WO2005083335A1 - Modular Refrigerating Installation with Overflow Vaporization System - Google Patents

Modular Refrigerating Installation with Overflow Vaporization System Download PDF

Info

Publication number
WO2005083335A1
WO2005083335A1 PCT/CN2004/000347 CN2004000347W WO2005083335A1 WO 2005083335 A1 WO2005083335 A1 WO 2005083335A1 CN 2004000347 W CN2004000347 W CN 2004000347W WO 2005083335 A1 WO2005083335 A1 WO 2005083335A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
overflow
evaporator
outlet
inlet
Prior art date
Application number
PCT/CN2004/000347
Other languages
French (fr)
Chinese (zh)
Inventor
Ningfan Zhao
Original Assignee
Guangzhou Panyu Super Link Co. Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN200410006018.9 priority Critical
Priority to CNB2004100060189A priority patent/CN100414222C/en
Application filed by Guangzhou Panyu Super Link Co. Ltd filed Critical Guangzhou Panyu Super Link Co. Ltd
Publication of WO2005083335A1 publication Critical patent/WO2005083335A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Abstract

A modular refrigerating installation with overflow vaporization system, which has several modular refrigerating units. Each modular refrigerating unit has a refrigerating circle which includes at least a refrigerating compressor (1), an evaporator (5) with a plate type heat exchanger and a condenser (9). The unit also has an overflow ladle (6) which is a vessel with a refrigerant inlet (61), a liquid refrigerant outlet (62) and a gaseous refrigerant outlet (63). The refrigerant inlet (61) of the overflow ladle is connected to the refrigerant outlet (92) of the condenser (9). The liquid refrigerant outlet (62) of the overflow ladle is connected to the refrigerant inlet (51) of the evaporator. The gaseous refrigerant outlet (63) of the overflow ladle and refrigerant outlet (52) of the evaporator are both connected to a inlet (lA) of the compressor (1). The overflow ladle (6) is mounted with a lattice (64) for separating gas and liquid. The refrigerating efflciency of the installation according to the present invention is higher and is adapted for combined type modular refrigerating installation and integral type refrigerating installation.

Description

带有溢流式蒸发系统的模块化制冷装置  Modular refrigeration unit with overflow evaporation system
技术领域 Technical field
本发明涉及一种制冷装置, 尤其是一种带有溢流式蒸发系统的模块化制 冷装置。 背景技术  The invention relates to a refrigeration device, in particular to a modular refrigeration device with an overflow evaporation system. Background technique
模块化组合式制冷装置已经被广泛应用于空调系统冷水机组的设计和 应用。 这种模块化组合式冷水机组按照建筑物安装负荷的需要, 由多个标 准的制冷模块单元组合而成, 可以随时增加或减少系统的装机容量, 因此 使用非常灵活。 并且, 由于每个制冷模块单元是一个完整的制冷系统, 在 主控制器的控制下, 根据系统负荷的需要增加或减少模块单元运行的数量, 因此, 机组的制冷输出不仅能够和系统的需求保持高度的一致, 还能够使 低负荷运行状态下机组具有峰值运行效率, 不会因为负荷的减小而降低运 行效率, 可以减少机组的运行费用。 此外, 模块化组合式冷水机组还具有 高度的可靠性, 即使部分模块单元发生故障, 机组的其他部分依然可以继 续保持运行, 并可以在机组运行状态下, 对发生故障的部分进行检修。 因 此, 模块化组合制冷装置具有其他的系统所没有的许多优点。 各种模块化组合制冷装置中, 有一种类型是在每个制冷模块单元内安 装了板式热交换器作为蒸发器使用。 板式热交换器本身具有结构紧凑、 换 热系数高的优点。 但作为蒸发器使用时, 由于制冷剂经过节流膨胀, 成为 气体和液体两相混合状态。 这种混合状态的制冷剂进入板式热交换器后, 并不是以均匀的比例分配到每一个板片流道当中的, 对于气体含量较多的 流道, 则换热系数就会比较小, 而液体含量较多的流道可能会蒸发不完全, 并且以气体状态进入的制冷剂不仅对制冷量的贡献非常少, 还会占据非常  Modular combined refrigeration units have been widely used in the design and application of chillers for air conditioning systems. This modular combined chiller is composed of multiple standard refrigeration module units according to the needs of the building installation load. It can increase or decrease the installed capacity of the system at any time, so it is very flexible to use. In addition, since each refrigeration module unit is a complete refrigeration system, under the control of the main controller, the number of module unit operations is increased or decreased according to the needs of the system load. Therefore, the refrigeration output of the unit can not only maintain the system demand The high degree of consistency also enables the unit to have peak operating efficiency under low-load operating conditions, which will not reduce operating efficiency due to load reduction, and can reduce unit operating costs. In addition, the modular combined chiller has a high degree of reliability. Even if some module units fail, the other parts of the unit can continue to operate, and the faulty part can be repaired and maintained while the unit is running. Therefore, modular combined refrigeration units have many advantages not found in other systems. One type of various modular combination refrigeration devices is a plate heat exchanger installed as an evaporator in each refrigeration module unit. The plate heat exchanger itself has the advantages of compact structure and high heat exchange coefficient. However, when it is used as an evaporator, the refrigerant expands through throttling and becomes a two-phase mixture of gas and liquid. After the mixed refrigerant enters the plate heat exchanger, it is not distributed to each plate flow channel in a uniform proportion. For a flow channel with a large gas content, the heat transfer coefficient will be relatively small, A liquid channel with more liquid content may not completely evaporate, and the refrigerant entering in a gas state not only contributes very little to the cooling capacity, but also occupies a very small amount.
¾换页(紬则第26条) 大的传热面积, 由于气体的导热系数远比液体的小, 混合物种气体部分所 形成的气团或气泡会影响热量的迅速传递, 使板式热交换器不能够达到最 佳的换热效率。 本发明的内容 ¾ Form feed (rule 26 ) The large heat transfer area, because the thermal conductivity of the gas is much smaller than that of the liquid, the air mass or bubbles formed by the gas part of the mixture will affect the rapid heat transfer, making the plate heat exchanger unable to achieve the best heat transfer efficiency. Content of the invention
本发明的目的是提供一种带有溢流式蒸发系统的模块化制冷装置, 它 能使板式热交换器的换热效率更进一步的提高, 从而使制冷装置具有更高 的制冷效率。 本发明的目的是按如下的技术方案实现的。  The object of the present invention is to provide a modular refrigeration device with an overflow evaporation system, which can further improve the heat exchange efficiency of a plate heat exchanger, so that the refrigeration device has a higher refrigeration efficiency. The object of the present invention is achieved according to the following technical scheme.
本发明为带有溢流式蒸发系统的模块化组合制冷装置, 它由多个模块 制冷单元组成, 每个所述的模块制冷单元均具有一个或一个以上的包括制 冷压缩机、 蒸发器、 冷凝器以及节流膨胀装置的制冷回路, 所述的蒸发器 为板式热交换器, 具有蒸发器制冷剂入口和蒸发器制冷剂出口、 蒸发器冷 冻水入口和蒸发器冷冻水出口; 其特征是:  The invention is a modular combined refrigeration device with an overflow evaporation system, which is composed of a plurality of modular refrigeration units, and each of said modular refrigeration units has one or more refrigeration refrigeration units, evaporators, and condensers. And a refrigeration circuit of a throttling and expansion device, the evaporator is a plate heat exchanger, and has an evaporator refrigerant inlet and an evaporator refrigerant outlet, an evaporator frozen water inlet, and an evaporator frozen water outlet; its characteristics are:
还包括溢流桶, 所述的溢流桶为一容器, 节流膨胀后的制冷剂首先通 过溢流桶进行气液分离, 液体部分的制冷剂进入蒸发器, 而气体部分的制 冷剂则与从蒸发器排出来的气体一起回到压缩机。  It also includes an overflow bucket. The overflow bucket is a container. The throttled and expanded refrigerant first undergoes gas-liquid separation through the overflow bucket, the liquid part of the refrigerant enters the evaporator, and the gas part of the refrigerant is The gas from the evaporator returns to the compressor.
所述的溢流桶具有溢流桶制冷剂入口、 溢流桶液体制冷剂出口、 溢流 桶气体制冷剂出口; 所述的溢流桶制冷剂入口与所述的节流膨胀装置和来 自所述的冷凝器的制冷剂出口相通连; 所述的溢流桶液体制冷剂出口与所 述的蒸发器制冷剂入口相通连; 所述的溢流桶气体制冷剂出口、 蒸发器制 冷剂出口均与所述的压缩机的吸气口相通连; 在所述的溢流桶中装有气液 分离网。节流膨胀后的制冷剂首先通过溢流桶的制冷剂入口进行气液分离; 液体部分的制冷剂经液体制冷剂出口进入板式蒸发器制冷剂入口, 气体部 分的制冷剂则从溢流桶气体制冷剂出口回到压缩机。 本发明还包括回热器, 所述的回热器为一容器, 从所述的回热器一侧 进入的流体为来自冷凝器的液体制冷剂, 从另一侧进入的流体为来自蒸发 器和溢流桶的气体制冷剂, 两种流体在所述的回热器中进行热交换。 所述的回热器具有回热器入气口、 回热器出气口和位于所述的容器内 的换热管, 冷凝器制冷剂的出口经过换热管和节流膨胀装置与所述的溢流 桶制冷剂入口相通连; 所述的溢流桶气体制冷剂出口、 蒸发器制冷剂出口 均经所述的回热器入气口和回热器出气口与所述的压縮机的吸入口相通 连。 从冷凝器制冷剂的出口进入回热器一侧的是液体制冷剂; 从回热器入 气口一侧进入的是来自蒸发器和溢流桶的气体制冷剂。 在所述的压縮机的吸入口与所述的冷凝器之间装有油分离器。 在所述的溢流桶内部或外部装有控制溢流桶内制冷剂的液位高度的节 流膨胀阀, 它是浮球式的或是热电式的, 或是其他形式的膨胀阀。 在所述的溢流桶外装有控制进入所述的冷凝器中的介质流量的冷凝压 力控制器。 冷凝压力控制器连接在电气系统中, 它感受冷凝压力的大小, 并根据冷凝压力的大小, 决定流量调节阀的开度, 当冷凝压力过高时, 增 大阀门的开度, 反之则减小阀门的开度。 所述的模块制冷单元还包括冷冻水进水集管和出水集管、 冷却水进水 集管和出水集管, 所述的各蒸发器的冷冻水入口、 冷冻水出口分别与所述 的冷冻水进水集管、 冷冻水出水集管并联通连; 所述的冷凝器中的冷却水 入口、 冷却水出口分别与所述的冷却水进水集管、 冷却水出水集管并联通 连。 所述的模块化制冷装置还包括冷冻水进水集管和冷冻水出水集管, 所 述的各蒸发器的冷冻水入口、 冷冻水出口分别与所述的冷冻水进水集管、 冷冻水出水集管并联通连; 所述的冷凝器采用风冷式冷凝器。 本发明在制冷模块单元中具有溢流式蒸发系统, 在制冷回路中的板式 热交换器上增加溢流桶, 溢流桶用于储存制冷剂和进行气液分离。 将节流 膨胀后的制冷剂首先通过一个溢流桶进行气液分离, 液体部分的制冷剂进 入蒸发器, 而气体部分的制冷剂则与从蒸发器排出来的气体一起回到压縮 机, 这样不仅蒸发器的换热效率会大大提高, 还可以减少所需要的板式热 交换器的面积。 由于进入蒸发器的制冷剂是纯液体, 在板片流道之间可以 均匀分配, 并且节流膨胀后的气体部分不会进入蒸发器, 避免了这部分气 体占据换热表面, 使传热面积得到更有效的利用, 因此减小了换热温差, 提高蒸发器的换热效率。 而提高蒸发器的换热效率对制冷系统的热力循环 来讲, 可以提高蒸发温度, 带来的优点是增加了机组的制冷量, 提高了机 组的制冷循环效率。 另外, 在溢流桶与压缩机吸入口之间, 安装了一个回热器, 这个回热 器一侧流体为来自冷凝器的液体制冷剂, 另一侧流体为来自蒸发器和溢流 桶的气体制冷剂, 两种流体在这个回热器中进行热交换, 使液体制冷剂被 过冷, 而气体制冷剂则被有益过热, 回收了气体部分中的剩余冷量, 有利 于制冷效率的提高。 在所述的压缩机的排出口与冷凝器之间装有油分离器。 制冷压縮机的 排气首先进入油分离器, 使排气中夹带的润滑油分离出来, 并送回到压缩 机, 而气体制冷剂则从油分离器进入冷凝器。 膨胀节流装置用来控制制冷剂液位。 保持溢流桶的液位高度是为了维 持蒸发器内必要的液位高度。 当蒸发负荷减小, 蒸发器内液位升高同时使 溢流桶液位升高时, 将节流膨胀装置减小阀门开度, 以减少供液量。 反之, 当蒸发负荷增大时, 节流膨胀装置则加大阀门幵度, 增加供液量。 冷凝压力控制器用于控制进入冷凝器冷却介质, 例如水或空气的流量, 当冷凝压力过低时, 减少冷却介质的供应量, 使冷凝压力回升。 而当冷凝 压力过高时, 则增加冷却介质的供应量。 冷凝压力控制器的作用在于维持 适当的冷凝压力, 避免冷凝压力过低时, 导致溢流桶内制冷剂的蒸发温度 过低。 用冷冻介质的出口温度来调节压缩机输出容量。 压缩机输出容量的调 节是根据蒸发器冷冻介质的出口温度来调节的。 当出口温度降低时, 减少 压缩机的工作输出, 当出口温度升高时, 增加压縮机的工作输出。 综上所述, 本发明来用溢流式蒸发系统、 回热器提高了机组的制冷循 环效率; 采用油分离器、 膨胀节流装置、 冷凝压力控制器来调控制冷剂、 冷凝水、 冷冻水的温度、 流量的平衡, 以节约能源; 从而使制冷装置具有 更高的制冷效率。本发明适用于组合的模块化制冷装置和整体的制冷装置。 附图说明 The overflow bucket has an overflow bucket refrigerant inlet, an overflow bucket liquid refrigerant outlet, and an overflow bucket gas refrigerant outlet; the overflow bucket refrigerant inlet and the throttling and expansion device, and The refrigerant outlet of the condenser is connected; the liquid refrigerant outlet of the overflow bucket is connected with the refrigerant inlet of the evaporator; the gas refrigerant outlet and the evaporator refrigerant outlet of the overflow bucket are both connected. It is connected with the suction port of the compressor; a gas-liquid separation net is arranged in the overflow barrel. After throttling and expanding, the refrigerant first passes through the refrigerant inlet of the overflow barrel for gas-liquid separation; the liquid portion of the refrigerant enters the plate evaporator refrigerant inlet through the liquid refrigerant outlet, and the gas portion of the refrigerant flows from the overflow barrel. The refrigerant outlet returns to the compressor. The invention also includes a regenerator, the regenerator is a container, the fluid entering from one side of the regenerator is a liquid refrigerant from a condenser, and the fluid entering from the other side is from an evaporator And the gas refrigerant in the overflow bucket, the two fluids are heat-exchanged in the regenerator. The regenerator has a regenerator air inlet, a regenerator air outlet and a heat exchange tube located in the container, and the outlet of the condenser refrigerant passes through the heat exchange tube and the throttling expansion device and the overflow The flow bucket refrigerant inlet is connected; the overflow bucket gas refrigerant outlet and the evaporator refrigerant outlet are both connected to the compressor inlet and the compressor outlet through the regenerator air inlet and the regenerator air outlet. Connected. The liquid refrigerant enters the regenerator side from the condenser refrigerant outlet; the gas refrigerant from the evaporator and the overflow barrel enters from the regenerator inlet side. An oil separator is installed between the suction port of the compressor and the condenser. A throttling expansion valve for controlling the liquid level of the refrigerant in the overflow barrel is installed inside or outside the overflow barrel, which is a float type or thermoelectric type or other type of expansion valve. A condensing pressure controller is installed outside the overflow bucket to control the flow of the medium into the condenser. The condensing pressure controller is connected to the electrical system. It senses the size of the condensing pressure and determines the opening degree of the flow regulating valve according to the size of the condensing pressure. When the condensing pressure is too high, the valve opening degree is increased, and vice versa. Opening of the valve. The modular refrigeration unit further includes a chilled water inlet and outlet header, a chilled water inlet and outlet header, and a chilled water inlet and a chilled water outlet of each evaporator are respectively connected with the chilled water. A water inlet header and a chilled water outlet header are connected in parallel; a cooling water inlet and a cooling water outlet in the condenser are connected in parallel with the cooling water inlet header and the cooling water outlet header, respectively. The modular refrigeration device further includes a chilled water inlet header and a chilled water outlet header. The chilled water inlet and chilled water outlet of each evaporator are respectively connected to the chilled water inlet and chilled water. Water outlet headers are connected in parallel; the condenser is an air-cooled condenser. The invention has an overflow evaporation system in a refrigeration module unit, and an overflow barrel is added to the plate heat exchanger in the refrigeration circuit. The overflow barrel is used for storing refrigerant and performing gas-liquid separation. The throttling and expanding refrigerant is first subjected to gas-liquid separation through an overflow barrel. The liquid portion of the refrigerant enters the evaporator, and the gas portion of the refrigerant returns to the compressor together with the gas discharged from the evaporator. In this way, not only the heat exchange efficiency of the evaporator will be greatly improved, but also the area of the plate heat exchanger required can be reduced. Since the refrigerant entering the evaporator is a pure liquid, it can be evenly distributed between the plate flow channels, and the part of the expanded gas will not enter the evaporator, which prevents this part of the gas from occupying the heat exchange surface and making the heat transfer area It is more effectively used, so the heat exchange temperature difference is reduced, and the heat exchange efficiency of the evaporator is improved. Increasing the heat exchange efficiency of the evaporator can increase the evaporation temperature for the thermal cycle of the refrigeration system, which brings the advantages of increasing the refrigeration capacity of the unit and improving the efficiency of the refrigeration cycle of the unit. In addition, a regenerator is installed between the overflow bucket and the compressor suction port. One side of this regenerator is liquid refrigerant from the condenser, and the other side is from the evaporator and the overflow bucket. Gas refrigerant, the two fluids exchange heat in this regenerator, so that the liquid refrigerant is supercooled, while the gas refrigerant is beneficially overheated, and the remaining cooling capacity in the gas part is recovered, which is beneficial to the improvement of refrigeration efficiency . An oil separator is installed between the discharge port of the compressor and the condenser. The exhaust of the refrigeration compressor first enters the oil separator, which separates the lubricating oil entrained in the exhaust and returns it to the compressor, while the gas refrigerant enters the condenser from the oil separator. The expansion and throttling device is used to control the refrigerant level. The level of the overflow tank is maintained to maintain the necessary level in the evaporator. When the evaporation load is reduced and the liquid level in the evaporator is raised while the liquid level in the overflow bucket is increased, the throttle expansion device is used to reduce the valve opening to reduce the liquid supply. Conversely, when the evaporation load is increased, the throttle expansion device increases the valve angle and increases the liquid supply. The condensing pressure controller is used to control the flow of cooling medium, such as water or air, into the condenser. When the condensing pressure is too low, the cooling medium supply is reduced and the condensing pressure rises. When the condensation pressure is too high, the supply of cooling medium is increased. The role of the condensing pressure controller is to maintain an appropriate condensing pressure to prevent the evaporation temperature of the refrigerant in the overflow bucket from being too low when the condensing pressure is too low. Use the outlet temperature of the refrigerant to adjust the compressor output capacity. The output capacity of the compressor is adjusted according to the outlet temperature of the evaporator refrigerant medium. When the outlet temperature decreases, the working output of the compressor is reduced, and when the outlet temperature increases, the working output of the compressor is increased. In summary, the present invention uses an overflow evaporation system and a regenerator to improve the refrigeration cycle efficiency of the unit; an oil separator, an expansion throttling device, and a condensing pressure controller are used to regulate the refrigerant, condensate, and chilled water. Balance of temperature and flow to save energy; so that the refrigeration unit has higher cooling efficiency. The invention is applicable to a combined modular refrigeration device and an integrated refrigeration device. BRIEF DESCRIPTION OF THE DRAWINGS
图 1、2为本发明带有溢流式蒸发系统的模块化制冷装置的工作流程原理图, 图 3 为本发明带有溢流式蒸发系统的模块化制冷装置模块制冷单元的结构 示意图, Figures 1 and 2 are schematic diagrams of the working flow of a modular refrigeration device with an overflow evaporation system according to the present invention, and Figure 3 is a schematic structural diagram of a modular refrigeration unit with a overflow refrigeration system and a modular refrigeration device according to the present invention.
图 4为本发明带有溢流式蒸发系统的模块化制冷装置模块制冷单元的结构 示意图 (冷凝器为风冷) 。 图中代号 FIG. 4 is a schematic structural diagram of a modular refrigeration unit modular refrigeration unit with an overflow evaporation system according to the present invention (the condenser is air-cooled). Code in the picture
压縮机 1A压縮机吸入口 1B压缩机排出口 回热器 21 回热器入气口 22 回热器出气口 回热器换热管 冷冻水进水集管 4冷冻水出水集管 蒸发器 51蒸发器制冷剂入口 52蒸发器制冷剂出口 3蒸发器冷冻水入口 54蒸发器冷冻水出口 溢流桶 61溢流桶制冷剂入口 62溢流桶液体制冷剂出口 Compressor 1A Compressor suction port 1B Compressor discharge port regenerator 21 Reheater air inlet 22 Reheater air outlet Reheater heat exchanger tube Frozen water inlet header 4 Frozen water outlet header evaporator 51 Evaporator refrigerant inlet 52 Evaporator refrigerant outlet 3 Evaporator chilled water inlet 54 Evaporator chilled water outlet overflow bucket 61 overflow bucket refrigerant inlet 62 overflow bucket liquid refrigerant outlet
63溢流桶气体制冷剂出口 64器液分离网 制冷剂干燥过滤器 8节流膨胀装置 冷凝器 91冷凝器制冷剂入口 92冷凝器制冷剂出口 3冷凝器冷却水入口 94冷凝器冷却水出口 冷却水进水集管 11冷却水出水集管 12油分离器 冷凝器冷却水流量调节阀 14蒸发器冷冻水流量调节阀 冷凝压力控制器 实施例 63 overflow bucket gas refrigerant outlet 64 liquid separation network refrigerant drying filter 8 throttling expansion device condenser 91 condenser refrigerant inlet 92 condenser refrigerant outlet 3 condenser cooling water inlet 94 condenser cooling water outlet cooling Water inlet header 11 Cooling water outlet header 12 Oil separator condenser Cooling water flow regulating valve 14 Evaporator Frozen water flow regulating valve Condensing pressure controller Examples
用本实施例来说明本发明。  This embodiment is used to explain the present invention.
带有溢流式蒸发系统的模块化组合制冷装置由多个模块制冷单元组 成。 如图 1 为带有溢流式蒸发系统的模块制冷单元的原理图, 每个模块单 元具有一个包括制冷压缩机 1、蒸发器 5、冷凝器 9以及节流膨胀装置 8的 制冷回路。所述的蒸发器 5为板式热交换器, 具有蒸发器制冷剂入口 51和 蒸发器制冷剂出口 52、 蒸发器冷冻水入口 53和蒸发器冷冻水出口 54。  The modular combined refrigeration unit with overflow evaporation system consists of multiple modular refrigeration units. Figure 1 is a schematic diagram of a modular refrigeration unit with an overflow evaporation system. Each modular unit has a refrigeration circuit including a refrigeration compressor 1, an evaporator 5, a condenser 9, and a throttling expansion device 8. The evaporator 5 is a plate heat exchanger, and has an evaporator refrigerant inlet 51 and an evaporator refrigerant outlet 52, an evaporator frozen water inlet 53 and an evaporator frozen water outlet 54.
还包括溢流桶 6,所述的溢流桶 6为一容器,节流膨胀后的制冷剂首先 通过溢流桶 6进行气液分离,液体部分的制冷剂进入蒸发器 5,而气体部分 的制冷剂则与从蒸发器 5排出来的气体一起回到压缩机 1。  It also includes an overflow bucket 6, which is a container. The throttled and expanded refrigerant first undergoes gas-liquid separation through the overflow bucket 6, the liquid part of the refrigerant enters the evaporator 5, and the gas part of the The refrigerant returns to the compressor 1 together with the gas discharged from the evaporator 5.
所述的溢流桶 6的具体结构为: 具有溢流桶制冷剂入口 61、 溢流桶液 体制冷剂出口 62、 溢流桶气体制冷剂出口 63; 所述的溢流桶制冷剂入口 61经节流膨胀装置 8、过滤器 7与冷凝器 9的制冷剂出口 92相通连;溢流 桶液体制冷剂出口 62与蒸发器制冷剂入口 51相通连; 溢流桶气体制冷剂 出口 63与蒸发器制冷剂出口 52相通连, 并与压缩机 1的吸入口 1A相通 连; 在所述的溢流桶 6中装有气液分离网 64, 以避免气体中夹带的少量液 滴带入压缩机 1。 工作时, 节流膨胀后的制冷剂从溢流桶制冷剂入口 61进 入溢流桶 6 中, 进行气液分离, 使液体部分的制冷剂经溢流桶液体制冷剂 出口 62进入蒸发器 5, 而气体部分的制冷剂则经气液分离网 64、溢流桶气 体制冷剂出口 63,与从蒸发器 5排出来的气体一起回到压縮机 1的吸入口 1A, 这样不仅蒸发器的换热效率会大大提高, 还可以减少所需要的板式热 交换器的面积。 由于进入蒸发器 5 的制冷剂是纯液体, 在板片流道之间可 以均匀分配, 并且节流膨胀后的气体部分不进入蒸发器 5,避免了这部分气 体占据换热表面, 使传热面积得到更有效的利用, 因此减小了换热温差, 提高蒸发器的换热效率, 因而提高了机组的制冷循环效率。 本发明还包括回热器 2。所述的回热器 2为一容器, 从所述的回热器 2 一侧进入的流体为来自冷凝器 9的液体制冷剂, 从另一侧进入的流体为来 自蒸发器 5和溢流桶 6的气体制冷剂, 所述的两种流体在所述的回热器 2 中进行热交换。 The specific structure of the overflow bucket 6 is: having an overflow bucket refrigerant inlet 61, an overflow bucket liquid refrigerant outlet 62, and an overflow bucket gas refrigerant outlet 63; the overflow bucket refrigerant inlet 61 is The throttling and expansion device 8, the filter 7 is connected to the refrigerant outlet 92 of the condenser 9; the overflow barrel liquid refrigerant outlet 62 is connected to the evaporator refrigerant inlet 51; the overflow barrel gas refrigerant outlet 63 is connected to the evaporator The refrigerant outlet 52 is connected to the suction port 1A of the compressor 1; a gas-liquid separation network 64 is installed in the overflow bucket 6 to prevent a small amount of liquid droplets entrained in the gas from being brought into the compressor 1 . During operation, the throttled and expanded refrigerant enters the overflow bucket 6 from the overflow bucket refrigerant inlet 61 and performs gas-liquid separation, so that the liquid portion of the refrigerant enters the evaporator 5 through the overflow bucket liquid refrigerant outlet 62, The refrigerant in the gas part is returned to the suction port 1A of the compressor 1 together with the gas discharged from the evaporator 5 through the gas-liquid separation network 64 and the overflow refrigerant gas outlet 63, so that not only the evaporator replacement The thermal efficiency is greatly improved, and the area of the plate heat exchanger required can be reduced. Since the refrigerant entering the evaporator 5 is a pure liquid, it can be evenly distributed between the plate flow channels, and the part of the gas after the expansion is not entered into the evaporator 5, preventing this part of the gas from occupying the heat exchange surface and causing heat transfer. The area is more effectively used, so the heat exchange temperature difference is reduced, the heat exchange efficiency of the evaporator is improved, and the refrigeration cycle efficiency of the unit is improved. The invention also includes a regenerator 2. The regenerator 2 is a container, the fluid entering from one side of the regenerator 2 is a liquid refrigerant from the condenser 9, and the fluid entering from the other side is from the evaporator 5 and the overflow bucket. The gas refrigerant of 6 and the two fluids perform heat exchange in the regenerator 2.
如图 2为在图 1的基础上增加回热器 2的实施例, 回热器 2位于溢流 桶 6与压缩机吸入口 1A之间,所述的回热器 2为一容器,容器上具有回热 器入气口 21、 回热器出气口 22和换热管 23, 回热器入气口 21与蒸发器 制冷剂出口 52、溢流桶气体制冷剂出口 63相通连, 回热器出气口 22与压 缩机 1的吸入口 1A相通连, 换热管 23位于容器内, 换热管 23的一端与 冷凝器 9的制冷剂出口 92相连, 另一端与制冷剂干燥过滤器 7、 节流膨胀 装置 8相连。 从换热管 23中流向制冷剂入口 61的液体制冷剂, 与从回热 器入气口 21、 回热器出气口 22流过的气体制冷剂, 两种流体在回热器 2 中进行热交换, 使液体制冷剂被过冷, 而气体制冷剂则被有益过热, 回收 了气体部分中的剩余冷量, 有利于换热效率的提高。 如图 1、 2, 在所述的压缩机 1的排出口 1 B与冷凝器 9之间装有油分 离器 12。 在所述的溢流桶 6外装有控制溢流桶内制冷剂的液位高度的节流膨胀 装置 8, 其用途是当蒸发负荷减小, 蒸发器 5内液位升高、 同时使溢流桶 6 液位升高时, 将节流膨胀装置 8减小阀门开度, 以减少供液量。 反之, 当 蒸发负荷增大时, 节流膨胀装置 8则加大阀门开度, 增加供液量。 可釆用 浮球式节流阀, 也可采用热电式膨胀阀、 或其他的膨胀节流装置。 在压缩机排气管路上安装有控制进入冷凝器 9中的介质流量的冷凝压 力控制器 15。 冷凝压力控制器 15也接在电气系统中, 它感受冷凝压力的 大小, 并根据冷凝压力的大小, 决定流量调节陶 13的开度, 当冷凝压力过 高时, 增大阀门的开度, 反之则减小阀门的开度。 安装在蒸发器 5的冷冻水管路上的流量控制阀 14也和电气系统相连 接, 当机组输出负荷减少时压缩机卸载或关闭时, 电气控制系统同时指令 流量调节阀 14减小阀门开度,甚至完全关闭阀门,以次减少冷冻水的流量, 减少冷冻水输送泵的运行功率。 而当压缩机输出负荷增加时, 则增大阀门 的幵度, 增加冷冻水的流量。 如图 3, 当所述的各制冷单元组合成模块化制冷装置时,还包括冷冻水 进水集管 3和出水集管 4、冷却水进水集管 10和出水集管 11,所述的各蒸 发器的冷冻水入口 53、冷冻水出口 54分别与所述的冷冻水进水集管 3、冷 冻水出水集管 4并联通连; 所述的冷凝器 9中的冷却水入口 93、 冷却水出 口 94分别与所述的冷却水进水集管 10、冷却水出水集管 11并联方式通连。 各制冷单元模块的这些集管依次相连, 成为制冷装置的冷冻及冷却介质流 体的公共通道。 如图 4为所述的冷凝器 9采用风冷的示意图, 所述的模块化制冷装置 还包括冷冻水进水集管 3和出水集管 4,所述的各蒸发器的冷冻水入口 53、 冷冻水出口 54分别与所述的冷冻水进水集管 3、冷冻水出水集管 4以并联 方式通连; 各制冷单元模块的这些集管依次相连, 成为制冷装置的冷冻介 质流体的公共通道。 而冷凝器 9为采用翅片盘管式冷凝器, 釆用风冷, 不 用冷却水的进、 出水集管。 Fig. 2 is an embodiment in which a regenerator 2 is added on the basis of Fig. 1. The regenerator 2 is located between the overflow bucket 6 and the compressor suction port 1A. The regenerator 2 is a container. It has a regenerator air inlet 21, a regenerator air outlet 22 and a heat exchange tube 23. The reheater air inlet 21 is connected to the evaporator refrigerant outlet 52 and the overflow bucket gas refrigerant outlet 63. The regenerator outlet 22 is connected to the suction port 1A of the compressor 1, and the heat exchange tube 23 is located in the container. One end of the heat exchange tube 23 is connected to the refrigerant outlet 92 of the condenser 9, and the other end is connected to the refrigerant drying filter 7. Device 8 is connected. The liquid refrigerant flowing from the heat exchange tube 23 to the refrigerant inlet 61 and the gas refrigerant flowing from the regenerator inlet 21 and the regenerator outlet 22 are heat exchanged in the regenerator 2 The liquid refrigerant is supercooled, while the gas refrigerant is beneficially overheated, and the remaining cooling capacity in the gas portion is recovered, which is beneficial to the improvement of heat exchange efficiency. As shown in FIGS. 1 and 2, an oil separator 12 is installed between the discharge port 1 B of the compressor 1 and the condenser 9. A throttling expansion device 8 for controlling the liquid level of the refrigerant in the overflow barrel is installed outside the overflow barrel 6, and its purpose is to increase the liquid level in the evaporator 5 while reducing the evaporation load, and at the same time to overflow When the liquid level of the bucket 6 rises, the throttle expansion device 8 is reduced to reduce the valve opening degree to reduce the liquid supply amount. Conversely, when the evaporation load increases, the throttle expansion device 8 increases the valve opening degree and increases the liquid supply amount. Float ball throttles can be used, thermoelectric expansion valves, or other expansion and throttle devices can also be used. Condensing pressure is installed on the compressor exhaust line to control the flow of the medium into the condenser 9 力 控制 15。 Force controller 15. The condensing pressure controller 15 is also connected to the electrical system. It senses the size of the condensing pressure and determines the opening of the flow regulating pot 13 according to the size of the condensing pressure. When the condensing pressure is too high, the valve opening is increased, and vice versa Reduce the valve opening. The flow control valve 14 installed on the chilled water line of the evaporator 5 is also connected to the electrical system. When the compressor is unloaded or closed when the output load of the unit is reduced, the electrical control system simultaneously instructs the flow adjustment valve 14 to reduce the valve opening, and even Close the valve completely to reduce the flow of chilled water and reduce the operating power of the chilled water delivery pump. When the output load of the compressor increases, the angle of the valve is increased, and the flow of the chilled water is increased. As shown in FIG. 3, when the refrigeration units are combined into a modular refrigeration device, the system further includes a chilled water inlet header 3 and an outlet header 4, a cooling water inlet header 10 and an outlet header 11. The chilled water inlet 53 and the chilled water outlet 54 of each evaporator are connected in parallel with the chilled water inlet header 3 and the chilled water outlet header 4 respectively; the cooling water inlet 93 and the cooling in the condenser 9 The water outlet 94 is connected to the cooling water inlet header 10 and the cooling water outlet header 11 in parallel. These headers of each refrigeration unit module are connected in order to become a common channel for the refrigeration and cooling medium fluids of the refrigeration device. As shown in FIG. 4, the condenser 9 is air-cooled. The modular refrigeration device further includes a chilled water inlet header 3 and an outlet header 4. The chilled water inlets 53 of the evaporators, The chilled water outlet 54 is connected in parallel with the chilled water inlet header 3 and the chilled water outlet header 4 respectively; these headers of each refrigeration unit module are connected in order to become a common channel for the refrigeration medium fluid of the refrigeration device. . The condenser 9 is a finned coil condenser, which is air-cooled, and does not need cooling water inlet and outlet headers.
采用本发明制冷装置, 对于同样大小的蒸发器, 蒸发温度可以提高 2~2.5°C, 使制冷量增加约 9%, 制冷性能系数提高约 7%。  With the refrigeration device of the present invention, for evaporators of the same size, the evaporation temperature can be increased by 2 to 2.5 ° C, the cooling capacity can be increased by about 9%, and the refrigeration performance coefficient can be increased by about 7%.

Claims

权 利 要 求  Rights request
1" 带有溢流式蒸发系统的模块化组合制冷装置, 它由多个模块制冷单 元组成, 每个所述的  1 "modular combined refrigeration unit with overflow evaporation system, which consists of multiple modular refrigeration units, each of which
模块制冷单元均具有一个或一个以上的包括制冷压缩机(1 )、蒸发器(5)、 冷凝器 (9) 的制冷回路, 所述的蒸发器 (5) 为板式热交换器, 具有蒸发 器制冷剂入口 (51 )和蒸发器制冷剂出口 (52)、蒸发器冷冻水入口 (53) 和蒸发器冷冻水出口 (54) ; 其特征是: The module refrigeration units each have one or more refrigeration circuits including a refrigeration compressor (1), an evaporator (5), and a condenser (9). The evaporator (5) is a plate heat exchanger and has an evaporator. The refrigerant inlet (51) and the evaporator refrigerant outlet (52), the evaporator chilled water inlet (53) and the evaporator chilled water outlet (54) are characterized by:
还包括溢流桶 (6) , 所述的溢流桶 (6) 为一容器, 节流膨胀后的制 冷剂首先通过溢流桶 ( 6 )进行气液分离,液体部分的制冷剂进入蒸发器 ( 5 ), 而气体部分的制冷剂则回到压缩机。  It also includes an overflow bucket (6), where the overflow bucket (6) is a container, and the throttled and expanded refrigerant is first subjected to gas-liquid separation through the overflow bucket (6), and the liquid part of the refrigerant enters the evaporator (5), and the refrigerant in the gas part is returned to the compressor.
2. 根据权利要求 1所述的带有溢流式蒸发系统的模块化组合制冷装置, 其 特征是- 所述的溢流桶 (6)具有溢流桶制冷剂入口 (61 )、 溢流桶液体制冷剂 出口(62)、溢流桶气体制冷剂出口(63);所述的溢流桶制冷剂入口(61 ) 与所述的冷凝器(9)的制冷剂出口 (92)相通连; 所述的溢流桶液体制冷 剂出口 (62) 与所述的蒸发器制冷剂入口 (51 )相通连; 所述的溢流桶气 体制冷剂出口 (63)与所述的压缩机(1 )的吸入口 (1A)相通连; 在所述 的溢流桶(6) 中装有气液分离网 (64) ; 节流膨胀后的制冷剂首先通过溢 流桶(6) 的制冷剂入口 (61 )进行气液分离; 液体部分的制冷剂经液体制 冷剂出口 (62)进入蒸发器制冷剂入口 (51 ) , 气体部分的制冷剂则从制 冷剂出口 (63) 回到压縮机(1 ) 的吸入口 (1A) 。 2. The modular combined refrigeration device with an overflow evaporation system according to claim 1, characterized in that-the overflow bucket (6) has an overflow bucket refrigerant inlet (61), and an overflow bucket The liquid refrigerant outlet (62) and the overflow barrel gas refrigerant outlet (63); the overflow barrel refrigerant inlet (61) is in communication with the refrigerant outlet (92) of the condenser (9); The overflow refrigerant liquid refrigerant outlet (62) is connected to the evaporator refrigerant inlet (51); the overflow barrel gas refrigerant outlet (63) is connected to the compressor (1) The suction inlet (1A) is connected; a gas-liquid separation net (64) is installed in the overflow bucket (6); the throttled and expanded refrigerant first passes through the refrigerant inlet of the overflow bucket (6) ( 61) performing gas-liquid separation; the liquid part of the refrigerant enters the evaporator refrigerant inlet (51) through the liquid refrigerant outlet (62), and the gas part of the refrigerant returns from the refrigerant outlet (63) to the compressor (1) ) 'S suction port (1A).
3. 根据权利要求 2所述的带有溢流式蒸发系统的模块化组合制冷装置, 其 特征是: , 还包括回热器 (2) , 所述的回热器(2) 为一容器, 从所述的回热器 (2) —侧进入的流体为来自冷凝器(9) 的液体制冷剂, 从另一侧进入的 流体为来自蒸发器 (5)和溢流桶 (6) 的气体制冷剂, 所述的两种流体在 所述的回热器(2) 中进行热交换。 3. The modular combined refrigeration device with an overflow evaporation system according to claim 2, further comprising: a regenerator (2), wherein the regenerator (2) is a container, From the regenerator (2) The fluid entering from the side is the liquid refrigerant from the condenser (9), and the fluid entering from the other side is the gas refrigerant from the evaporator (5) and the overflow bucket (6). The fluid is heat-exchanged in the regenerator (2).
4. 根据权利要求 3所述的带有溢流式蒸发系统的模块化组合制冷装 置, 其特征是: 4. The modular combined refrigeration device with an overflow evaporation system according to claim 3, wherein:
所述的容器具有回热器入气口 (21 ) 、 回热器出气口 (22)和位于所述的 容器内的换热管(23), 冷凝器(9)的制冷剂出口 (92)经过换热管(23) 与所述的溢流桶制冷剂入口 (61 )相通连; 所述的溢流桶气体制冷剂出口 (63) 、 蒸发器制冷剂出口 (52)均经所述的回热器入气口 (21 ) 、 回热 器出气口 (22)与所述的压缩机(1 )的吸入口 (1A)相通连; 从所述的回 热器(2)的制冷剂出口(92)—侧进入液体制冷剂; 从回热器入气口(21 ) 一侧进入来自蒸发器 (5)和溢流桶 (6) 的气体制冷剂, 所述的两种流体 在所述的回热器 (2) 中进行热交换。 The container has a regenerator air inlet (21), a regenerator air outlet (22), and a heat exchange tube (23) located in the container. The refrigerant outlet (92) of the condenser (9) passes through The heat exchange tube (23) is connected to the overflow bucket refrigerant inlet (61); the overflow bucket gas refrigerant outlet (63) and the evaporator refrigerant outlet (52) are all passed through the return pipe. The air inlet (21) and the air outlet (22) of the regenerator are connected to the inlet (1A) of the compressor (1); the refrigerant outlet (92) from the reheater (2) ) —Side into the liquid refrigerant; from the side of the gas inlet (21) of the regenerator, into the gas refrigerant from the evaporator (5) and the overflow barrel (6), the two fluids are in the reheating Heat exchanger (2).
5.根据权利要求 1到 4所述的任一项带有溢流式蒸发系统的模块化组合制 冷装置, 其特征是- 在所述的压缩机 (1 ) 的排出口 (1 B) 与所述的冷凝器(9) 之间装有 油分离器 ( 12) 。 The modular combined refrigeration device with an overflow evaporation system according to any one of claims 1 to 4, characterized in that-the discharge port (1 B) of the compressor (1) and the An oil separator (12) is installed between the condenser (9) mentioned above.
6. 根据权利要求 1到 4所述的任一项带有溢流式蒸发系统的模块化组 合制冷装置, 其特征是: 6. The modular combined refrigeration device with an overflow evaporation system according to any one of claims 1 to 4, wherein:
还包括控制溢流桶内制冷剂的液位高度的节流膨胀装置 (8) , 在所述 的溢流桶 (6) 中或溢流桶 (6) 外装有所述的节流膨胀装置 (8) 。 .  It also includes a throttling expansion device (8) for controlling the liquid level of the refrigerant in the overflow barrel, and the throttling expansion device (6) is installed in the overflow barrel (6) or outside the overflow barrel (6) ( 8) . .
7. 根据权利要求 1到 4所述的任一项带有溢流式蒸发系统的模块化组 合制冷装置, 其特征是: 在所述的溢流桶 (6) 外裝有控制進入所述的 冷凝器中的介質流量的冷凝压力控制器(15) 。 7. Modular group with overflow evaporation system according to any one of claims 1 to 4 The combined refrigeration device is characterized in that: a condensing pressure controller (15) for controlling a flow rate of a medium entering the condenser is installed outside the overflow barrel (6).
8. 根据权利要求 1到 4所述的任一项带有溢流式蒸发系统的模块化组合 制冷装置, 其特征是- 所述的模块制冷单元还包括冷冻水进水集管 (3) 和出水集管 (4) 、 冷却水进水集管 (10)和出水集管 (11 ) , 所述的各蒸发器的冷冻水入口 (53) 、 冷冻水出口 (54)分别与所述的冷冻水进水集管(3) 、 冷冻水出 水集管 (4) 并联通连; 所述的冷凝器 (9) 中的冷却水入口 (93) : 冷却 水出口 (94)分别与所述的冷却水进水集管(10)、冷却水出水集管(11 ) 并联通连。 8. The modular combined refrigeration device with an overflow evaporation system according to any one of claims 1 to 4, wherein the modular refrigeration unit further comprises a chilled water inlet header (3) and The water outlet header (4), the cooling water inlet header (10) and the water outlet header (11), the frozen water inlet (53) and the frozen water outlet (54) of each evaporator are respectively connected with the freezing The water inlet header (3) and the chilled water outlet header (4) are connected in parallel; the cooling water inlet (93) in the condenser (9): the cooling water outlet (94) and the cooling respectively The water inlet header (10) and the cooling water outlet header (11) are connected in parallel.
9. 根据权利要求 1到 4所述的任一项带有溢流式蒸发系统的模块化组合 制冷装置, 其特征是: 9. The modular combined refrigeration device with an overflow evaporation system according to any one of claims 1 to 4, wherein:
所述的模块化制冷装置还包括冷冻水进水集管(3)和冷冻水出水集管 (4) , 所述的各蒸发器的冷冻水入口 (53)、 冷冻水出口 (54)分别与所 述的冷冻水进水集管 (3) 、 冷冻水出水集管 (4) 并联通连; 所述的冷凝 器 (9)采用风冷式冷凝器。  The modular refrigeration device further includes a chilled water inlet header (3) and a chilled water outlet header (4). The chilled water inlet (53) and chilled water outlet (54) of each evaporator are respectively connected with The chilled water inlet header (3) and the chilled water outlet header (4) are connected in parallel; the condenser (9) is an air-cooled condenser.
PCT/CN2004/000347 2004-02-25 2004-04-14 Modular Refrigerating Installation with Overflow Vaporization System WO2005083335A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200410006018.9 2004-02-25
CNB2004100060189A CN100414222C (en) 2004-02-25 2004-02-25 Modularized refrigerating unit with flooding type vaporization system

Publications (1)

Publication Number Publication Date
WO2005083335A1 true WO2005083335A1 (en) 2005-09-09

Family

ID=34892091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000347 WO2005083335A1 (en) 2004-02-25 2004-04-14 Modular Refrigerating Installation with Overflow Vaporization System

Country Status (2)

Country Link
CN (1) CN100414222C (en)
WO (1) WO2005083335A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9146045B2 (en) 2013-08-07 2015-09-29 Climacool Corp Modular chiller system comprising interconnected flooded heat exchangers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528256B (en) * 2013-10-28 2015-07-15 周伟 Composite evaporative cooling device with natural cooling function for large-scale equipment
CN105241105A (en) * 2015-10-22 2016-01-13 湖南大学 Refrigerating system based on oil cooling compression circulation
CN105953333B (en) * 2016-05-16 2018-12-18 广东美的制冷设备有限公司 Air-conditioning system and liquid refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295224A (en) * 1999-11-04 2001-05-16 多堆垛国际有限公司 Modular combined refrigerating device
JP2003004315A (en) * 2001-06-20 2003-01-08 Fujitsu General Ltd Air conditioner
CN1434258A (en) * 2002-01-21 2003-08-06 Lg电子株式会社 Refrigeration circulation for air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194401A (en) * 1997-07-24 1999-04-09 Hitachi Ltd Refrigerating and air-conditioning equipment
CN2687587Y (en) * 2004-02-25 2005-03-23 广州番禺速能冷暖设备有限公司 Modularized refrigeration device with overflow evaporating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295224A (en) * 1999-11-04 2001-05-16 多堆垛国际有限公司 Modular combined refrigerating device
JP2003004315A (en) * 2001-06-20 2003-01-08 Fujitsu General Ltd Air conditioner
CN1434258A (en) * 2002-01-21 2003-08-06 Lg电子株式会社 Refrigeration circulation for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9146045B2 (en) 2013-08-07 2015-09-29 Climacool Corp Modular chiller system comprising interconnected flooded heat exchangers

Also Published As

Publication number Publication date
CN1661304A (en) 2005-08-31
CN100414222C (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US20080053114A1 (en) Variable Capacity Modular Combined Refrigerating Installation by Frequency Conversion
CN100507398C (en) Refrigeration equipment
WO2019091241A1 (en) Cooling circulation system for air conditioning, and air conditioner
CN101799233B (en) Method for controlling suction temperature of compressor in low temperature refrigeration system
WO2005083335A1 (en) Modular Refrigerating Installation with Overflow Vaporization System
CN106152840B (en) Heat pipe system, refrigeration system and control method thereof
WO2013029687A1 (en) Refrigeration system and refrigeration method providing heat recovery
CN108131854A (en) A kind of multi-parallel screw low-temperature handpiece Water Chilling Units of direct-expansion type feed flow
KR20100046365A (en) Heat pump system
CN211625782U (en) A liquid drop evaporation plant and cooling water set for cooling water set
CN208832629U (en) A kind of low-temperature cold water unit
CN204880471U (en) Heat pump air conditioning unit
KR200274119Y1 (en) Heat pump system
JP2005326131A (en) Liquid refrigerant pressurization device
CN107631515A (en) Heat pump air conditioner unit
JP5098547B2 (en) Absorption refrigeration system
US11162723B2 (en) Methods and systems for controlling working fluid in HVACR systems
CN210154138U (en) Expansion valve assembly, bidirectional throttling system and air conditioner
CN214501776U (en) Heat recovery defrosting and refrigerating device
CN213931535U (en) Double-machine double-loop system single-fan type water cooler
CN214172556U (en) Carbon dioxide heat pump water supply unit
CN208720598U (en) A kind of air conditioner cold water unit and air-conditioning
KR200267362Y1 (en) refrigeration system
CN100360875C (en) Heat pump type central and household central air regulating equipment refrigerating system
CN111964188A (en) Thermosiphon-vapor compression composite refrigeration system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase