutting with a cutter device 62 or the like.
  • a butt portion 37 is formed at a predetermined position of the single flat plate 71 by bending.
  • both ends in the width direction of the flat plate 71 are bent so as to be folded on the same surface side as the butted portion 37, and folded portions 35a and 35b are formed at both ends.
  • the center of the flat plate 71 in the width direction is bent on the same surface side as the butted portion 37 to form a bent portion 34, which faces each other at intervals and has a heat exchange medium flow path therebetween.
  • the two flat portions 33a and 33b that form 32 are formed.
  • the heat exchange tube 31 shown in FIG. 3 is completed by joining the folded portions 35a and 35b to each other on the outer surface side of the folded portion (joined portion 36).
  • FIG. 8 shows a method of manufacturing the heat exchange tube 41 shown in FIG.
  • two flat plates 81a and 81b having the same width are formed from a wide flat plate 61 as a raw material by cutting with a cutter device 62 or the like.
  • folded portions 44a and 44b and folded portions 45a and 45b are formed at both ends of the two flat plates 81a and 81b by bending.
  • FIG. 9 shows a method of manufacturing the heat exchange tube 51 shown in FIG.
  • two flat plates 91a and 91b having different widths are formed from a wide flat plate 61 as a material by cutting with a cutter device 62.
  • an abutting portion 57 is formed by bending at the center in the width direction of the wider flat plate 91b.
  • the folded portions 54a and 54b and the folded portions 55a and 55b are formed at both ends of both flat plates 91a and 91b by bending.
  • the two flat plates 91a and 91b are used as the two flat plate portions 53a and 53b, and the corresponding folded portions 54a and 55a and the folded portions 54b and 55b are positioned so as to face each other.
  • the corresponding folded portions 54a and 55a and the folded portions 54b and 55b are connected to each other on the outer surface side of the folded portion.
  • the heat exchange tube 51 having the heat exchange medium flow path 52 therein as shown in FIG. 5 is completed.
  • each flat plate portion can be formed by press working. Therefore, the conventional roll processing is not required, and the processing cost, and thus the tube, and the production cost of the heat exchanger can be significantly reduced. In addition, since no roll processing is performed, correction after processing is not required, and the occurrence rate of defective products can be significantly reduced, making it easier to manufacture and further reducing manufacturing costs.
  • the butted portion for reinforcing the tube can be easily formed by bending one flat plate portion itself, so that a tube structure having high strength can be easily realized.
  • the abutting portion is basically a region where it is not necessary to flow the flux from another portion or to apply the flux from the outside, there is a problem with the flux around as shown in the structure shown in Fig. 27. There is no occurrence. Therefore, the occurrence of a brazing defect can be easily prevented.
  • the butted portion is formed before the formation of the end folded portion. However, it can be formed after the formation of the end folded portion.
  • the heat exchange tubes of FIGS. 10 to 13 will be described. Each of these tubes is formed at least at one end in the width direction of at least one flat plate by bending the end plural times, and is an integral multiple of the thickness of the plate forming the end. of A folded portion having a thickness is formed.
  • the heat exchange tubes 1 2 1 a of the embodiment shown in FIG. 10A face each other at intervals and form two heat exchange medium flow paths 1 2 2 between the two flat plate portions 1 2 3 a, 1 2 3 b And a bent portion 1 2 4 that integrally connects the flat plate portions 1 2 3 a and 1 2 3 b at one end in the width direction of the flat plate portions 1 2 3 a and 1 2 3 b; A folded portion 125a formed at the other widthwise end of the flat plate portion 123a and bent so that the end portion is folded a plurality of times (twice in this embodiment) in opposite directions to each other.
  • the folded portion 125 a and the corresponding end portion 125 b of the other flat plate portion 123 b are joined to each other (joining portion 126).
  • the first folded piece 1 27 a is in close contact with the inner surface of the tube of the flat plate 1 2 3 a by surface contact, and the subsequent folded piece 1 27 b is folded in front. It is folded back so as to be in close contact with the one-side part 127 a.
  • the folded-back portion 1 27 b of the folded portion 1 25 a is joined by brazing so as to be in close contact with the corresponding end portion 125 b of the other flat plate portion 123 b by surface contact.
  • Such a folded portion 125a is formed by press working.
  • a folded portion 1 288 that is folded only once is formed at the corresponding one end of the other flat plate portion 1 23, and the folded portion is formed.
  • the 125a and the folded portion 128 are joined by brazing so as to be brought into close contact by surface contact.
  • the folded portions 1 25 a are folded twice at the corresponding ends of both flat plate portions 123 a and 123 b respectively. Are formed, and the folded portions 125a are joined together by brazing so as to be in close contact with each other by surface contact.
  • the number of turns of the folded portion and the shape of the corresponding end of the other flat plate 1 2 3 b can be freely set, and the inner dimensions of the tube (flow path height) are determined by the two flat plates 1 2 3 a
  • the target dimensions can be accurately determined by the number of folded pieces interposed between the first and second b.
  • internal dimensions other than those shown in the figure are also possible.
  • the number of folded pieces interposed between the flat plates 1 2 3 a and 1 2 3 b the number of turns in the folded section You can decide.
  • the heat exchange tube 13 1 in the embodiment shown in FIG. 11 is the same as the heat exchange tube 12 8/4306 1370
  • the flat plate portion 133 b is bent at the center in the width direction of one flat plate portion 133 b, thereby substantially facing the other flat plate portion 133 a.
  • a butt portion 137 is formed to protrude to a position where it comes into contact with the inner surface of the flat plate portion 133a.
  • the tip end surface of the butted portion 1337 may be joined to the inner surface of the flat plate portion 133a, or may simply be in contact.
  • the same configuration can be adopted for the heat exchange tubes 122b and 121c.
  • the heat exchange tubes 14 1 a in the embodiment shown in FIG. 12A are opposed to each other at intervals and form two heat exchange medium flow paths 142 between them. 4 3, and folded portions 144 4 a and 144 b bent at both ends in the width direction of one flat plate portion 144 a so as to bend a plurality of times at each end.
  • the parts 144a, 144b are joined by brazing to the corresponding widthwise ends 144b, 144b of the other flat plate 144b (joint 144a , 1 4 6 b).
  • the first folded piece 1447a is in close contact with the inner surface of the tube of the flat plate 144a by surface contact
  • the subsequent folded piece 1 47 b is folded so as to be in close contact with the preceding folded piece portion 144 a by surface contact.
  • the folded pieces 144b of the folded portions 144a and 144b are brought into surface contact with the corresponding ends 144a and 144b of the other flat plate 144b. They are joined by brazing so that they come into close contact.
  • Such folded portions 144a and 144b are formed by press working.
  • a folded portion 1 488 that is folded only once is formed at the corresponding both ends of the other flat plate portion 144, and the folded portion is formed.
  • 1 4 4 a, 1 4 b and their corresponding folded portions 1 4 8 are denser by surface contact. They are joined by brazing to wear.
  • the two flat portions 14 3 a and 14 3 b are each provided with two folded portions 14 4 a at both ends corresponding to each other. , 144b are formed, and the corresponding folded portions are joined by brazing so that they are in close contact with each other by surface contact.
  • the number of times of the folded portion and the shape of the corresponding end of the other flat plate portion 144 b can be freely set, and The dimension (flow path height) is accurately determined to the target dimension by the number of folded pieces interposed between the flat portions 144a and 144b.
  • the dimension is accurately determined to the target dimension by the number of folded pieces interposed between the flat portions 144a and 144b.
  • internal dimensions other than those shown in the figure are possible, and according to the target dimensions, the number of folded pieces interposed between the two flat plate parts 144a and 144b, What is necessary is just to decide the number of times of turn in a part.
  • the heat exchange tube 15 1 in the embodiment shown in FIG. 13 has two flat plate portions 15 3 a and 15 3 b forming a heat exchange medium flow path 15 2 similar to that shown in FIG. 12A.
  • At both ends in the width direction of one of the flat plate portions 15a there are folded portions 154a and 154b, each of which is bent so that each end is bent a plurality of times.
  • 15 5a, 15 5b are joined by brazing to the corresponding widthwise ends 15 5a, 15 5b of the other flat plate 15 5b (joint 15 6a , 156b).
  • the flat plate portion 1553b is bent at the center in the width direction of the one flat plate portion 1553b, thereby substantially facing the other flat plate portion 1553a.
  • a butt portion 157 projecting to a position where it comes into contact with the inner surface of the flat plate portion 153 a is formed on the flat portion.
  • the tip surface of the butted portion 157 may be joined to the inner surface of the flat plate portion 153a, or may simply be in contact.
  • each heat exchange tube as shown in Figs. 10 to 13 is temporarily assembled with other heat exchanger parts such as fins and header pipes, joined by furnace brazing, and used as a heat exchanger.
  • an inner fin may be inserted into the tube for the purpose of improving the pressure resistance and the heat transfer performance.
  • fins may be bonded to both inside and outside of the tube.
  • a brazing material is usually used for brazing, in which a brazing material is attached to either a fin or a tube seal. In this case, brazing material is applied to both sides of the tube shell.
  • the tube shell can be brazed in a liquid-tight manner using the attached cladding material, but it is possible to use a brazing material that does not clad the brazing material for the fin.
  • a brazing material clad on both the inside and outside use a material clad on one side only, or use a combination of these materials as appropriate. it can.
  • the heat exchange tubes 12a, 131, 11a, and 151 shown in FIG. 10 to FIG. 13 are manufactured by the method shown in FIG. 14 to FIG.
  • the heat exchange tubes 121b and 121c.111b.141c can be manufactured by the same method.
  • FIG. 14 shows a method of manufacturing the heat exchange tube 122 a shown in FIG. 10A.
  • a flat plate 163 having a predetermined width is formed from a wide flat plate 161 as a material for forming a tube by cutting with an appropriate cutting device 162 or the like.
  • one end in the width direction of one flat plate 163 having a predetermined width is bent and bent twice so as to form a folded portion 125a at the end.
  • the central portion in the width direction of the flat plate 16 3 is bent toward the upper surface side in FIG. 14 to form a bent portion 124, which faces each other with an interval therebetween, and has a heat exchange medium flow path 1 therebetween.
  • Forming 2 2 Two flat portions 1 2 3 a and 1 2 3 b are formed.
  • the folded portion 1 25 a at the end of the flat plate portion 1 23 a and the end portion 125 b of the flat plate portion 123 b are joined to each other (joined portion 1 26), whereby the configuration shown in FIG.
  • the heat exchange tube 1 2 1a shown in A is completed.
  • FIG. 15 shows a method of manufacturing the heat exchange tube 13 1 shown in FIG.
  • a flat plate 171 having a predetermined width slightly larger than that shown in FIG. 14 is formed from a wide flat plate 161 as a material by cutting with a cutter device 162 or the like.
  • a butt portion 1337 is formed at a predetermined position of the one flat plate 171 by bending.
  • one end in the width direction of the flat plate 171 is bent so as to be folded twice on the same surface side as the butted portion 1337, and a folded portion 135a is formed at the end.
  • FIG. 16 shows a method of manufacturing the heat exchange tube 141 a shown in FIG. 12A.
  • two flat plates 18 1a and 18 1b having different widths are formed by cutting a wide flat plate 16 1 force spatula as a material and a cutter device 16 2 or the like.
  • folded portions 144a and 144b are formed at both ends of one of the flat plates 181a by bending.
  • Both flat plates 18 1 a and 18 1 b are used as both flat plate portions 14 3 a and 14 3 b, and folded portions 14 4 a and 14 4 b and both ends of the corresponding flat plate portions 1 4 5a.
  • FIG. 17 shows a method of manufacturing the heat exchange tube 15 1 shown in FIG.
  • two flat plates 191a and 191b are formed from a wide flat plate 161 as a raw material by cutting with a cutting machine 162.
  • an abutting portion 157 is formed by bending at the center in the width direction of one of the flat plates 191 b.
  • On both ends of the other flat plate 191a each end is bent so as to be bent a plurality of times to form folded portions 154a and 154b.
  • the folded portions 154a and 154b are joined to the corresponding widthwise opposite ends 155a and 155b of the other flat plate 191b by brazing (joining portion 156a).
  • the heat exchange tube 15 1 having the heat exchange medium flow path 15 2 therein as shown in FIG. 13 is completed.
  • the folded part formed at the width direction end of one flat part can be joined to the corresponding width direction end of the other flat part in a surface contact state, resulting in a sufficiently large bonding area and high Bonding strength can be ensured, and high pressure resistance can be achieved.
  • the folded portion is bent a plurality of times in a direction opposite to each other, and is formed so that the folded pieces are overlapped in surface contact.
  • the high strength of the tube itself is also ensured, and the high joint strength is ensured by the joining surface in the surface contact state as described above, so that the tube as a whole can achieve higher pressure resistance.
  • the folded portion formed at the end in the width direction of the flat plate can be formed by press working, the conventional roll working is not required, and the processing cost, and thus the production cost of the tube and the heat exchanger, are reduced. Significant reduction is possible.
  • roll processing is not performed, correction after processing is not required, and the incidence of defective products can be significantly reduced, making it easier to manufacture and further reducing manufacturing costs.
  • the folded portion is formed by being bent so that it is folded a plurality of times in the opposite direction, and the inner size of the tube can be substantially freely and accurately determined by the number of times of the folded portion.
  • the degree of freedom is greatly increased.
  • the inner dimensions of this tube are more accurately determined by the fact that the folded pieces are in contact with each other, and the first folded piece and the flat surface of the inner surface of the tube are in surface contact with each other.
  • the size is determined to correspond to the number of pieces. Therefore, the inner dimensions of the tube to be formed can also be accurately and accurately determined to the target dimensions, and a tube having a desired inner dimension can be easily obtained.
  • the butted portion for reinforcing the tube can be easily formed by bending one flat plate portion itself, so that a high-strength tube structure can be easily realized.
  • the abutting portion is basically a region where it is not necessary to flow the flux from another portion or to apply the flux from the outside, there is a problem with the flux around as shown in the structure shown in Fig. 27. There is no occurrence. Therefore, the occurrence of a brazing defect can be easily prevented.
  • the core part 6 when the core part 6 is fixed with a jig, it is generated due to the difference in the coefficient of thermal expansion between the core part and the brazing jig. High resistance to deformation and displacement. As a result, it is possible to effectively prevent deformation of the tube and occurrence of defective brazing. Therefore, it is possible to manufacture a high-performance heat exchanger that has been reliably brazed and has no fear of leakage.
  • the butted portion is formed before the formation of the folded-back portion, but it can be formed after the formation of the folded-back portion. Further, the following structure can be further added to the heat exchanger tube having the structure shown in FIGS. 2 to 5 and FIGS. 10 to 13 described above.
  • a corrugated inner fin 204 is provided, and the inner fin 204 divides the flow path 203 into a plurality.
  • the structure of the inner fin 204 is not particularly limited, and a structure other than a waveform is also applicable. Such an inner fin 204 can be inserted after forming the tube 201.
  • the temperature of the tube 201 is made uniform, and the tube 201 The heat exchange performance is further improved.
  • the two flat portions 2 12a In the heat exchange tubes 211 shown in FIGS. 20A, 20B and 21A, 21B, the two flat portions 2 12a.
  • a plurality of protruding portions 21 13 protruding toward the inside of the tube are provided, and the protruding portions 2 13 are arranged to face each other, and their end surfaces are in contact with each other.
  • Each protruding portion 21 3 can be easily formed by embossing the flat plate material before forming the tube, and the tube may be formed after forming each protruding portion 2 13.
  • the mixing effect of the heat exchange medium flowing through the flow passage by the protrusions 21 is provided.
  • the temperature uniformity and heat transfer are promoted, and the heat exchange performance of the tubes 211 is further improved.
  • protruding portion 21 3 may be provided only on one flat plate portion, and the distal end surface of the protruding portion 21 3 may be brought into contact with the inner surface of the other opposing flat plate portion.
  • the heat exchange tubes 22 shown in Figures 22A and 22B and Figures 23A and 23B In 1 a plurality of grooves 222 a and 222 b extending obliquely in the direction intersecting with each other are formed in each of the opposing surfaces of the flat plate portions 222 2 a and 222 b.
  • the grooves 2 23 a and 22 3 b are formed on the flat material 2 24 before being formed on the tube 22 1 and on the tube 2 21 when formed on the tube 2 21.
  • Grooves 22 3 a and 22 3 b may be carved so as to extend in the direction intersecting with each other as shown in FIG.
  • the heat exchange tube 22 1 having such a configuration, in addition to the operation and effect described with reference to FIG. 2 or FIG. 10A, the heat exchange tube 22 1 Since the mixing effect of the heat exchange medium is improved, the temperature can be made uniform and the heat transfer can be promoted, and the heat exchange performance of the tube 221 can be further improved. Further, in the present invention, for example, as shown in FIGS. 25 and 26, the flat plate portions 23a and 23b are placed outside the tube so that the center in the width direction becomes the top. The tube 23 may be configured to bulge toward the tube. With this configuration, the pressure resistance of the tube 23 1 can be improved. The swelling amount S may be a very small amount.
  • heat exchanger tube according to the present invention is not limited to the type of heat exchanger as shown in FIG. 1, but is applicable to any type of heat exchanger. It is particularly suitable for heat exchangers for vehicles, for example, heaters, condensers, evaporators, etc. for radiators and air conditioners, and also for coolers, etc.
  • a tube for a heat exchanger having high joining strength and pressure resistance and high design flexibility can be easily and inexpensively manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger tube which has two flat plate parts defining therebetween a passage through which heat exchanging media flow and a folded part which is formed by folding at least one end part of at least one flat plate part so as to have a thickness which is an integral multiple of that of the flat plate part. The folded part and the corresponding end in the widthwise direction of the other flat plate part are joined together. The obtained tube has such features that the junction strength of the joined part is high enough to ensure high pressure resistance, that the internal dimensions of the tube can be changed easily and accurately, that flux can be applied sufficiently to necessary positions for soldering, and that it can facilitate the adoption of a reinforced structure at the central part in the widthwise direction of the tube.

Description

明 細 書  Specification
熱交換器用チューブおよびその製造方法  Tube for heat exchanger and method for producing the same
技 術 分 野  Technical field
本発明は、 熱交換器用チューブおよびその製造方法に関し、 とくに、 車両用熱 交換器に好適な熱交換器用チューブおよびその製造方法、 さらにはその熱交換器 用チューブを備えた熱交換器に関する。  The present invention relates to a heat exchanger tube and a method of manufacturing the same, and more particularly to a heat exchanger tube suitable for a vehicle heat exchanger and a method of manufacturing the same, and further relates to a heat exchanger including the heat exchanger tube.
背 景 技 術  Background technology
熱交換器用チューブ、 より詳しくは、 熱交換器において熱交換媒体を流通させ る熱交換チューブは、 従来、 たとえば 1枚の平板素材をロール加工によって幅方 向に曲げ加工し、 曲げ加工された素材の端部の先端同士を接合することによって 作製されていた。 このような製造方法では、 たとえば図 2 7に示すように、 上記 先端同士が接合部 3 0 2で突き合わせ接合された熱交換チューブ 3 0 1が形成さ れる。 上記先端同士は、 たとえば電解溶接によって接合される。  Conventionally, a tube for a heat exchanger, more specifically, a heat exchange tube through which a heat exchange medium flows in a heat exchanger, has conventionally been formed by, for example, bending a single flat plate material in the width direction by rolling. It was produced by joining the tips of the ends of the. In such a manufacturing method, as shown in FIG. 27, for example, a heat exchange tube 301 is formed in which the tips are butt-joined at a joint portion 302. The tips are joined, for example, by electrolytic welding.
また、 図 2 8に示すように、 チューブ形成素材としての平板を複雑に折り曲げ 加工し、 チューブの幅方向中央部に接合部 3 1 2を設けてこの部分でろう付けし、 熱交換チュ一ブ 3 1 1を形成するようにした方法も知られている (特開平 6 - 1 In addition, as shown in Fig. 28, a flat plate as a tube forming material is bent intricately, a joint 312 is provided at the center in the width direction of the tube, and brazed at this portion to form a heat exchange tube. A method for forming 3 1 1 is also known (Japanese Unexamined Patent Publication No.
2 3 5 7 1号公報) 。 No. 2 357 71).
しかしながら、 図 2 7に示したような製造方法においては、 1枚のプレートを ロール成形した電逢管を用いた場合、 プレートの先端同士を接合部 3 0 2で溶接 接合しているため、 接合面積が小さく接合強度が低いので、 耐圧性能が低くなる おそれがある。 また、 長尺の素材にロール加工を施す必要があるため、 チューブ However, in the manufacturing method shown in Fig. 27, when the electrode tube in which one plate is roll-formed is used, the ends of the plates are welded and joined at the joining portion 302. Since the area is small and the bonding strength is low, the pressure resistance may be reduced. In addition, since it is necessary to roll a long material,
3 0 1の加工費が高くなるという問題点がある。 また、 長尺物のロール加工では、 加工後に所定寸法に切断することが多いので、 不良品が生じやすかつたり、 後に 修正加工が必要になったりし、 この面からもコスト高になる傾向がある。 さらに、 プレートの先端同士を接合部 3 0 2で接合しているだけなので、 形成されるチュ ーブ 3 0 1の内寸、 とくに、 流路の高さを目標とする寸法に正確に決めることが 難しく、 該寸法にばらつきを生じるおそれがある。 さらにまた、 目標とする流路 の高さが変更された場合には、 その変更に正確に追従することが困難である。 また、 図 2 8に示したようなチューブ製造方法においては次のような問題点が ある。 つまり、 チューブとフィ ンとを交互に配置したコア部を有する熱交換器に おいては、 通常、 コア部を仮組した状態で炉中にて加熱ろう付けする方法が採用 されている。 しかし、 図 2 8に示したように、 熱交換チューブ 3 1 1の幅方向中 央部にチューブ形成のための接合部 3 1 2を設ける構造では、 ろう付け箇所にフ ラックスが十分に回らず、 ろう付け不良が発生し、 熱交換媒体の洩れに対する不 良箇所が発生するおそれがある。 There is a problem that the processing cost of 301 increases. In addition, in the roll processing of long products, since they are often cut to a predetermined size after processing, defective products are likely to occur, and correction processing will be required later, and this tends to increase costs. is there. Furthermore, since the ends of the plates are only joined at the joints 302, the inner dimensions of the formed tubes 301, especially the height of the flow path, must be accurately determined to the target dimensions. And the dimensions may vary. Furthermore, when the target channel height is changed, it is difficult to accurately follow the change. In addition, the tube manufacturing method as shown in Fig. 28 has the following problems. is there. In other words, in a heat exchanger having a core portion in which tubes and fins are alternately arranged, a method of brazing by heating in a furnace with the core portion temporarily assembled is usually adopted. However, as shown in Fig. 28, with the structure in which the joint 312 for forming the tube is provided at the center in the width direction of the heat exchange tube 311, the flux does not rotate sufficiently at the brazing point. However, poor brazing may occur, and a defective portion may occur due to leakage of the heat exchange medium.
さらに、 図 2 8に示したような、 チュ一ブ 3 1 1の幅方向中央部にチューブ内 を横断する方向に延びる接合部 3 1 2を有する構造では、 チューブ 3 1 1の高い 強度を確保することが可能であるが、 図 2 7に示したような、 チューブ 3 0 1の 幅方向中央部に何ら突き合わせ部等をもたない構造では、 コア部本体をろう付け する際の、 コア部本体とろう付け用治具 (コア部のアセンブリを仮固定する治 具) との熱膨張率の差に起因する締め付け力がコア部に加わり、 チューブがつぶ れたり、 ろう付け不良箇所 (洩れ発生箇所) 等を生じたりするおそれがある。  Furthermore, as shown in Fig. 28, the structure with a joint 312 extending in the direction transverse to the inside of the tube at the center of the tube 311 in the width direction ensures high strength of the tube 311. However, in the structure shown in Fig. 27 where there is no abutting part at the center of the tube 301 in the width direction, the core part when brazing the core part body is used. Tightening force due to the difference in the coefficient of thermal expansion between the main body and the brazing jig (a jig for temporarily fixing the core assembly) is applied to the core, causing the tube to be crushed or the brazing failure to occur. Location) may occur.
発 明 の 開 示  Disclosure of the invention
そこで本発明の目的は、 熱交換器用チューブにおける接合箇所の接合強度が十 分に高く、 十分に高い耐圧性を確保することが可能で、 チューブの内寸等の変更 にも容易にかつ正確に対応でき、 かつ、 ろう付けの際にも必要部位にフラックス を十分に付与可能で、 しかも、 容易にチューブの幅方向中央部の補強構造を採る ことが可能な、 熱交換器用チューブおよびその製造方法を提供することにある。 上記目的を達成するために、 本発明の熱交換器用チューブは、 互いに対向し、 間に熱交換媒体用流路を形成する 2つの平板部と、 少なく とも一方の平板部の少 なく とも一方の幅方向端部に、 該端部を折り返すことにより形成され、 該端部を 形成する板の厚さの整数倍の厚さの折り返し部とを有し、 該折り返し部と他方の 平板部の対応する幅方向端部とが互いに接合されていることを特徴とするものか らなる。  Therefore, an object of the present invention is to provide a heat exchanger tube having a sufficiently high joining strength at a joining portion, ensuring a sufficiently high pressure resistance, and easily and accurately changing the inner dimensions of the tube. A tube for a heat exchanger and a method of manufacturing the same, which can respond sufficiently, can sufficiently apply a flux to a necessary portion even at the time of brazing, and can easily adopt a reinforcing structure at a central portion in a width direction of the tube. Is to provide. In order to achieve the above object, a heat exchanger tube according to the present invention includes two flat plates facing each other and forming a flow path for a heat exchange medium therebetween, and at least one flat plate of at least one flat plate. A width direction end portion formed by folding the end portion, and a folded portion having a thickness of an integral multiple of the thickness of the plate forming the end portion, wherein the folded portion corresponds to the other flat plate portion And the widthwise ends thereof are joined to each other.
この熱交換器用チューブにおいては、 上記 2つの平板部の一方の幅方向端部に おいて両平板部を一体的に接続する曲げ加工部を有し、 折り返し部が、 両平板部 の他方の幅方向端部にそれぞれ形成され、 該折り返し部同士が互いに接合されて いる構成とすることができる。 あるいは、 上記折り返し部が、 2つの平板部の両 6 This heat exchanger tube has a bent portion integrally connecting the two flat portions at one widthwise end of the two flat portions, and the folded portion has the other width of the two flat portions. The folded portions may be formed at the end portions in the direction, and the folded portions may be joined to each other. Or, the above-mentioned folded portion is 6
3  Three
幅方向端部にそれぞれ形成され、 対応する折り返し部同士が互いに接合されてい る構成とすることもできる。 It is also possible to adopt a configuration in which the respective folded portions are formed at the width direction ends and the corresponding folded portions are joined to each other.
折り返し部は、 少なく とも一方の平板部の少なく とも一方の幅方向端部を 1回 折り返すことにより形成された構成とすることも可能であり、 少なく とも一方の 平板部の少なく とも一方の幅方向端部を複数回折り返すことにより形成された構 成とすることも可能である。 折り返し部が複数回折り返すことにより形成する場 合には、 その最初の折り返し片部が平板部のチューブ内面に面接触し、 後続の折 り返し片部がその前の折り返し片部に面接触するように折り返される。 このよう な折り返し部は、 たとえばプレス加工により形成できる。  The folded portion may be formed by folding at least one width direction end of at least one flat plate portion at least once, and at least one width direction of at least one flat plate portion may be formed. It is also possible to adopt a configuration formed by bending the end multiple times. When the folded part is formed by bending multiple times, the first folded part makes surface contact with the inner surface of the flat tube, and the subsequent folded part makes surface contact with the previous folded part. Wrapped. Such a folded portion can be formed by, for example, press working.
また、 一方の平板部の幅方向中央部に、 該一方の平板部自身の折り曲げ加工に よって、 他方の平板部に向かって実質的に他方の平板部に当接する位置まで突出 する突き合わせ部が形成されている構造とすることもできる。 また、 上記折り返 し部は、 他方の平板部の対応する端部にろう付けによって接合することができる。 このような熱交換器用チューブには、 さらに次のような構成を付加してもよい。 たとえば、 前記平板部間にインナ一フィ ンが設けられている構造とすることがで き o  In addition, an abutting portion is formed at the center in the width direction of one of the flat portions so as to protrude toward the other flat portion to a position substantially in contact with the other flat portion by bending the one flat portion itself. The structure can also be used. The folded portion can be joined to the corresponding end of the other flat plate by brazing. The following configuration may be further added to such a heat exchanger tube. For example, a structure in which an inner fin is provided between the flat plate portions can be adopted.o
また、 前記平板部の少なく とも一方に、 チューブ内方に向かって突出する複数 の突出部が設けられ、 互いに対向する突出部同士が、 または突出部と該突出部が 設けられた平板部に対向する平板部の内面とが、 互いに突き合わされている構造 とすることができる。 また、 前記平板部は、 その幅方向の略中央部が頂点となる ようにチューブ外方に向けて膨出するように形成し、 チューブの耐圧性を向上す る構造とすることもできる。  Also, at least one of the flat portions is provided with a plurality of protrusions protruding inward of the tube, and the protrusions facing each other or the protrusions and the plate portion provided with the protrusions are opposed to each other. The inner surface of the flat plate portion can be configured to abut against each other. Further, the flat plate portion may be formed so as to bulge outward from the tube so that a substantially central portion in a width direction thereof becomes a vertex, so that a structure for improving the pressure resistance of the tube can be adopted.
さらに、 前記平板部の各対向面上に、 互いに交差する方向に延びる溝が設けら れている構造とすることができる。  Further, a structure may be provided in which grooves extending in directions intersecting with each other are provided on each opposing surface of the flat plate portion.
本発明に係る熱交換器は、 上記のような熱交換器用チューブの構造を有するも のである。 熱交換器のタイプはとくに限定されず、 たとえば、 チューブとフィ ン とを交互に配置したタイプの熱交換器に本発明を適用できる。  A heat exchanger according to the present invention has a structure of a tube for a heat exchanger as described above. The type of the heat exchanger is not particularly limited. For example, the present invention can be applied to a heat exchanger of a type in which tubes and fins are alternately arranged.
また、 本発明に係る熱交換器用チューブの製造方法は、 ( a ) 所定幅を有する 1枚の平板の幅方向の少なく とも一端部に、 該端部を折り返すことにより該端部 を形成する板の厚さの整数倍の厚さの折り返し部を形成し、 (b ) 該平板の幅方 向中央部を前記折り返し部が内側となるように曲げ加工して、 間に熱交換媒体用 流路を形成する 2つの平板部を形成し、 ( c ) 少なく とも一方の平板部の端部に 形成された前記折り返し部を、 他方の平板部の対応する端部に接合することを特 徵とする方法からなる。 In addition, the method for producing a heat exchanger tube according to the present invention includes: (a) folding one end of the flat plate having a predetermined width to at least one end in the width direction; (B) bending the central portion in the width direction of the flat plate so that the folded portion is on the inner side, and heat exchange between (C) joining at least one of the folded portions formed at the end of one of the flat portions to the corresponding end of the other flat portion; It consists of a special method.
さらに、 本発明に係る熱交換器用チューブの製造方法は、 ( a ) それぞれ所定 幅を有する 2枚の平板のうち少なく とも一方の平板の幅方向両端部に、 各端部を それぞれ折り返すことにより各端部を形成する板の厚さの整数倍の厚さの折り返 し部を形成し、 (b ) 幅方向両端部に折り返し部が形成された平板の折り返し部 と、 他方の平板の対応する端部とを互いに接合することを特徴とする方法からな る  Further, the method for manufacturing a tube for a heat exchanger according to the present invention includes the steps of: (a) folding each end to at least both ends in the width direction of at least one of two flat plates each having a predetermined width; A folded portion having an integral multiple of the thickness of the plate forming the end portion is formed. (B) The folded portion of the flat plate having the folded portions formed at both ends in the width direction corresponds to the other flat plate. The method is characterized by joining the ends with each other
このような製造方法においても、 折り返し部は、 平板の幅方向端部を、 1回折 り返すことにより形成することもできるし、 複数回折り返すことにより形成する こともできる。 折り返し部を複数回折り返すことにより形成する場合には、 その 最初の折り返し片部が平板に面接触し、 後続の折り返し片部がその前の折り返し 片部に面接触するように折り返す。 このような折り返し部は、 たとえばプレス加 ェにより形成する。  Also in such a manufacturing method, the folded portion can be formed by turning the width direction end of the flat plate once, or can be formed by turning a plurality of times. When the folded portion is formed by folding a plurality of times, the first folded portion is brought into surface contact with the flat plate, and the subsequent folded portion is brought into surface contact with the preceding folded portion. Such a folded portion is formed by, for example, press processing.
また、 折り返し部の形成の前または後に、 チューブを形成する 2つの平板部の 一方に、 該一方の平板部自身を折り曲げ加工することにより、 他方の平板部に向 かって実質的に他方の平板部に当接する位置まで突出する突き合わせ部を形成す ることができる。 さらに、 折り返し部を、 該折り返し部に対向する平板部の対応 する端部にろう付けによって接合することができる。  Also, before or after formation of the folded portion, one of the two flat portions forming the tube is bent into one of the two flat portions so that the other flat portion is substantially directed toward the other flat portion. Butts can be formed to protrude to a position where they come into contact. Further, the folded portion can be joined to a corresponding end of the flat plate portion facing the folded portion by brazing.
また、 この製造方法においても、 前記チューブ形成用平板間にインナ一フィ ン を介装するステップを加えることができる。 また、 前記平板に、 チューブ形成の 際にチューブ内方に向かって突出する複数の突出部を形成するようにしてもよレ、。 さらに、 チューブ形成の際に互いに対向する面となる前記各平板部の面上に、 チ ュ一ブ形成時に互いに交差する方向に延びる溝を刻設するようにしてもよい。 上記のような熱交換器用チューブおよびその製造方法においては、 少なく とも 一方の平板部の幅方向端部に形成される折り返し部は、 たとえばプレス加工によ つて成形可能である。 したがって、 加工費が安く、 先に所定寸法の幅に切断した ものをプレス加工するので、 加工不良等が発生せず、 修正加工も不要である。 そ の結果、 製造コストが大幅に低減される。 Also, in this manufacturing method, a step of interposing an inner fin between the flat plates for forming a tube can be added. Further, a plurality of protruding portions protruding inward of the tube when forming the tube may be formed on the flat plate. Further, grooves extending in directions intersecting with each other at the time of forming the tubes may be formed on the surfaces of the respective flat plate portions which are surfaces facing each other when the tubes are formed. In the above-described heat exchanger tube and the method of manufacturing the same, at least the folded portion formed at the widthwise end of the flat plate portion is formed by, for example, pressing. Can be molded. Therefore, the processing cost is low, and the pre-cut piece having a width of a predetermined dimension is pressed, so that processing defects do not occur and no correction processing is required. As a result, manufacturing costs are significantly reduced.
また、 従来のように先端同士を突き合わせて接合するのではなく、 折り返し部 を、 对応する他方の平板部の幅方向端部 (この部分も折り返し部に形成されてい てもよい) に面接触状態にて接合できるので、 十分に広い接合面積となり、 高い 接合強度が確保され、 高い耐圧性を実現できる。 そして、 折り返し部は、 平板の 幅方向端部を形成する板の厚さの整数倍の厚さになるように、 折り返し片部が面 接触状態で重ねられるように 1回または複数回折り返されて形成されるので、 折 り返し部自身の高い強度が確保されるとともに、 上記の如く面接触状態での接合 面により高い接合強度が確保され、 チューブ全体として高い耐圧性を実現できる。 さらに、 折り返し部の厚さはチューブ内の流路の高さに相当するが、 この折り 返し部における折り返し回数によって、 折り返し部の厚さを規定できる。 すなわ ち、 折り返し部の厚さ、 とくにチューブの内寸決定に寄与する折り返し部の厚さ は、 折り返し回数、 つまり、 折り返し片部の積層数によって決めることができ、 設計の自由度が大幅に増大する。 複数回折り返される場合、 あるいは折り返し部 同士が接合される場合には、 この厚さは、 折り返し片部同士、 および、 最初の折 り返し片とその平板部のチューブ内面形成面とが、 それぞれ面接触されることに より、 正確に、 折り返し片の厚み X折り返し片の数に相当する寸法に決められる。 したがって、 形成されるチューブの内寸も、 目標とする寸法に正確に決められる ことになり、 高精度のチューブが得られる。  Also, instead of joining the ends by abutting each other as in the conventional case, the folded portion is brought into surface contact with the corresponding widthwise end portion of the other flat plate portion (this portion may also be formed in the folded portion). Since bonding can be performed in a state, the bonding area is sufficiently large, high bonding strength is secured, and high pressure resistance can be realized. The folded portion is turned one or more times so that the folded pieces are overlapped in a face-to-face contact state so as to have an integral multiple of the thickness of the plate forming the width direction end of the flat plate. Since it is formed, the high strength of the folded portion itself is ensured, and the high bonding strength is ensured by the bonding surface in the surface contact state as described above, and the high pressure resistance of the entire tube can be realized. Further, the thickness of the folded portion corresponds to the height of the flow path in the tube, and the thickness of the folded portion can be defined by the number of times of folding in the folded portion. In other words, the thickness of the folded portion, especially the thickness of the folded portion that contributes to the determination of the inner dimensions of the tube, can be determined by the number of times of folding, that is, the number of stacked folded pieces, greatly increasing the degree of freedom in design. Increase. When multiple turns are made or when folded parts are joined together, the thickness is determined by the thickness of the folded pieces, and the first folded piece and the tube inner surface forming surface of the flat plate part. By the contact, the dimensions are exactly determined by the thickness of the folded piece X the number of folded pieces. Therefore, the inner dimensions of the tube to be formed are also accurately determined to the target dimensions, and a highly accurate tube can be obtained.
また、 突き合わせ部を設ける場合にも、 該突き合わせ部は平板部自身を折り曲 げ加工することによって形成できるので、 チューブの幅方向中央部にはろう付け 等を要求する部位は発生せず、 フラックスの塗布不足、 それに起因するろう付け 不良、 さらには洩れに対する不良箇所等が発生するおそれを除去できる。  Also, when the butted portion is provided, the butted portion can be formed by bending the flat plate portion itself, so that no portion requiring brazing or the like is generated at the center in the width direction of the tube, and the flux is not generated. It is possible to eliminate the possibility of insufficient application of the coating, poor brazing resulting therefrom, and the occurrence of defective spots due to leakage.
突き合わせ部を設ければ、 上記のような効果を保ちつつ、 さらに、 チューブを その幅方向中央部において補強できるので、 コア部等をろう付けする際に、 チュ ーブの変形や、 コア部とろう付け用治具との熱膨張率の差に起因するろう付け不 良、 洩れ不良箇所等の発生を防止することが可能となる。 図 面 の 簡 単 な 説 明 If the butted portion is provided, the tube can be reinforced at the center in the width direction while maintaining the above-mentioned effects, and when the core portion is brazed, the tube may be deformed and the core portion may be deformed. This makes it possible to prevent the occurrence of defective brazing or defective leakage due to the difference in the coefficient of thermal expansion from the brazing jig. Brief explanation of drawings
図 1は、 本発明の一実施態様に係る熱交換器の正面図である。  FIG. 1 is a front view of a heat exchanger according to one embodiment of the present invention.
図 2は、 本発明の一実施態様に係る熱交換器用チューブの部分斜視図である。 図 3は、 本発明の別の実施態様に係る熱交換器用チューブの部分斜視図である。 図 4は、 本発明のさらに別の実施態様に係る熱交換器用チューブの部分斜視図 である。  FIG. 2 is a partial perspective view of the heat exchanger tube according to one embodiment of the present invention. FIG. 3 is a partial perspective view of a tube for a heat exchanger according to another embodiment of the present invention. FIG. 4 is a partial perspective view of a tube for a heat exchanger according to still another embodiment of the present invention.
図 5は、 本発明のさらに別の実施態様に係る熱交換器用チューブの部分斜視図 である。  FIG. 5 is a partial perspective view of a heat exchanger tube according to still another embodiment of the present invention.
図 6は、 図 2の熱交換器用チューブの製造方法を示す工程フロー図である。 図 7は、 図 3の熱交換器用チューブの製造方法を示す工程フロー図である。 図 8は、 図 4の熱交換器用チューブの製造方法を示す工程フロー図である。 図 9は、 図 5の熱交換器用チューブの製造方法を示す工程プロ一図である。 図 1 0は、 本発明のさらに別の実施態様に係る各熱交換器用チューブの部分斜 視図である。  FIG. 6 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG. FIG. 7 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG. FIG. 8 is a process flow chart showing a method of manufacturing the heat exchanger tube of FIG. FIG. 9 is a process diagram showing a method of manufacturing the heat exchanger tube of FIG. FIG. 10 is a partial perspective view of each heat exchanger tube according to still another embodiment of the present invention.
図 1 1は、 本発明のさらに別の実施態様に係る熱交換器用チューブの部分斜視 図である。  FIG. 11 is a partial perspective view of a heat exchanger tube according to still another embodiment of the present invention.
図 1 2は、 本発明のさらに別の実施態様に係る各熱交換器用チューブの部分斜 視図である。  FIG. 12 is a partial perspective view of each heat exchanger tube according to still another embodiment of the present invention.
図 1 3は、 本発明のさらに別の実施態様に係る熱交換器用チューブの部分斜視 図である。  FIG. 13 is a partial perspective view of a heat exchanger tube according to still another embodiment of the present invention.
図 1 4は、 図 1 0 Aの熱交換器用チューブの製造方法を示す工程フロー図であ る ο  FIG. 14 is a process flow chart showing a method of manufacturing the heat exchanger tube of FIG. 10A.
図 1 5は、 図 1 1の熱交換器用チューブの製造方法を示す工程フ D—図である。 図 1 6は、 図 1 2 Aの熱交換器用チューブの製造方法を示す工程フロー図であ る。  FIG. 15 is a process diagram D—showing a method of manufacturing the heat exchanger tube of FIG. 11; FIG. 16 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG. 12A.
図 1 7は、 図 1 3の熱交換器用チューブの製造方法を示す工程フロー図である。 図 1 8は、 図 2に示した熱交換器用チューブの変形例を示すチューブの部分斜 視図である。  FIG. 17 is a process flow chart showing a method for manufacturing the heat exchanger tube of FIG. FIG. 18 is a partial perspective view of a tube showing a modification of the heat exchanger tube shown in FIG.
図 1 9は、 図 1 0 Aに示した熱交換器用チューブの変形例を示すチューブの部 分斜視図である。 Fig. 19 is a tube section showing a modification of the heat exchanger tube shown in Fig. 10A. FIG.
図 2 0 Aは、 図 2に示した熱交換器用チューブの別の変形例を示すチューブの 部分斜視図であり、 図 2 0 Bは、 図 2 0 Aのチューブの X X B— X X B線に沿う 断面図である。  FIG. 20A is a partial perspective view of a tube showing another modification of the heat exchanger tube shown in FIG. 2, and FIG. 20B is a cross-sectional view of the tube of FIG. 20A taken along line XXB—XXB. FIG.
図 2 1 Aは、 図 1 0 Aに示した熱交換器用チューブの別の変形例を示すチュー ブの部分斜視図であり、 図 2 1 Bは、 図 2 1 Aのチューブの X X I B - X X I B 線に沿う断面図である。  FIG. 21A is a partial perspective view of a tube showing another modification of the heat exchanger tube shown in FIG. 10A, and FIG. 21B is a line XXIB-XXIB of the tube of FIG. 21A. FIG.
図 2 2 Aは、 図 2に示した熱交換器用チューブのさらに別の変形例を示すチュ —ブの部分斜視図であり、 図 2 2 Bは、 図 2 2 Aのチューブの拡大正面図である。 図 2 3 Aは、 図 1 0 Aに示した熱交換器用チューブのさらに別の変形例を示す チューブの部分斜視図であり、 図 2 3 Bは、 図 2 3 Aのチューブの拡大正面図で める。  FIG. 22A is a partial perspective view of a tube showing still another modification of the heat exchanger tube shown in FIG. 2, and FIG. 22B is an enlarged front view of the tube of FIG. 22A. is there. FIG. 23A is a partial perspective view of a tube showing still another modification of the heat exchanger tube shown in FIG. 10A, and FIG. 23B is an enlarged front view of the tube of FIG. 23A. Confuse.
図 2 4は、 図 2 2 Aまたは図 2 3 Aに示したにチューブのチューブ加工前の平 板状素材の部分平面図である。  FIG. 24 is a partial plan view of the flat material before tube processing shown in FIG. 22A or FIG. 23A.
図 2 5は、 図 2に示した熱交換器用チューブのさらに別の変形例を示すチュー ブの断面図である。  FIG. 25 is a sectional view of a tube showing still another modified example of the heat exchanger tube shown in FIG.
図 2 6は、 図 1 0 Aに示した熱交換器用チューブのさらに別の変形例を示すチ ュ一ブの断面図である。  FIG. 26 is a sectional view of a tube showing still another modified example of the heat exchanger tube shown in FIG. 10A.
図 2 7は、 従来の熱交換器用チューブの部分斜視図である。  FIG. 27 is a partial perspective view of a conventional heat exchanger tube.
図 2 8は、 従来の別の熱交換器用チューブの部分斜視図である。  FIG. 28 is a partial perspective view of another conventional heat exchanger tube.
発明 を実施す る た め の 最良 の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の望ましい実施の形態を、 図面を参照して説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の一実施態様に係る熱交換器 1を示している。 熱交換器 1は、 入出口側の 2つのタンク部 2、 3と、 タンク部 2、 3間に設けられ両タンク部 2、 3を連通する、 内部に熱交換媒体流通用の流路を有する複数の熱交換チューブ 4 と、 コルゲートフィ ン 5とを有しており、 熱交換チューブ 4 とフィ ン 5とが交互 に配置されている。 本実施態様では、 熱交換チューブ 4 とフィ ン 5とを有するコ ァ部 6の最外層には、 サイ ドプレート 7、 8が設けられている。 また、 一方のサ イ ドプレート 8の外面側および一方のタンク部 2の側面には、 熱交換器 1取付用 のブラケッ ト 9、 1 0が接合されている。 タンク部 2、 3には、 それぞれ、 配管 あるいは他の機器を接続するためのフイ ツティ ング 1 1、 1 2が設けられている。 このような熱交換器 1の熱交換チューブ 4は、 たとえば図 2〜図 5あるいは図 1 0〜図 1 3に示すように構成される (熱交換チューブ 2 1、 3 1、 4 1、 5 1、 1 2 1 a、 1 2 1 b、 1 2 1 c、 1 3 1、 1 4 1 a、 1 4 1 b、 1 4 1 c、 1 5FIG. 1 shows a heat exchanger 1 according to one embodiment of the present invention. The heat exchanger 1 has two tank sections 2 and 3 on the inlet and outlet sides, and is provided between the tank sections 2 and 3 and communicates with both tank sections 2 and 3. It has a plurality of heat exchange tubes 4 and corrugated fins 5, and the heat exchange tubes 4 and the fins 5 are arranged alternately. In the present embodiment, side plates 7 and 8 are provided on the outermost layer of the core 6 having the heat exchange tubes 4 and the fins 5. Also, the outer surface of one side plate 8 and the side surface of one tank 2 Brackets 9 and 10 are joined. The tanks 2 and 3 are provided with fittings 11 and 12 for connecting pipes or other devices, respectively. The heat exchange tube 4 of such a heat exchanger 1 is configured, for example, as shown in FIGS. 2 to 5 or FIGS. 10 to 13 (heat exchange tubes 21, 31, 41, 51). , 1 2 1 a, 1 2 1 b, 1 2 1 c, 1 3 1, 1 4 1 a, 1 4 1 b, 1 4 1 c, 1 5
1 ) o 1) o
図 2に示す態様の熱交換チューブ 2 1は、 間隔をもって互いに対向し、 間に熱 交換媒体用流路 2 2を形成する 2つの平板部 2 3 a、 2 3 bと、 両平板部 2 3 a、 The heat exchange tubes 21 of the embodiment shown in FIG. 2 are opposed to each other at intervals and form two heat exchange medium flow paths 22 between them, and two flat plate portions 23 a and 23 b, and both flat plate portions 23 a,
2 3 bの一方の幅方向端部において両平板部 2 3 a、 2 3 bを一体的に接続する 曲げ加工部 2 4 と、 両平板部 2 3 a、 2 3 bの他方の幅方向端部に形成された折 り返し部 2 5 a、 2 5 bとを有している。 折り返し部 2 5 a、 2 5 bは、 両平板 部 2 3 a、 2 3 bの各端部をそれぞれ折り返すように曲げ加工することによって 形成されている。 各折り返し部 2 5 a、 2 5 bは、 該折り返し部 2 5 a、 2 5 b の内面側と平板部 2 3 a、 2 3 bのチューブ内面側とが互いに面接触し、 かつ、 対向する折り返し部 2 5 a、 2 5 bの外面が互いに平行に延びる面に形成される ように折り返されている。 このような折り返し部 2 5 a、 2 5 bは、 プレス加工 により形成されている。 両折り返し部 2 5 a、 2 5 b同士は、 折り返しの互いに 平行に延びる外面側 (対向面側) において、 互いにろう付けによって接合されて いる (接合部 2 6 ) 。 A bent portion 24 that integrally connects both flat portions 23a and 23b at one widthwise end of 23b and the other widthwise end of both flat portions 23a and 23b It has folded portions 25a and 25b formed in the portions. The folded portions 25a and 25b are formed by bending each flat plate portion 23a and 23b so that each end is folded. In the folded portions 25a and 25b, the inner surface side of the folded portions 25a and 25b and the tube inner surface side of the flat plate portions 23a and 23b are in surface contact with each other and face each other. The folded portions 25a and 25b are folded so that the outer surfaces thereof are formed on surfaces extending parallel to each other. Such folded portions 25a and 25b are formed by press working. The two folded portions 25a and 25b are joined to each other on the outer surface side (opposed surface side) extending parallel to each other by brazing (joining portion 26).
図 3に示す態様の熱交換チューブ 3 1は、 上記熱交換チューブ 2 1同様の、 熱 交換媒体用流路 3 2を形成する 2つの平板部 3 3 a、 3 3 bと、 両平板部 3 3 a、 The heat exchange tube 31 of the embodiment shown in FIG. 3 includes two flat plate portions 3 3 a and 3 3 b forming a heat exchange medium flow path 32, similar to the above heat exchange tube 21, and both flat plate portions 3. 3a,
3 3 bを一体的に接続する曲げ加工部 3 4 と、 両平板部 3 3 a、 3 3 bの幅方向 一端部に形成された折り返し部 3 5 a、 3 5 bとを有し、 両折り返し部 3 5 a、 3 5 b同士が折り返しの外面側において互いにろう付けによって接合されている (接合部 3 6 ) 。 そして、 本実施態様では、 一方の平板部 3 3 bの幅方向中央部 に、 平板部 3 3 b自身を折り曲げ加工することによって、 他方の平板部 3 3 aに 向かって実質的に平板部 3 3 aの内面に当接する位置まで突出する突き合わせ部 3 7が形成されている。 この突き合わせ部 3 7の先端面は、 平板部 3 3 aの内面 に接合されていてもよく、 単に当接しているだけでもよい。 図 4に示す態様の熱交換チューブ 4 1は、 間隔をもって互いに対向し、 間に熱 交換媒体用流路 4 2を形成する 2つの平板部 4 3 a、 4 3 bと、 両平板部 4 3 a、 4 3 bの両幅方向端部において各端部をそれぞれ折り返すように曲げ加工された 折り返し部 4 4 a、 4 4 bおよび 4 5 a、 4 5 bとを有し、 対応する折り返し部 同士 4 4 aと 4 5 aおよび 4 4 bと 4 5 bが、 折り返しの外面側において互いに ろう付けによって接合されている (接合部 4 6 a、 4 6 b) 。 It has a bent portion 3 4 for integrally connecting 33 b and a folded portion 35 a, 35 b formed at one end in the width direction of both flat portions 33 a, 33 b. The folded portions 35a and 35b are joined to each other on the outer surface side of the folded portion by brazing (joining portion 36). In the present embodiment, the flat plate portion 33 b is bent at the center in the width direction of the one flat plate portion 33 b so that the flat plate portion 33 b is substantially bent toward the other flat plate portion 33 a. A butting portion 37 is formed to protrude to a position where it contacts the inner surface of 3a. The tip end surface of the butted portion 37 may be joined to the inner surface of the flat plate portion 33a, or may simply be in contact. The heat exchange tubes 41 of the embodiment shown in FIG. 4 are opposed to each other at intervals and form two heat exchange medium flow paths 42 between them, and two flat plate portions 4 3 a and 4 3 b, and both flat plate portions 4 3 a, 43b, at both ends in the width direction, each of which has a folded portion 44a, 44b and 45a, 45b which are bent so as to be folded, and the corresponding folded portion. The pieces 44a and 45a and the pieces 44b and 45b are joined to each other on the outer surface side of the turn by brazing (joints 46a and 46b).
図 5に示す態様の熱交換チューブ 5 1は、 図 4に示したと同様の、 熱交換媒体 用流路 5 2を形成する 2つの平板部 5 3 a、 5 3 bと、 両平板部 5 3 a、 5 3 b の各端部に形成された折り返し部 5 4 a、 5 4 bおよび 5 5 a、 5 5 bとを有し、 対応する折り返し部同士 5 4 aと 5 5 aおよび 5 4 bと 5 5わが、 折り返しの外 面側において互いにろう付けによって接合されている (接合部 5 6 a、 5 6 b) 。 そして、 本実施態様では、 一方の平板部 5 3 bの幅方向中央部に、 平板部 5 3 b 自身を折り曲げ加工することによって、 他方の平板部 5 3 aに向かって実質的に 平板部 5 3 aの内面に当接する位置まで突出する突き合わせ部 5 7が形成されて いる。 この突き合わせ部 5 7の先端面は、 平板部 5 3 aの内面に接合されていて もよく、 単に当接しているだけでもよい。  The heat exchange tube 51 of the embodiment shown in FIG. 5 includes two flat plate portions 53 a and 53 b forming a heat exchange medium flow path 52 similar to that shown in FIG. a, 53b, each having a folded portion 54a, 54b, 55a, 55b, and corresponding folded portions 54a, 55a, and 54. b and 55 are joined to each other on the outer side of the turn by brazing (joints 56a and 56b). In the present embodiment, the flat plate portion 53 b is bent at the center in the width direction of the one flat plate portion 53 b so that the flat plate portion 53 b is substantially flattened toward the other flat plate portion 53 a. A butted portion 57 is formed to protrude to a position where it abuts the inner surface of 3a. The tip end surface of the butted portion 57 may be joined to the inner surface of the flat plate portion 53a, or may be merely in contact.
図 2ないし図 5に示した熱交換チューブ 2 1、 3 1、 4 1、 5 1は、 それぞれ、 図 6ないし図 9に示すような方法によって製造される。  The heat exchange tubes 21, 31, 41, 51 shown in FIGS. 2 to 5 are manufactured by the method shown in FIGS. 6 to 9, respectively.
図 6は、 図 2に示した熱交換チューブ 2 1を製造する方法を示している。 まず、 チューブ形成用素材としての広幅の平板 6 1から、 適当なカッター装置 6 2等に よる切断により、 所定幅を有する平板 6 3を形成する。 次に、 所定幅を有する 1 枚の平板 6 3の幅方向両端部を、 同じ面側 (図 6における上面側) に折り返すよ うに曲げ加工し、 該両端部に折り返し部 2 5 a、 2 5 bを形成する。  FIG. 6 shows a method of manufacturing the heat exchange tube 21 shown in FIG. First, a flat plate 63 having a predetermined width is formed from a wide flat plate 61 as a tube forming material by cutting using a suitable cutter device 62 or the like. Next, both ends in the width direction of one flat plate 63 having a predetermined width are bent so as to be folded toward the same surface (the upper surface side in FIG. 6), and the folded portions 25 a and 25 are provided at the both ends. Form b.
次に、 この平板 6 3の幅方向中央部を上記面側 (図 6の上面側) に曲げ加工し て、 曲げ加工部 2 4を形成して、 間隔をもって互いに対向し、 間に熱交換媒体用 流路 2 2を形成する 2つの平板部 2 3 a, 2 3 bを形成する。 そして、 折り返し 部 2 5 a、 2 5 b同士を折り返しの外面側において互いに接合する (接合部 2 6 ) ことによって、 図 2に示した熱交換チューブ 2 1が完成する。  Next, the central part in the width direction of the flat plate 63 is bent toward the above-mentioned surface (the upper surface side in FIG. 6) to form a bent part 24, which faces each other at intervals and has a heat exchange medium between them. The two flat portions 23 a and 23 b forming the flow path 22 are formed. Then, the heat exchange tubes 21 shown in FIG. 2 are completed by joining the folded portions 25a and 25b to each other on the outer surface side of the folded portions (joined portions 26).
図 7は、 図 3に示した熱交換チューブ 3 1の製造方法を示している。 まず、 素 材としての広幅の平板 6 1から、 カツター装置 6 2等による切断により、 図 6に 示したよりも若干大きい所定幅を有する平板 7 1を形成する。 次に、 この 1枚の 平板 7 1の所定位置に、 突き合わせ部 3 7を折り曲げ加工によって形成する。 そ して、 この平板 7 1の幅方向両端部を、 突き合わせ部 3 7と同じ面側に折り返す ように曲げ加工し、 両端部に折り返し部 3 5 a、 3 5 bを形成する。 次に、 この 平板 7 1の幅方向中央部を突き合わせ部 3 7と同じ面側に曲げ加工し、 曲げ加工 部 3 4を形成して、 間隔をもって互いに対向し、 間に熱交換媒体用流路 3 2を形 成する 2つの平板部 3 3 a、 3 3 bを形成する。 そして、 折り返し部 3 5 a、 3 5 b同士を折り返しの外面側において互いに接合する (接合部 3 6 ) ことによつ て、 図 3に示した熱交換チューブ 3 1が完成する。 FIG. 7 shows a method of manufacturing the heat exchange tube 31 shown in FIG. First, A flat plate 71 having a predetermined width slightly larger than that shown in FIG. 6 is formed from the wide flat plate 61 as a material by cutting with a cutter device 62 or the like. Next, a butt portion 37 is formed at a predetermined position of the single flat plate 71 by bending. Then, both ends in the width direction of the flat plate 71 are bent so as to be folded on the same surface side as the butted portion 37, and folded portions 35a and 35b are formed at both ends. Next, the center of the flat plate 71 in the width direction is bent on the same surface side as the butted portion 37 to form a bent portion 34, which faces each other at intervals and has a heat exchange medium flow path therebetween. The two flat portions 33a and 33b that form 32 are formed. The heat exchange tube 31 shown in FIG. 3 is completed by joining the folded portions 35a and 35b to each other on the outer surface side of the folded portion (joined portion 36).
図 8は、 図 4に示した熱交換チューブ 4 1の製造方法を示している。 まず、 素 材としての広幅の平板 6 1から、 カッター装置 6 2等による切断により、 同じ幅 の 2枚の平板 8 1 a、 8 1 bを形成する。 次に、 この 2枚の平板 8 1 a、 8 1 b の両端部に、 それぞれ、 折り返し部 4 4 a、 4 4 bおよび折り返し部 4 5 a、 4 5 bを曲げ加工によって形成する。 両平板 8 1 a、 8 1 bを、 両平板部 4 3 a、 FIG. 8 shows a method of manufacturing the heat exchange tube 41 shown in FIG. First, two flat plates 81a and 81b having the same width are formed from a wide flat plate 61 as a raw material by cutting with a cutter device 62 or the like. Next, folded portions 44a and 44b and folded portions 45a and 45b are formed at both ends of the two flat plates 81a and 81b by bending. Both flat plates 8 1a, 8 1b, both flat plate parts 4 3a,
4 3 bとして、 対応する折り返し部 4 4 aと 4 5 aおよび折り返し部 4 4 bと 4As 4 3 b, the corresponding folded portions 4 4 a and 4 5 a and the folded portions 4 4 b and 4
5 bが互いに対向するように位置決めし、 各対応する折り返し部 4 4 aと 4 5 a および折り返し部 4 4 bと 4 5 bとを、 折り返しの外面側において互いに接合す る (接合部 4 6 a、 4 6 b ) ことによって、 図 4に示した、 内部に熱交換媒体用 流路 4 2を持つ熱交換チューブ 4 1が完成する。 5b are positioned so as to face each other, and the corresponding folded portions 44a and 45a and the folded portions 44b and 45b are joined to each other on the outer surface side of the folded portion (joining portion 46). a, 46 b) As a result, the heat exchange tube 41 having the heat exchange medium flow path 42 therein as shown in FIG. 4 is completed.
図 9は、 図 5に示した熱交換チューブ 5 1の製造方法を示している。 まず、 素 材としての広幅の平板 6 1から、 カツター装置 6 2による切断により、 異なる幅 の 2枚の平板 9 1 a、 9 1 bを形成する。 次に、 より幅の広い平板 9 1 bの幅方 向中央部に、 折り曲げ加工によって突き合わせ部 5 7を形成する。 両平板 9 1 a、 9 1 bの両端部に、 それぞれ、 折り返し部 5 4 a、 5 4 bおよび折り返し部 5 5 a、 5 5 bを曲げ加工によって形成する。 両平板 9 1 a、 9 1 bを両平板部 5 3 a、 5 3 bとして、 対応する折り返し部 5 4 aと 5 5 aおよび折り返し部 5 4 b と 5 5 bが互いに対向するように位置決めし、 各対応する折り返し部 5 4 aと 5 5 aおよび折り返し部 5 4 bと 5 5 bとを、 折り返しの外面側において互いに接 合する (接合部 5 6 a、 5 6 b ) ことによって、 図 5に示した、 内部に熱交換媒 体用流路 5 2を持つ熱交換チューブ 5 1が完成する。 FIG. 9 shows a method of manufacturing the heat exchange tube 51 shown in FIG. First, two flat plates 91a and 91b having different widths are formed from a wide flat plate 61 as a material by cutting with a cutter device 62. Next, an abutting portion 57 is formed by bending at the center in the width direction of the wider flat plate 91b. The folded portions 54a and 54b and the folded portions 55a and 55b are formed at both ends of both flat plates 91a and 91b by bending. The two flat plates 91a and 91b are used as the two flat plate portions 53a and 53b, and the corresponding folded portions 54a and 55a and the folded portions 54b and 55b are positioned so as to face each other. The corresponding folded portions 54a and 55a and the folded portions 54b and 55b are connected to each other on the outer surface side of the folded portion. By joining (joining portions 56a and 56b), the heat exchange tube 51 having the heat exchange medium flow path 52 therein as shown in FIG. 5 is completed.
上記のように製造され、 構成された熱交換器用チューブにおいては、 折り返し 部同士が外面側において互いにろう付け接合されるので、 十分に広い接合面積が 得られ、 高い接合強度、 高いチューブ耐圧性が得られる。 また、 洩れ等の不安も 解消される。 したがって、 高耐圧性能の熱交換器を実現できる。  In the heat exchanger tube manufactured and configured as described above, since the folded portions are brazed to each other on the outer surface side, a sufficiently large bonding area is obtained, and high bonding strength and high tube pressure resistance are obtained. can get. In addition, concerns such as leaks will be resolved. Therefore, a heat exchanger with high pressure resistance performance can be realized.
また、 各平板部の幅方向端部に形成される折り返し部は、 プレス加工によって 成形できる。 したがって、 従来のロール加工が不要となり、 加工費、 ひいてはチ ユーブ、 さらには熱交換器の製造コストの大幅な低減が可能となる。 また、 ロー ル加工を施さないので、 加工後の修正等も不要となり、 不良品の発生率も大幅に 低下でき、 製造の容易化とともに、 一層の製造コスト低減が可能となる。  The folded portion formed at the width direction end of each flat plate portion can be formed by press working. Therefore, the conventional roll processing is not required, and the processing cost, and thus the tube, and the production cost of the heat exchanger can be significantly reduced. In addition, since no roll processing is performed, correction after processing is not required, and the occurrence rate of defective products can be significantly reduced, making it easier to manufacture and further reducing manufacturing costs.
また、 チューブの幅方向中央部には、 ろう付け部は存在しないので、 フラック スの回り不良等のおそれもない。 また、 チューブ補強のための突き合わせ部も、 一方の平板部自身の折り曲げ加工によって容易に形成できるので、 強度の高いチ ユーブ構造を容易に実現できる。  In addition, since there is no brazing portion at the center in the width direction of the tube, there is no possibility of a failure in the rotation of the flux. Also, the butted portion for reinforcing the tube can be easily formed by bending one flat plate portion itself, so that a tube structure having high strength can be easily realized.
しかも、 この突き合わせ部は基本的に他の部位からフラックスを流動させたり、 フラックスを外部から塗布したりする必要のない部位であるから、 図 2 7に示し た構造におけるような、 フラックスの回り不良の発生もない。 したがって、 ろう 付け不良箇所の発生を容易に防止できる。  Moreover, since the abutting portion is basically a region where it is not necessary to flow the flux from another portion or to apply the flux from the outside, there is a problem with the flux around as shown in the structure shown in Fig. 27. There is no occurrence. Therefore, the occurrence of a brazing defect can be easily prevented.
さらに、 突き合わせ部を備えた構造にあっては、 コア部 6を治具で固定してろ う付けする際にも、 コア部とろう付け用治具との熱膨張率の差に起因して発生す る変形力や位置ずれ力に対し、 高い抗カを発揮できる。 その結果、 チューブの変 形やろう付け不良箇所の発生を効果的に防止することができる。 したがって、 確 実なろう付けが施された、 洩れ不安のない、 高性能の熱交換器を製造できる。 なお、 上記製造方法の説明においては、 突き合わせ部は端部折り返し部形成前 に形成するようにしたが、 端部折り返し部形成後に形成することも可能である。 次に、 図 1 0〜図 1 3の熱交換チューブについて説明する。 これらチューブに は、 いずれも、 少なく とも一方の平板部の少なく とも一方の幅方向端部に、 該端 部を複数回折り返すことにより形成され、 該端部を形成する板の厚さの整数倍の 厚さを有する折り返し部が形成されている。 Furthermore, in the structure with the butted part, when the core part 6 is fixed with a jig, it is generated due to the difference in the coefficient of thermal expansion between the core part and the brazing jig. High resistance to deformation and displacement. As a result, it is possible to effectively prevent deformation of the tube and occurrence of defective brazing. Therefore, it is possible to manufacture a high-performance heat exchanger that has been reliably brazed and has no fear of leakage. In the above description of the manufacturing method, the butted portion is formed before the formation of the end folded portion. However, it can be formed after the formation of the end folded portion. Next, the heat exchange tubes of FIGS. 10 to 13 will be described. Each of these tubes is formed at least at one end in the width direction of at least one flat plate by bending the end plural times, and is an integral multiple of the thickness of the plate forming the end. of A folded portion having a thickness is formed.
図 1 0 Aに示す態様の熱交換チューブ 1 2 1 aは、 間隔をもって互いに対向し、 間に熱交換媒体用流路 1 2 2を形成する 2つの平板部 1 2 3 a、 1 2 3 bと、 両 平板部 1 2 3 a、 1 2 3 bの一方の幅方向端部において両平板部 1 2 3 a、 1 2 3 bを一体的に接続する曲げ加工部 1 2 4 と、 一方の平板部 1 2 3 aの他方の幅 方向端部に形成され、 該端部を複数回 (本実施態様では 2回) 互いに逆方向に折 り返すように曲げ加工された折り返し部 1 2 5 aとを有し、 該折り返し部 1 2 5 aと、 他方の平板部 1 2 3 bの対応する端部 1 2 5 b (本実施態様では該端部に は折り返し部は形成されていない) とが互いに接合されている (接合部 1 2 6 ) 。 折り返し部 1 2 5 aにおいては、 その最初の折り返し片部 1 2 7 aが平板部 1 2 3 aのチューブ内面に面接触により密着し、 後続の折り返し片部 1 2 7 bがその 前の折り返し片部 1 2 7 aに面接触により密着するように折り返されている。 そ して、 この折り返し部 1 2 5 aの折り返し片部 1 2 7 bが、 他方の平板部 1 2 3 bの対応する端部 1 2 5 bに面接触により密着するようにろう付けによって接合 されている。 このような折り返し部 1 2 5 aは、 プレス加工により形成されてい The heat exchange tubes 1 2 1 a of the embodiment shown in FIG. 10A face each other at intervals and form two heat exchange medium flow paths 1 2 2 between the two flat plate portions 1 2 3 a, 1 2 3 b And a bent portion 1 2 4 that integrally connects the flat plate portions 1 2 3 a and 1 2 3 b at one end in the width direction of the flat plate portions 1 2 3 a and 1 2 3 b; A folded portion 125a formed at the other widthwise end of the flat plate portion 123a and bent so that the end portion is folded a plurality of times (twice in this embodiment) in opposite directions to each other. The folded portion 125 a and the corresponding end portion 125 b of the other flat plate portion 123 b (the folded portion is not formed at the end portion in this embodiment). Are joined to each other (joining portion 126). In the folded part 1 25 a, the first folded piece 1 27 a is in close contact with the inner surface of the tube of the flat plate 1 2 3 a by surface contact, and the subsequent folded piece 1 27 b is folded in front. It is folded back so as to be in close contact with the one-side part 127 a. Then, the folded-back portion 1 27 b of the folded portion 1 25 a is joined by brazing so as to be in close contact with the corresponding end portion 125 b of the other flat plate portion 123 b by surface contact. Have been. Such a folded portion 125a is formed by press working.
O o O o
図 1 0 Bに示す態様の熱交換チューブ 1 2 1 bでは、 他方の平板部 1 2 3 の 対応する一端部に、 1回だけ折り返された折り返し部 1 2 8が形成され、 折り返 し部 1 2 5 aと折り返し部 1 2 8が面接触により密着するようにろう付けによつ て接合されている。 図 1 0 Cに示す態様の熱交換チューブ 1 2 1 cでは、 両平板 部 1 2 3 a、 1 2 3 bの互いに対応する端部に、 それぞれ、 2回折り返した折り 返し部 1 2 5 aが形成され、 折り返し部 1 2 5 a同士が面接触により密着するよ うにろう付けによって接合されている。 このように、 折り返し部の折り返し回数、 他方の平板部 1 2 3 bの対応する端部の形態は自由に設定でき、 チューブの内寸 (流路高さ) は、 両平板部 1 2 3 a、 1 2 3 b間に介在する折り返し片の数によ つて正確に目標とする寸法に決められる。 もちろん、 図に示した以外の内寸も可 能であり、 目標とする寸法に応じて、 両平板部 1 2 3 a、 1 2 3 b間に介在する 折り返し片の数、 折り返し部における折り返し回数を決めればよい。  In the heat exchange tube 1 2 1 b of the embodiment shown in FIG. 10B, a folded portion 1 288 that is folded only once is formed at the corresponding one end of the other flat plate portion 1 23, and the folded portion is formed. The 125a and the folded portion 128 are joined by brazing so as to be brought into close contact by surface contact. In the heat exchange tube 12 1 c of the embodiment shown in FIG. 10C, the folded portions 1 25 a are folded twice at the corresponding ends of both flat plate portions 123 a and 123 b respectively. Are formed, and the folded portions 125a are joined together by brazing so as to be in close contact with each other by surface contact. In this way, the number of turns of the folded portion and the shape of the corresponding end of the other flat plate 1 2 3 b can be freely set, and the inner dimensions of the tube (flow path height) are determined by the two flat plates 1 2 3 a The target dimensions can be accurately determined by the number of folded pieces interposed between the first and second b. Of course, internal dimensions other than those shown in the figure are also possible. Depending on the target dimensions, the number of folded pieces interposed between the flat plates 1 2 3 a and 1 2 3 b, the number of turns in the folded section You can decide.
図 1 1に示す態様の熱交換チューブ 1 3 1は、 上記熱交換チューブ 1 2 1 a同 8/ 4306 1370 The heat exchange tube 13 1 in the embodiment shown in FIG. 11 is the same as the heat exchange tube 12 8/4306 1370
1 3  13
様の、 熱交換媒体用流路 1 3 2を形成する 2つの平板部 1 3 3 a、 1 3 3 bと、 両平板部 1 3 3 a、 1 3 3 bを一体的に接続する曲げ加工部 1 3 4 と、 一方の平 板部 1 3 3 aの他方の幅方向端部に形成され、 該端部を複数回 (本実施態様では 2回) 互いに逆方向に折り返すように曲げ加工された折り返し部 1 3 5 aとを有 し、 該折り返し部 1 3 5 aと、 他方の平板部 1 3 3 bの対応する端部 1 3 5 b (本実施態様では該端部には折り返し部は形成されていない) とが互いに接合さ れている (接合部 1 3 6 ) 。 そして、 本実施態様では、 一方の平板部 1 3 3 bの 幅方向中央部に、 平板部 1 3 3 b自身を折り曲げ加工することによって、 他方の 平板部 1 3 3 aに向かって実質的に平板部 1 3 3 aの内面に当接する位置まで突 出する突き合わせ部 1 3 7が形成されている。 この突き合わせ部 1 3 7の先端面 は、 平板部 1 3 3 aの内面に接合されていてもよく、 単に当接しているだけでも よい。 前記熱交換チューブ 1 2 1 b、 1 2 1 cについても同様の構成を採ること ができる。 Bending to integrally connect the two flat plates 1 3 3 a, 1 3 3 b and the flat plates 1 3 3 a, 1 3 3 b forming the heat exchange medium flow path 13 2 Formed at the other widthwise end of the portion 134 and one of the flat plate portions 133a, and the end is bent a plurality of times (twice in this embodiment) so as to be folded in opposite directions. A folded portion 135a, and the folded portion 135a and a corresponding end 135b of the other flat plate portion 133b (in the present embodiment, the folded portion is provided at the end. Are not formed) and are joined to each other (joined portion 1336). In the present embodiment, the flat plate portion 133 b is bent at the center in the width direction of one flat plate portion 133 b, thereby substantially facing the other flat plate portion 133 a. A butt portion 137 is formed to protrude to a position where it comes into contact with the inner surface of the flat plate portion 133a. The tip end surface of the butted portion 1337 may be joined to the inner surface of the flat plate portion 133a, or may simply be in contact. The same configuration can be adopted for the heat exchange tubes 122b and 121c.
図 1 2 Aに示す態様の熱交換チューブ 1 4 1 aは、 間隔をもって互いに対向し、 間に熱交換媒体用流路 1 4 2を形成する 2つの平板部 (平板) 1 4 3 a、 1 4 3 と、 一方の平板部 1 4 3 aの幅方向両端部において各端部をそれぞれ複数回折 り返すように曲げ加工された折り返し部 1 4 4 a、 1 4 4 bを有し、 該折り返し 部 1 4 4 a、 1 4 4 bが、 他方の平板 1 4 3 bの対応する幅方向両端部 1 4 5 a、 1 4 5 bにろう付けによって接合されている (接合部 1 4 6 a、 1 4 6 b ) 。 折 り返し部 1 4 4 a、 1 4 4 bにおいては、 その最初の折り返し片部 1 4 7 aが平 板部 1 4 3 aのチューブ内面に面接触により密着し、 後続の折り返し片部 1 4 7 bがその前の折り返し片部 1 4 7 aに面接触により密着するように折り返されて いる。 そして、 この折り返し部 1 4 4 a、 1 4 4 bの折り返し片部 1 4 7 bが、 他方の平板部 1 4 3 bの対応する端部 1 4 5 a、 1 4 5 bに面接触により密着す るようにろう付けによって接合されている。 このような折り返し部 1 4 4 a、 1 4 4 bは、 プレス加工により形成されている。  The heat exchange tubes 14 1 a in the embodiment shown in FIG. 12A are opposed to each other at intervals and form two heat exchange medium flow paths 142 between them. 4 3, and folded portions 144 4 a and 144 b bent at both ends in the width direction of one flat plate portion 144 a so as to bend a plurality of times at each end. The parts 144a, 144b are joined by brazing to the corresponding widthwise ends 144b, 144b of the other flat plate 144b (joint 144a , 1 4 6 b). In the folded portions 144a and 144b, the first folded piece 1447a is in close contact with the inner surface of the tube of the flat plate 144a by surface contact, and the subsequent folded piece 1 47 b is folded so as to be in close contact with the preceding folded piece portion 144 a by surface contact. Then, the folded pieces 144b of the folded portions 144a and 144b are brought into surface contact with the corresponding ends 144a and 144b of the other flat plate 144b. They are joined by brazing so that they come into close contact. Such folded portions 144a and 144b are formed by press working.
図 1 2 Bに示す態様の熱交換チューブ 1 4 1 bでは、 他方の平板部 1 4 3 の 対応する両端部に、 1回だけ折り返された折り返し部 1 4 8が形成され、 折り返 し部 1 4 4 a、 1 4 bとそれらに対応する折り返し部 1 4 8が面接触により密 着するようにろう付けによって接合されている。 図 1 2 Cに示す態様の熱交換チ ユーブ 1 4 1 cでは、 両平板部 1 4 3 a、 1 4 3 bの互いに対応する両端部に、 それぞれ、 2回折り返した折り返し部 1 4 4 a、 1 4 4 bが形成され、 対応する 折り返し部同士が面接触により密着するようにろう付けによって接合されている。 このように、 チューブ形成前には互いに分離されている態様においても、 折り返 し部の折り返し回数、 他方の平板部 1 4 3 bの対応する端部の形態は自由に設定 でき、 チューブの内寸 (流路高さ) は、 両平板部 1 4 3 a、 1 4 3 b間に介在す る折り返し片の数によって正確に目標とする寸法に決められる。 もちろん、 この 態様においても、 図に示した以外の内寸も可能であり、 目標とする寸法に応じて、 両平板部 1 4 3 a、 1 4 3 b間に介在する折り返し片の数、 折り返し部における 折り返し回数を決めればよい。 In the heat exchange tube 14 1 b of the embodiment shown in FIG. 12B, a folded portion 1 488 that is folded only once is formed at the corresponding both ends of the other flat plate portion 144, and the folded portion is formed. 1 4 4 a, 1 4 b and their corresponding folded portions 1 4 8 are denser by surface contact. They are joined by brazing to wear. In the heat exchange tube 14 1 c of the embodiment shown in FIG. 12C, the two flat portions 14 3 a and 14 3 b are each provided with two folded portions 14 4 a at both ends corresponding to each other. , 144b are formed, and the corresponding folded portions are joined by brazing so that they are in close contact with each other by surface contact. As described above, even in a mode in which the tubes are separated from each other before the tube is formed, the number of times of the folded portion and the shape of the corresponding end of the other flat plate portion 144 b can be freely set, and The dimension (flow path height) is accurately determined to the target dimension by the number of folded pieces interposed between the flat portions 144a and 144b. Of course, also in this embodiment, internal dimensions other than those shown in the figure are possible, and according to the target dimensions, the number of folded pieces interposed between the two flat plate parts 144a and 144b, What is necessary is just to decide the number of times of turn in a part.
図 1 3に示す態様の熱交換チューブ 1 5 1は、 図 1 2 Aに示したと同様の、 熱 交換媒体用流路 1 5 2を形成する 2つの平板部 1 5 3 a、 1 5 3 bと、 一方の平 板部 1 5 3 aの幅方向両端部において各端部をそれぞれ複数回折り返すように曲 げ加工された折り返し部 1 5 4 a、 1 5 4 bを有し、 該折り返し部 1 5 4 a、 1 5 4 bが、 他方の平板 1 5 3 bの対応する幅方向両端部 1 5 5 a、 1 5 5 bにろ う付けによって接合されている (接合部 1 5 6 a、 1 5 6 b ) 。 そして、 本実施 態様では、 一方の平板部 1 5 3 bの幅方向中央部に、 平板部 1 5 3 b 身を折り 曲げ加工することによって、 他方の平板部 1 5 3 aに向かって実質的に平板部 1 5 3 aの内面に当接する位置まで突出する突き合わせ部 1 5 7が形成されている。 この突き合わせ部 1 5 7の先端面は、 平板部 1 5 3 aの内面に接合されていても よく、 単に当接しているだけでもよい。  The heat exchange tube 15 1 in the embodiment shown in FIG. 13 has two flat plate portions 15 3 a and 15 3 b forming a heat exchange medium flow path 15 2 similar to that shown in FIG. 12A. At both ends in the width direction of one of the flat plate portions 15a, there are folded portions 154a and 154b, each of which is bent so that each end is bent a plurality of times. 15 5a, 15 5b are joined by brazing to the corresponding widthwise ends 15 5a, 15 5b of the other flat plate 15 5b (joint 15 6a , 156b). In the present embodiment, the flat plate portion 1553b is bent at the center in the width direction of the one flat plate portion 1553b, thereby substantially facing the other flat plate portion 1553a. A butt portion 157 projecting to a position where it comes into contact with the inner surface of the flat plate portion 153 a is formed on the flat portion. The tip surface of the butted portion 157 may be joined to the inner surface of the flat plate portion 153a, or may simply be in contact.
図 1 0ないし図 1 3に示したような各熱交換チューブは、 一般に、 フィ ン、 へ ッダーパイプ等の他の熱交換器用部品と仮組みされ、 炉中ろう付けによって接合 され、 熱交換器として製造される。 また、 チューブ内部には、 後述の如く、 耐圧 性能向上、 伝熱性能向上を目的にインナ一フィ ンが挿入されることがある。 つま り、 チューブ内外両面にフィ ンが接合されることがある。 このような場合、 ろう 付け接合のために、 通常、 フィ ンかチューブシヱルのいずれかにろう材が張り付 けられたクラッ ド材を用いる。 この場合、 チューブシェルの両面にろう材が張り 付けられたクラッ ド材を用いればチューブシェルが液密にろう付けされることは 言うまでもないが、 フィ ンにはろう材をクラッ ドしないべァ材を用いることが可 能である。 また、 チューブシヱルのみのろう付けを考えた場合には、 内外両面に ろう材をクラッ ドした素材、 片面にのみクラッ ドした素材を用いる方法、 あるい はこれら素材を組み合わせて用いる方法を、 適宜選択できる。 Generally, each heat exchange tube as shown in Figs. 10 to 13 is temporarily assembled with other heat exchanger parts such as fins and header pipes, joined by furnace brazing, and used as a heat exchanger. Manufactured. Further, as described later, an inner fin may be inserted into the tube for the purpose of improving the pressure resistance and the heat transfer performance. In other words, fins may be bonded to both inside and outside of the tube. In such a case, a brazing material is usually used for brazing, in which a brazing material is attached to either a fin or a tube seal. In this case, brazing material is applied to both sides of the tube shell. It goes without saying that the tube shell can be brazed in a liquid-tight manner using the attached cladding material, but it is possible to use a brazing material that does not clad the brazing material for the fin. When brazing only tube seals, use a brazing material clad on both the inside and outside, use a material clad on one side only, or use a combination of these materials as appropriate. it can.
図 1 0ないし図 1 3に示した熱交換チューブ 1 2 1 a、 1 3 1、 1 1 a , 1 5 1は、 それぞれ、 図 1 4ないし図 1 Ίに示すような方法によって製造される。 熱交換チューブ 1 2 1 b、 1 2 1 c . 1 1 b . 1 4 1 cについても同様の方法 によって製造できる。  The heat exchange tubes 12a, 131, 11a, and 151 shown in FIG. 10 to FIG. 13 are manufactured by the method shown in FIG. 14 to FIG. The heat exchange tubes 121b and 121c.111b.141c can be manufactured by the same method.
図 1 4は、 図 1 0 Aに示した熱交換チューブ 1 2 1 aを製造する方法を示して いる。 まず、 チューブ形成用素材としての広幅の平板 1 6 1から、 適当なカツ夕 一装置 1 6 2等による切断により、 所定幅を有する平板 1 6 3を形成する。 次に、 所定幅を有する 1枚の平板 1 6 3の幅方向一端部を、 2回折り返すように曲げ加 ェし、 該端部に折り返し部 1 2 5 aを形成する。  FIG. 14 shows a method of manufacturing the heat exchange tube 122 a shown in FIG. 10A. First, a flat plate 163 having a predetermined width is formed from a wide flat plate 161 as a material for forming a tube by cutting with an appropriate cutting device 162 or the like. Next, one end in the width direction of one flat plate 163 having a predetermined width is bent and bent twice so as to form a folded portion 125a at the end.
次に、 この平板 1 6 3の幅方向中央部を図 1 4の上面側に曲げ加工し曲げ加工 部 1 2 4を形成して、 間隔をもって互いに対向し、 間に熱交換媒体用流路 1 2 2 を形成する 2つの平板部 1 2 3 a、 1 2 3 bを形成する。 そして、 平板部 1 2 3 aの端部の折り返し部 1 2 5 a と、 平板部 1 2 3 bの端部 1 2 5 bを互いに接合 する (接合部 1 2 6 ) ことによって、 図 1 0 Aに示した熱交換チューブ 1 2 1 a が完成する。  Next, the central portion in the width direction of the flat plate 16 3 is bent toward the upper surface side in FIG. 14 to form a bent portion 124, which faces each other with an interval therebetween, and has a heat exchange medium flow path 1 therebetween. Forming 2 2 Two flat portions 1 2 3 a and 1 2 3 b are formed. Then, the folded portion 1 25 a at the end of the flat plate portion 1 23 a and the end portion 125 b of the flat plate portion 123 b are joined to each other (joined portion 1 26), whereby the configuration shown in FIG. The heat exchange tube 1 2 1a shown in A is completed.
図 1 5は、 図 1 1 に示した熱交換チューブ 1 3 1 の製造方法を示している。 ま ず、 素材としての広幅の平板 1 6 1から、 カッター装置 1 6 2等による切断によ り、 図 1 4に示したよりも若干大きい所定幅を有する平板 1 7 1を形成する。 次 に、 この 1枚の平板 1 7 1の所定位置に、 突き合わせ部 1 3 7を折り曲げ加工に よって形成する。 そして、 この平板 1 7 1の幅方向一端部を、 突き合わせ部 1 3 7と同じ面側に 2回折り返すように曲げ加工し、 該端部に折り返し部 1 3 5 aを 形成する。 次に、 この平板 1 7 1 の幅方向中央部を突き合わせ部 1 3 7 と同じ面 側に曲げ加工し曲げ加工部 1 3 4を形成して、 間隔をもって互いに対向し、 間に 熱交換媒体用流路 1 3 2を形成する 2つの平板部 1 3 3 a、 1 3 3 bを形成する。 TJ 1370 FIG. 15 shows a method of manufacturing the heat exchange tube 13 1 shown in FIG. First, a flat plate 171 having a predetermined width slightly larger than that shown in FIG. 14 is formed from a wide flat plate 161 as a material by cutting with a cutter device 162 or the like. Next, a butt portion 1337 is formed at a predetermined position of the one flat plate 171 by bending. Then, one end in the width direction of the flat plate 171 is bent so as to be folded twice on the same surface side as the butted portion 1337, and a folded portion 135a is formed at the end. Next, the central portion in the width direction of the flat plate 17 1 is bent on the same side as the butt portion 13 37 to form a bent portion 13 34, which faces each other at an interval, and is used for heat exchange medium. Two flat plate portions 1 3 3 a and 1 3 3 b forming the flow path 13 2 are formed. TJ 1370
1 6  1 6
そして、 平板部 1 3 3 aの端部の折り返し部 1 3 5 aと、 平板部 1 3 3 bの端部 1 3 5 bを互いに接合する (接合部 1 3 6 ) ことによって、 図 1 1 に示した熱交 換チューブ 1 3 1が完成する。 Then, the folded portion 1 35 a at the end of the flat plate portion 13 3 a and the end portion 13 5 b of the flat plate portion 13 3 b are joined to each other (joined portion 13 6), whereby FIG. The heat exchange tube 13 1 shown in Fig. 13 is completed.
図 1 6は、 図 1 2 Aに示した熱交換チューブ 1 4 1 aの製造方法を示している。 まず、 素材としての広幅の平板 1 6 1力ヽら、 カッター装置 1 6 2等による切断に より、 異なる幅の 2枚の平板 1 8 1 a、 1 8 1 bを形成する。 次に、 このうち 1 枚の平板 1 8 1 aの両端部に、 それぞれ、 折り返し部 1 4 4 a、 1 4 4 bを曲げ 加工によって形成する。 両平板 1 8 1 a、 1 8 1 bを、 両平板部 1 4 3 a、 1 4 3 bとして、 折り返し部 1 4 4 a、 1 4 4 bとそれらに対応する平板部の両端部 1 4 5 a. 1 4 5 bが互いに対向するように位置決めし、 互いに接合する (接合 部 1 4 6 a、 1 4 6 b ) ことによって、 図 1 2 Aに示した、 2つの平板部 1 5 3 a、 1 5 3 bによって内部に熱交換媒体用流路 1 4 2を持つ熱交換チューブ 1 4 1 aが完成する。  FIG. 16 shows a method of manufacturing the heat exchange tube 141 a shown in FIG. 12A. First, two flat plates 18 1a and 18 1b having different widths are formed by cutting a wide flat plate 16 1 force spatula as a material and a cutter device 16 2 or the like. Next, folded portions 144a and 144b are formed at both ends of one of the flat plates 181a by bending. Both flat plates 18 1 a and 18 1 b are used as both flat plate portions 14 3 a and 14 3 b, and folded portions 14 4 a and 14 4 b and both ends of the corresponding flat plate portions 1 4 5a. By positioning the 1145b so that they face each other and joining them together (joints 1446a and 1146b), the two flat plate portions 1 5 3 shown in Fig. 12A are obtained. The heat exchange tubes 14 1 a having the heat exchange medium flow paths 14 2 therein are completed by a and 15 3 b.
図 1 7は、 図 1 3に示した熱交換チューブ 1 5 1の製造方法を示している。 ま ず、 素材としての広幅の平板 1 6 1から、 カツ夕一装置 1 6 2による切断により、 2枚の平板 1 9 1 a、 1 9 1 bを形成する。 次に、 一方の平板 1 9 1 bの幅方向 中央部に、 折り曲げ加工によって突き合わせ部 1 5 7を形成する。 他方の平板 1 9 1 aの両端部に、 各端部をそれぞれ複数回折り返すように曲げ加工して折り返 し部 1 5 4 a、 1 5 4 bを形成する。 該折り返し部 1 5 4 a、 1 5 4 bを、 他方 の平板 1 9 1 bの対応する幅方向両端部 1 5 5 a、 1 5 5 bにろう付けによって 接合する (接合部 1 5 6 a、 1 5 6 b) ことによって、 図 1 3に示した、 内部に 熱交換媒体用流路 1 5 2を持つ熱交換チューブ 1 5 1が完成する。  FIG. 17 shows a method of manufacturing the heat exchange tube 15 1 shown in FIG. First, two flat plates 191a and 191b are formed from a wide flat plate 161 as a raw material by cutting with a cutting machine 162. Next, an abutting portion 157 is formed by bending at the center in the width direction of one of the flat plates 191 b. On both ends of the other flat plate 191a, each end is bent so as to be bent a plurality of times to form folded portions 154a and 154b. The folded portions 154a and 154b are joined to the corresponding widthwise opposite ends 155a and 155b of the other flat plate 191b by brazing (joining portion 156a). Thus, the heat exchange tube 15 1 having the heat exchange medium flow path 15 2 therein as shown in FIG. 13 is completed.
上記のように製造され、 構成された熱交換器用チューブにおいては、 前述の図 2〜図 5に示した熱交換器用チューブと同様に、 従来のように先端同士を突き合 わせて接合するのではなく、 少なく とも一方の平板部の幅方向端部に形成される 折り返し部を対応する他方の平板部の幅方向端部に面接触状態にて接合できるの で、 十分に広い接合面積となり、 高い接合強度が確保でき、 高い耐圧性を実現で きる。 そして、 折り返し部は、 複数回互いに逆方向に折り返すように曲げ加工さ れて、 折り返し片部が面接触状態で重ねられるように形成されるので、 折り返し 部自身についても高い強度が確保されるとともに、 上記の如く面接触状態での接 合面により高い接合強度が確保され、 チューブ全体として一層高い耐圧性を実現 できる。 In the heat exchanger tube manufactured and configured as described above, similar to the heat exchanger tube shown in FIGS. At least, the folded part formed at the width direction end of one flat part can be joined to the corresponding width direction end of the other flat part in a surface contact state, resulting in a sufficiently large bonding area and high Bonding strength can be ensured, and high pressure resistance can be achieved. The folded portion is bent a plurality of times in a direction opposite to each other, and is formed so that the folded pieces are overlapped in surface contact. The high strength of the tube itself is also ensured, and the high joint strength is ensured by the joining surface in the surface contact state as described above, so that the tube as a whole can achieve higher pressure resistance.
また、 平板部の幅方向端部に形成される折り返し部は、 プレス加工によって成 形できるので、 従来のロール加工が不要となり、 加工費、 ひいてはチューブ、 さ らには熱交換器の製造コストの大幅な低減が可能となる。 また、 ロール加工を施 さないので、 加工後の修正等も不要となり、 不良品の発生率も大幅に低下でき、 製造の容易化とともに、 一層の製造コスト低減が可能となる。  In addition, since the folded portion formed at the end in the width direction of the flat plate can be formed by press working, the conventional roll working is not required, and the processing cost, and thus the production cost of the tube and the heat exchanger, are reduced. Significant reduction is possible. In addition, since roll processing is not performed, correction after processing is not required, and the incidence of defective products can be significantly reduced, making it easier to manufacture and further reducing manufacturing costs.
また、 折り返し部は、 複数回互いに逆方向に折り返すように曲げ加工されて形 成され、 折り返し回数によって、 チューブの内寸を実質的に自由に、 かつ、 正確 に決めることができるから、 設計の自由度が大幅に増大する。 このチューブの内 寸は、 折り返し片部同士、 および、 最初の折り返し片とその平板部のチューブ内 面形成面とが、 それぞれ面接触されることにより、 より正確に、 折り返し片の厚 み X折り返し片の数に相当する寸法に決められる。 したがって、 形成されるチュ —ブの内寸も、 目標とする寸法に高精度で正確に決められることになり、 所望の 内寸のチューブが容易に得られる。  In addition, the folded portion is formed by being bent so that it is folded a plurality of times in the opposite direction, and the inner size of the tube can be substantially freely and accurately determined by the number of times of the folded portion. The degree of freedom is greatly increased. The inner dimensions of this tube are more accurately determined by the fact that the folded pieces are in contact with each other, and the first folded piece and the flat surface of the inner surface of the tube are in surface contact with each other. The size is determined to correspond to the number of pieces. Therefore, the inner dimensions of the tube to be formed can also be accurately and accurately determined to the target dimensions, and a tube having a desired inner dimension can be easily obtained.
また、 チューブの幅方向中央部には、 ろう付け部は存在しないので、 フラック スの回り不良等のおそれもない。 また、 チューブ補強のための突き合わせ部も、 一方の平板部自身の折り曲げ加工によって容易に形成できるので、 強度の高いチ ュ―ブ構造を容易に実現できる。  In addition, since there is no brazing portion at the center in the width direction of the tube, there is no possibility of a failure in the rotation of the flux. Also, the butted portion for reinforcing the tube can be easily formed by bending one flat plate portion itself, so that a high-strength tube structure can be easily realized.
しかも、 この突き合わせ部は基本的に他の部位からフラックスを流動させたり、 フラックスを外部から塗布したりする必要のない部位であるから、 図 2 7に示し た構造におけるような、 フラックスの回り不良の発生もない。 したがって、 ろう 付け不良箇所の発生を容易に防止できる。  Moreover, since the abutting portion is basically a region where it is not necessary to flow the flux from another portion or to apply the flux from the outside, there is a problem with the flux around as shown in the structure shown in Fig. 27. There is no occurrence. Therefore, the occurrence of a brazing defect can be easily prevented.
さらに、 突き合わせ部を備えた構造にあっては、 コア部 6を治具で固定してろ う付けする際にも、 コア部とろう付け用治具との熱膨張率の差に起因して発生す る変形力や位置ずれ力に対し、 高い抗カを発揮できる。 その結果、 チューブの変 形やろう付け不良箇所の発生を効果的に防止することができる。 したがって、 確 実なろう付けが施された、 洩れ不安のない、 高性能の熱交換器を製造できる。 なお、 これら製造方法の説明においても、 突き合わせ部は端部折り返し部形成 前に形成するようにしたが、 端部折り返し部形成後に形成することも可能である。 また、 前述の図 2ないし図 5および図 1 0ないし図 1 3に示した構成を有する 熱交換器用チューブには、 さらに次のような構成を付加することができる。 以下 の付加構成は、 図 2および図 1 0 Aに示した構造の熱交換器用チューブについて 説明するが、 図 3ないし図 5および図 1 0 B、 C、 図 1 1〜図 1 3に示した構造 のチューブにも同様に適用することができる。 Furthermore, in the structure with the butted part, when the core part 6 is fixed with a jig, it is generated due to the difference in the coefficient of thermal expansion between the core part and the brazing jig. High resistance to deformation and displacement. As a result, it is possible to effectively prevent deformation of the tube and occurrence of defective brazing. Therefore, it is possible to manufacture a high-performance heat exchanger that has been reliably brazed and has no fear of leakage. In the description of these manufacturing methods, the butted portion is formed before the formation of the folded-back portion, but it can be formed after the formation of the folded-back portion. Further, the following structure can be further added to the heat exchanger tube having the structure shown in FIGS. 2 to 5 and FIGS. 10 to 13 described above. The following additional configuration describes the heat exchanger tube with the structure shown in Fig. 2 and Fig. 10A, but is shown in Figs. 3 to 5 and Fig. 10B, C, Fig. 11 to Fig. 13. The same can be applied to a tube having a structure.
まず、 図 1 8および図 1 9に示す熱交換チューブ 2 0 1においては、 チューブ 2 0 1の平板部 2 0 2 a、 2 0 2 b間に形成された熱交換媒体用流路 2 0 3に、 波形のィンナーフィ ン 2 0 4が設けられ、 インナ一フィ ン 2 0 4によって流路 2 0 3が複数に分割されている。 ィンナーフィ ン 2 0 4の構造はとくに限定されず、 波形以外のものも適用可能である。 このようなィンナーフィ ン 2 0 4は、 チュー ブ 2 0 1を形成した後に挿入することができる。  First, in the heat exchange tube 201 shown in FIGS. 18 and 19, the heat exchange medium flow path 200 3 formed between the flat plate portions 202 a and 202 b of the tube 201. In addition, a corrugated inner fin 204 is provided, and the inner fin 204 divides the flow path 203 into a plurality. The structure of the inner fin 204 is not particularly limited, and a structure other than a waveform is also applicable. Such an inner fin 204 can be inserted after forming the tube 201.
このような構成を有する熱交換チューブ 2 0 1では、 前述の図 2または図 1 0 Aについて説明した作用、 効果に加え、 チューブ 2 0 1の温度の均一化がはから れ、 チューブ 2 0 1による熱交換性能がより向上される。  In the heat exchange tube 201 having such a configuration, in addition to the functions and effects described with reference to FIG. 2 or FIG. 10A, the temperature of the tube 201 is made uniform, and the tube 201 The heat exchange performance is further improved.
また、 図 2 0 A、 2 0 B、 図 2 1 A、 2 1 Bに示す熱交換チューブ 2 1 1にお いては、 チューブ 2 1 1の両平板部 2 1 2 a . 2 1 2 bに、 チューブ内方に向か つて突出する複数の突出部 2 1 3が設けられ、 突出部 2 1 3同士は互いに対向配 置されて先端面同士が当接されている。 各突出部 2 1 3は、 チューブ形成前の平 板素材をエンボス加工することにより容易に形成でき、 各突出部 2 1 3の形成後 にチューブ加工すればよい。  In the heat exchange tubes 211 shown in FIGS. 20A, 20B and 21A, 21B, the two flat portions 2 12a. A plurality of protruding portions 21 13 protruding toward the inside of the tube are provided, and the protruding portions 2 13 are arranged to face each other, and their end surfaces are in contact with each other. Each protruding portion 21 3 can be easily formed by embossing the flat plate material before forming the tube, and the tube may be formed after forming each protruding portion 2 13.
このような構成を有する熱交換チューブ 2 1 1では、 前述の図 2または図 1 0 Aについて説明した作用、 効果に加え、 突出部 2 1 3によって流路内を流通する 熱交換媒体のミキシング効果が向上するので、 温度の均一化、 熱伝達の促進がは かられ、 チューブ 2 1 1による熱交換性能がより向上される。  In the heat exchange tube 211 having such a configuration, in addition to the operation and effect described with reference to FIG. 2 or FIG. 10A, the mixing effect of the heat exchange medium flowing through the flow passage by the protrusions 21 is provided. As a result, the temperature uniformity and heat transfer are promoted, and the heat exchange performance of the tubes 211 is further improved.
なお、 突出部 2 1 3は一方の平板部のみに設け、 その突出部 2 1 3の先端面を 対向する他方の平板部の内面に当接させるようにしてもよい。  Note that the protruding portion 21 3 may be provided only on one flat plate portion, and the distal end surface of the protruding portion 21 3 may be brought into contact with the inner surface of the other opposing flat plate portion.
さらに、 図 2 2 A、 2 2 Bおよび図 2 3 A、 2 3 Bに示す熱交換チューブ 2 2 1においては、 平板部 2 2 2 a . 2 2 2 bの各対向面上に、 互いに交差する方向 に斜めに延びる溝 2 2 3 a、 2 2 3 bがそれぞれ複数条刻設されている。 この溝 2 2 3 a , 2 2 3 bは、 たとえば図 2 4に示すように、 チューブ 2 2 1 に形成す る前の平板状素材 2 2 4に、 チューブ 2 2 1に形成した際に上記のように互いに 交差する方向に延びるように溝 2 2 3 a、 2 2 3 bを刻設し、 その後にチューブ 2 2 1に加工すればよい。 In addition, the heat exchange tubes 22 shown in Figures 22A and 22B and Figures 23A and 23B In 1, a plurality of grooves 222 a and 222 b extending obliquely in the direction intersecting with each other are formed in each of the opposing surfaces of the flat plate portions 222 2 a and 222 b. For example, as shown in FIG. 24, the grooves 2 23 a and 22 3 b are formed on the flat material 2 24 before being formed on the tube 22 1 and on the tube 2 21 when formed on the tube 2 21. Grooves 22 3 a and 22 3 b may be carved so as to extend in the direction intersecting with each other as shown in FIG.
このような構成を有する熱交換チューブ 2 2 1では、 前述の図 2または図 1 0 Aについて説明した作用、 効果に加え、 交差する溝 2 2 3 a、 2 2 3 bによって 流路内を流通する熱交換媒体のミキシング効果が向上するので、 温度の均一化、 熱伝達の促進がはかられ、 チューブ 2 2 1による熱交換性能がより向上される。 さらに、 本発明においては、 たとえば図 2 5、 図 2 6に示すように、 平板部 2 3 2 a、 2 3 2 bを、 その幅方向の略中央部が頂点となるようにチューブ外方に 向けて膨出する形状としたチューブ 2 3 1に構成してもよい。 このように構成す ることにより、 チューブ 2 3 1 の耐圧性を向上できる。 この膨出量 Sは、 ごく僅 かな量でよい。  In the heat exchange tube 22 1 having such a configuration, in addition to the operation and effect described with reference to FIG. 2 or FIG. 10A, the heat exchange tube 22 1 Since the mixing effect of the heat exchange medium is improved, the temperature can be made uniform and the heat transfer can be promoted, and the heat exchange performance of the tube 221 can be further improved. Further, in the present invention, for example, as shown in FIGS. 25 and 26, the flat plate portions 23a and 23b are placed outside the tube so that the center in the width direction becomes the top. The tube 23 may be configured to bulge toward the tube. With this configuration, the pressure resistance of the tube 23 1 can be improved. The swelling amount S may be a very small amount.
なお、 本発明に係る熱交換器用チューブは、 図 1に示したようなタイプの熱交 換器に限定されず、 あらゆるタイプの熱交換器に適用可能である。 とくに車両用 の熱交換器、 たとえばラジェ一タゃ空調装置用のヒータ、 凝縮器、 蒸発器等、 さ らにはィンタ一クーラ等に好適である。  Note that the heat exchanger tube according to the present invention is not limited to the type of heat exchanger as shown in FIG. 1, but is applicable to any type of heat exchanger. It is particularly suitable for heat exchangers for vehicles, for example, heaters, condensers, evaporators, etc. for radiators and air conditioners, and also for coolers, etc.
産 業 上 の 利 用 可 能 性  Industrial availability
本発明においては、 接合強度、 耐圧性能が高く、 設計の自由度も高い熱交換器 用チューブを容易にかつ安価に製造できる。 また、 フラックス回り不良によるろ う付け不良等の不安の除去や、 突き合わせ部の形成等によるチューブの耐変形強 度の向上も可能である。 したがって、 このような優れた性能の熱交換器用チュー ブは、 車両用熱交換器等に極めて有用である。  According to the present invention, a tube for a heat exchanger having high joining strength and pressure resistance and high design flexibility can be easily and inexpensively manufactured. In addition, it is possible to remove anxiety such as poor brazing due to poor flux rotation, and to improve the deformation resistance of the tube by forming a butted portion. Therefore, such tubes for heat exchangers having excellent performance are extremely useful for heat exchangers for vehicles and the like.

Claims

言青 求 の 範 囲 Scope of demand
1 . 互いに対向し、 間に熱交換媒体用流路を形成する 2つの平板部と、 少なく と も一方の平板部の少なく とも一方の幅方向端部に、 該端部を折り返すことにより 形成され、 該端部を形成する板の厚さの整数倍の厚さの折り返し部とを有し、 該 折り返し部と他方の平板部の対応する幅方向端部とが互いに接合されていること を特徴とする、 熱交換器用チューブ。 1. Two flat portions facing each other and forming a flow path for a heat exchange medium therebetween, and at least one of the flat portions formed at least in one widthwise end by folding the ends. A folded portion having an integral multiple of the thickness of a plate forming the end portion, wherein the folded portion and a corresponding widthwise end portion of the other flat plate portion are joined to each other. And the heat exchanger tube.
2 . 前記 2つの平板部の一方の幅方向端部において両平板部を一体的に接続する 曲げ加工部を有し、 前記折り返し部が、 両平板部の他方の幅方向端部にそれぞれ 形成され、 該折り返し部同士が互いに接合されている、 請求項 1の熱交換器用チ ュ―ブ。 2. There is a bent portion integrally connecting the two flat portions at one widthwise end of the two flat portions, and the folded portion is formed at the other widthwise end of each of the two flat portions. 2. The heat exchanger tube according to claim 1, wherein the folded portions are joined to each other.
3 . 前記折り返し部が、 前記 2つの平板部の両幅方向端部にそれぞれ形成され、 対応する折り返し部同士が互いに接合されている、 請求項 1の熱交換器用チュー ブ。 3. The tube for a heat exchanger according to claim 1, wherein the folded portions are respectively formed at both widthwise ends of the two flat plate portions, and the corresponding folded portions are joined to each other.
4 . 前記折り返し部が、 少なく とも一方の平板部の少なく とも一方の幅方向端部 を複数回折り返すことにより形成されている、 請求項 1ないし 3のいずれかに記 載の熱交換器用チューブ。 4. The heat exchanger tube according to claim 1, wherein the folded portion is formed by folding back at least one width direction end of at least one flat plate portion.
5 . 前記折り返し部が、 その最初の折り返し片部が前記平板部のチューブ内面に 面接触し、 後続の折り返し片部がその前の折り返し片部に面接触するように折り 返されている、 請求項 4の熱交換器用チューブ。 5. The folded portion is folded so that the first folded portion comes into surface contact with the inner surface of the tube of the flat plate portion, and the subsequent folded portion comes into surface contact with the preceding folded portion. Item 4. Tubes for heat exchangers.
6 . 前記折り返し部がプレス加工により形成されている、 請求項 1 の熱交換器用 チューブ。 6. The heat exchanger tube according to claim 1, wherein the folded portion is formed by press working.
7 . 一方の平板部の幅方向中央部に、 該一方の平板部自身の折り曲げ加工によつ て、 他方の平板部に向かって実質的に他方の平板部に当接する位置まで突出する 突き合わせ部が形成されている、 請求項 1の熱交換器用チューブ。 7. At the center in the width direction of one of the flat portions, the one flat portion is bent so as to protrude toward the other flat portion to a position substantially in contact with the other flat portion. 2. The heat exchanger tube according to claim 1, wherein a butt portion is formed.
8 . 前記折り返し部が、 他方の平板部の対応する幅方向端部にろう付けによって 接合されている、 請求項 1の熱交換器用チューブ。 8. The heat exchanger tube according to claim 1, wherein the folded portion is joined to a corresponding widthwise end of the other flat plate by brazing.
9 . 前記平板部間にインナ一フィ ンが設けられている、 請求項 1の熱交換器用チ ュ一ブ o 9. The heat exchanger tube o according to claim 1, wherein an inner fin is provided between the flat plate portions.
1 0 . 前記平板部の少なく とも一方に、 チューブ内方に向かって突出する複数の 突出部が設けられ、 互いに対向する突出部同士が、 または突出部と該突出部が設 けられた平板部に対向する平板部の内面とが、 互いに突き合わされている、 請求 項 1の熱交換器用チューブ。 10. At least one of the flat plate portions is provided with a plurality of protrusions projecting inward of the tube, and the protrusions facing each other or the flat plate portion provided with the protrusions and the protrusions are provided. The heat exchanger tube according to claim 1, wherein an inner surface of the flat plate portion facing the butt is abutted against each other.
1 1 . 前記平板部の各対向面上に、 互いに交差する方向に延びる溝が設けられて いる、 請求項 1の熱交換器用チューブ。 11. The heat exchanger tube according to claim 1, wherein grooves that extend in directions intersecting each other are provided on each of the opposing surfaces of the flat plate portion.
1 2 . 前記平板部が、 その幅方向の略中央部が頂点となるようにチューブ外方に 向けて膨出している、 請求項 1の熱交換器用チューブ。 12. The heat exchanger tube according to claim 1, wherein the flat plate portion bulges outward from the tube such that a substantially central portion in a width direction of the flat portion is a vertex.
1 3 . 請求項 1ないし 1 2のいずれかに記載の熱交換器用チューブを有する熱交 換器。 13. A heat exchanger comprising the heat exchanger tube according to any one of claims 1 to 12.
1 4 . チューブとフィ ンとが交互に配置されている、 請求項 1 3の熱交換器。 14. The heat exchanger of claim 13, wherein tubes and fins are alternately arranged.
1 5 . ( a ) 所定幅を有する 1枚の平板の輻方向の少なく とも一端部に、 該端部 を折り返すことにより該端部を形成する板の厚さの整数倍の厚さの折り返し部を 形成し、 (b ) 該平板の幅方向中央部を前記折り返し部が内側となるように曲げ 加工して、 間に熱交換媒体用流路を形成する 2つの平板部を形成し、 ( c ) 少な く とも一方の平板部の端部に形成された前記折り返し部を、 他方の平板部の対応 する端部に接合することを特徴とする、 熱交換器用チューブの製造方法。 15 (a) A folded part having a thickness equal to an integral multiple of the thickness of the plate forming the end by folding the end at at least one end in the radiation direction of one flat plate having a predetermined width. And (b) bending the central portion in the width direction of the flat plate so that the folded portion is on the inner side to form two flat plate portions forming a heat exchange medium flow path therebetween (c). ) At least the folded portion formed at the end of one flat plate portion corresponds to the other flat plate portion. A method for producing a tube for a heat exchanger, characterized in that the tube is joined to an end of the heat exchanger.
1 6 . ( a ) それぞれ所定幅を有する 2枚の平板のうち少なく とも一方の平板の 幅方向両端部に、 各端部をそれぞれ折り返すことにより各端部を形成する板の厚 さの整数倍の厚さの折り返し部を形成し、 (b ) 幅方向両端部に折り返し部が形 成された平板の折り返し部と、 他方の平板の対応する端部とを互いに接合するこ とを特徴とする、 熱交換器用チューブの製造方法。 16. (A) An integral multiple of the thickness of the plate forming each end by folding back each end at the width direction both ends of at least one of the two flat plates each having a predetermined width (B) joining a folded portion of a flat plate having folded portions formed at both ends in the width direction and a corresponding end of the other flat plate to each other. How to manufacture tubes for heat exchangers.
1 7 . 前記折り返し部を、 平板の幅方向端部を複数回折り返すことにより形成す る、 請求項 1 5または 1 6の熱交換器用チューブの製造方法。 17. The method for manufacturing a tube for a heat exchanger according to claim 15 or 16, wherein the folded portion is formed by bending a plurality of ends of the flat plate in the width direction.
1 8 . 前記折り返し部を、 その最初の折り返し片部が前記平板に面接触し、 後続 の折り返し片部がその前の折り返し片部に面接触するように折り返す、 請求項 1 7の熱交換器用チューブの製造方法。 18. The heat exchanger according to claim 17, wherein the folded portion is folded so that the first folded portion comes into surface contact with the flat plate and the subsequent folded portion comes into surface contact with the preceding folded portion. Tube manufacturing method.
1 9 . 前記折り返し部をプレス加工により形成する、 請求項 1 5または 1 6の熱 交換器用チューブの製造方法。 19. The method of manufacturing a heat exchanger tube according to claim 15, wherein the folded portion is formed by press working.
2 0 . チューブを形成する 2つの平板部の一方に、 該一方の平板部自身を折り曲 げ加工することにより、 他方の平板部に向かって実質的に他方の平板部に当接す る位置まで突出する突き合わせ部を形成する、 請求項 1 5または 1 6の熱交換器 用チューブの製造方法。 20. A position where one of the two flat plate portions forming the tube is bent into the one flat plate portion itself so as to substantially contact the other flat plate portion toward the other flat plate portion. The method for producing a tube for a heat exchanger according to claim 15 or 16, wherein a butt portion protruding up to is formed.
2 1 . 前記折り返し部を、 該折り返し部に対向する平板部の対応する端部にろう 付けによって接合する、 請求項 1 5または 1 6の熱交換器用チューブの製造方法 c 21. The method c for manufacturing a heat exchanger tube according to claim 15 or 16, wherein the folded portion is joined to a corresponding end of the flat plate portion facing the folded portion by brazing.
2 2 . チューブを形成する 2つの平板部間にィンナーフィ ンを介装する、 請求項 1 5または 1 6の熱交換器用チューブの製造方法。 22. The method for producing a tube for a heat exchanger according to claim 15 or 16, wherein an inner fin is interposed between two flat plate portions forming the tube.
2 3 . 前記平板に、 チューブ形成の際にチューブ内方に向かって突出する複数の 突出部を形成する、 請求項 1 5または 1 6の熱交換器用チューブの製造方法。 23. The method for manufacturing a heat exchanger tube according to claim 15 or 16, wherein a plurality of protrusions protruding inward of the tube are formed on the flat plate when the tube is formed.
2 4 . チューブ形成の際に互いに対向する面となる各平板部の面上に、 チューブ 形成時に互いに交差する方向に延びる溝を刻設する、 請求項 1 5または 1 6の熱 交換器用チューブの製造方法。 24. The heat exchanger tube according to claim 15 or 16, wherein grooves extending in directions intersecting with each other at the time of forming the tube are formed on surfaces of the respective flat plate portions which are surfaces that face each other when the tube is formed. Production method.
PCT/JP1998/001370 1997-03-28 1998-03-26 Heat exchanger tube and method of its manufacture WO1998044306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98911038A EP0907062A4 (en) 1997-03-28 1998-03-26 Heat exchanger tube and method of its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/95205 1997-03-28
JP9520597A JPH10274489A (en) 1997-03-28 1997-03-28 Tube for heat exchanger and its manufacture

Publications (1)

Publication Number Publication Date
WO1998044306A1 true WO1998044306A1 (en) 1998-10-08

Family

ID=14131257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001370 WO1998044306A1 (en) 1997-03-28 1998-03-26 Heat exchanger tube and method of its manufacture

Country Status (3)

Country Link
EP (1) EP0907062A4 (en)
JP (1) JPH10274489A (en)
WO (1) WO1998044306A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052409A1 (en) * 1999-02-26 2000-09-08 Bosch Automotive Systems Corporation Heat exchanger and method of manufacturing tube for the heat exchanger
DE102006016711A1 (en) * 2006-04-08 2007-10-11 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
CN102636063A (en) * 2012-04-08 2012-08-15 泰安鼎鑫冷却器有限公司 Combined radiating pipe with butt-jointed single folded edges
CN102636065A (en) * 2012-04-08 2012-08-15 泰安鼎鑫冷却器有限公司 Two-side folding combined heat radiating pipe
CN106556281A (en) * 2015-09-29 2017-04-05 泰安鼎鑫冷却器有限公司 A kind of assembling radiating core body
CN106556279A (en) * 2015-09-29 2017-04-05 泰安鼎鑫冷却器有限公司 A kind of multi-part assembling radiating core body
CN106643252A (en) * 2017-01-09 2017-05-10 南宁市安和机械设备有限公司 Enhanced B type heat dissipation pipe
EP3399266A1 (en) * 2017-05-02 2018-11-07 Valeo Systemes Thermiques A flat tube for a heat exchanger and a heat exchanger

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE517450C2 (en) 1999-06-18 2002-06-04 Valeo Engine Cooling Ab Fluid transport tubes and methods and apparatus for producing the same
SE521816C2 (en) 1999-06-18 2003-12-09 Valeo Engine Cooling Ab Fluid transport pipes and vehicle coolers
US6213158B1 (en) * 1999-07-01 2001-04-10 Visteon Global Technologies, Inc. Flat turbulator for a tube and method of making same
DE60019940T2 (en) * 1999-09-08 2006-02-16 Zexel Valeo Climate Control Corp. HEAT EXCHANGE TUBE AND METHOD FOR PRODUCING THE HEAT EXCHANGE TUBE
DE10033070A1 (en) * 2000-03-31 2002-01-17 Modine Mfg Co Radiators for motor vehicles and manufacturing processes
DE10137334A1 (en) 2001-07-31 2003-02-27 Modine Mfg Co Flat tube, manufacturing process, heat exchanger
GB2404241A (en) * 2003-07-24 2005-01-26 Robin Matthew Hilder Heat exchanger especially for solar water heating
JP4614266B2 (en) * 2004-07-23 2011-01-19 臼井国際産業株式会社 Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
US20070044939A1 (en) * 2005-08-30 2007-03-01 Caterpillar Inc. Tube design for an air-to-air aftercooler
DE102006035210B4 (en) * 2006-07-29 2016-10-06 Modine Manufacturing Co. Flat heat exchanger tube and manufacturing process
US8683690B2 (en) 2006-01-19 2014-04-01 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8281489B2 (en) 2006-01-19 2012-10-09 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8091621B2 (en) 2006-01-19 2012-01-10 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8438728B2 (en) 2006-01-19 2013-05-14 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US7921559B2 (en) 2006-01-19 2011-04-12 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
CN101450355B (en) * 2006-01-19 2011-10-05 摩丁制造公司 Flat tube, flat tube heat exchanger, and method of manufacturing same
US8191258B2 (en) 2006-01-19 2012-06-05 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
WO2007084987A2 (en) 2006-01-19 2007-07-26 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8434227B2 (en) 2006-01-19 2013-05-07 Modine Manufacturing Company Method of forming heat exchanger tubes
DE102006011508A1 (en) * 2006-03-14 2007-09-20 Behr Gmbh & Co. Kg Method for producing a Schichtwärmeübertragers and layer heat exchanger
DE102007004993A1 (en) 2007-02-01 2008-08-07 Modine Manufacturing Co., Racine Production process for flat tubes and roller mill
WO2009073638A1 (en) * 2007-11-30 2009-06-11 Holtec International, Inc. Fin tube assembly for air cooled heat exchanger and method of manufacturing the same
DE102010023384B4 (en) 2010-06-10 2014-08-28 Modine Manufacturing Co. Manufacturing process, in particular for pipes and tear-off device
CN102636062A (en) * 2012-04-08 2012-08-15 泰安鼎鑫冷却器有限公司 Double-sheet and folded-edge combined heat radiation pipe
CN102636064A (en) * 2012-04-08 2012-08-15 泰安鼎鑫冷却器有限公司 Two-side bent combined heat radiation pipe
CN102636066A (en) * 2012-04-08 2012-08-15 泰安鼎鑫冷却器有限公司 Single-side bent combined heat radiation pipe
KR101367320B1 (en) 2012-08-22 2014-03-12 현대자동차주식회사 Structure of exhaust pipe for exhaust-heat recovery
CN105021077A (en) * 2014-05-02 2015-11-04 泰安鼎鑫冷却器有限公司 Two-way continuously-folded high-strength radiating tube
DE102014108463B4 (en) * 2014-06-16 2020-03-05 Fischer Edelstahlrohre Gmbh Heat exchanger tube, heat exchanger and method for producing a heat exchanger tube
CN106931818A (en) * 2015-12-29 2017-07-07 泰安鼎鑫冷却器有限公司 A kind of many places local strengthening type radiating tube
CN106767093B (en) * 2016-12-27 2023-12-05 无锡逸龙铝热科技有限公司 Direct forming tabletting type radiator flat tube
EP3665428A4 (en) * 2017-08-07 2021-05-05 Modine Manufacturing Company Heat exchanger tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125395A (en) * 1982-12-29 1984-07-19 Showa Alum Corp Manufacture of tube for heat exchanger
JPS6166091A (en) * 1984-09-06 1986-04-04 Toyo Radiator Kk Manufacture of heat exchanger tube material and core by use of such material and core by use of such material
JPH0486489A (en) * 1990-07-27 1992-03-19 Showa Alum Corp Tube for heating exchanger
JPH0777397A (en) * 1993-09-07 1995-03-20 Kawaju Reinetsu Kogyo Kk Heat transfer tube
JPH08226784A (en) * 1995-02-21 1996-09-03 Sanden Corp Heat exchanger and its manufacture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2009863A (en) * 1934-11-22 1935-07-30 Reuben N Trane Heat exchanger
GB683161A (en) * 1950-07-22 1952-11-26 Morris Motors Ltd Improvements relating to heat-exchangers
EP0283937A1 (en) * 1987-03-25 1988-09-28 Nihon Radiator Co., Ltd. Flat tube for heat exchanger with inner fin inserted therein
KR940010978B1 (en) * 1988-08-12 1994-11-21 갈소니꾸 가부시끼가이샤 Multi-flow type heat exchanger
US5186250A (en) * 1990-05-11 1993-02-16 Showa Aluminum Kabushiki Kaisha Tube for heat exchangers and a method for manufacturing the tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125395A (en) * 1982-12-29 1984-07-19 Showa Alum Corp Manufacture of tube for heat exchanger
JPS6166091A (en) * 1984-09-06 1986-04-04 Toyo Radiator Kk Manufacture of heat exchanger tube material and core by use of such material and core by use of such material
JPH0486489A (en) * 1990-07-27 1992-03-19 Showa Alum Corp Tube for heating exchanger
JPH0777397A (en) * 1993-09-07 1995-03-20 Kawaju Reinetsu Kogyo Kk Heat transfer tube
JPH08226784A (en) * 1995-02-21 1996-09-03 Sanden Corp Heat exchanger and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0907062A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052409A1 (en) * 1999-02-26 2000-09-08 Bosch Automotive Systems Corporation Heat exchanger and method of manufacturing tube for the heat exchanger
DE102006016711A1 (en) * 2006-04-08 2007-10-11 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006016711B4 (en) * 2006-04-08 2016-11-03 Modine Manufacturing Co. Flat tube for heat exchanger
CN102636063A (en) * 2012-04-08 2012-08-15 泰安鼎鑫冷却器有限公司 Combined radiating pipe with butt-jointed single folded edges
CN102636065A (en) * 2012-04-08 2012-08-15 泰安鼎鑫冷却器有限公司 Two-side folding combined heat radiating pipe
CN106556281A (en) * 2015-09-29 2017-04-05 泰安鼎鑫冷却器有限公司 A kind of assembling radiating core body
CN106556279A (en) * 2015-09-29 2017-04-05 泰安鼎鑫冷却器有限公司 A kind of multi-part assembling radiating core body
CN106556281B (en) * 2015-09-29 2018-07-06 泰安鼎鑫冷却器有限公司 A kind of assembling radiating core
CN106643252A (en) * 2017-01-09 2017-05-10 南宁市安和机械设备有限公司 Enhanced B type heat dissipation pipe
EP3399266A1 (en) * 2017-05-02 2018-11-07 Valeo Systemes Thermiques A flat tube for a heat exchanger and a heat exchanger

Also Published As

Publication number Publication date
EP0907062A4 (en) 1999-11-24
JPH10274489A (en) 1998-10-13
EP0907062A1 (en) 1999-04-07

Similar Documents

Publication Publication Date Title
WO1998044306A1 (en) Heat exchanger tube and method of its manufacture
JP4099513B2 (en) Metal plate for flat tube manufacturing, flat tube and flat tube manufacturing method
JP2000304488A (en) Aluminum alloy heat exchanger
JP2001041675A (en) Tube for heat exchanger and heat exchanger
JPH08200977A (en) Flat tube for heat exchanger and manufacture thereof
WO2012063443A1 (en) Tube for heat exchanger
JPH10318695A (en) Heat exchanger
JPH07227631A (en) Guide tube for heat exchanging in laminated layer type heat exchanger and its manufacture
JP3901349B2 (en) Flat heat transfer tube for heat exchanger
GB2361301A (en) Heat exchange tube
US6513585B2 (en) Header-less vehicle radiator
JP4926972B2 (en) Pipe manufactured from profile-rolled metal product and manufacturing method thereof
JPH02154992A (en) Heat exchanger employing flat tube
JP2007113895A (en) Heat exchanger and manufacturing method of heat exchanger
JP4536273B2 (en) Flat tube for heat exchanger and method of manufacturing heat exchanger
JP3912889B2 (en) Tube for heat exchanger and manufacturing method thereof
JP4626472B2 (en) Heat exchanger and heat exchanger manufacturing method
JP3966072B2 (en) Manufacturing method of heat exchanger tube
JP2007107755A (en) Heat exchanger, tube for heat exchanger and method of manufacturing them
JPH1130493A (en) Tube for heat exchange and manufacture thereof
EP0866301A1 (en) Heat exchanger and method of manufacturing same
JP2006297472A (en) Manufacturing method of heat exchanger, and fin and tube of heat exchanger
JP2701939B2 (en) Manufacturing method of aluminum heat exchanger
JPS60205192A (en) Heat exchanger
JP4575697B2 (en) Heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998911038

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998911038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09194580

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1998911038

Country of ref document: EP