JP2003004315A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003004315A
JP2003004315A JP2001186533A JP2001186533A JP2003004315A JP 2003004315 A JP2003004315 A JP 2003004315A JP 2001186533 A JP2001186533 A JP 2001186533A JP 2001186533 A JP2001186533 A JP 2001186533A JP 2003004315 A JP2003004315 A JP 2003004315A
Authority
JP
Japan
Prior art keywords
port
heat exchanger
pipe
compressor
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001186533A
Other languages
Japanese (ja)
Inventor
Kumar Dotto Oshitto
クマール ドット オシット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2001186533A priority Critical patent/JP2003004315A/en
Publication of JP2003004315A publication Critical patent/JP2003004315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent overheat of a compressor and avoid wet vapor suction to the compressor. SOLUTION: A double pipe type heat exchanger 4 having an outside passage 4d and an inside passage 4c to exchange heat between refrigerants flowing through the passages are provided between an outdoor side heat exchanger 3 and an indoor side heat exchanger 6. The refrigerant vaporized in the indoor side heat exchanger 6 is cooled in the double pipe type heat exchanger 4 to be partially liquefied and returned to the compressor 1. The compressor is prevented from being overheated by vaporization in the compressor 1, and further, if excessive refrigerant is returned to the compressor 1, a three-way valve 7 is switched to return the refrigerant via a bypass pipe 17 without cooling the refrigerant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機に係わ
り、より詳細には、圧縮機へ還流する冷媒を冷却して圧
縮機の過熱を防止するとともに、圧縮機への所謂、液バ
ック現象を防止する構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to cooling a refrigerant flowing back to a compressor to prevent overheating of the compressor and a so-called liquid back phenomenon to the compressor. It relates to a configuration for preventing.

【0002】[0002]

【従来の技術】従来の空気調和機の冷媒回路は、例え
ば、図4で示すように、圧縮機30と室外側熱交換器3
1と膨張弁33と室内側熱交換器32とアキュームレー
タ37とを順次接続する一方、前記室外側熱交換器31
と前記膨張弁33とを結ぶ配管と、前記室内側熱交換器
32と前記圧縮機30とを結ぶ配管との間に、キャピラ
リチューブ34を接続している。同キャピラリチューブ
34は、前記圧縮機30と前記室外側熱交換器31とを
結ぶ配管に被加熱部34aを接触させ、前記圧縮機30
から吐出された高温の冷媒で、前記キャピラリチューブ
34内を流れる液相の冷媒を加熱し、液相状態と気相状
態とに分離するようになっている。
2. Description of the Related Art A conventional refrigerant circuit of an air conditioner has, for example, a compressor 30 and an outdoor heat exchanger 3 as shown in FIG.
1, the expansion valve 33, the indoor heat exchanger 32, and the accumulator 37 are sequentially connected, while the outdoor heat exchanger 31 is connected.
A capillary tube 34 is connected between a pipe connecting the expansion valve 33 and the expansion valve 33 and a pipe connecting the indoor heat exchanger 32 and the compressor 30. The capillary tube 34 brings the heated portion 34a into contact with a pipe connecting the compressor 30 and the outdoor heat exchanger 31,
The high-temperature refrigerant discharged from heats the liquid-phase refrigerant flowing in the capillary tube 34 to separate it into a liquid-phase state and a vapor-phase state.

【0003】前記圧縮機30から吐出された高温高圧の
冷媒は前記室外側熱交換器31に流入し、熱を放出して
凝縮液化する。凝縮液化した冷媒は前記膨張弁33を経
て低温低圧となり前記室内側熱交換器32に流入して、
周囲から熱を吸収し蒸発気化する。蒸発気化した冷媒
は、前記アキュームレータ37を経て前記圧縮機30に
気相状態で還流するようになっている。前記室外側熱交
換器31から前記キャピラリチューブ34に流入した液
相の冷媒は前記被加熱部34aで加熱され、一部が蒸発
気化される一方、一部は液相状態のまま前記圧縮機30
内に流入し、液相状態の冷媒が蒸発気化することにより
前記圧縮機30を冷却し、同圧縮機30の加熱を防止す
るようになっている。
The high-temperature and high-pressure refrigerant discharged from the compressor 30 flows into the outdoor heat exchanger 31 and releases heat to be condensed and liquefied. The condensed and liquefied refrigerant becomes a low temperature and low pressure through the expansion valve 33 and flows into the indoor heat exchanger 32,
It absorbs heat from the surroundings and evaporates and vaporizes. The evaporated and vaporized refrigerant is returned to the compressor 30 via the accumulator 37 in a vapor phase state. The liquid-phase refrigerant that has flowed into the capillary tube 34 from the outdoor heat exchanger 31 is heated in the heated portion 34a and partially evaporated and vaporized, while part of the compressor 30 remains in the liquid phase state.
The compressor 30 is cooled by evaporating and evaporating the refrigerant in the liquid phase in which the compressor 30 is prevented from being heated.

【0004】しかしながら、前記被加熱部34aでの加
熱による、冷媒の液相状態と気相状態への分離は、外気
温等の影響により液相と気相への分離の割合が一定せ
ず、前記圧縮機30に過分な液相状態の冷媒が流入した
場合は、所謂液バック現象となり、前記圧縮機30内に
破損を生じる恐れがあった。
However, in the separation of the refrigerant into the liquid phase and the gas phase by heating in the heated portion 34a, the ratio of the separation into the liquid phase and the gas phase is not constant due to the influence of the outside temperature, etc. If an excessive amount of refrigerant in the liquid phase flows into the compressor 30, a so-called liquid back phenomenon may occur, and the compressor 30 may be damaged.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題点に
鑑み、圧縮機に還流する冷媒の温度を的確に制御して、
圧縮機の過熱と、液バック現象とを防止できる空気調和
機を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention accurately controls the temperature of the refrigerant flowing back to the compressor,
An object of the present invention is to provide an air conditioner capable of preventing overheating of a compressor and a liquid back phenomenon.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するため、圧縮機の吐出側を四方弁の第一ポートに、吸
込側を前記四方弁の第四ポートに夫々接続し、前記四方
弁の第二ポートを室外側熱交換器の一側に接続し、同室
外側熱交換器の他側を二重管式熱交換器の外側流路に備
えられた第一接続口に接続し、前記外側流路に備えられ
た第二接続口を膨張弁を介して室内側熱交換器の一側に
接続し、同室内側熱交換器の他側を前記二重管式熱交換
器の内側流路に備えられた第三接続口に接続し、前記内
側流路に設けられた第四接続口を前記四方弁の第三ポー
トに接続し、前記室内側熱交換器の他側と前記二重管式
熱交換器の第三接続口を結ぶ配管と、前記二重管式熱交
換器の前記第四接続口と前記四方弁の前記第二ポートと
を結ぶ配管の間にバイパス管を設けるとともに、同バイ
パス管と、前記室内側熱交換器の他側と前記二重管式熱
交換器の第三接続口を結ぶ配管との接続部に三方切換弁
を設け、同三方切換弁の第一ポートを前記室内側熱交換
器側に、第二ポートを前記二重管式熱交換器の前記第三
接続口側に、第三ポートを前記バイパス管に夫々接続し
てなり、冷房運転時、前記四方弁の前記第一ポートと前
記第二ポートとを、前記第三ポートと前記第四ポートと
を夫々連通させるとともに、前記三方切換弁の前記第一
ポートと前記第二ポートとを連通させ、前記圧縮機から
吐出された冷媒が前記四方弁を経て前記室外側熱交換器
に流入し、凝縮して低温となり前記二重管式熱交換器の
前記外側流路を経て前記室内側熱交換器に流入し、蒸発
気化して高温となり前記二重管式熱交換器の前記内側流
路に流入し、前記外側流路を流れる低温の冷媒と熱交換
して冷却され、一部が液相冷媒となって前記圧縮機に還
流し蒸発して同圧縮機の過熱を防止する構成となってい
る。
In order to solve the above-mentioned problems, the present invention connects the discharge side of the compressor to the first port of the four-way valve and the suction side to the fourth port of the four-way valve. The second port of the valve is connected to one side of the outdoor heat exchanger, the other side of the outdoor heat exchanger is connected to the first connection port provided in the outer flow path of the double pipe heat exchanger, The second connection port provided in the outer flow path is connected to one side of the indoor heat exchanger via an expansion valve, and the other side of the indoor heat exchanger is connected to the inner flow of the double-tube heat exchanger. Connecting to a third connection port provided in the passage, connecting a fourth connection port provided in the inner flow path to the third port of the four-way valve, and connecting the other side of the indoor heat exchanger to the double port. Between a pipe connecting the third connection port of the pipe heat exchanger, and a pipe connecting the fourth connection port of the double pipe heat exchanger and the second port of the four-way valve A three-way switching valve is provided at the connection between the bypass pipe and the pipe connecting the other side of the indoor heat exchanger and the third connection port of the double-pipe heat exchanger together with the bypass pipe. The first port of the switching valve is connected to the indoor heat exchanger side, the second port is connected to the third connection port side of the double pipe heat exchanger, and the third port is connected to the bypass pipe. During the cooling operation, the first port and the second port of the four-way valve are communicated with the third port and the fourth port, respectively, and the first port and the second port of the three-way switching valve are connected. Communicating with the port, the refrigerant discharged from the compressor flows into the outdoor heat exchanger through the four-way valve, condenses to a low temperature, and passes through the outer flow path of the double-tube heat exchanger. It flows into the indoor heat exchanger, evaporates and vaporizes to a high temperature, and the double tube heat The refrigerant flows into the inside flow path of the exchanger and is cooled by exchanging heat with the low temperature refrigerant flowing through the outside flow path. It is designed to prevent overheating.

【0007】また、前記圧縮機に還流する液相冷媒が過
剰となる場合は、前記三方切換弁の前記第一ポートと前
記第二ポートとの間を遮断し、前記第一ポートと前記第
三ポートとを連通させることにより、前記室内側熱交換
器の他側から送出された冷媒が、前記バイパス管を通り
前記圧縮機に還流してなる構成となっている。
When the liquid-phase refrigerant flowing back to the compressor becomes excessive, the first port and the third port of the three-way switching valve are shut off by shutting off the first port and the second port. By communicating with the port, the refrigerant sent from the other side of the indoor heat exchanger is returned to the compressor through the bypass pipe.

【0008】また、前記三方切換弁が、前記室内側熱交
換器に接続された配管に設けられ、冷媒の温度を検出す
る温度センサの検出値を基に切換えられてなる構成とな
っている。
Further, the three-way switching valve is provided in a pipe connected to the indoor heat exchanger, and is switched based on a detection value of a temperature sensor for detecting the temperature of the refrigerant.

【0009】また、前記温度センサの検出値が、冷媒が
液相状態から気相状態に遷移する飽和温度に達した際
は、前記三方切換弁の前記第一ポートと前記第二ポート
とを連通させ、前記室内側熱交換器の他側から送出され
た冷媒が前記二重管式熱交換器に流入するようにしてな
る構成となっている。
Further, when the detected value of the temperature sensor reaches the saturation temperature at which the refrigerant transits from the liquid phase state to the gas phase state, the first port and the second port of the three-way switching valve are communicated with each other. The refrigerant sent from the other side of the indoor heat exchanger flows into the double-pipe heat exchanger.

【0010】また、暖房運転時、前記四方弁の前記第一
ポートと前記第三ポートとを、前記第二ポートと前記第
四ポートとを夫々連通させるとともに、前記三方切換弁
の前記第一ポートと前記第三ポートとを連通させ、前記
圧縮機から吐出された冷媒が、前記四方弁から前記バイ
パス管を経て前記室内側熱交換器に流入してなる構成と
なっている。
Further, during the heating operation, the first port and the third port of the four-way valve are communicated with the second port and the fourth port, respectively, and the first port of the three-way switching valve is connected. And the third port are communicated with each other, and the refrigerant discharged from the compressor flows from the four-way valve through the bypass pipe into the indoor heat exchanger.

【0011】また、圧縮機の吐出側を四方弁の第一ポー
トに、吸込側を前記四方弁の第四ポートに夫々接続し、
前記四方弁の第二ポートを室外側熱交換器の一側に接続
し、同室外側熱交換器の他側を二重管式熱交換器の外側
流路に備えられた第一接続口に接続し、前記外側流路に
備えられた第二接続口を膨張弁を介して室内側熱交換器
の一側に接続し、同室内側熱交換器の他側を前記二重管
式熱交換器の内側流路に備えられた第三接続口に接続
し、前記内側流路に設けられた第四接続口を前記四方弁
の第三ポートに接続し、前記室内側熱交換器の他側と前
記二重管式熱交換器の第三接続口を結ぶ配管と、前記二
重管式熱交換器の前記第四接続口と前記四方弁の前記第
二ポートとを結ぶ配管の間にバイパス管を設けるととも
に、同バイパス管に第一電磁開閉弁を、同バイパス管の
前記室内側熱交換器の他側と前記二重管式熱交換器の第
三接続口を結ぶ配管の接続部と、前記二重管式熱交換器
の前記第三接続口との間に第二電磁開閉弁を夫々設けて
なり、冷房運転時、前記四方弁の前記第一ポートと前記
第二ポートとを、前記第三ポートと前記第四ポートとを
夫々連通させるとともに、前記三方切換弁の前記第一ポ
ートと前記第二ポートとを連通させ、前記第一電磁開閉
弁を閉じる一方、前記第二電磁開閉弁を開放し、前記圧
縮機から吐出された冷媒が前記四方弁を経て前記室外側
熱交換器に流入し、凝縮して低温となり前記二重管式熱
交換器の前記外側流路を経て前記室内側熱交換器に流入
し、蒸発気化して高温となり前記二重管式熱交換器の前
記内側流路に流入し、前記外側流路を流れる低温の冷媒
と熱交換して冷却され、一部が液相冷媒となって前記圧
縮機に還流し蒸発して同圧縮機の過熱を防止する構成と
なっている。
The discharge side of the compressor is connected to the first port of the four-way valve, and the suction side is connected to the fourth port of the four-way valve.
The second port of the four-way valve is connected to one side of the outdoor heat exchanger, and the other side of the outdoor heat exchanger is connected to the first connection port provided in the outer flow path of the double pipe heat exchanger. Then, the second connection port provided in the outer flow path is connected to one side of the indoor heat exchanger via an expansion valve, and the other side of the indoor heat exchanger is connected to the double tube heat exchanger. Connected to the third connection port provided in the inner flow path, the fourth connection port provided in the inner flow path is connected to the third port of the four-way valve, the other side of the indoor heat exchanger and the A pipe connecting the third connection port of the double-pipe heat exchanger, and a bypass pipe between the pipe connecting the fourth connection port of the double-pipe heat exchanger and the second port of the four-way valve. A pipe that connects the first electromagnetic on-off valve to the bypass pipe and connects the other side of the indoor heat exchanger of the bypass pipe to the third connection port of the double-pipe heat exchanger. A second electromagnetic on-off valve is provided between the connection portion and the third connection port of the double-tube heat exchanger, and during cooling operation, the first port and the second port of the four-way valve. And, while communicating the third port and the fourth port, respectively, to communicate the first port and the second port of the three-way switching valve, while closing the first solenoid on-off valve, the first (2) The electromagnetic on-off valve is opened, and the refrigerant discharged from the compressor flows into the outdoor heat exchanger via the four-way valve, condenses to a low temperature, and the outer flow path of the double-tube heat exchanger Flow into the indoor side heat exchanger, evaporate and vaporize to a high temperature, flow into the inner flow path of the double-tube heat exchanger, and exchange heat with a low temperature refrigerant flowing through the outer flow path to cool. Then, part of it becomes a liquid-phase refrigerant, returns to the compressor, evaporates, and overheats the compressor. And it has a configuration to prevent.

【0012】更に、前記圧縮機に還流する液相冷媒が過
剰となる場合は、前記第二電磁開閉弁を閉じ、前記第一
電磁開閉弁を開放することにより、前記室内側熱交換器
の他側から送出された冷媒が、前記バイパス管を通り前
記圧縮機に還流してなる構成となっている。
Further, when the liquid-phase refrigerant flowing back to the compressor becomes excessive, the second electromagnetic opening / closing valve is closed and the first electromagnetic opening / closing valve is opened, so that the indoor heat exchanger The refrigerant sent from the side is returned to the compressor through the bypass pipe.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいた実施例として詳細に説明する。図1
(A)は本発明による空気調和機の第一実施例を示す冷
媒回路図であり、図1(B)は同冷媒回路に設けられた
二重管式熱交換器を示す断面図である。図2(A)は冷
房運転時の冷媒の流れを示す冷媒回路図であり、図2
(B)は後述する三方切換弁を切換えた際の冷媒の流れ
を示す冷媒回路図である。また図3(A)は暖房運転時
の冷媒の流れを示す冷媒回路図であり、図3(B)は第
二実施例を示す冷媒回路図である。本発明による空気調
和機の冷媒回路は、図1(A)で示すように、圧縮機1
の吐出側を第一配管9で四方弁2の第一ポート2aに、
吸込側をアキュームレータ8を経て第八配管16で前記
四方弁2の第四ポート2dに夫々接続し、同四方弁2の
第二ポート2bを第二配管10により室外側熱交換器3
の一側に接続している。同室外側熱交換器3の他側は第
三配管11により二重管式熱交換器4の第一接続口4e
に接続され、同二重管式熱交換器4の第二接続口4f
は、膨張弁5を備えた第四配管12により室内側熱交換
器6の一側に接続されている。同室内側熱交換器6の他
側は第五配管13により三方切換弁7の第一ポート7a
に接続され、同三方切換弁7の第二ポート7bは第六配
管14により前記二重管式熱交換器4の第三接続口4g
に接続されている。同二重管式熱交換器4の第四接続口
4hは第七配管15により前記四方弁2に接続されてい
る。また、前記第七配管15には前記三方切換弁7の第
三ポート7cに至るバイパス管17が接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail as examples based on the accompanying drawings. Figure 1
(A) is a refrigerant circuit diagram showing a first embodiment of an air conditioner according to the present invention, and FIG. 1 (B) is a sectional view showing a double-tube heat exchanger provided in the refrigerant circuit. FIG. 2A is a refrigerant circuit diagram showing the flow of the refrigerant during the cooling operation.
(B) is a refrigerant circuit diagram showing the flow of the refrigerant when the three-way switching valve described later is switched. 3 (A) is a refrigerant circuit diagram showing the flow of the refrigerant during heating operation, and FIG. 3 (B) is a refrigerant circuit diagram showing the second embodiment. The refrigerant circuit of the air conditioner according to the present invention, as shown in FIG.
The discharge side of the first pipe 9 to the first port 2a of the four-way valve 2,
The suction side is connected to the fourth port 2d of the four-way valve 2 by the eighth pipe 16 via the accumulator 8, and the second port 2b of the four-way valve 2 is connected by the second pipe 10 to the outdoor heat exchanger 3
Is connected to one side. The other side of the outdoor heat exchanger 3 is connected to the first pipe 4e of the double-pipe heat exchanger 4 by the third pipe 11.
And the second connection port 4f of the double-tube heat exchanger 4 connected to
Is connected to one side of the indoor heat exchanger 6 by a fourth pipe 12 having an expansion valve 5. The other side of the indoor heat exchanger 6 is connected to the first port 7a of the three-way switching valve 7 by the fifth pipe 13.
The second port 7b of the three-way switching valve 7 is connected to the third connection port 4g of the double pipe heat exchanger 4 by the sixth pipe 14.
It is connected to the. The fourth connection port 4h of the double-tube heat exchanger 4 is connected to the four-way valve 2 by a seventh pipe 15. Further, a bypass pipe 17 leading to the third port 7c of the three-way switching valve 7 is connected to the seventh pipe 15.

【0014】前記三方切換弁7は通常時、前記第一ポー
ト7aと前記第二ポート7bとが連通するように設定さ
れており、切換操作により、前記第一ポート7aと前記
第二ポート7bとの間を遮断する一方、前記第一ポート
7aと前記第三ポート7cとを連通するようになってい
る。
The three-way switching valve 7 is normally set so that the first port 7a and the second port 7b communicate with each other, and the switching operation allows the first port 7a and the second port 7b to communicate with each other. The first port 7a and the third port 7c are communicated with each other while blocking the space between them.

【0015】前記二重管式熱交換器4は、図1(B)で
示すように、前記第三接続口4gと前記第四接続口4h
とを両端部に夫々設けた円筒状の内管4aと、同内管4
aの外周面を包むように形成され、前記第一接続口4e
と前記第二接続口4fとを両端部に夫々設けた円筒状の
外管4bとからなり、前記内管4a内に内側流路4c
を、前記外管4bと前記内管4aとの間に外側流路4d
を夫々形成し、前記内側流路4cと前記外側流路4dと
を流れる冷媒は熱交換するようになっている。
As shown in FIG. 1B, the double pipe heat exchanger 4 has the third connection port 4g and the fourth connection port 4h.
And a cylindrical inner tube 4a having both ends provided with
The first connection port 4e is formed so as to enclose the outer peripheral surface of a.
And a cylindrical outer pipe 4b provided with the second connection port 4f at both ends thereof, and the inner flow passage 4c is provided in the inner pipe 4a.
The outer flow path 4d between the outer pipe 4b and the inner pipe 4a.
Are formed respectively, and the refrigerant flowing through the inner flow passage 4c and the outer flow passage 4d exchanges heat.

【0016】また、前記配管13の前記室内側熱交換器
6との接続口近傍には、冷媒の温度を検出する温度セン
サ18が設けられ、同温度センサ18により検出された
検出値は制御部21に送られ、同制御部21により前記
三方切換弁7は切換えられるようになっている。
Further, a temperature sensor 18 for detecting the temperature of the refrigerant is provided near the connection port of the pipe 13 with the indoor heat exchanger 6, and the detected value detected by the temperature sensor 18 is a control unit. 21 and the control section 21 switches the three-way switching valve 7.

【0017】次に、上記した冷媒回路の冷媒の流れにつ
いて説明する。冷媒運転時、前記四方弁2の前記第一ポ
ート2aと前記第二ポート2bとが、前記第三ポート2
cと前記第四ポート2dとが夫々連通され、前記三方切
換弁7は上記したように、前記第一ポート7aと前記第
二ポート7bとが連通され、前記第一ポート7aと前記
第三ポート7cとの間は遮断されるようになっている。
前記圧縮機1の吐出側から吐出された高温高圧の冷媒
は、図2(A)で示すように、前記四方弁2と、前記第
二配管10とを介して前記室外側熱交換器3に流入し、
同室外側熱交換器3で熱を放出して凝縮液化し、低温の
冷媒となって前記二重管式熱交換器4の前記第一接続口
4eから前記外側流路4dに流入する。同外側流路4d
を流れ前記第二接続口4fから流出した冷媒は、前記膨
張弁5により減圧され前記室内側熱交換器6に流入し、
同室内側熱交換器6で周囲の熱を吸収して蒸発気化す
る。蒸発気化した高温の冷媒は、前記第五配管13を経
て前記三方切換弁7の前記第一ポート7aから前記第二
ポート7bを通過し、前記第三接続口4gから前記二重
管式熱交換器4の前記内側流路4cに流入する。同内側
流路4cに流入した高温の気相冷媒は、前記外側流路4
dを流れる低温の液相冷媒と熱交換し冷却されて、その
一部は液相状態となる。液相状態となった冷媒は気相状
態の冷媒と混合して前記第七配管15を通り前記四方弁
2を介して前記圧縮機1に還流し、同圧縮機1内で蒸発
気化することにより同圧縮機1を冷却し、その過熱を防
止するようになっている。
Next, the flow of the refrigerant in the above-mentioned refrigerant circuit will be described. During operation of the refrigerant, the first port 2a and the second port 2b of the four-way valve 2 are connected to the third port 2
c and the fourth port 2d communicate with each other, and the three-way switching valve 7 communicates with the first port 7a and the second port 7b as described above, and the first port 7a and the third port. 7c is cut off.
The high-temperature high-pressure refrigerant discharged from the discharge side of the compressor 1 is transferred to the outdoor heat exchanger 3 via the four-way valve 2 and the second pipe 10 as shown in FIG. 2 (A). Inflow,
The heat is released from the outdoor heat exchanger 3 in the same room to be condensed and liquefied to become a low-temperature refrigerant which flows from the first connection port 4e of the double-tube heat exchanger 4 into the outer flow path 4d. Same outside flow path 4d
The refrigerant flowing through the second connection port 4f is decompressed by the expansion valve 5 and flows into the indoor heat exchanger 6,
The indoor heat exchanger 6 absorbs ambient heat and evaporates and vaporizes. The evaporated high-temperature refrigerant passes through the fifth pipe 13 from the first port 7a of the three-way switching valve 7 to the second port 7b, and from the third connection port 4g to the double pipe heat exchange. It flows into the inner flow path 4c of the container 4. The high-temperature vapor-phase refrigerant that has flowed into the inner flow passage 4c is transferred to the outer flow passage 4c.
It is cooled by exchanging heat with the low-temperature liquid-phase refrigerant flowing through d, and a part of it is in a liquid-phase state. The refrigerant in the liquid phase is mixed with the refrigerant in the gas phase, flows through the seventh pipe 15 and flows back to the compressor 1 through the four-way valve 2, and evaporates and vaporizes in the compressor 1. The compressor 1 is cooled to prevent its overheating.

【0018】しかしながら、過剰な液相冷媒が前記圧縮
機1に流入した場合は、前記圧縮機1内部に破損が生じ
る恐れがあり、このような事態を防ぐため、前記室内側
熱交換器6の近傍に設けられた前記温度センサ18の検
出値が、設定された基準値を下回る際は、前記三方切換
弁7を切換え、前記第一ポート7aと前記第二ポート7
bとの間を遮断する一方、前記第一ポート7aと前記第
三ポート7cとを連通させるようになっている。これに
より、図2(B)で示すように、前記室内側熱交換器6
から流出した冷媒は前記三方切換弁7の前記第一ポート
7aから前記第三ポート7cを通り前記バイパス管17
に流入し、前記二重管式熱交換器4を通ることなく、前
記第七配管15を通り前記四方弁2を介して前記圧縮機
1に還流するようになっている。
However, when an excessive amount of liquid-phase refrigerant flows into the compressor 1, there is a risk of damage to the inside of the compressor 1. In order to prevent such a situation, the indoor heat exchanger 6 is prevented. When the detection value of the temperature sensor 18 provided in the vicinity is lower than the set reference value, the three-way switching valve 7 is switched to the first port 7a and the second port 7
The first port 7a and the third port 7c are made to communicate with each other while blocking the connection with b. As a result, as shown in FIG. 2B, the indoor heat exchanger 6 is
The refrigerant flowing out from the three-way switching valve 7 passes from the first port 7a through the third port 7c to the bypass pipe 17
To the compressor 1 through the seventh pipe 15 and the four-way valve 2 without passing through the double pipe heat exchanger 4.

【0019】前記温度センサ18の検出値が、冷媒が液
相状態から気相状態に遷移する飽和温度に達した際は、
再度前記三方切換弁7の前記第一ポート7aと前記第二
ポートbとを連通させ、前記室内側熱交換器6から送出
された冷媒が前記二重管式熱交換器4に流入し、前記外
側流路4dを流れる冷媒と熱交換し、冷却されて前記圧
縮機1に還流するようになっている。
When the value detected by the temperature sensor 18 reaches the saturation temperature at which the refrigerant changes from the liquid phase state to the gas phase state,
The first port 7a and the second port b of the three-way switching valve 7 are communicated with each other again, and the refrigerant sent from the indoor heat exchanger 6 flows into the double-pipe heat exchanger 4, The refrigerant exchanges heat with the refrigerant flowing through the outer flow path 4d, is cooled, and is returned to the compressor 1.

【0020】次に、暖房運転時の冷媒の流れについて説
明する。暖房運転時、前記四方弁2は、前記第一ポート
2aと前記第三ポート2cが、前記第三ポート2bと前
記第四ポート2dとが夫々連通するように切換えられ、
前記三方切換弁7は前記第一ポート7aと前記第二ポー
ト7bとの間は遮断される一方、前記第一ポート7aと
前記第三ポート7cとは連通されるようになっている。
前記圧縮機1の吐出側から吐出された高温高圧の冷媒
は、図3で示すように、前記四方弁2を介して前記第七
配管15から前記バイパス管17に流入し、前記三方切
換弁7の前記第三ポート7cから前記第一ポート7aを
通り、前記室内側熱交換器6に流入する。同室内側熱交
換器6に流入した冷媒は熱を放出して凝縮し、前記膨張
弁5と前記二重管式熱交換器4の前記外側流路4dとを
介して前記室外側熱交換器3に流入し、同室外側熱交換
器3で熱を吸収して蒸発する。蒸発した冷媒は、前記四
方弁2を介して前記圧縮機1に還流するようになってい
る。
Next, the flow of the refrigerant during the heating operation will be described. During the heating operation, the four-way valve 2 is switched so that the first port 2a and the third port 2c communicate with each other and the third port 2b and the fourth port 2d communicate with each other,
The three-way switching valve 7 blocks the first port 7a and the second port 7b while the first port 7a and the third port 7c communicate with each other.
The high-temperature and high-pressure refrigerant discharged from the discharge side of the compressor 1 flows into the bypass pipe 17 from the seventh pipe 15 via the four-way valve 2 as shown in FIG. 3, and the three-way switching valve 7 From the third port 7c through the first port 7a to flow into the indoor heat exchanger 6. The refrigerant flowing into the indoor heat exchanger 6 releases heat and condenses, and the outdoor heat exchanger 3 passes through the expansion valve 5 and the outer flow path 4d of the double-pipe heat exchanger 4. And is absorbed in the outdoor heat exchanger 3 to evaporate. The evaporated refrigerant recirculates to the compressor 1 via the four-way valve 2.

【0021】次に、第二実施例を示す。図3(B)で示
す例は、前記バイパス管17に第一電磁開閉弁19を、
前記第六配管14に第二電磁開閉弁20を夫々設け、冷
房運転時、前記第一電磁開閉弁19を閉じ、前記第二電
磁開閉弁20は開放して前記室内側熱交換器6から流出
した冷媒が前記二重管式熱交換器4を通り冷却されて前
記圧縮機1に還流する一方、過剰な液相冷媒が前記圧縮
機1に還流する恐れがある場合は、前記第二電磁開閉弁
20を閉じ、前記第一電磁開閉弁19を開放することに
より、前記室内側熱交換器6から流出した冷媒はバイパ
ス管17を通り前記圧縮機1に還流するようになってい
る。また、暖房運転時、前記第一電磁開閉弁19を開放
し、前記第二電磁開閉弁20を閉じるようにして運転を
行うようになっており、一対の電磁開閉弁を使用するこ
とによりコストの低減がはかれるようになっている。
Next, a second embodiment will be shown. In the example shown in FIG. 3B, the bypass pipe 17 is provided with a first electromagnetic opening / closing valve 19,
A second electromagnetic on-off valve 20 is provided in each of the sixth pipes 14, the first electromagnetic on-off valve 19 is closed, the second electromagnetic on-off valve 20 is opened, and flows out from the indoor heat exchanger 6 during a cooling operation. When the refrigerant that has been cooled passes through the double-pipe heat exchanger 4 and returns to the compressor 1, while excess liquid-phase refrigerant may return to the compressor 1, the second electromagnetic switching By closing the valve 20 and opening the first electromagnetic opening / closing valve 19, the refrigerant flowing out of the indoor heat exchanger 6 flows back to the compressor 1 through the bypass pipe 17. In addition, during the heating operation, the first electromagnetic on-off valve 19 is opened and the second electromagnetic on-off valve 20 is closed to perform the operation. By using a pair of electromagnetic on-off valves, the cost can be reduced. Reductions are being made.

【0022】[0022]

【発明の効果】以上説明したように、本発明によると、
室外側熱交換器と室内側熱交換器との間に、外側流路と
内側流路とを備え、これらを流れる冷媒間で熱交換を行
う二重管式熱交換器を設け、前記室内側熱交換器で蒸発
気化した冷媒を前記二重管式熱交換器で冷却し一部を液
化させて圧縮機に還流させ、同圧縮機内で蒸発気化させ
ることにより、圧縮機の過熱を防止する一方、過剰な液
相冷媒が圧縮機に還流する場合には、前記室内側熱交換
器と前記二重管式熱交換器との間に設けた三方切換弁を
切換えることにより、冷媒を冷却することなくバイパス
管を介して前記圧縮機に還流させ、所謂液バック現象を
防止することのできる信頼性の向上した空気調和機とす
ることができる。
As described above, according to the present invention,
Between the outdoor heat exchanger and the indoor heat exchanger, an outer flow passage and an inner flow passage are provided, and a double-pipe heat exchanger for exchanging heat between the refrigerants flowing through these is provided, and the indoor side is provided. Refrigerant evaporatively vaporized in the heat exchanger is cooled in the double-tube heat exchanger to liquefy a part of the refrigerant and recirculate to the compressor to evaporate and vaporize in the compressor to prevent overheating of the compressor. When excess liquid-phase refrigerant is returned to the compressor, the refrigerant is cooled by switching the three-way switching valve provided between the indoor heat exchanger and the double-tube heat exchanger. It is possible to provide an air conditioner with improved reliability that can prevent a so-called liquid back phenomenon by allowing the air to flow back to the compressor via a bypass pipe instead.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明による空気調和機の第一実施例
を示す冷媒回路図である。(B)は本発明による空気調
和機に設けられた二重管式熱交換器を示す断面図であ
る。
FIG. 1A is a refrigerant circuit diagram showing a first embodiment of an air conditioner according to the present invention. (B) is a cross-sectional view showing a double-tube heat exchanger provided in the air conditioner according to the present invention.

【図2】(A)は冷房運転時の冷媒の流れを示す冷媒回
路図である。(B)は冷房運転時に三方切換弁を切換え
た際の冷媒の流れを示す冷媒回路図である。
FIG. 2A is a refrigerant circuit diagram showing a refrigerant flow during a cooling operation. (B) is a refrigerant circuit diagram showing a refrigerant flow when the three-way selector valve is switched during the cooling operation.

【図3】(A)は暖房運転時の冷媒の流れを示す冷媒回
路図である。(B)は第二実施例を示す冷媒回路図であ
る。
FIG. 3A is a refrigerant circuit diagram showing a refrigerant flow during heating operation. (B) is a refrigerant circuit diagram showing a second embodiment.

【図4】従来の空気調和機における一例を示す冷媒回路
図である。
FIG. 4 is a refrigerant circuit diagram showing an example of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 2a 第一ポート 2b 第二ポート 2c 第三ポート 2d 第四ポート 3 室外側熱交換器 4 二重管式熱交換器 4a 内管 4b 外管 4c 内側流路 4d 外側流路 4e 第一接続口 4f 第二接続口 4g 第三接続口 4h 第四接続口 5 膨張弁 6 室内側熱交換器 7 三方切換弁 7a 第一ポート 7b 第二ポート 7c 第三ポート 8 アキュームレータ 9 第一配管 10 第二配管 11 第三配管 12 第四配管 13 第五配管 14 第六配管 15 第七配管 16 第八配管 17 バイパス管 18 温度センサ 19 第一電磁開閉弁 20 第二電磁開閉弁 21 制御部 1 compressor 2 four-way valve 2a First port 2b Second port 2c Third port 2d 4th port 3 Outdoor heat exchanger 4 Double tube heat exchanger 4a inner tube 4b outer tube 4c inner channel 4d outer channel 4e First connection port 4f Second connection port 4g Third connection port 4h Fourth connection port 5 expansion valve 6 Indoor heat exchanger 7 three-way switching valve 7a First port 7b Second port 7c Third port 8 Accumulator 9 First piping 10 Second piping 11 Third piping 12 Fourth piping 13 Fifth piping 14 sixth piping 15 Seventh piping 16 eighth pipe 17 Bypass pipe 18 Temperature sensor 19 First solenoid on-off valve 20 Second solenoid on-off valve 21 Control unit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の吐出側を四方弁の第一ポート
に、吸込側を前記四方弁の第四ポートに夫々接続し、前
記四方弁の第二ポートを室外側熱交換器の一側に接続
し、同室外側熱交換器の他側を二重管式熱交換器の外側
流路に備えられた第一接続口に接続し、前記外側流路に
備えられた第二接続口を膨張弁を介して室内側熱交換器
の一側に接続し、同室内側熱交換器の他側を前記二重管
式熱交換器の内側流路に備えられた第三接続口に接続
し、前記内側流路に設けられた第四接続口を前記四方弁
の第三ポートに接続し、前記室内側熱交換器の他側と前
記二重管式熱交換器の第三接続口を結ぶ配管と、前記二
重管式熱交換器の前記第四接続口と前記四方弁の前記第
二ポートとを結ぶ配管の間にバイパス管を設けるととも
に、同バイパス管と、前記室内側熱交換器の他側と前記
二重管式熱交換器の第三接続口を結ぶ配管との接続部に
三方切換弁を設け、同三方切換弁の第一ポートを前記室
内側熱交換器側に、第二ポートを前記二重管式熱交換器
の前記第三接続口側に、第三ポートを前記バイパス管に
夫々接続してなり、 冷房運転時、前記四方弁の前記第一ポートと前記第二ポ
ートとを、前記第三ポートと前記第四ポートとを夫々連
通させるとともに、前記三方切換弁の前記第一ポートと
前記第二ポートとを連通させ、前記圧縮機から吐出され
た冷媒が前記四方弁を経て前記室外側熱交換器に流入
し、凝縮して低温となり前記二重管式熱交換器の前記外
側流路を経て前記室内側熱交換器に流入し、蒸発気化し
て高温となり前記二重管式熱交換器の前記内側流路に流
入し、前記外側流路を流れる低温の冷媒と熱交換して冷
却され、一部が液相冷媒となって前記圧縮機に還流し蒸
発して同圧縮機の過熱を防止してなることを特徴とする
空気調和機。
1. The discharge side of the compressor is connected to the first port of the four-way valve, and the suction side is connected to the fourth port of the four-way valve, and the second port of the four-way valve is connected to one side of the outdoor heat exchanger. Connected to the other side of the same room outside heat exchanger to the first connection port provided in the outer flow path of the double-tube heat exchanger, the second connection port provided in the outer flow path is expanded. Connected to one side of the indoor heat exchanger via a valve, and connect the other side of the indoor heat exchanger to a third connection port provided in the inner flow path of the double-pipe heat exchanger, A pipe connecting the fourth connection port provided in the inner flow path to the third port of the four-way valve, and connecting the other side of the indoor heat exchanger and the third connection port of the double-pipe heat exchanger. A bypass pipe is provided between a pipe connecting the fourth connection port of the double-pipe heat exchanger and the second port of the four-way valve, and the bypass pipe, and A three-way switching valve is provided at the connection between the other side of the indoor heat exchanger and the pipe connecting the third connection port of the double-pipe heat exchanger, and the first port of the three-way switching valve is used for the indoor heat exchange. The second port is connected to the third pipe, the second port is connected to the third connection port side of the double-pipe heat exchanger, and the third port is connected to the bypass pipe. During cooling operation, the first port of the four-way valve is connected. The port and the second port are communicated with the third port and the fourth port, respectively, and the first port and the second port of the three-way switching valve are communicated with each other, and discharged from the compressor. Refrigerant flows into the outdoor heat exchanger through the four-way valve, condenses to a low temperature, flows into the indoor heat exchanger through the outer flow path of the double-tube heat exchanger, and evaporates. Becomes high temperature and flows into the inner flow path of the double pipe heat exchanger, and flows through the outer flow path. An air conditioner which is cooled by exchanging heat with a low-temperature refrigerant, and part of which becomes a liquid-phase refrigerant to flow back to the compressor and evaporate to prevent overheating of the compressor.
【請求項2】 前記圧縮機に還流する液相冷媒が過剰と
なる場合は、前記三方切換弁の前記第一ポートと前記第
二ポートとの間を遮断し、前記第一ポートと前記第三ポ
ートとを連通させることにより、前記室内側熱交換器の
他側から送出された冷媒が、前記バイパス管を通り前記
圧縮機に還流してなることを特徴とする請求項1に記載
の空気調和機。
2. When the liquid-phase refrigerant flowing back to the compressor becomes excessive, the three-way switching valve is shut off between the first port and the second port, and the first port and the third port are shut off. The air conditioner according to claim 1, wherein the refrigerant sent from the other side of the indoor heat exchanger is returned to the compressor through the bypass pipe by communicating with the port. Machine.
【請求項3】 前記三方切換弁が、前記室内側熱交換器
に接続された配管に設けられ、冷媒の温度を検出する温
度センサの検出値を基に切換えられてなることを特徴と
する請求項1に記載の空気調和機。
3. The three-way switching valve is provided in a pipe connected to the indoor heat exchanger, and is switched based on a detection value of a temperature sensor that detects the temperature of the refrigerant. The air conditioner according to Item 1.
【請求項4】 前記温度センサの検出値が、冷媒が液相
状態から気相状態に遷移する飽和温度に達した際は、前
記三方切換弁の前記第一ポートと前記第二ポートとを連
通させ、前記室内側熱交換器の他側から送出された冷媒
が前記二重管式熱交換器に流入するようにしてなること
を特徴とする請求項2に記載の空気調和機。
4. When the detected value of the temperature sensor reaches a saturation temperature at which the refrigerant transits from a liquid phase state to a gas phase state, the first port and the second port of the three-way switching valve are communicated with each other. The air conditioner according to claim 2, wherein the refrigerant sent from the other side of the indoor heat exchanger is allowed to flow into the double-pipe heat exchanger.
【請求項5】 暖房運転時、前記四方弁の前記第一ポー
トと前記第三ポートとを、前記第二ポートと前記第四ポ
ートとを夫々連通させるとともに、前記三方切換弁の前
記第一ポートと前記第三ポートとを連通させ、前記圧縮
機から吐出された冷媒が、前記四方弁から前記バイパス
管を経て前記室内側熱交換器に流入してなることを特徴
とする請求項1に記載の空気調和機
5. During heating operation, the first port and the third port of the four-way valve are communicated with the second port and the fourth port, respectively, and the first port of the three-way switching valve is connected. And the third port are communicated with each other, and the refrigerant discharged from the compressor flows into the indoor heat exchanger through the bypass pipe from the four-way valve. Air conditioner
【請求項6】 圧縮機の吐出側を四方弁の第一ポート
に、吸込側を前記四方弁の第四ポートに夫々接続し、前
記四方弁の第二ポートを室外側熱交換器の一側に接続
し、同室外側熱交換器の他側を二重管式熱交換器の外側
流路に備えられた第一接続口に接続し、前記外側流路に
備えられた第二接続口を膨張弁を介して室内側熱交換器
の一側に接続し、同室内側熱交換器の他側を前記二重管
式熱交換器の内側流路に備えられた第三接続口に接続
し、前記内側流路に設けられた第四接続口を前記四方弁
の第三ポートに接続し、前記室内側熱交換器の他側と前
記二重管式熱交換器の第三接続口を結ぶ配管と、前記二
重管式熱交換器の前記第四接続口と前記四方弁の前記第
二ポートとを結ぶ配管の間にバイパス管を設けるととも
に、同バイパス管に第一電磁開閉弁を、同バイパス管の
前記室内側熱交換器の他側と前記二重管式熱交換器の第
三接続口を結ぶ配管の接続部と、前記二重管式熱交換器
の前記第三接続口との間に第二電磁開閉弁を夫々設けて
なり、冷房運転時、前記四方弁の前記第一ポートと前記
第二ポートとを、前記第三ポートと前記第四ポートとを
夫々連通させるとともに、前記三方切換弁の前記第一ポ
ートと前記第二ポートとを連通させ、前記第一電磁開閉
弁を閉じる一方、前記第二電磁開閉弁を開放し、前記圧
縮機から吐出された冷媒が前記四方弁を経て前記室外側
熱交換器に流入し、凝縮して低温となり前記二重管式熱
交換器の前記外側流路を経て前記室内側熱交換器に流入
し、蒸発気化して高温となり前記二重管式熱交換器の前
記内側流路に流入し、前記外側流路を流れる低温の冷媒
と熱交換して冷却され、一部が液相冷媒となって前記圧
縮機に還流し蒸発して同圧縮機の過熱を防止してなるこ
とを特徴とする空気調和機。
6. The discharge side of the compressor is connected to the first port of the four-way valve, the suction side is connected to the fourth port of the four-way valve, and the second port of the four-way valve is connected to one side of the outdoor heat exchanger. Connected to the other side of the same room outside heat exchanger to the first connection port provided in the outer flow path of the double-tube heat exchanger, the second connection port provided in the outer flow path is expanded. Connected to one side of the indoor heat exchanger via a valve, and connect the other side of the indoor heat exchanger to a third connection port provided in the inner flow path of the double-pipe heat exchanger, A pipe connecting the fourth connection port provided in the inner flow path to the third port of the four-way valve, and connecting the other side of the indoor heat exchanger and the third connection port of the double-pipe heat exchanger. A bypass pipe is provided between a pipe connecting the fourth connection port of the double-pipe heat exchanger and the second port of the four-way valve, and the bypass pipe has a first electrical connection. A magnetic on-off valve, a connecting portion of a pipe connecting the other side of the indoor heat exchanger of the bypass pipe and a third connection port of the double-pipe heat exchanger, and the double-pipe heat exchanger A second electromagnetic on-off valve is provided between the third connection port and the third connection port, respectively, during cooling operation, the first port and the second port of the four-way valve, the third port and the fourth port While communicating with each other, the first port and the second port of the three-way switching valve are communicated with each other, the first electromagnetic on-off valve is closed, while the second electromagnetic on-off valve is opened, and discharged from the compressor. Refrigerant flows into the outdoor heat exchanger through the four-way valve, condenses to a low temperature, flows into the indoor heat exchanger through the outer flow path of the double-tube heat exchanger, and evaporates. Become high temperature and flow into the inner flow path of the double-tube heat exchanger and flow through the outer flow path. Is cooled by the refrigerant heat exchange with hot, partially air conditioner characterized by comprising to prevent overheating refluxed to the compressor becomes a liquid phase refrigerant evaporated in the compressor.
【請求項7】 前記圧縮機に還流する液相冷媒が過剰と
なる場合は、前記第二電磁開閉弁を閉じ、前記第一電磁
開閉弁を開放することにより、前記室内側熱交換器の他
側から送出された冷媒が、前記バイパス管を通り前記圧
縮機に還流してなることを特徴とする空気調和機。
7. When the liquid-phase refrigerant flowing back to the compressor becomes excessive, the second electromagnetic on-off valve is closed and the first electromagnetic on-off valve is opened, so that the indoor heat exchanger The air conditioner, wherein the refrigerant sent from the side is returned to the compressor through the bypass pipe.
JP2001186533A 2001-06-20 2001-06-20 Air conditioner Pending JP2003004315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186533A JP2003004315A (en) 2001-06-20 2001-06-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186533A JP2003004315A (en) 2001-06-20 2001-06-20 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003004315A true JP2003004315A (en) 2003-01-08

Family

ID=19025958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186533A Pending JP2003004315A (en) 2001-06-20 2001-06-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP2003004315A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083741A (en) * 2003-09-05 2005-03-31 Lg Electronics Inc Air conditioner having heat exchanger and refrigerant switching means
JP2005114283A (en) * 2003-10-09 2005-04-28 Calsonic Kansei Corp Vehicular air conditioner
WO2005083335A1 (en) * 2004-02-25 2005-09-09 Guangzhou Panyu Super Link Co. Ltd Modular Refrigerating Installation with Overflow Vaporization System
WO2005083334A1 (en) * 2004-02-25 2005-09-09 Guangzhou Panyu Super Link Co. Ltd Variable capacity modular refrigerating installation by frequency conversion
WO2010017211A2 (en) * 2008-08-04 2010-02-11 Leabo, Dianne Refrigeration hot gas desuperheater systems
US7958739B1 (en) 2008-08-04 2011-06-14 Leabo Lawrence D Refrigeration hot gas desuperheater systems
KR20170013766A (en) * 2015-07-28 2017-02-07 엘지전자 주식회사 Refrigerator
CN110486994A (en) * 2019-09-23 2019-11-22 宁波奥克斯电气股份有限公司 One kind preventing back liquid device and air conditioner
CN114072626A (en) * 2019-05-14 2022-02-18 基尔堡技术有限责任公司 Refrigerator moisture removing system
WO2023287030A1 (en) * 2021-07-12 2023-01-19 엘지전자 주식회사 Refrigerator operation control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719930Y1 (en) * 1970-11-16 1972-07-06
JPS59219659A (en) * 1983-05-27 1984-12-11 株式会社東芝 Air conditioner
JPH05240511A (en) * 1992-02-28 1993-09-17 Sanyo Electric Co Ltd Refrigerating plant
JPH0658638A (en) * 1992-08-06 1994-03-04 Mitsubishi Heavy Ind Ltd Freezer
JPH09318178A (en) * 1996-05-28 1997-12-12 Matsushita Electric Ind Co Ltd Air conditioner
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JPH10160269A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Refrigerating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719930Y1 (en) * 1970-11-16 1972-07-06
JPS59219659A (en) * 1983-05-27 1984-12-11 株式会社東芝 Air conditioner
JPH05240511A (en) * 1992-02-28 1993-09-17 Sanyo Electric Co Ltd Refrigerating plant
JPH0658638A (en) * 1992-08-06 1994-03-04 Mitsubishi Heavy Ind Ltd Freezer
JPH09318178A (en) * 1996-05-28 1997-12-12 Matsushita Electric Ind Co Ltd Air conditioner
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JPH10160269A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Refrigerating device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083741A (en) * 2003-09-05 2005-03-31 Lg Electronics Inc Air conditioner having heat exchanger and refrigerant switching means
JP2005114283A (en) * 2003-10-09 2005-04-28 Calsonic Kansei Corp Vehicular air conditioner
WO2005083335A1 (en) * 2004-02-25 2005-09-09 Guangzhou Panyu Super Link Co. Ltd Modular Refrigerating Installation with Overflow Vaporization System
WO2005083334A1 (en) * 2004-02-25 2005-09-09 Guangzhou Panyu Super Link Co. Ltd Variable capacity modular refrigerating installation by frequency conversion
WO2010017211A2 (en) * 2008-08-04 2010-02-11 Leabo, Dianne Refrigeration hot gas desuperheater systems
WO2010017211A3 (en) * 2008-08-04 2010-05-14 Leabo, Dianne Refrigeration hot gas desuperheater systems
US7882707B2 (en) 2008-08-04 2011-02-08 Lawrence Dean Leabo Refrigeration hot gas desuperheater systems
US7958739B1 (en) 2008-08-04 2011-06-14 Leabo Lawrence D Refrigeration hot gas desuperheater systems
KR20170013766A (en) * 2015-07-28 2017-02-07 엘지전자 주식회사 Refrigerator
KR102359300B1 (en) 2015-07-28 2022-02-08 엘지전자 주식회사 Refrigerator
KR20220020312A (en) * 2015-07-28 2022-02-18 엘지전자 주식회사 Refrigerator
KR102454393B1 (en) 2015-07-28 2022-10-14 엘지전자 주식회사 Refrigerator
US11578903B2 (en) 2015-07-28 2023-02-14 Lg Electronics Inc. Refrigerator
CN114072626A (en) * 2019-05-14 2022-02-18 基尔堡技术有限责任公司 Refrigerator moisture removing system
CN110486994A (en) * 2019-09-23 2019-11-22 宁波奥克斯电气股份有限公司 One kind preventing back liquid device and air conditioner
WO2023287030A1 (en) * 2021-07-12 2023-01-19 엘지전자 주식회사 Refrigerator operation control method

Similar Documents

Publication Publication Date Title
CN211739588U (en) Air conditioner capable of improving heat exchange performance
WO2007110908A1 (en) Refrigeration air conditioning device
JP2009162388A (en) Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
JP3635665B2 (en) Air conditioner
JP2003004315A (en) Air conditioner
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
JP2001033117A (en) Refrigerating device
JP2002089980A (en) Air conditioner
KR20060029490A (en) A refrigeration cycle system and an air conditioner
JP2010002112A (en) Refrigerating device
JP2000002494A (en) Plate type heat exchanger and refrigeration cycle system
JP2002107012A (en) Air conditioner
JP2004020070A (en) Heat pump type cold-hot water heater
JP2003240362A (en) Air conditioner
JP2002340436A (en) Multi-chamber air conditioner
JP3723244B2 (en) Air conditioner
JP2003106694A (en) Air conditioner
JP3991654B2 (en) Air conditioner
WO2023144902A1 (en) Air conditioner and air conditioner control method
JP2797843B2 (en) Air conditioner
JP2003240361A (en) Air conditioner
JP2003254632A (en) Air conditioner
KR102345055B1 (en) Air conditioner of one assembled
JP2871166B2 (en) Air conditioner
JP2002156167A (en) Multi-chamber type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622