JP5098547B2 - Absorption refrigeration system - Google Patents

Absorption refrigeration system Download PDF

Info

Publication number
JP5098547B2
JP5098547B2 JP2007259731A JP2007259731A JP5098547B2 JP 5098547 B2 JP5098547 B2 JP 5098547B2 JP 2007259731 A JP2007259731 A JP 2007259731A JP 2007259731 A JP2007259731 A JP 2007259731A JP 5098547 B2 JP5098547 B2 JP 5098547B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
absorption
solution
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007259731A
Other languages
Japanese (ja)
Other versions
JP2009085571A (en
Inventor
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007259731A priority Critical patent/JP5098547B2/en
Publication of JP2009085571A publication Critical patent/JP2009085571A/en
Application granted granted Critical
Publication of JP5098547B2 publication Critical patent/JP5098547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本願発明は、圧縮式冷凍装置を駆動するエンジンの排熱で駆動される吸収式冷凍装置に関するものである。   The present invention relates to an absorption refrigeration apparatus driven by exhaust heat of an engine that drives a compression refrigeration apparatus.

従来の空冷吸収式冷凍装置は、吸収器で冷媒蒸気を吸収しながら溶液を空冷フィンで冷却する直接空冷方式であり、吸収器では、冷媒蒸気の吸収と吸収溶液の冷却を同時に行うことからその性能向上には気液界面の拡大が重要である。しかし、そのためには、上下の吸収器ヘッダーや吸収器伝熱管の壁面に流れる溶液に吸収させる冷媒蒸気の圧力損失を低下させるための大口径伝熱管、また蒸発器との冷媒蒸気連絡管の大口径化等が必要であって、装置の小型化への制約が大きい。   The conventional air-cooled absorption refrigeration system is a direct air-cooling method in which the solution is cooled by air-cooling fins while absorbing the refrigerant vapor by the absorber, and the absorber absorbs the refrigerant vapor and cools the absorbed solution at the same time. Expansion of the gas-liquid interface is important for performance improvement. However, for that purpose, large-diameter heat transfer tubes for reducing the pressure loss of the refrigerant vapor absorbed by the solution flowing on the upper and lower absorber headers and the wall of the absorber heat transfer tube, and the large size of the refrigerant vapor communication tube with the evaporator are used. It is necessary to reduce the diameter of the device, and there is a great restriction on downsizing the device.

これに対して、吸収器に流入する溶液を空冷冷却器で過冷却し、吸収器内では単に冷媒蒸気を吸収させるだけで、吸収熱は過冷却された溶液の顕熱で取り去る間接空冷(溶液分離冷却)方式は、吸収器が従来よりも小型化されるので、小型の空冷吸収式冷凍装置では最も有利な方式と考えられる。   On the other hand, the solution flowing into the absorber is supercooled by an air-cooled cooler, and the refrigerant heat is simply absorbed in the absorber, and the absorbed heat is removed by sensible heat of the supercooled solution (solution The separation cooling method is considered to be the most advantageous method for a small air-cooled absorption refrigeration apparatus because the absorber is made smaller than before.

そして、この間接空冷方式の空冷吸収式冷凍装置をエンジンの排熱を利用して駆動すれば、装置の小型化と低コスト化が図れるので、従来の単に温熱を利用する形態から、温熱を冷熱に変換して利用する形態へ簡単に変更でき、排熱の有効利用が促進され、省エネ、CO2削減に大きく寄与できるものと考えられる。   If this indirect air-cooled air-cooled absorption refrigeration system is driven by using exhaust heat from the engine, the size and cost of the apparatus can be reduced. It can be easily changed to a form to be converted to use, the effective use of exhaust heat is promoted, and it can be considered that it can greatly contribute to energy saving and CO2 reduction.

ところで、この間接空冷方式の空冷吸収式冷凍装置の従来例としては、例えば、特許文献1に示されるものがあるが、この従来例のものでは、吸収器としては溶液を噴霧する方式のものを採用しているが、2重効用サイクルで、且つバーナにより溶液を加熱する従来の直火方式であり、排熱を利用した例は見当たらない。   By the way, as a conventional example of this indirect air cooling type air cooling absorption refrigeration apparatus, for example, there is one disclosed in Patent Document 1, but in this conventional example, an absorber is a type that sprays a solution. Although it is adopted, it is a conventional direct-fire method in which a solution is heated by a burner with a double-effect cycle, and there is no example using exhaust heat.

また、エンジンで圧縮式冷凍装置を駆動し、その排熱で吸収式冷凍装置を駆動し、その冷熱で圧縮式冷凍装置の冷媒を過冷却することで圧縮式冷凍装置の性能を向上させるようにした吸収式冷凍装置と圧縮式冷凍装置との組み合わせた冷凍システムの従来例としては、例えば、特許文献2に示されるものなど、多数の例がある。   Also, the compression refrigeration unit is driven by the engine, the absorption refrigeration unit is driven by the exhaust heat, and the refrigerant of the compression refrigeration unit is supercooled by the cold heat so as to improve the performance of the compression refrigeration unit As a conventional example of a refrigeration system in which an absorption refrigeration apparatus and a compression refrigeration apparatus are combined, there are many examples such as that shown in Patent Document 2, for example.

特開平7−98163号公報JP-A-7-98163 特開平9−53864号公報JP-A-9-53864

ところで、エンジンで駆動される圧縮式冷凍装置と、その排熱で駆動される吸収式冷凍装置を組み合せたシステムにおいて、上掲の従来例では、単にその排熱を利用した吸収式冷凍装置の冷熱で圧縮式冷凍装置の冷媒を過冷却するようにしたものである。   By the way, in a system combining a compression refrigeration apparatus driven by an engine and an absorption refrigeration apparatus driven by the exhaust heat, in the above-described conventional example, the cooling heat of the absorption refrigeration apparatus that simply uses the exhaust heat. Thus, the refrigerant of the compression refrigeration apparatus is supercooled.

ところが、外気温度が低下した場合とか、圧縮式冷凍装置が部分負荷となった場合には、該圧縮式冷凍装置の凝縮器出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置の部分負荷とが重なった場合には、この圧縮式冷凍装置の凝縮器出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度(圧縮式冷凍装置の冷媒温度)も低下し、該蒸発温度もしくは被冷却流体温度が予め設定される値(即ち、外気温と圧縮式冷凍装置の負荷に基づいて設定される温度値)よりも低下したような場合には、吸収式冷凍装置の冷凍能力が余剰状態となり、該吸収式冷凍装置側の冷媒に無駄が生じることになる。   However, when the outside air temperature decreases or when the compression refrigeration apparatus becomes a partial load, the refrigerant temperature (that is, the condensation temperature) at the condenser outlet of the compression refrigeration apparatus decreases. When the drop in temperature and the partial load of the compression refrigeration unit overlap, the drop in refrigerant temperature at the condenser outlet of this compression refrigeration unit increases, so the evaporation temperature of the absorption refrigeration unit or the evaporator The cooled fluid temperature at the outlet (the refrigerant temperature of the compression refrigeration system) also decreases, and the evaporation temperature or the cooled fluid temperature is set based on a preset value (that is, based on the outside air temperature and the load of the compression refrigeration system). When the temperature is lower than the temperature value), the refrigerating capacity of the absorption refrigeration apparatus becomes excessive, and the refrigerant on the absorption refrigeration apparatus side is wasted.

一方、外気温が上昇した場合や、圧縮式冷凍装置の負荷が増加した場合には、圧縮式冷凍装置の凝縮器出口の冷媒温度が上昇するため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度も上昇し、該蒸発温度もしくは被冷却流体温度が予め設定される値よりも上昇したような場合には、吸収式冷凍装置の冷凍能力が不足する状態となることから、冷凍能力を迅速に高める必要がある。   On the other hand, when the outside air temperature rises or when the load of the compression refrigeration apparatus increases, the refrigerant temperature at the condenser outlet of the compression refrigeration apparatus rises, so the evaporation temperature of the absorption refrigeration apparatus or the evaporator The temperature of the fluid to be cooled at the outlet of the refrigerant also rises, and if the evaporation temperature or the temperature of the fluid to be cooled rises above a preset value, the refrigerating capacity of the absorption refrigeration apparatus becomes insufficient. It is necessary to quickly increase the refrigeration capacity.

従って、大能力の排熱駆動の吸収式冷凍装置を設置することなく圧縮式冷凍装置の効率を向上させてランニングコストの低減を図るためには、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御することが必要である。   Therefore, in order to improve the efficiency of the compression refrigeration system and reduce the running cost without installing a large capacity exhaust heat driven absorption refrigeration system, respond to changes in the operating conditions on the compression refrigeration system side. Therefore, it is necessary to control the refrigeration capacity of the absorption refrigeration apparatus.

然るに、従来は、単にエンジンの排熱を利用した吸収式冷凍装置の冷熱で圧縮式冷凍装置の冷媒を過冷却するのみで、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御するという考えはなく、従って、イニシャルコスト及びランニングコストの低減を図るという点において改善の余地がある。   However, in the past, the absorption refrigeration was performed simply by supercooling the refrigerant of the compression refrigeration system with the cold heat of the absorption refrigeration system using the exhaust heat of the engine, in response to changes in operating conditions on the compression refrigeration system side. There is no idea of controlling the refrigeration capacity of the apparatus, and therefore there is room for improvement in terms of reducing initial costs and running costs.

そこで本願発明は、圧縮式冷凍装置を駆動するエンジンの排熱で駆動される吸収式冷凍装置において、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御することで、圧縮式冷凍装置の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減を両立させ得るようにした吸収式冷凍装置を提供することを目的としてなされたものである。   Therefore, the present invention controls the refrigeration capacity of the absorption refrigeration apparatus in accordance with the change in operating conditions on the compression refrigeration apparatus side in the absorption refrigeration apparatus driven by the exhaust heat of the engine that drives the compression refrigeration apparatus. Thus, an object of the present invention is to provide an absorption refrigeration apparatus that can improve the efficiency of the compression refrigeration apparatus and reduce the initial cost and running cost of the entire refrigeration system.

本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。   In the present invention, the following configuration is adopted as a specific means for solving such a problem.

本願の第1の発明では、圧縮式冷凍装置を駆動するエンジン26の排熱を受けて作動する発生器と、凝縮器と、冷媒を一過性で蒸発させる蒸発器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器6とを備えた排熱駆動の吸収式冷凍装置において、上記凝縮器から上記蒸発器に至る配管64途中に冷媒タンク14と冷媒電磁弁10とを順次設ける一方、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで上記吸収器の冷媒吸収能力を増減して吸収式冷凍装置の冷凍能力を制御するものとし、上記蒸発器の出口における被冷却流体の温度が外気温度と上記圧縮式冷凍装置の凝縮温度に基づいて算出される目標温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁10を閉として上記蒸発器に流入する冷媒量を減少させて吸収式冷凍装置の冷凍能力を減少させるとともに、上記冷媒タンク14に上記凝縮器からの冷媒を溜める一方、上記蒸発器3の出口における被冷却流体の温度が上記目標温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は流量を変化させて上記吸収器の冷媒吸収能力を増加させると同時に、上記冷媒電磁弁10を開として上記冷媒タンク14に溜められた冷媒を上記蒸発器に流入させて冷媒流量を増加させることで吸収式冷凍装置の冷凍能力を増加させる制御を行うとともに、上記吸収式冷凍装置の運転・停止を上記発生器1の溶液温度で制御するものとし、上記エンジン26が停止状態であっても上記溶液温度が所定温度以上で且つ上記冷媒タンク14の冷媒貯留能力に余裕がある場合には上記冷媒電磁弁10を閉として、上記冷媒タンク14が満杯となるまで吸収式冷凍装置を運転し、又は上記吸収器4からの吸収希溶液を上記発生器1に流入させる溶液ポンプ9のみを運転し、上記発生器1の溶液温度が上記所定温度以下になれば、上記冷媒タンク14の冷媒貯留能力に余裕があっても上記吸収式冷凍装置の運転を停止し、又は上記溶液ポンプ9の運転を停止することを特徴としている。 In 1st invention of this application, the generator 1 which act | operates in response to the exhaust heat of the engine 26 which drives the compression-type refrigeration apparatus X , the condenser 2 , the evaporator 3 which evaporates a refrigerant | coolant transiently, and a flow down In an exhaust heat-driven absorption refrigeration apparatus including a liquid film type absorber 4 and an air-cooled supercooler 6 for supercooling an absorbing solution entering the absorber 4 , the condenser 2 is changed to the evaporator 3 . While the refrigerant tank 14 and the refrigerant electromagnetic valve 10 are sequentially provided in the middle of the pipe 64, the temperature of the supercooling solution flowing into the absorber 4 and / or the flow rate of the supercooling solution is changed, so that the absorber 4 The refrigerant absorption capacity is increased or decreased to control the refrigeration capacity of the absorption refrigeration apparatus, and the temperature of the fluid to be cooled at the outlet of the evaporator 3 is calculated based on the outside air temperature and the condensation temperature of the compression refrigeration apparatus X. that when it becomes the target temperature or less, the absorber 4 At the same time varying the flow rate of the temperature of the supercooled solution to flow in and / or subcooled solution performs control to decrease the refrigerant absorption capacity of the absorber 4, it flows into the evaporator 3 to the refrigerant solenoid valve 10 as a closed The amount of refrigerant to be reduced is reduced to reduce the refrigeration capacity of the absorption refrigeration apparatus, and the refrigerant from the condenser 2 is stored in the refrigerant tank 14 while the temperature of the fluid to be cooled at the outlet of the evaporator 3 is the target. when a temperature or more, and at the same time the temperature and / or the supercooled solution by changing the flow amount increase refrigerant absorption capacity of the absorber 4 flowing into the absorber 4, the refrigerant solenoid valve 10 performs control for increasing the cooling capacity of the absorption refrigerating apparatus refrigerant retained in the refrigerant tank 14 by increasing the coolant flow rate to flow into the evaporator 3 is opened, the absorption refrigerating It is assumed that the operation / stop of the apparatus is controlled by the solution temperature of the generator 1, and even when the engine 26 is stopped, the solution temperature is equal to or higher than a predetermined temperature and the refrigerant storage capacity of the refrigerant tank 14 has a margin. In this case, the refrigerant solenoid valve 10 is closed, the absorption refrigeration apparatus is operated until the refrigerant tank 14 is full, or the solution pump 9 that causes the absorption diluted solution from the absorber 4 to flow into the generator 1. Only when the solution temperature of the generator 1 is equal to or lower than the predetermined temperature, the operation of the absorption refrigeration apparatus is stopped even if the refrigerant storage capacity of the refrigerant tank 14 is sufficient, or the solution pump 9 is stopped .

係る構成によれば、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増減し吸収式冷凍装置の冷凍能力を制御するものとすることで、エンジン26によって駆動される圧縮式冷凍装置の負荷に影響されることがないことから、冷凍能力の制御に際して排熱の入力制御を特に必要とせず、制御の簡略化によって低コスト化が可能となる。 According to such a configuration, the temperature of the supercooled solution flowing into the absorber 4 and / or the flow rate of the supercooled solution is changed to increase or decrease the refrigerant absorption capacity of the absorber 4 to control the refrigeration capacity of the absorption refrigeration apparatus. By doing so, since it is not influenced by the load of the compression refrigeration apparatus X driven by the engine 26 , input control of exhaust heat is not particularly required when controlling the refrigeration capacity, and the control is simplified. The cost can be reduced.

また、上記蒸発器の出口における被冷却流体の温度が上記外気温度と上記圧縮式冷凍装置の凝縮温度に基づいて算出される目標温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁10を閉として上記蒸発器に流入する冷媒量を減少させて吸収式冷凍装置の冷凍能力を減少させることで、該吸収式冷凍装置の冷凍能力を上記圧縮式冷凍装置側の過冷却要求度に対応させることができ、しかもその場合、上記冷媒タンク14に上記凝縮器からの冷媒を溜めることで、該吸収式冷凍装置側における無効冷媒量を減少させることができる。 Moreover, when the temperature of the fluid to be cooled at the outlet of the evaporator 3 becomes equal to or lower than the target temperature calculated based on the outside air temperature and the condensation temperature of the compression refrigeration apparatus X , the fluid flows into the absorber 4 . Control is performed to reduce the refrigerant absorption capacity of the absorber 4 by changing the temperature of the supercooled solution and / or the flow rate of the supercooled solution, and at the same time, the refrigerant flowing into the evaporator 3 with the refrigerant solenoid valve 10 closed. By reducing the amount and reducing the refrigeration capacity of the absorption refrigeration apparatus, the refrigeration capacity of the absorption refrigeration apparatus can be made to correspond to the degree of supercooling on the compression refrigeration apparatus X side, and in that case, By accumulating the refrigerant from the condenser 2 in the refrigerant tank 14 , the amount of ineffective refrigerant on the absorption refrigeration apparatus side can be reduced.

一方、上記蒸発器3の出口における被冷却流体の温度が上記目標温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増加させると同時に、上記冷媒電磁弁10を開として上記冷媒タンク14に溜められた冷媒を上記蒸発器に流入させて冷媒流量を増加させ、吸収式冷凍装置の冷凍能力を増加させることで、上記圧縮式冷凍装置の冷媒の過冷却温度が増加し、該圧縮式冷凍装置の性能が、上記の制御を行なわない通常状態よりも向上することになる。 On the other hand, when the temperature of the fluid to be cooled at the outlet of the evaporator 3 is equal to or higher than the target temperature , the temperature of the supercooled solution flowing into the absorber 4 and / or the flow rate of the supercooled solution is changed. The refrigerant absorption capacity of the absorber 4 is increased, and at the same time, the refrigerant electromagnetic valve 10 is opened and the refrigerant stored in the refrigerant tank 14 is caused to flow into the evaporator 3 to increase the refrigerant flow rate. By increasing the refrigerating capacity of the compressor, the supercooling temperature of the refrigerant of the compression refrigeration apparatus X increases, and the performance of the compression refrigeration apparatus X is improved as compared with the normal state in which the above control is not performed. .

さらに、上記エンジン26が停止状態であっても、冷媒の発生が可能な状態で且つ上記冷媒タンク14への冷媒の貯留が可能な場合には、上記冷媒タンク14に冷媒が溜められることから、無効冷媒量を少なくして冷媒の有効利用を図ることができる。Furthermore, even if the engine 26 is in a stopped state, when the refrigerant can be generated and the refrigerant can be stored in the refrigerant tank 14, the refrigerant is stored in the refrigerant tank 14, The amount of ineffective refrigerant can be reduced to effectively use the refrigerant.

以上の相乗効果として、上記圧縮式冷凍装置の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減が両立されることになるとともに、無効冷媒量を少なくして冷媒の有効利用を図ることができるAs the above synergistic effect, the improvement of the efficiency of the compression refrigeration system and the reduction of the initial cost and the running cost of the entire refrigeration system can be achieved at the same time, and the effective use of the refrigerant can be achieved by reducing the amount of the invalid refrigerant. Can

本願の第2の発明では、上記第1の発明に係る吸収式冷凍装置において、上記冷媒電磁弁10を開から閉とする場合の目標温度と、上記冷媒電磁弁10を閉から開とする場合の目標温度を、同一温度又は異なる温度としたことを特徴としている。 In a second aspect of the present invention, in the above absorption type refrigerating apparatus according to the first invention, and the target temperature at which a closed the refrigerant solenoid valve 10 from the open, the refrigerant solenoid valve 10 if the from the closed to the open The target temperature is set to the same temperature or different temperatures.

係る構成によれば、例えば、上記冷媒電磁弁10を開から閉とする場合と閉から開とする場合の目標温度を同一温度とした場合には、これを異なる温度とする場合に比して制御の簡略化、延いては装置の低コスト化が図れるが冷媒電磁弁10の開閉動作が頻繁となる。また、上記冷媒電磁弁10を開から閉とする場合と閉から開とする場合の目標温度を異なる温度とした場合、例えば、上記冷媒電磁弁10を開から閉とする場合(即ち、冷媒タンク14への冷媒の貯留開始)の目標温度を、該冷媒電磁弁10を閉から開とする場合(即ち、冷媒タンク14に貯留した冷媒の流出開始)の目標温度よりも低く設定した場合には、冷凍能力の増加制御がより早期に開始され、迅速な冷凍能力の増加が実現される。 According to such a configuration, for example, when the target temperature in the case where the refrigerant solenoid valve 10 is changed from open to closed and the target temperature in the case where the refrigerant solenoid valve 10 is changed from closed to open is set to the same temperature, compared with a case where this is set to a different temperature. Although the control can be simplified and the cost of the apparatus can be reduced, the refrigerant solenoid valve 10 is frequently opened and closed. Also, when the target temperature when the refrigerant electromagnetic valve 10 is changed from open to closed and when the target temperature is changed from closed to open, for example, when the refrigerant electromagnetic valve 10 is changed from open to closed (that is, the refrigerant tank) 14 is set lower than the target temperature when the refrigerant solenoid valve 10 is opened from the closed state (that is, when the refrigerant stored in the refrigerant tank 14 starts to flow out). Then, the increase control of the refrigerating capacity is started earlier, and the quick increase of the refrigerating capacity is realized.

本願の第の発明では、上記第1又は第の発明に係る吸収式冷凍装置において、上記冷媒タンク14に堰14aを設け、該堰14aを越流させて上記蒸発器に冷媒を流入させるとともに、上記冷媒電磁弁10の開閉によって上記蒸発器への冷媒流量を増減させるようにしたことを特徴としている。 In a third aspect of the present invention, in the first or absorption type refrigerating apparatus according to the second invention, a weir 14a provided in the refrigerant tank 14, the refrigerant in the evaporator 3-flowed Yue the weir 14a In addition, the refrigerant flow rate to the evaporator 3 is increased or decreased by opening and closing the refrigerant electromagnetic valve 10 .

係る構成によれば、上記冷媒電磁弁10が閉から開とされた時点、即ち、上記冷媒タンク14に冷媒を貯留した後に貯留された冷媒を上記蒸発器側へ流す時点では、常に上記冷媒タンク14には冷媒が貯留されているので、該冷媒電磁弁10の開作動と同時に上記蒸発器3側へ十分な量の冷媒が流され、冷凍能力の増加制御がより一層迅速且つ確実に行なわれる。 According to this configuration, when the refrigerant solenoid valve 10 is opened from the closed state, that is, when the refrigerant stored after the refrigerant is stored in the refrigerant tank 14 is flowed to the evaporator 3 side, the refrigerant is always used. Since the refrigerant is stored in the tank 14 , a sufficient amount of the refrigerant is caused to flow to the evaporator 3 side simultaneously with the opening operation of the refrigerant electromagnetic valve 10 , and the increase control of the refrigerating capacity is performed more quickly and reliably. It is.

本願の第の発明では、上記第1、第2又は第の発明に係る吸収式冷凍装置において、上記冷媒タンク14が満杯となった後の余剰冷媒を、上記蒸発器の下部に、又は直接に上記吸収器の希溶液溜まり16に流入させることを特徴としている。 In the fourth aspect of the present invention, the first, the second or the absorption type refrigerating apparatus according to the third invention, the surplus refrigerant after the refrigerant tank 14 becomes full, the bottom of the evaporator 3 Or directly flowing into the dilute solution reservoir 16 of the absorber 4 .

係る構成によれば、余剰冷媒を、上記蒸発器の下部に、又は直接に上記吸収器の希溶液溜まり16に流入させて該希溶液溜まり16内の吸収希溶液に混合させることで、吸収溶液の濃度変化を抑えることができるので過度に溶液を濃縮することもなく、蒸発器での冷媒凍結や発生器での高濃度化による溶液の結晶が回避できる。 According to such a configuration, surplus refrigerant is allowed to flow into the lower part of the evaporator 3 or directly into the dilute solution reservoir 16 of the absorber 4 and be mixed with the absorbed dilute solution in the dilute solution reservoir 16 . Since the concentration change of the absorbing solution can be suppressed, the solution crystal can be avoided by freezing the refrigerant in the evaporator 3 and increasing the concentration in the generator 1 without excessively concentrating the solution.

本願の第の発明では、上記第1、第2、第3又は第の発明に係る吸収式冷凍装置において、上記冷媒タンク14から上記蒸発器へ流入する冷媒流量の増減制御を、上記冷媒電磁弁10の開閉によって行なうことを特徴としている。 In the fifth aspect of the present invention, the first, the second, third or absorption refrigerating apparatus according to the fourth invention, the increase and decrease control of the flow rate of refrigerant flowing from the refrigerant tank 14 to the evaporator 3, It is characterized by Nau line by the opening and closing of the refrigerant solenoid valve 10.

係る構成によれば、上記蒸発器への冷媒の流入量を細かく増減制御することができることから、吸収式冷凍装置の冷凍能力の制御を、上記圧縮式冷凍装置側の負荷の変化に対応させて緻密に制御することができる。 According to such a configuration, the amount of refrigerant flowing into the evaporator 3 can be finely increased / decreased, so that the control of the refrigeration capacity of the absorption refrigeration apparatus corresponds to the load change on the compression refrigeration apparatus X side. And can be precisely controlled.

本願の第の発明では、上記第1、第2、第3、第4又は第の発明に係る吸収式冷凍装置において、上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴としている。 In the sixth invention of the present application, the first, second, third, fourth or the absorption type refrigerating apparatus according to the fifth invention, start-stop of the fan 7 provided in the air-cooled subcooler 6 or The refrigeration capacity is controlled by changing the temperature of the supercooled solution flowing into the absorber 4 by increasing or decreasing the air volume.

係る構成によれば、過冷却溶液の温度を変化させての冷凍能力の制御が、間接空冷方式の特性を生かして、上記ファンの発停又は風量の増減によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、圧縮式冷凍装置の能力を限界まで利用することが可能となる。 According to such a configuration, the control of the refrigerating capacity by changing the temperature of the supercooled solution can be performed very easily and quickly by making use of the characteristics of the indirect air cooling system and by the start / stop of the fan 7 or the increase / decrease of the air volume. Therefore, the capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, and as a result, the capacity of the compression refrigeration apparatus X can be utilized to the limit.

本願の第の発明では、上記第1、第2、第3、第4又は第の発明に係る吸収式冷凍装置において、上記空冷過冷却器の入口側又は出口側に設けた流量調整弁11又は12によって上記吸収器4に流入する過冷却溶液の流量を変化させることで冷凍能力を制御することを特徴としている。 In the seventh invention of the present application, the first, second, third, flow rate 4 also provided in the absorption type refrigerating apparatus according to a fifth aspect of the invention, the inlet side or the outlet side of the air-cooled subcooler 6 The refrigerating capacity is controlled by changing the flow rate of the supercooled solution flowing into the absorber 4 by the adjusting valve 11 or 12 .

係る構成によれば、冷凍能力の制御が、流量調整弁11又は12による過冷却溶液の流量調整によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、圧縮式冷凍装置の能力を限界まで利用することが可能となる。 According to such a configuration, the control of the refrigerating capacity can be performed very easily and quickly by adjusting the flow rate of the supercooled solution by the flow rate adjusting valve 11 or 12, so that the capacity control range of the absorption refrigeration apparatus is reduced to the minimum capacity. As a result, the capacity of the compression refrigeration apparatus X can be utilized to the limit.

本願の第の発明では、上記第1、第2、第3、第4又は第の発明に係る吸収式冷凍装置において、冷媒蒸気を吸収した上記吸収器からの希溶液と、上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液との混合溶液を吸引及び吐出する溶液ポンプの流量を増減することで冷凍能力を制御することを特徴としている。 In the eighth invention of the present application, the first, second, third, fourth or the absorption type refrigerating apparatus according to a fifth invention, the dilute solution from the absorber 4 which has absorbed the refrigerant vapor, the Refrigerating capacity is controlled by increasing or decreasing the flow rate of the solution pump 9 that generates refrigerant vapor in the generator 1 and sucks and discharges the mixed solution with the concentrated solution whose temperature has decreased due to heat exchange in the solution heat exchanger 5. It is characterized by that.

係る構成によれば、上記溶液ポンプの流量を増減させることで、容易且つ迅速に冷凍能力を制御できることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、圧縮式冷凍装置の能力を限界まで利用することが可能となる。 According to such a configuration, since the refrigeration capacity can be controlled easily and quickly by increasing / decreasing the flow rate of the solution pump 9 , the capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity. The capacity of the compression refrigeration apparatus X can be utilized to the limit.

以上の結果、本願発明の吸収式冷凍装置によれば、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御することで、圧縮式冷凍装置の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減を両立させることができるとともに、無効冷媒量を少なくして冷媒の有効利用を図ることができるAs a result of the above, according to the absorption refrigeration apparatus of the present invention, the efficiency of the compression refrigeration apparatus X is controlled by controlling the refrigeration capacity of the absorption refrigeration apparatus in response to changes in operating conditions on the compression refrigeration apparatus X side. Improvement in the initial cost and running cost of the entire refrigeration system can be achieved, and the amount of ineffective refrigerant can be reduced to effectively use the refrigerant .

以下、本願発明を好適な実施形態に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on preferred embodiments.

I:第1の実施形態
図1には、本願発明の第1の実施形態に係る冷凍システムが示されている。この冷凍システムは、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
I: First Embodiment FIG. 1 shows a refrigeration system according to a first embodiment of the present invention. This refrigeration system is configured by combining an exhaust heat driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

上記吸収式冷凍装置Zは、冷媒として水(H2O)を、吸収液として臭化リチウム(LiBr)を採用するとともに、排温水を加熱源として用いた排熱駆動式の空冷吸収式冷凍装置であって、吸収希溶液を熱交換器1aにおいて排温水で加熱して冷媒蒸気と吸収濃溶液を生成させる発生器1と、該発生器1から管路51を通して流入される冷媒蒸気を凝縮させて冷媒液とする凝縮器2と、該凝縮器2から管路52を通して流入される冷媒液を被冷却流体(即ち、次述の圧縮式冷凍装置Xの凝縮器23から出る冷媒)が内部に流れているプレート式熱交換器3aのプレート面に散布して一過性でこれを蒸発させる蒸発器3と、上記蒸発器3で生成された冷媒蒸気を吸収させて吸収希溶液を生成させる流下液膜式の吸収器4と、上記発生器1へ管路53を通して流入される吸収希溶液と該発生器1から管路54を通して流出する吸収濃溶液をプレート式熱交換器5aにおいて熱交換させる溶液熱交換器5と、上記溶液熱交換器5からの吸収濃溶液と上記吸収器4の下部に設けた希溶液溜り16の吸収希溶液との混合溶液を管路55を通して流入させてこれを過冷却して上記吸収器4に流入させるファン7を備えた空冷冷却器6と、上記吸収器4からの吸収希溶液を上記溶液熱交換器5を介して上記発生器1に流入させる溶液ポンプ9を備えて構成される。 The absorption refrigeration apparatus Z is an exhaust heat driven air-cooled absorption refrigeration apparatus that employs water (H 2 O) as a refrigerant, lithium bromide (LiBr) as an absorption liquid, and uses exhaust hot water as a heating source. In the heat exchanger 1a, the absorption diluted solution is heated with exhaust hot water to generate the refrigerant vapor and the absorption concentrated solution, and the refrigerant vapor flowing from the generator 1 through the pipe 51 is condensed to produce the refrigerant. The liquid to be cooled, and the fluid to be cooled (that is, the refrigerant exiting from the condenser 23 of the compression refrigeration apparatus X described below) flow into the condenser 2 and the refrigerant liquid flowing in from the condenser 2 through the pipe 52. The evaporator 3 which is sprayed on the plate surface of the plate heat exchanger 3a and temporarily evaporates it, and the falling liquid film which absorbs the refrigerant vapor generated in the evaporator 3 and generates an absorption dilute solution Absorber 4 and pipe to generator 1 above A solution heat exchanger 5 for exchanging heat in the plate heat exchanger 5a between the absorbing dilute solution flowing in through 53 and the absorbing concentrated solution flowing out from the generator 1 through the pipe 54, and absorption from the solution heat exchanger 5. A fan 7 is provided that allows a mixed solution of the concentrated solution and the diluted diluted solution in the diluted solution reservoir 16 provided at the lower part of the absorber 4 to flow into the absorber 4 by flowing it through the pipe 55. An air-cooled supercooler 6 and a solution pump 9 for allowing the absorbed dilute solution from the absorber 4 to flow into the generator 1 via the solution heat exchanger 5 are provided.

ここで、上記蒸発器3と吸収器4は一体の躯体15内に収められており、上記蒸発器3の下部に流下する未蒸発冷媒はそのまま上記躯体15の底壁を流れて上記吸収器4の下部に設けられた希溶液溜り16に流入し、該希溶液溜り16内の吸収希溶液に混合される。これによって、上記発生器1で発生する冷媒量の増減で溶液濃度が大きく変化するのが防止される。 Here, the evaporator 3 and the absorber 4 are housed in an integral housing 15, and the unevaporated refrigerant flowing down to the lower part of the evaporator 3 flows through the bottom wall of the housing 15 as it is. It flows into the dilute solution reservoir 16 provided in the lower part of, is mixed into the absorbent dilute solution of rare-solution reservoir or Ri 16. As a result, the solution concentration is prevented from greatly changing due to an increase or decrease in the amount of refrigerant generated in the generator 1.

また、上記凝縮器2と上記蒸発器3を接続する管路52の途中と上記蒸発器3は、バイパス管路64によって接続されている。そして、このバイパス管路64には、その上流側から冷媒タンク14と冷媒電磁弁10が順次設けられている。従って、上記冷媒電磁弁10の閉作動においては、上記冷媒タンク14に冷媒が溜められる一方、該冷媒電磁弁10の開作動時には上記冷媒タンク14に溜められた冷媒が上記蒸発器3側に供給される。 Further, the middle of the pipe line 52 connecting the condenser 2 and the evaporator 3 and the evaporator 3 are connected by a bypass pipe line 64. The bypass pipe 64 is provided with the refrigerant tank 14 and the refrigerant solenoid valve 10 sequentially from the upstream side. Accordingly, at the time of closing operation of the refrigerant solenoid valve 10, while the refrigerant is accumulated in the refrigerant tank 14, the refrigerant at the time of opening operation of the refrigerant solenoid valve 10 pooled in the refrigerant tank 14 to the evaporator 3 side Supplied.

上記圧縮式冷凍装置Xは、エンジン26によって駆動される圧縮機21と蒸発器22と凝縮器23と膨張弁24及び四路弁25を管路で接続して構成される。そして、上記凝縮器23で凝縮して流出する液冷媒は、管路61を介して上記吸収式冷凍装置Z側の上記蒸発器3のプレート式熱交換器3aにその下端側から流入し、その上端側から管路62を介して上記蒸発器22側へ流出するが、その際、上記吸収式冷凍装置の蒸発器3のプレート式熱交換器3aにおいて過冷却される。   The compression refrigeration apparatus X is configured by connecting a compressor 21, an evaporator 22, a condenser 23, an expansion valve 24, and a four-way valve 25 that are driven by an engine 26 through a pipeline. Then, the liquid refrigerant condensed and flowing out in the condenser 23 flows into the plate heat exchanger 3a of the evaporator 3 on the absorption refrigeration apparatus Z side from the lower end side through the pipe 61, The refrigerant flows out from the upper end side to the evaporator 22 side through the pipe line 62. At that time, it is supercooled in the plate heat exchanger 3a of the evaporator 3 of the absorption refrigeration apparatus.

そして、上記吸収式冷凍装置Zを上記圧縮式冷凍装置Xのエンジン26の排温水を熱源として駆動させるために、上記エンジン26の冷却水循環系と上記発生器1の熱交換器1aとが管路57,58によって接続されている。   In order to drive the absorption refrigeration apparatus Z using the exhaust water of the engine 26 of the compression refrigeration apparatus X as a heat source, the cooling water circulation system of the engine 26 and the heat exchanger 1a of the generator 1 are connected to each other by a pipe. 57 and 58 are connected.

以上のように構成された冷凍システムは以下のように作動する。   The refrigeration system configured as described above operates as follows.

先ず、上記圧縮式冷凍装置Xにおいては、上記エンジン26によって上記圧縮式冷凍装置Xの圧縮機21を駆動し、該圧縮機21から吐出されたガス冷媒を上記凝縮器23において凝縮させて液冷媒とするとともに、該液冷媒をさらに上記吸収式冷凍装置Z側の上記蒸発器3において過冷却し、この過冷却冷媒を上記蒸発器22において蒸発させて室内の冷房を行なう。この場合、上記凝縮器23からの液冷媒を過冷却することで、その冷凍能力の向上が図られるものである。   First, in the compression refrigeration apparatus X, the compressor 26 of the compression refrigeration apparatus X is driven by the engine 26, and the gas refrigerant discharged from the compressor 21 is condensed in the condenser 23 to be liquid refrigerant. In addition, the liquid refrigerant is further supercooled in the evaporator 3 on the absorption refrigeration apparatus Z side, and the supercooled refrigerant is evaporated in the evaporator 22 to cool the room. In this case, the refrigeration capacity can be improved by supercooling the liquid refrigerant from the condenser 23.

一方、上記吸収式冷凍装置Zにおいては、上記エンジン26からの排温水を受けて、上記発生器1で上記吸収器4からの吸収希溶液が加熱され、冷媒蒸気と吸収濃溶液が生成される。上記発生器1で発生した冷媒蒸気は、ファン8を備えた空冷式の上記凝縮器2において凝縮され、液冷媒とされる。   On the other hand, in the absorption refrigeration apparatus Z, the generator 1 receives the hot water from the engine 26, and the generator 1 heats the absorption dilute solution from the absorber 4 to generate refrigerant vapor and the absorption concentrated solution. . The refrigerant vapor generated in the generator 1 is condensed in the air-cooled condenser 2 provided with a fan 8 to be a liquid refrigerant.

ここで、上記凝縮器2からの液冷媒は、上記冷媒電磁弁10が開作動中である場合は、上記管路52と上記バイパス管路64のそれぞれを介して上記蒸発器3の上部に流入される。また、上記冷媒電磁弁10が閉作動中である場合には、上記凝縮器2からの液冷媒の一部は上記管路52を通して上記蒸発器3の上部に流入され、他の一部は上記冷媒タンク14に溜められる。従って、上記蒸発器3への液冷媒の流入量は、上記冷媒電磁弁10の開作動時には多くなり、閉作動時には少なくなる。   Here, the liquid refrigerant from the condenser 2 flows into the upper part of the evaporator 3 through each of the pipe line 52 and the bypass pipe line 64 when the refrigerant solenoid valve 10 is open. Is done. Further, when the refrigerant solenoid valve 10 is in a closing operation, a part of the liquid refrigerant from the condenser 2 flows into the upper part of the evaporator 3 through the conduit 52, and the other part of the liquid refrigerant. The refrigerant is stored in the refrigerant tank 14. Accordingly, the amount of liquid refrigerant flowing into the evaporator 3 increases when the refrigerant solenoid valve 10 is opened and decreases when the refrigerant solenoid 10 is closed.

そして、上記蒸発器3の上部に流入された液冷媒は、散布器(図示省略)から上記プレート式熱交換器3aの上部に均等に散布され、該熱交換器3aの表面に沿って流下する間に蒸発して冷媒蒸気を発生する。また、このとき、その蒸発熱によって上記プレート式熱交換器3a内を流れる上記圧縮式冷凍装置X側の冷媒を過冷却する。   The liquid refrigerant that has flowed into the upper portion of the evaporator 3 is evenly spread from the spreader (not shown) to the upper portion of the plate heat exchanger 3a and flows down along the surface of the heat exchanger 3a. Evaporate in the middle to generate refrigerant vapor. At this time, the refrigerant on the compression refrigeration apparatus X side flowing in the plate heat exchanger 3a is supercooled by the heat of evaporation.

一方、上記吸収器4においては、上記空冷過冷却器6において過冷却された吸収希溶液が散布器(図示省略)からプレート4aに均等に散布され、該プレート4aにそって流下する間に上記蒸発器3からの冷媒蒸気を吸収して吸収希溶液とされ、上記希溶液溜り16に貯留される。 On the other hand, in the absorber 4, the absorption dilute solution supercooled in the air-cooled supercooler 6 is evenly sprayed from the sprayer (not shown) to the plate 4a and flows down along the plate 4a. absorbs refrigerant vapor from the evaporator 3 is an absorption dilute solution, it is stored in the dilute solution reservoir or Ri 16.

上記希溶液溜り16には、上記吸収器4において冷媒蒸気を吸収した吸収希溶液と、上記蒸発器3にて蒸発せずに下部に流下した未蒸発冷媒からなる混合溶液が貯留されるとともに、この混合溶液は上記溶液ポンプ9によって上記発生器1側へ供給される。この際、上記溶液熱交換器5において、上記吸収器4側からの吸収希溶液と上記発生器1で生成された吸収濃溶液との間での熱交換によって熱回収が行なわれる。 In the dilute solution reservoir or Ri 16, a mixed solution consisting of unvaporized refrigerant flowing down to the lower absorption dilute solution having absorbed the refrigerant vapor in the absorber 4 without evaporated in the evaporator 3 is stored At the same time, the mixed solution is supplied to the generator 1 side by the solution pump 9. At this time, in the solution heat exchanger 5, heat recovery is performed by heat exchange between the absorption diluted solution from the absorber 4 side and the absorption concentrated solution generated in the generator 1.

そして、この吸収式冷凍装置Zにおいては、その冷凍能力が、上記吸収器4における吸収能力の調整によって増減制御される。即ち、上記吸収器4の吸収能力を高めて吸収希溶液への冷媒蒸気の吸収作用を高めることで、上記蒸発器3における蒸発能力(即ち、圧縮式冷凍装置X側の冷媒に対する過冷却能力)が高められ、結果的に吸収式冷凍装置Z全体としての冷凍能力が高められるものである。   In the absorption refrigeration apparatus Z, the refrigeration capacity is increased or decreased by adjusting the absorption capacity in the absorber 4. That is, by increasing the absorption capacity of the absorber 4 and increasing the absorption of refrigerant vapor into the absorption diluted solution, the evaporation capacity in the evaporator 3 (that is, the supercooling capacity for the refrigerant on the compression refrigeration apparatus X side). As a result, the refrigerating capacity of the absorption refrigeration apparatus Z as a whole is enhanced.

ところで、既述のように、上記圧縮式冷凍装置Xの冷凍能力は、上記凝縮器23から出た冷媒の過冷却度によって変化し、過冷却度が高いほど冷凍能力が高くなる関係にある。従って、圧縮式冷凍装置Xの能力向上という点では、上記吸収式冷凍装置Zの冷熱によって上記圧縮式冷凍装置X側の冷媒をできるだけ過冷却すればよいことになり、そのためには、上記圧縮式冷凍装置Xの冷凍能力に対応した過冷却温度を達成できるような能力の吸収式冷凍装置Zを組み合わせれば良いことになる。   By the way, as described above, the refrigeration capacity of the compression refrigeration apparatus X varies depending on the degree of supercooling of the refrigerant discharged from the condenser 23, and the refrigeration capacity increases as the degree of supercooling increases. Therefore, in terms of improving the capacity of the compression refrigeration apparatus X, the refrigerant on the compression refrigeration apparatus X side needs to be supercooled as much as possible by the cold heat of the absorption refrigeration apparatus Z. What is necessary is just to combine the absorption refrigeration apparatus Z of the capability which can achieve the supercooling temperature corresponding to the refrigerating capacity of the refrigeration apparatus X.

ところが、外気温度が低下した場合とか、圧縮式冷凍装置が部分負荷となった場合には、該圧縮式冷凍装置の凝縮器出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置の部分負荷とが重なった場合には、この圧縮式冷凍装置の凝縮器出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度(圧縮式冷凍装置の冷媒温度)も低下し、該蒸発温度もしくは被冷却流体温度が予め設定される値(即ち、外気温と圧縮式冷凍装置の負荷に基づいて設定される温度値)よりも低下したような場合には、吸収式冷凍装置の冷凍能力が余剰状態となり、該吸収式冷凍装置側の冷媒に無駄が生じることになる。   However, when the outside air temperature decreases or when the compression refrigeration apparatus becomes a partial load, the refrigerant temperature (that is, the condensation temperature) at the condenser outlet of the compression refrigeration apparatus decreases. When the drop in temperature and the partial load of the compression refrigeration unit overlap, the drop in refrigerant temperature at the condenser outlet of this compression refrigeration unit increases, so the evaporation temperature of the absorption refrigeration unit or the evaporator The cooled fluid temperature at the outlet (the refrigerant temperature of the compression refrigeration system) also decreases, and the evaporation temperature or the cooled fluid temperature is set based on a preset value (that is, based on the outside air temperature and the load of the compression refrigeration system). When the temperature is lower than the temperature value), the refrigerating capacity of the absorption refrigeration apparatus becomes excessive, and the refrigerant on the absorption refrigeration apparatus side is wasted.

一方、外気温が上昇した場合や、圧縮式冷凍装置の負荷が増加した場合には、圧縮式冷凍装置の凝縮器出口の冷媒温度が上昇するため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度も上昇し、該蒸発温度もしくは被冷却流体温度が予め設定される値よりも上昇したような場合には、吸収式冷凍装置の冷凍能力が不足する状態となることから、吸収器に流入する溶液の過冷却温度もしくは過冷却流量を増加させると同時に蒸発器への冷媒流量を増加させて冷凍能力を迅速に高める必要がある。   On the other hand, when the outside air temperature rises or when the load of the compression refrigeration apparatus increases, the refrigerant temperature at the condenser outlet of the compression refrigeration apparatus rises, so the evaporation temperature of the absorption refrigeration apparatus or the evaporator The temperature of the fluid to be cooled at the outlet of the refrigerant also rises, and if the evaporation temperature or the temperature of the fluid to be cooled rises above a preset value, the refrigerating capacity of the absorption refrigeration apparatus becomes insufficient. In addition, it is necessary to quickly increase the refrigerating capacity by increasing the supercooling temperature or the supercooling flow rate of the solution flowing into the absorber and at the same time increasing the refrigerant flow rate to the evaporator.

従って、大能力の排熱駆動の吸収式冷凍装置を設置することなく圧縮式冷凍装置の効率を向上させてランニングコストの低減を図るためには、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御することが必要である。   Therefore, in order to improve the efficiency of the compression refrigeration system and reduce the running cost without installing a large capacity exhaust heat driven absorption refrigeration system, respond to changes in the operating conditions on the compression refrigeration system side. Therefore, it is necessary to control the refrigeration capacity of the absorption refrigeration apparatus.

そこで、この実施形態においては、これらの事情を考慮して、圧縮式冷凍装置X側の運転条件の変化に対応させて吸収式冷凍装置Zの冷凍能力を制御することで、大能力の排熱駆動の吸収式冷凍装置Zを設置することなく圧縮式冷凍装置Xの効率を向上させてランニングコストの低減を図るようにしている。   Therefore, in this embodiment, in consideration of these circumstances, by controlling the refrigeration capacity of the absorption refrigeration apparatus Z in accordance with the change in the operating condition on the compression refrigeration apparatus X side, a large amount of exhaust heat can be obtained. The efficiency of the compression refrigeration apparatus X is improved without installing a driving absorption refrigeration apparatus Z, and the running cost is reduced.

このような制御を実現するために、この実施形態では、上記吸収器4に流入する過冷却溶液の温度を変化させることで該吸収器4の冷媒吸収能力を増減して吸収式冷凍装置Zの冷凍能力を制御するものとし、係る構成の下で、上記蒸発器3の出口における被冷却流体の温度が外気温度と上記圧縮式冷凍装置Xの凝縮温度に基づいて算出される目標温度以下となった場合に、上記吸収器4に流入する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁10を閉として上記蒸発器3に流入する冷媒量を減少させて吸収式冷凍装置Zの冷凍能力を減少させるとともに、上記冷媒タンク14に上記凝縮器2からの冷媒を溜める。また、上記温度が上記目標温度以上となった場合には、上記吸収器4に流入する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させると同時に、上記冷媒電磁弁10を開として上記冷媒タンク14に溜められた冷媒を上記蒸発器3に流入させて冷媒流量を増加させることで吸収式冷凍装置Zの冷凍能力を増加させるようにしている。   In order to realize such control, in this embodiment, the refrigerant absorption capacity of the absorber 4 is increased or decreased by changing the temperature of the supercooled solution flowing into the absorber 4, so that the absorption refrigeration apparatus Z The refrigeration capacity is controlled, and under such a configuration, the temperature of the fluid to be cooled at the outlet of the evaporator 3 is equal to or lower than the target temperature calculated based on the outside air temperature and the condensation temperature of the compression refrigeration apparatus X. In this case, the temperature of the supercooled solution flowing into the absorber 4 is changed to reduce the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant electromagnetic valve 10 is closed and the evaporator 3 is closed. The amount of refrigerant flowing in is reduced to reduce the refrigeration capacity of the absorption refrigeration apparatus Z, and the refrigerant from the condenser 2 is stored in the refrigerant tank 14. When the temperature becomes equal to or higher than the target temperature, the temperature of the supercooled solution flowing into the absorber 4 is changed to reduce the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant solenoid valve 10 is opened, and the refrigerant stored in the refrigerant tank 14 is caused to flow into the evaporator 3 to increase the refrigerant flow rate, thereby increasing the refrigeration capacity of the absorption refrigeration apparatus Z.

具体的には、上記蒸発器3の出口側に温度センサ18を設けて該出口側における上記圧縮式冷凍装置X側の冷媒の過冷却温度を検出する一方、上記圧縮式冷凍装置Xの上記凝縮器23の出口側の管路61に温度センサ19を設けて凝縮器温度(即ち、冷媒の凝縮温度)を検出するとともに、外気温センサ20を設けて外気温を検出するようにしている。   Specifically, a temperature sensor 18 is provided on the outlet side of the evaporator 3 to detect the supercooling temperature of the refrigerant on the compression refrigeration apparatus X side on the outlet side, while the condensation of the compression refrigeration apparatus X is performed. The temperature sensor 19 is provided in the pipe line 61 on the outlet side of the vessel 23 to detect the condenser temperature (that is, the refrigerant condensation temperature), and the outside air temperature sensor 20 is provided to detect the outside air temperature.

そして、上記温度センサ19で検出される凝縮器温度と上記外気温センサ20で検出される外気温に基づいて、上記吸収式冷凍装置Zの上記蒸発器3の出口側の目標温度(目標過冷却温度)を設定し、この目標温度と上記温度センサ18で検出される上記圧縮式冷凍装置X側の冷媒温度(即ち、実際の過冷却温度)を比較し、該冷媒温度が上記目標温度となるように、上記吸収式冷凍装置Zによる過冷却度、即ち、吸収式冷凍装置Zに要求される冷凍能力を制御するものである。なお、ここでは実際の過冷却温度を上記圧縮式冷凍装置X側の冷媒温度として検出しているが、これに限定されるものではなく、例えば、上記蒸発器3における冷媒の蒸発温度を検出して用いることもできる。   Then, based on the condenser temperature detected by the temperature sensor 19 and the outside air temperature detected by the outside air temperature sensor 20, the target temperature (target supercooling) on the outlet side of the evaporator 3 of the absorption refrigeration apparatus Z is determined. Temperature) is set, the target temperature is compared with the refrigerant temperature on the compression refrigeration apparatus X side detected by the temperature sensor 18 (that is, the actual supercooling temperature), and the refrigerant temperature becomes the target temperature. Thus, the degree of supercooling by the absorption refrigeration apparatus Z, that is, the refrigeration capacity required for the absorption refrigeration apparatus Z is controlled. Here, the actual supercooling temperature is detected as the refrigerant temperature on the compression refrigeration apparatus X side, but is not limited to this. For example, the refrigerant evaporating temperature in the evaporator 3 is detected. Can also be used.

この吸収式冷凍装置Zの冷凍能力の具体的な制御は以下の通りである。   Specific control of the refrigeration capacity of the absorption refrigeration apparatus Z is as follows.

即ち、上記蒸発器3の出口における冷媒の温度が外気温度と上記圧縮式冷凍装置Xの凝縮温度に基づいて算出される目標温度以下となった場合は、上記空冷過冷却器6に設けられた上記ファン7の発停によって、あるいは該ファン7の風量を増減させることによって上記空冷過冷却器6を循環する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁10を閉として上記蒸発器3に流入する冷媒量を減少させ、これによって上記吸収式冷凍装置Zの冷凍能力を減少させる。この結果、上記吸収式冷凍装置Zの冷凍能力を上記圧縮式冷凍装置X側の過冷却要求度に対応させることができる。また、この場合、上記冷媒タンク14に上記凝縮器2からの冷媒(余剰冷媒)を溜めることで、該吸収式冷凍装置Z側における無効冷媒量を減少させることができる。   That is, when the temperature of the refrigerant at the outlet of the evaporator 3 is equal to or lower than the target temperature calculated based on the outside air temperature and the condensation temperature of the compression refrigeration apparatus X, the air cooling supercooler 6 is provided. Control to reduce the refrigerant absorption capacity of the absorber 4 by changing the temperature of the supercooled solution circulating in the air-cooled supercooler 6 by starting and stopping the fan 7 or by increasing or decreasing the air volume of the fan 7. At the same time, the refrigerant solenoid valve 10 is closed to reduce the amount of refrigerant flowing into the evaporator 3, thereby reducing the refrigeration capacity of the absorption refrigeration apparatus Z. As a result, the refrigeration capacity of the absorption refrigeration apparatus Z can be made to correspond to the degree of supercooling required on the compression refrigeration apparatus X side. In this case, the amount of inactive refrigerant on the absorption refrigeration apparatus Z side can be reduced by storing the refrigerant (excess refrigerant) from the condenser 2 in the refrigerant tank 14.

一方、上記温度が上記目標温度以上となった場合には、上記吸収器4に流入する過冷却溶液の温度を変化させて上記吸収器4の冷媒吸収能力を減少させると同時に、上記冷媒電磁弁10を開として上記冷媒タンク14に溜められた冷媒を上記蒸発器3に流入させ、冷媒流量を増加させて吸収式冷凍装置Zの冷凍能力を増加させる制御を行なうことで、上記圧縮式冷凍装置Xの冷媒の過冷却温度が増加し、該圧縮式冷凍装置Xの性能が、上記制御を行なわない通常状態よりも向上することになる。   On the other hand, when the temperature becomes equal to or higher than the target temperature, the temperature of the supercooled solution flowing into the absorber 4 is changed to reduce the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant electromagnetic valve 10 is opened, the refrigerant stored in the refrigerant tank 14 is caused to flow into the evaporator 3, and the refrigerant flow rate is increased to increase the refrigeration capacity of the absorption refrigeration apparatus Z, thereby controlling the compression refrigeration apparatus. The supercooling temperature of the refrigerant of X increases, and the performance of the compression refrigeration apparatus X is improved compared to the normal state where the above control is not performed.

さらに、上記冷媒タンク14への冷媒の貯留は、上記エンジン26が運転中で且つ上記冷媒電磁弁10が閉作動中である場合のみならず、上記エンジン26の運転停止中においても行われる。即ち、上記エンジン26が停止状態であっても発生器1の溶液温度が所定温度以上で且つ上記冷媒タンク14の冷媒貯留能力に余裕がある場合には、上記冷媒電磁弁10を閉作動させ、上記冷媒タンク14が満杯となるまで吸収式冷凍装置Zを運転し、又は上記溶液ポンプ9のみを運転することで、上記冷媒タンク14に冷媒を貯留する。そして、上記発生器1の溶液温度が上記所定温度以下になれば、例え上記冷媒タンク14の冷媒貯留能力に余裕があっても、上記吸収式冷凍装置Zの運転を停止し、又は上記溶液ポンプ6の運転を停止し、上記冷媒タンク14への冷媒の貯留を停止させる。   Furthermore, the refrigerant is stored in the refrigerant tank 14 not only when the engine 26 is in operation and the refrigerant electromagnetic valve 10 is in a closed operation, but also when the operation of the engine 26 is stopped. That is, even when the engine 26 is in a stopped state, if the solution temperature of the generator 1 is equal to or higher than a predetermined temperature and the refrigerant storage capacity of the refrigerant tank 14 has a margin, the refrigerant electromagnetic valve 10 is closed. The refrigerant is stored in the refrigerant tank 14 by operating the absorption refrigeration apparatus Z until the refrigerant tank 14 is full or operating only the solution pump 9. If the solution temperature of the generator 1 is equal to or lower than the predetermined temperature, even if the refrigerant storage capacity of the refrigerant tank 14 is sufficient, the operation of the absorption refrigeration apparatus Z is stopped, or the solution pump 6 is stopped, and the storage of the refrigerant in the refrigerant tank 14 is stopped.

係る構成によれば、上記エンジン26が停止状態であっても、冷媒の発生が可能な状態で且つ上記冷媒タンク14への冷媒の貯留が可能な場合には、上記冷媒タンク14に冷媒が溜められることから、無効冷媒量を少なくして冷媒の有効利用を図ることができる。   According to such a configuration, even when the engine 26 is stopped, the refrigerant is stored in the refrigerant tank 14 when the refrigerant can be generated and the refrigerant can be stored in the refrigerant tank 14. Therefore, the amount of ineffective refrigerant can be reduced to effectively use the refrigerant.

以上の相乗効果として、上記圧縮式冷凍装置Xの効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減が両立されることになる。   As the above synergistic effect, the improvement of the efficiency of the compression refrigeration apparatus X and the reduction of the initial cost and the running cost of the entire refrigeration system are compatible.

尚、この実施形態では、上記冷媒電磁弁10を開から閉とする場合の目標温度と、閉から開とする場合の目標温度を、同一温度としているが、本願発明はこれに限定されるものではなく、異なる温度とすることもできる。例えば、上記冷媒電磁弁10を開から閉とする場合(即ち、冷媒タンク14への冷媒の貯留開始)の目標温度を、該冷媒電磁弁10を閉から開とする場合(即ち、冷媒タンク14に貯留した冷媒の流出開始)の目標温度よりも低く設定した場合には、冷凍能力の増加制御がより早期に開始され、迅速な冷凍能力の増加が実現される。   In this embodiment, the target temperature when the refrigerant solenoid valve 10 is changed from open to closed and the target temperature when the refrigerant electromagnetic valve 10 is changed from closed to open are set to the same temperature, but the present invention is limited to this. Instead, it can be at a different temperature. For example, when the refrigerant electromagnetic valve 10 is opened to closed (that is, the refrigerant starts to be stored in the refrigerant tank 14), the target temperature is set to the target temperature when the refrigerant electromagnetic valve 10 is opened from the closed (that is, the refrigerant tank 14). When the temperature is set lower than the target temperature of the refrigerant stored in the refrigerant, the increase control of the refrigerating capacity is started earlier, and the quick increase of the refrigerating capacity is realized.

更に凝縮器2から蒸発器3に至る配管52を省略し簡略化することも出来、この場合は蒸発器3に供給される冷媒は冷媒電磁弁10が開となっている時のみであり、より有効に冷媒を使用することができるが、冷媒電磁弁10をより煩雑に制御する必要がある。 Further, the piping 52 from the condenser 2 to the evaporator 3 can be omitted and simplified, and in this case, the refrigerant supplied to the evaporator 3 is only when the refrigerant electromagnetic valve 10 is open, Although the refrigerant can be used effectively, it is necessary to control the refrigerant solenoid valve 10 more complicatedly.

II:第2の実施形態
図2には、本願発明の第2の実施形態に係る冷凍システムが示されている。この冷凍システムは、上記第1の実施形態に係る冷凍システムと基本構成を同じにするものであって、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
II: Second Embodiment FIG. 2 shows a refrigeration system according to a second embodiment of the present invention. This refrigeration system has the same basic configuration as that of the refrigeration system according to the first embodiment, and is configured by combining an exhaust heat-driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

そして、この実施形態に係る冷凍システムが上記第1の実施形態に係る冷凍システムと異なる点は、
上記冷媒タンク14に堰14aを設け、上記凝縮器2からの液冷媒のうち、上記堰14aを越流した液冷媒を管路52を介して上記蒸発器3側へ流入させるようにした点と、
上記冷媒タンク14が満杯となった後は上記凝縮器2からの液冷媒をバイパス管路56を介して直接に上記吸収器4の下部に設けた上記希溶液溜り16に流入させるようにした点と、
上記吸収器4の能力を、上記空冷過冷却器6の上流側に設けた流量調整弁11又は下流側に設けた流量調整弁12の開度調整と、上記溶液ポンプ9の流量調整によって、上記空冷過冷却器6を循環する過冷却溶液の温度制御によって調整するようにした点である。
And the point that the refrigerating system concerning this embodiment differs from the refrigerating system concerning the 1st embodiment of the above,
The refrigerant tank 14 is provided with a weir 14a, and the liquid refrigerant that has overflowed the weir 14a out of the liquid refrigerant from the condenser 2 is caused to flow into the evaporator 3 side through the conduit 52. ,
As after the refrigerant tank 14 becomes full, to flow into the said dilute solution reservoir or Ri 16 the liquid refrigerant is provided directly via the bypass line 56 to the lower portion of the absorber 4 from the condenser 2 And
The capacity of the absorber 4 is adjusted by adjusting the opening degree of the flow rate adjusting valve 11 provided on the upstream side of the air-cooled supercooler 6 or the flow rate adjusting valve 12 provided on the downstream side and adjusting the flow rate of the solution pump 9. The point is that the temperature is adjusted by controlling the temperature of the supercooled solution circulating in the air-cooled supercooler 6.

ここで、上記相違点に特有の作用効果は以下の通りである。   Here, the operational effects peculiar to the above differences are as follows.

上記冷媒タンク14に堰14aを設け、上記凝縮器2からの液冷媒のうち、上記堰14aを越流した液冷媒を管路52を介して上記蒸発器3側へ流入させるようにしたことで、上記冷媒電磁弁10が開とされた時点、即ち、上記冷媒タンク14に貯留された冷媒を上記蒸発器3側へ流す時点では、常に上記冷媒タンク14には冷媒が満杯に貯留されているので、該冷媒電磁弁10の開と同時に上記蒸発器3側へ十分な量の冷媒が流され、冷凍能力の増加制御がより一層迅速且つ確実に行なわれる。   The weir 14 a is provided in the refrigerant tank 14, and the liquid refrigerant that has flown over the weir 14 a out of the liquid refrigerant from the condenser 2 is caused to flow into the evaporator 3 through the pipe 52. When the refrigerant solenoid valve 10 is opened, that is, when the refrigerant stored in the refrigerant tank 14 flows to the evaporator 3 side, the refrigerant tank 14 is always full of refrigerant. As a result, a sufficient amount of refrigerant is caused to flow toward the evaporator 3 simultaneously with the opening of the refrigerant solenoid valve 10, and the increase control of the refrigerating capacity is performed more quickly and reliably.

上記冷媒タンク14が満杯となった後は上記凝縮器2からの液冷媒をバイパス管路56を介して直接に上記吸収器4の下部に設けた上記希溶液溜り16に流入させるようにしたことで、吸収溶液の濃度変化を抑えることができる。 As after the refrigerant tank 14 becomes full, to flow into the said dilute solution reservoir or Ri 16 the liquid refrigerant is provided directly via the bypass line 56 to the lower portion of the absorber 4 from the condenser 2 As a result, the concentration change of the absorbing solution can be suppressed.

上記吸収器4の能力を、上記流量調整弁11又は流量調整弁12の開度調整と、上記溶液ポンプ9の流量調整によって調整することで、吸収式冷凍装置Zの冷凍能力の制御を極めて容易且つ迅速に行なえることから、該吸収式冷凍装置Zの能力制御範囲を最少能力まで低下させることができ、延いては、圧縮式冷凍装置Xの能力を限界まで利用することが可能となる。   By adjusting the capacity of the absorber 4 by adjusting the opening degree of the flow rate adjusting valve 11 or the flow rate adjusting valve 12 and adjusting the flow rate of the solution pump 9, it is very easy to control the refrigerating capacity of the absorption refrigeration apparatus Z. And since it can be performed quickly, the capacity control range of the absorption refrigeration apparatus Z can be reduced to the minimum capacity, and as a result, the capacity of the compression refrigeration apparatus X can be utilized to the limit.

尚、上記冷媒電磁弁10は、上記バイパス管路64を開口又は閉止する構成とされているが、他の実施形態では、これを流量調整が可能な冷媒流量制御弁に置き換えることもできる。係る構成とした場合には、上記冷媒電磁弁10とする場合に比して、上記蒸発器への冷媒の流入量をより細かく増減制御することができることから、吸収式冷凍装置Zの冷凍能力の制御を、上記圧縮式冷凍装置X側の負荷の変化に対応させてより一層緻密に制御することができる。   In addition, although the said refrigerant | coolant electromagnetic valve 10 is set as the structure which opens or closes the said bypass pipe line 64, in other embodiment, this can also be replaced with the refrigerant | coolant flow control valve which can adjust flow volume. In the case of such a configuration, the amount of refrigerant flowing into the evaporator can be controlled more or less finely as compared with the case of the refrigerant solenoid valve 10, so that the refrigerating capacity of the absorption refrigeration apparatus Z can be increased. The control can be more precisely controlled in accordance with the load change on the compression refrigeration apparatus X side.

上記以外の構成及び作用効果は上記第1の実施形態の場合と同様であるので、ここでは図2の各構成部材に図1の各構成部材に対応させて同一の符号を付した上で、該第1の実施形態における該当説明を援用し、ここでの説明を省略する。   Since the structure and the effect other than the above are the same as those in the case of the first embodiment, here, after attaching the same reference numerals to the respective structural members in FIG. The corresponding explanation in the first embodiment is used, and the explanation here is omitted.

本願発明の第1の実施の形態に係る吸収式冷凍装置のシステム図である。1 is a system diagram of an absorption refrigeration apparatus according to a first embodiment of the present invention. 本願発明の第2の実施の形態に係る吸収式冷凍装置のシステム図である。It is a system diagram of an absorption refrigeration apparatus according to a second embodiment of the present invention.

1 ・・発生器
2 ・・凝縮器
3 ・・蒸発器
4 ・・吸収器
5 ・・溶液熱交換器
6 ・・空冷過冷却器
7 ・・ファン
8 ・・ファン
9 ・・溶液ポンプ
10 ・・冷媒電磁弁
11 ・・流量調整弁
12 ・・流量調整弁
14 ・・冷媒タンク
14a ・・堰
15 ・・躯体
16 ・・希溶液溜
18 ・・温度センサ
19 ・・温度センサ
20 ・・外気温センサ
21 ・・圧縮機
22 ・・蒸発器
23 ・・凝縮器
24 ・・膨張弁
25 ・・四路弁
26 ・・エンジン
30 ・・制御器
X ・・圧縮式冷凍装置
Z ・・吸収式冷凍装置
1 ·· Generator 2 ·· Condenser 3 ·· Evaporator 4 ··· Absorber 5 ·· Solution heat exchanger 6 ·· Air-cooled supercooler 7 ·· Fan 8 ·· Fan 9 ·· Solution pump 10 ··· refrigerant solenoid valve 11 ... flow control valve 12 ... flow control valve 14 ... refrigerant tank 14a .. weir 15 · skeleton 16 ... dilute solution reservoir or Ri 18 ... temperature sensor 19 ... temperature sensor 20 ... outside Air temperature sensor 21 ・ ・ Compressor 22 ・ ・ Evaporator 23 ・ ・ Condenser 24 ・ ・ Expansion valve 25 ・ ・ Four-way valve 26 ・ ・ Engine 30 ・ ・ Controller X ・ ・ Compression refrigeration system Z ・ ・ Absorption refrigeration apparatus

Claims (8)

圧縮式冷凍装置(X)を駆動するエンジン(26)の排熱を受けて作動する発生器(1)と、凝縮器(2)と、冷媒を一過性で蒸発させる蒸発器(3)と、流下液膜式の吸収器(4)と、該吸収器(4)に入る吸収溶液を過冷却する空冷過冷却器(6)とを備えた排熱駆動の吸収式冷凍装置であって、
上記凝縮器(2)から上記蒸発器(3)に至る配管(64)途中に、冷媒タンク(14)と冷媒電磁弁(10)とを順次設ける一方、
上記吸収器(4)に流入する過冷却溶液の温度及び/又は流量を変化させることで、上記吸収器(4)の能力を増減して吸収式冷凍装置の冷凍能力を制御するものとし、
上記蒸発器(3)の出口における被冷却流体の温度が外気温度と上記圧縮式冷凍装置(X)の凝縮温度とに基づいて算出される目標温度以下となった場合に、上記吸収器(4)に流入する過冷却溶液の温度及び/又は流量を変化させて該吸収器(4)の冷媒吸収能力を減少させる制御を行うと同時に、上記冷媒電磁弁(10)を閉として上記蒸発器(3)に流入する冷媒量を減少させて吸収式冷凍装置の冷凍能力を減少させるとともに、上記冷媒タンク(14)に上記凝縮器(2)からの冷媒を溜める一方、
上記蒸発器(3)の出口における被冷却流体の温度が上記目標温度以上となった場合には、上記吸収器(4)に流入する過冷却溶液の温度及び/又は流量を変化させて上記吸収器(4)の冷媒吸収能力を増加させると同時に、上記冷媒電磁弁(10)を開として上記冷媒タンク(14)に溜められた冷媒を上記蒸発器(3)に流入させて冷媒流量を増加させることで吸収式冷凍装置の冷凍能力を増加させる制御を行うとともに、
上記吸収式冷凍装置の運転・停止を上記発生器(1)の溶液温度で制御するものとし、
上記エンジン(26)が停止状態であっても上記溶液温度が所定温度以上で且つ上記冷媒タンク(14)の冷媒貯留能力に余裕がある場合には上記冷媒電磁弁(10)を閉として、上記冷媒タンク(14)が満杯となるまで吸収式冷凍装置を運転し、又は上記吸収器(4)からの吸収希溶液を上記発生器(1)に流入させる溶液ポンプ(9)のみを運転し、
上記発生器(1)の溶液温度が上記所定温度以下になれば、上記冷媒タンク(14)の冷媒貯留能力に余裕があっても上記吸収式冷凍装置の運転を停止し、又は上記溶液ポンプ(9)の運転を停止することを特徴とする吸収式冷凍装置。
A generator (1) that operates in response to exhaust heat from an engine (26 ) that drives the compression refrigeration system (X) , a condenser (2), and an evaporator (3) that temporarily evaporates refrigerant. An exhaust heat driven absorption refrigeration apparatus comprising a falling liquid film type absorber (4) and an air-cooled supercooler (6) for supercooling the absorbing solution entering the absorber (4) ,
While a refrigerant tank (14) and a refrigerant electromagnetic valve (10) are sequentially provided in the middle of the pipe (64 ) from the condenser (2) to the evaporator (3) ,
The absorber (4) temperature and / or the supercooled solution flowing into the By changing the flow rate, and controls the refrigeration capacity of the absorption type refrigerating apparatus to increase or decrease the capacity of the absorber (4) ,
When the temperature of the fluid to be cooled at the outlet of the evaporator (3) becomes equal to or lower than a target temperature calculated based on the outside air temperature and the condensation temperature of the compression refrigeration apparatus (X) , the absorber (4 ) to a temperature in the supercooled solution to flow in and / or by changing the flow rate at the same time performs the control of reducing the refrigerant absorption capacity of the absorber (4), the evaporator the refrigerant solenoid valve (10) is closed Reducing the amount of refrigerant flowing into the condenser (3) to reduce the refrigeration capacity of the absorption refrigeration apparatus, and accumulating refrigerant from the condenser (2) in the refrigerant tank (14) ,
When the temperature of the cooling fluid at the outlet of the evaporator (3) is equal to or above the target temperature, the absorber temperature and / or the supercooled solution flowing into (4) by changing the flow amount The refrigerant absorption capacity of the absorber (4) is increased, and at the same time, the refrigerant electromagnetic valve (10) is opened, and the refrigerant stored in the refrigerant tank (14) is caused to flow into the evaporator (3) to flow the refrigerant. It performs control for increasing the cooling capacity of the absorption refrigerating apparatus by increasing,
The operation / stop of the absorption refrigeration system is controlled by the solution temperature of the generator (1).
Even if the engine (26) is in a stopped state, if the solution temperature is equal to or higher than a predetermined temperature and the refrigerant storage capacity of the refrigerant tank (14) has a margin, the refrigerant electromagnetic valve (10) is closed, Operate the absorption refrigeration system until the refrigerant tank (14) is full, or operate only the solution pump (9) for allowing the absorbed dilute solution from the absorber (4) to flow into the generator (1),
If the solution temperature of the generator (1) is equal to or lower than the predetermined temperature, the operation of the absorption refrigeration system is stopped or the solution pump ( 9) Stopping the operation of 9) .
上記冷媒電磁弁(10)を開から閉とする場合の目標温度と、上記冷媒電磁弁(10)を閉から開とする場合の目標温度を同一温度又は異なる温度としたことを特徴とする請求項1記載の吸収式冷凍装置。 Wherein the target temperature, the refrigerant solenoid valve that was the same temperature or different temperatures with the target temperature in the case of the closed and open (10) at which a closing said refrigerant solenoid valve (10) from the open The absorption refrigeration apparatus according to claim 1. 上記冷媒タンク(14)に堰(14a)を設け、該堰(14a)を越流させて上記蒸発器(3)に冷媒を流入させるとともに、上記冷媒電磁弁(10)の開閉によって上記蒸発器(3)への冷媒流量を増減させるようにしたことを特徴とする請求項又は記載の吸収式冷凍装置。 In the refrigerant tank (14) provided with a weir (14a), together with the-flowed Yue the weir (14a) to flow the refrigerant to the evaporator (3), the evaporator by opening and closing the refrigerant solenoid valve (10) The absorption refrigeration apparatus according to claim 1 or 2 , wherein the refrigerant flow rate to (3) is increased or decreased. 上記冷媒タンク(14)が満杯となった後の余剰冷媒を、上記蒸発器(3)の下部に、又は直接に上記吸収器(4)の希溶液溜まり(16)に流入させることを特徴とする請求項1,2又記載の吸収式冷凍装置。 The surplus refrigerant after the refrigerant tank (14) is full is allowed to flow into the lower part of the evaporator (3) or directly into the dilute solution reservoir (16) of the absorber (4). absorption refrigerating apparatus according to claim 1, 2 or 3 wherein. 上記冷媒タンク(14)から上記蒸発器(3)へ流入する冷媒流量の増減制御を、上記冷媒電磁弁(10)の開閉によって行うことを特徴とする請求項1,2,3又記載の吸収式冷凍装置。 Claim 1 and 2 to increase or decrease control of the flow rate of refrigerant flowing from the refrigerant tank (14) the evaporator to (3), and wherein the row Ukoto by the opening and closing of the refrigerant solenoid valve (10), 3 also 4 is an absorption refrigeration apparatus according to 4 . 上記空冷過冷却器(6)に備えられたファン(7)の発停又は風量の増減によって上記吸収器(4)に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴とする請求項1,2,3,4又記載の吸収式冷凍装置。 Controlling the refrigerating capacity by changing the temperature of the supercooled solution flowing into the absorber (4) by the start / stop of the fan (7) provided in the air-cooled supercooler (6) or the increase / decrease of the air volume. claim 1, 2, 3, the absorption refrigerating apparatus 4 or 5, wherein. 上記空冷過冷却器(6)の入口側又は出口側に設けた流量調整弁(11)又は(12)によって上記吸収器(4)に流入する上記過冷却溶液の流量を変化させることで冷凍能力を制御することを特徴とする請求項1,2,3,4又記載の吸収式冷凍装置。 The air subcooler (6) the flow rate adjusting valve provided on the inlet side or the outlet side of (11) or (12) by refrigerating capacity by varying the flow rate of the supercooling solution flowing into the absorber (4) claim 1, 2, 3, characterized in that to control, absorption refrigerating apparatus 4 or 5, wherein. 冷媒蒸気を吸収した上記吸収器(4)からの希溶液と、上記発生器(1)で冷媒蒸気を発生し且つ溶液熱交換器(5)での熱交換によって温度が低下した濃溶液との混合溶液を吸引及び吐出する溶液ポンプ(9)の流量を増減することで冷凍能力を制御することを特徴とする請求項1,2,3,4又記載の吸収式冷凍装置。 A dilute solution from the absorber (4) that has absorbed the refrigerant vapor, and a concentrated solution that generates refrigerant vapor in the generator (1) and has a temperature lowered by heat exchange in the solution heat exchanger (5) . claim 1, 2, 3, characterized in that to control the refrigeration capacity by increasing or decreasing the flow rate of the mixed solution a solution pump for sucking and discharging (9), an absorption type refrigerating apparatus 4 or 5, wherein.
JP2007259731A 2007-10-03 2007-10-03 Absorption refrigeration system Expired - Fee Related JP5098547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259731A JP5098547B2 (en) 2007-10-03 2007-10-03 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259731A JP5098547B2 (en) 2007-10-03 2007-10-03 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2009085571A JP2009085571A (en) 2009-04-23
JP5098547B2 true JP5098547B2 (en) 2012-12-12

Family

ID=40659222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259731A Expired - Fee Related JP5098547B2 (en) 2007-10-03 2007-10-03 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP5098547B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381584B2 (en) * 2009-09-30 2014-01-08 ダイキン工業株式会社 Refrigeration system
JP5838605B2 (en) * 2011-06-21 2016-01-06 ダイキン工業株式会社 Refrigeration equipment
CN114234312B (en) * 2021-12-17 2023-07-25 李鹏逻 Energy storage method of compression type and absorption type integrated air conditioner and energy storage air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023264B2 (en) * 1978-03-20 1985-06-06 川崎重工業株式会社 Air-cooled absorption refrigerator that removes absorbed heat using absorption liquid as a heat medium
JP3002620B2 (en) * 1993-09-30 2000-01-24 株式会社日立製作所 Absorption chiller / heater
JPH0953864A (en) * 1995-01-31 1997-02-25 Denso Corp Engine type cooling device
JP2002081767A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP4166037B2 (en) * 2002-05-24 2008-10-15 三洋電機株式会社 Absorption chiller / heater

Also Published As

Publication number Publication date
JP2009085571A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5381584B2 (en) Refrigeration system
WO2011142352A1 (en) Air conditioning device for vehicle
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2008116173A (en) Absorption type refrigerating machine
JP5098547B2 (en) Absorption refrigeration system
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
JP5092668B2 (en) Absorption refrigeration system
JP2012202589A (en) Absorption heat pump apparatus
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2009058207A (en) Absorption water cooler/heater
JP5092677B2 (en) Absorption refrigeration system
JP5098561B2 (en) Absorption refrigeration system
KR102010832B1 (en) Low load control system for 2-stage low temperature hot water absorption chiller
JP5018376B2 (en) Refrigeration system
JPH0733937B2 (en) Absorption refrigerator
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP2010078298A (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
JP2009052811A (en) Exhaust heat drive-type absorption refrigerating device
JP3813348B2 (en) Absorption refrigerator
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP2011047522A (en) Absorption refrigerating machine
JP4073219B2 (en) Absorption chiller / heater
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees