JP4073219B2 - Absorption chiller / heater - Google Patents

Absorption chiller / heater Download PDF

Info

Publication number
JP4073219B2
JP4073219B2 JP2002049469A JP2002049469A JP4073219B2 JP 4073219 B2 JP4073219 B2 JP 4073219B2 JP 2002049469 A JP2002049469 A JP 2002049469A JP 2002049469 A JP2002049469 A JP 2002049469A JP 4073219 B2 JP4073219 B2 JP 4073219B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature regenerator
liquid
condenser
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002049469A
Other languages
Japanese (ja)
Other versions
JP2003247762A (en
Inventor
章 西口
達郎 藤居
明 西岡
聡 三宅
正 持田
研治 山田
裕治 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP2002049469A priority Critical patent/JP4073219B2/en
Publication of JP2003247762A publication Critical patent/JP2003247762A/en
Application granted granted Critical
Publication of JP4073219B2 publication Critical patent/JP4073219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般空調あるいは産業用に用いられる二重効用の吸収冷温水機に関する。
【0002】
【従来の技術】
本発明に関する吸収冷温水機の従来例としては、例えば特開平7−294056号公報に記載の吸収冷温水機が挙げられる。本従来例においては、高温再生器で発生した冷媒蒸気が低温再生器の伝熱管内で凝縮して液化し、絞りを通って凝縮器に送られる構成が開示されている(従来技術1)。
また、関連する技術として特開平11−230632号公報に記載の吸収式冷凍機もある(従来技術2)。
【0003】
【発明が解決しようとする課題】
上記従来技術1においては、高温再生器で発生した冷媒蒸気は低温再生器の伝熱管内でほぼ高温再生器の圧力条件で凝縮液化し、高温再生器と凝縮器の圧力差により絞りを通過して凝縮器に流れ込むものである。すなわち、凝縮液化した冷媒は高温再生器と凝縮器との圧力差で流動している。しかし、定格運転条件で高温再生器の圧力が高い場合と低冷却水温度条件で高温再生器の圧力が低い場合とでは、高温再生器と凝縮器との圧力差は大きく異なるので、圧力差が小さい低冷却水温度条件でも冷媒が流れるように前記絞り抵抗を設定している。この場合、定格運転条件で高温再生器と凝縮器との圧力差が大きくなる時には、圧力差に比べて絞りの抵抗が小さくなっているので、凝縮した液冷媒以外に凝縮していない冷媒蒸気がこの絞りを通過して凝縮器に流入する。このため、冷媒蒸気の凝縮熱が低温再生器の加熱に使われず、性能低下を引き起こすおそれがあった。
【0004】
一方、吸収冷温水機に用いられる臭化リチウム水溶液は腐食性の強い溶液であり、腐食防止のために腐食抑制剤が用いられているが、腐食発生の確率が高いのは高温高濃度となる高温再生器である。一旦腐食が発生すると不凝縮ガスが生成されてこれが低温再生器内の伝熱管内に滞留し、伝熱を阻害してサイクルの性能を低下させる。したがって、速やかに凝縮器等に送り、抽気装置により機外へ排出する必要がある。そのために、高温再生器から低温再生器の伝熱管内を通って凝縮器へ接続される通路から不凝縮ガスを凝縮器へ送り出す必要がある。このため、低温再生器の伝熱管内から凝縮器への冷媒流路の絞り抵抗は液冷媒だけを流すよりも小さくしておく必要があり、これにより凝縮していない冷媒蒸気の凝縮器への通過量がますます大きくなって、冷凍機の性能が低下する。
【0005】
また、低温再生器で凝縮した液冷媒の顕熱を用いて、高温再生器あるいは低温再生器へ送る溶液を加熱するための熱交換器を備え、熱回収を行って吸収冷温水機の効率向上を図る場合に、低温再生器からの液冷媒中に凝縮していない冷媒蒸気が混入していると、熱回収熱交換器内でこの冷媒蒸気が凝縮するために液冷媒の冷却は充分行われず、結局液冷媒の温度が下がらないために熱回収が充分でなく、冷凍機の効率向上を阻害する。
従来技術2においては、固定オリフィスを有し定常運転状態において液冷媒の流れる配管と、立ち上げ時や負荷の急激な増大時に液冷媒を流すための配管とを備える必用がある。
【0006】
本発明の目的は、低温再生器の伝熱管から凝縮器への液媒流路を通って流れる未凝縮冷媒蒸気の流出を防止して、性能の低下を抑えることができると共に、高温再生器で発生した不凝縮ガス凝縮器に送って抽気装置から排出し、不凝縮ガスによるサイクルの性能低下を防止できる吸収冷温水機を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明に係る吸収冷温水機は、蒸発器、吸収器、高温再生器、低温再生器、凝縮器を接続して冷凍サイクルを構成し、前記高温再生器で発生した冷媒蒸気を前記低温再生器内に配置された伝熱管を通すことにより凝縮させ、この凝縮した冷媒を絞りを通して前記凝縮器に送る二重効用の吸収冷温水機において、前記伝熱管の出口側に前記低温再生器を加熱した冷媒を液冷媒と冷媒蒸気とに分離する液溜め手段を設け、前記液溜め手段の液冷媒を前記凝縮器に流出させる液冷媒流路を設け、前記液冷媒流路に可変抵抗絞りを設け、前記液溜め手段の液面高さが低くなった場合に前記可変抵抗絞りの抵抗値を大きくし、前記液面高さが高くなった場合に前記可変抵抗絞りの抵抗値を小さくして、前記液溜め手段内の液冷媒が前記液冷媒流路を通して前記凝縮器に送られるように制御する制御手段を設け、前記液溜め手段内の冷媒蒸気を前記凝縮器に流出させる蒸気逃がし流路を設け、前記蒸気逃がし流路に絞りを設け、前記凝縮器内の冷媒蒸気中から不凝縮ガスを抽出して前記冷凍サイクルから除去する抽気装置を設けたものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。図1は、本発明に係る吸収冷温水機の実施例の系統図である。
吸収冷温水機の基本構成は、蒸発器10、吸収器20、高温再生器30、低温再生器40、凝縮器50、溶液熱交換器61、62、冷媒ポンプ71、溶液ポンプ72、73などからなっている。低温再生器40には伝熱管41が設置されており、この伝熱管41の出口側一端に液冷媒出口ヘッダ45、この冷媒出口ヘッダ45からの液冷媒出口流路の途中には冷媒液溜め47が設置され、この冷媒液溜め47内の液面高さに応じて液冷媒の流動抵抗を変化させるフロート弁48が設置されている。
【0012】
冷房運転時のサイクルの動作は、下記のようになる。
蒸発器10内には伝熱管11が配置されており、凝縮器50から冷媒配管52を通って送られてくる冷媒を蒸発器10の下部に配置された冷媒タンク13に溜める。この冷媒を冷媒ポンプ71により冷媒配管14を通って散布装置12に送り、伝熱管11上に散布して伝熱管上で蒸発するときの蒸発潜熱により、伝熱管11内を流れる冷水を冷却して需要側に送水する。一方、冷媒ポンプ71の吐出側で冷媒配管14の途中にはフロート弁15が設置されており、冷媒タンク13の液面高さが低下した場合に弁開度を小さくして冷媒流量を小さくする、あるいは冷媒流量を遮断するように動作し、冷媒ポンプ71のキャビテーションを防止している。
【0013】
吸収器20内には冷却水が流れる伝熱管21が配置されており、高温再生器30及び低温再生器40で加熱濃縮された濃溶液が溶液配管24を通って吸収器20内の散布装置22に送られ、伝熱管21上に散布される。ここで、蒸発器10で蒸発した冷媒蒸気は蒸発器10と吸収器20との間に設置されたエリミネータ19を通って吸収器内に流れ込み、伝熱管21上を流下する溶液に吸収される。この時発生する吸収熱は伝熱管21内を流れる冷却水に冷却される。また、冷媒蒸気を吸収して濃度が薄くなった溶液(以下、希溶液という)は、溶液タンク23に溜められた後、溶液ポンプ72により溶液熱交換器61へ送られる。
【0014】
希溶液は溶液熱交換器61で高温再生器30及び低温再生器40からの濃度が濃くなった溶液(以下、濃溶液という)と熱交換して温度上昇した後、希溶液の一部は溶液管43を通って低温再生器40の散布装置42へ送られる。残りの希溶液は、溶液熱交換器62で高温再生器30からの濃溶液と熱交換して温度上昇した後、高温再生器30へ送られる。高温再生器30に送られた希溶液は、燃焼器の燃焼ガスや蒸気等の加熱源31により加熱されて沸騰し、分離された冷媒蒸気が蒸気配管33を通って低温再生器40に送られる。蒸気配管33の途中には、蒸気配管3から分岐して蒸発器10に接続される蒸気配管34が設けられており、この蒸気配管34の途中には開閉弁35が設けられている。この開閉弁35は、冷房運転中は閉、暖房運転中は開となっている。一方、冷媒蒸気を分離して濃縮された溶液すなわち濃溶液は溶液流出部32から流出し、溶液熱交換器62に送られて、溶液熱交換器61からの希溶液と熱交換する。
【0015】
低温再生器40内には伝熱管41が配置されており、管内を高温再生器30からの冷媒蒸気が流れる。低温再生器40に送られた希溶液は散布装置42から伝熱管41上に散布され、伝熱管41の内部を流れる蒸気により加熱されて沸騰し、分離された冷媒蒸気が凝縮器50に送られる。冷媒蒸気を分離して濃縮された溶液すなわち濃溶液は溶液管44を通って流出し、高温再生器30から溶液熱交換器62を通ってきた濃溶液と合流した後、溶液ポンプ73により溶液熱交換器61へ送られる。この濃溶液は溶液熱交換器61で吸収器20からの希溶液と熱交換した後、溶液管24を通って吸収器20の散布装置22へ送られる。
【0016】
一方、低温再生器40の伝熱管41内で溶液を加熱して凝縮した高温再生器30からの冷媒は、冷媒出口ヘッダ45に一旦溜められた後、冷媒出口配管46(出口流路)を通って冷媒液溜め47に送られる。冷媒液溜め47内には、弁体の入口が冷媒液内に没するようにフロート弁48が設置されており、冷媒液溜め47の液面高さが高いときにはフロート弁48の絞り抵抗が小さくなり、冷媒液溜め47の液面高さが低くなったときにはフロート弁48の絞り抵抗が大きくなるように動作する。そして、冷媒液溜め47内の液冷媒はフロート弁48、冷媒出口配管49を通って凝縮器50に送られる。また冷媒出口ヘッダ45の蒸気部は、蒸気逃がし配管91と絞り92を介して凝縮器50と接続されており、低温再生器40を通る伝熱管41内の冷媒蒸気の一部は凝縮器50に流れ込み、低温再生器40で発生し分離された冷媒蒸気と合流する。また、凝縮器50には抽気装置93が接続されており、不凝縮ガスが冷媒蒸気中から抽出されて、サイクル内から除去される。
【0017】
凝縮器50内には伝熱管51が配置されており、吸収器20の伝熱管21からの冷却水が伝熱管51内を流れている。低温再生器40からの冷媒蒸気は伝熱管51上で管内を流れる冷却水に冷却されて凝縮し、低温再生器40の伝熱管41内で凝縮した液冷媒と混合されて、冷媒配管52を通って蒸発器10に送られ、冷媒タンク13に溜められる。
以上で、冷房運転時のサイクルが完結する。
【0018】
ここで、低温再生器40の冷媒出口ヘッダ45から冷媒液溜め47には一部冷媒蒸気も流れ込んでおり、冷媒液溜め47の上部には冷媒蒸気部が存在する。この冷媒蒸気がフロート弁48及び冷媒出口配管49を通って凝縮器50に流出すると、冷媒蒸気の凝縮潜熱が低温再生器40内の溶液の加熱に使われることがないので、低温再生器40での冷媒発生量が低下し、吸収冷温水機の性能は低下する。しかし、本実施例では、フロート弁48(可変抵抗絞り)の絞り抵抗となる弁体の入口は液冷媒に没しており、液面高さが低くなった場合にはフロート弁48の絞り抵抗が大きくなり、液冷媒の流出は抑制されて液面の低下が抑えられる。したがって、フロート弁48の開口部が冷媒蒸気にさらされることはなく、冷媒蒸気がフロート弁48及び冷媒出口配管49を通って凝縮器側に流れ込むことを防ぎ、吸収冷温水機の性能低下を防止することができる。
【0019】
また、高温再生器30で発生した冷媒蒸気中に含まれる不凝縮ガスは、冷媒蒸気とともに低温再生器40の冷媒出口ヘッダ45から蒸気逃がし配管91、絞り92を通って凝縮器50に送られる。不凝縮ガスは凝縮器50において、抽気装置93により速やかにサイクルから排除され、不凝縮ガスによるサイクルの性能低下を防止することができる。
【0020】
以上説明したように本実施例においては、低温再生器を加熱した液冷媒の流れる出口流路に液溜めを設置し、この液溜めから液冷媒が流出する流路に可変抵抗絞りとしてフロート弁を設け、このフロート弁の絞りを、液溜めの液面高さが低くなった場合に抵抗値を大きくし、液面高さが高くなった場合にフロート弁絞りの抵抗値を小さくするように動作するようにしたので、低温再生器の伝熱管内から凝縮器への凝縮液冷媒の流路を通って流れる未凝縮冷媒蒸気の流出を防止して、性能の低下を抑えた吸収冷温水機を提供することができる。
また本実施例においては、低温再生器の冷媒出口ヘッダ(流路)の蒸気部と凝縮器とを絞りを介して流路で接続したので、高温再生器で発生した不凝縮ガスを速やかに凝縮器に送って抽気装置から排出し、不凝縮ガスによるサイクルの性能低下を防止できる吸収冷温水機を提供することができる。
【0021】
次に、本発明の他の実施例を図2を用いて説明する。
図1の実施例と異なる点は、冷媒液溜め47のフロート弁48の替わりに冷媒出口配管49の途中に流量調整弁98(可変抵抗絞り)を設置するとともに、冷媒液溜め47内には液面センサー99を設置し、この液面センサー99からの信号により前記流量調整弁98を制御するように構成した点である。その他の構成は図1の実施例と同様である。
【0022】
本実施例においては、液面センサーの信号により流量調整弁の開度を制御するようにしているので、液面高さに応じて流量調整弁の開度をより適正値に制御することが可能となり、冷媒蒸気の流出を防止するとともに必要以上に絞り抵抗を大きくして高温再生器の圧力を高くすることがなく、効率の高い吸収冷凍サイクルを構成できるという利点がある。
【0023】
本発明の、さらに他の実施例を図3を用いて説明する。
図1の実施例と異なる点は、冷媒液溜め47を低温再生器40内の伝熱管41の出口部に設置し、伝熱管41内の凝縮冷媒液が液溜め47内に直接流入するように配置するとともに、フロート弁48の出口側の冷媒出口配管46をドレン熱交換81に接続し、ドレン熱交換器81と凝縮器50とが冷媒出口配管49で接続されている点である。ドレン熱交換器81には、溶液ポンプ72から流出した希溶液が溶液熱交換器61の手前で分岐して流入する。ドレン熱交換器81の出口側溶液配管は溶液熱交換器61の出口側配管に接続されており、ドレン熱交換器81において低温再生器40からの液冷媒と溶液ポンプ72からの希溶液とが対向流で流れて熱交換する。さらに、冷媒液溜め47の蒸気部は、蒸気逃がし配管91と絞り92を介して凝縮器50と接続されている。その他の構成は図1の実施例と同様である。
【0024】
本実施例においては、低温再生器で凝縮した液冷媒の顕熱を用いて、吸収器から高温再生器及び低温再生器へ送られる希溶液を加熱するように構成したので、吸収冷温水機の効率をより高くできるという利点がある。そして、フロート弁の作用によりドレン熱交換器内に未凝縮の冷媒蒸気が流入することないので、充分に液冷媒の顕熱を回収することができ、吸収冷温水機の効率向上を図ることができる。また本実施例においては、冷媒液溜めを低温再生器の液冷媒出口部に設置したので、冷媒出口ヘッダを省略することができて構造が簡素化され、コストダウンを図れるという利点がある。
【0025】
本発明の、さらに他の実施例を図4を用いて説明する。
図3の実施例と異なる点は、冷媒液溜め47をドレン熱交換器81と凝縮器50とを接続する冷媒出口配管49の途中に設けた点である。また、低温再生器40内の伝熱管41の出口は直接冷媒出口配管46に接続されている。その他の構成は図1の実施例と同様である。
【0026】
本実施例においては、低温再生器内の伝熱管の出口を直接冷媒出口配管に接続しているので、冷媒出口ヘッダを省略することができ構造が簡素化され、コストダウンを図れるという利点がある。また、液冷媒がドレン熱交器で冷却された後に可変抵抗絞りであるフロート弁を通過するので、冷媒通過時にフラッシュによる蒸気の発生が少なく、フロート弁の動作がスムーズになり、安定した制御が行えるという利点がある。
なお上記実施例においては、二重効用の吸収冷温水機について説明したが、吸収式冷凍機に用いても同様の効果が得られることは勿論である。
【0027】
【発明の効果】
以上説明したように本発明によれば、低温再生器の伝熱管から凝縮器への液媒流路を通って流れる未凝縮冷媒蒸気の流出を防止して、性能の低下を抑えることができると共に、高温再生器で発生した不凝縮ガスを凝縮器に送って抽気装置から排出し、不凝縮ガスによるサイクルの性能低下を防止できる吸収冷温水機を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る吸収冷温水機の実施例の系統図である。
【図2】本発明に係る吸収冷温水機の他の実施例の系統図である。
【図3】本発明に係る吸収冷温水機のさらに他の実施例の系統図である。
【図4】本発明に係る吸収冷温水機のさらに他の実施例の系統図である。
【符号の説明】
10…蒸発器、20…吸収器、30…高温再生器、40…低温再生器、45…冷媒出口ヘッダ、46、49…冷媒出口配管(出口流路)、47…冷媒液溜め、48…フロート弁(可変抵抗絞り)、50…凝縮器、61、62…溶液熱交換器、71…冷媒ポンプ、72、73…溶液ポンプ、81…ドレン熱交換器、91…蒸気逃がし配管、98…流量調整弁(可変抵抗絞り)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorbent chiller of double-effect that used for general air conditioning or industrial.
[0002]
[Prior art]
As a conventional example of the absorption chiller / heater according to the present invention, for example, an absorption chiller / heater described in JP-A-7-294056 can be cited. In this conventional example, a configuration is disclosed in which refrigerant vapor generated in a high-temperature regenerator is condensed and liquefied in a heat transfer tube of the low-temperature regenerator, and sent to the condenser through a throttle (prior art 1).
As a related technique, there is an absorption refrigerator described in JP-A-11-230632 (Prior Art 2).
[0003]
[Problems to be solved by the invention]
In the prior art 1, the refrigerant vapor generated in the high temperature regenerator condenses and liquefies in the heat transfer tube of the low temperature regenerator under the pressure condition of the high temperature regenerator, and passes through the throttle due to the pressure difference between the high temperature regenerator and the condenser. It flows into the condenser. That is, the condensed and liquefied refrigerant flows due to a pressure difference between the high temperature regenerator and the condenser. However, the pressure difference between the high-temperature regenerator and the condenser differs greatly between the case where the pressure of the high-temperature regenerator is high under rated operating conditions and the case where the pressure of the high-temperature regenerator is low under low cooling water temperature conditions. The throttling resistance is set so that the refrigerant flows even under a low cooling water temperature condition. In this case, when the pressure difference between the high-temperature regenerator and the condenser increases under rated operating conditions, the throttle resistance is smaller than the pressure difference. It passes through this throttle and flows into the condenser. For this reason, the condensation heat of the refrigerant vapor is not used for heating the low-temperature regenerator, and there is a possibility that the performance is deteriorated.
[0004]
On the other hand, the lithium bromide aqueous solution used in the absorption chiller / heater is a highly corrosive solution, and a corrosion inhibitor is used to prevent corrosion, but the high probability of corrosion is high temperature and high concentration. It is a high temperature regenerator. Once corrosion occurs, non-condensable gas is generated and stays in the heat transfer tube in the low-temperature regenerator, hindering heat transfer and reducing cycle performance. Therefore, it is necessary to promptly send it to a condenser or the like and discharge it outside the apparatus by a bleeder. Therefore, it is necessary to send out noncondensable gas from the high temperature regenerator to the condenser through a passage connected to the condenser through the heat transfer tube of the low temperature regenerator. For this reason, the throttle resistance of the refrigerant flow path from the heat transfer tube of the low-temperature regenerator to the condenser needs to be smaller than the flow of only the liquid refrigerant. As the amount of passage increases, the performance of the refrigerator decreases.
[0005]
In addition, a heat exchanger for heating the solution sent to the high-temperature regenerator or the low-temperature regenerator using the sensible heat of the liquid refrigerant condensed in the low-temperature regenerator is provided, and heat recovery is performed to improve the efficiency of the absorption chiller water heater When refrigerant vapor that is not condensed is mixed in the liquid refrigerant from the low temperature regenerator, the refrigerant is not cooled sufficiently because the refrigerant vapor is condensed in the heat recovery heat exchanger. As a result, since the temperature of the liquid refrigerant does not decrease, heat recovery is not sufficient, which hinders improvement of the efficiency of the refrigerator.
In the prior art 2, it is necessary to provide a pipe having a fixed orifice through which the liquid refrigerant flows in a steady operation state and a pipe for flowing the liquid refrigerant at the time of start-up or when the load suddenly increases.
[0006]
An object of the present invention is to prevent the outflow of uncondensed refrigerant vapor flowing through the liquid refrigerant flow path to the heat transfer tubes or et condenser of the low-temperature regenerator, it is possible to suppress a decrease in performance, high temperature the uncondensed gas generated in the regenerator is sent to the condenser is discharged from the extraction device is to provide an absorbent chiller capable of preventing performance degradation of the cycle due to the noncondensable gas.
[0007]
[Means for Solving the Problems]
Absorption chiller according to the present invention in order to achieve the above object, the evaporator, the absorber, the high-temperature regenerator, a low temperature regenerator, to connect the condenser to constitute a refrigeration cycle, generated in the high temperature regenerator In a double-effect absorption chiller / heater for condensing refrigerant vapor by passing through a heat transfer tube disposed in the low-temperature regenerator and sending the condensed refrigerant to the condenser through a throttle , on the outlet side of the heat transfer tube A liquid reservoir for separating the refrigerant that has heated the low-temperature regenerator into a liquid refrigerant and a refrigerant vapor; a liquid refrigerant flow path for allowing the liquid refrigerant in the liquid storage means to flow out to the condenser; A variable resistance throttle is provided, and the resistance value of the variable resistance throttle is increased when the liquid level of the liquid storage means is low, and the resistance of the variable resistance throttle is increased when the liquid level is high. By reducing the value, the liquid cooling in the liquid reservoir means Is provided with a control means for controlling the refrigerant vapor to be sent to the condenser through the liquid refrigerant flow path, a vapor escape flow path for allowing the refrigerant vapor in the liquid storage means to flow out to the condenser is provided, and the vapor relief flow path is provided. A throttle is provided, and a bleeder for extracting non-condensable gas from the refrigerant vapor in the condenser and removing it from the refrigeration cycle is provided .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of an embodiment of an absorption chiller / heater according to the present invention.
The basic configuration of the absorption chiller / heater includes an evaporator 10, an absorber 20, a high temperature regenerator 30, a low temperature regenerator 40, a condenser 50, solution heat exchangers 61 and 62, a refrigerant pump 71, solution pumps 72 and 73, and the like. It has become. The low temperature regenerator 40 is provided with a heat transfer tube 41, a liquid refrigerant outlet header 45 at one end on the outlet side of the heat transfer tube 41, and a refrigerant liquid reservoir 47 in the middle of the liquid refrigerant outlet flow path from the refrigerant outlet header 45. And a float valve 48 for changing the flow resistance of the liquid refrigerant in accordance with the liquid level in the refrigerant liquid reservoir 47.
[0012]
The operation of the cycle during cooling operation is as follows.
A heat transfer tube 11 is arranged in the evaporator 10, and the refrigerant sent from the condenser 50 through the refrigerant pipe 52 is stored in the refrigerant tank 13 arranged in the lower part of the evaporator 10. This refrigerant is sent to the spraying device 12 through the refrigerant pipe 14 by the refrigerant pump 71, and the cold water flowing in the heat transfer tube 11 is cooled by the latent heat of evaporation when sprayed on the heat transfer tube 11 and evaporated on the heat transfer tube. Water is supplied to the demand side. On the other hand, a float valve 15 is installed in the middle of the refrigerant pipe 14 on the discharge side of the refrigerant pump 71. When the liquid level of the refrigerant tank 13 decreases, the valve opening is reduced to reduce the refrigerant flow rate. Or, it operates so as to block the refrigerant flow rate, and prevents cavitation of the refrigerant pump 71.
[0013]
A heat transfer tube 21 through which cooling water flows is arranged in the absorber 20, and the concentrated solution heated and concentrated in the high-temperature regenerator 30 and the low-temperature regenerator 40 passes through the solution pipe 24 and the spraying device 22 in the absorber 20. And is spread on the heat transfer tube 21. Here, the refrigerant vapor evaporated in the evaporator 10 flows into the absorber through the eliminator 19 installed between the evaporator 10 and the absorber 20, and is absorbed by the solution flowing down on the heat transfer tube 21. The absorbed heat generated at this time is cooled by cooling water flowing in the heat transfer tube 21. Further, a solution having a reduced concentration due to absorption of the refrigerant vapor (hereinafter referred to as “dilute solution”) is stored in the solution tank 23 and then sent to the solution heat exchanger 61 by the solution pump 72.
[0014]
The diluted solution is heated by the solution heat exchanger 61 with a solution having a high concentration from the high temperature regenerator 30 and the low temperature regenerator 40 (hereinafter referred to as a concentrated solution) and the temperature rises. It is sent to the spraying device 42 of the low temperature regenerator 40 through the pipe 43. The remaining dilute solution is heat-exchanged with the concentrated solution from the high-temperature regenerator 30 by the solution heat exchanger 62 to rise in temperature, and then sent to the high-temperature regenerator 30. The dilute solution sent to the high temperature regenerator 30 is heated and boiled by a heating source 31 such as combustion gas or steam of the combustor, and the separated refrigerant vapor is sent to the low temperature regenerator 40 through the vapor pipe 33. . In the middle of the steam pipe 33, the steam pipe 34 connected to the evaporator 10 is branched from the steam pipe 3 3 is provided, this in the middle of the steam pipe 34 is opened and closed valve 35 is provided. The on-off valve 35 is closed during the cooling operation and opened during the heating operation. On the other hand, the concentrated solution obtained by separating the refrigerant vapor, that is, the concentrated solution, flows out from the solution outlet 32 and is sent to the solution heat exchanger 62 to exchange heat with the diluted solution from the solution heat exchanger 61.
[0015]
A heat transfer tube 41 is disposed in the low temperature regenerator 40, and refrigerant vapor from the high temperature regenerator 30 flows in the tube. The dilute solution sent to the low-temperature regenerator 40 is sprayed on the heat transfer tube 41 from the spraying device 42, heated and boiled by the steam flowing inside the heat transfer tube 41, and the separated refrigerant vapor is sent to the condenser 50. . The concentrated solution obtained by separating the refrigerant vapor, that is, the concentrated solution flows out through the solution tube 44 and joins the concentrated solution that has passed through the solution heat exchanger 62 from the high-temperature regenerator 30, and then the solution heat is generated by the solution pump 73. It is sent to the exchanger 61. This concentrated solution is heat-exchanged with the diluted solution from the absorber 20 by the solution heat exchanger 61, and then sent to the spraying device 22 of the absorber 20 through the solution tube 24.
[0016]
On the other hand, the refrigerant from the high-temperature regenerator 30 that has condensed and heated the solution in the heat transfer tube 41 of the low-temperature regenerator 40 is temporarily stored in the refrigerant outlet header 45 and then passes through the refrigerant outlet pipe 46 (exit channel). To the refrigerant liquid reservoir 47. A float valve 48 is installed in the refrigerant liquid reservoir 47 so that the inlet of the valve body is submerged in the refrigerant liquid. When the liquid level of the refrigerant liquid reservoir 47 is high, the throttle resistance of the float valve 48 is small. Thus, when the liquid level of the refrigerant liquid reservoir 47 becomes low, the throttle valve of the float valve 48 operates so as to increase. Then, the liquid refrigerant in the refrigerant liquid reservoir 47 is sent to the condenser 50 through the float valve 48 and the refrigerant outlet pipe 49. Further, the vapor portion of the refrigerant outlet header 45 is connected to the condenser 50 via a vapor escape pipe 91 and a throttle 92, and a part of the refrigerant vapor in the heat transfer pipe 41 passing through the low temperature regenerator 40 is transferred to the condenser 50. It flows in and merges with the refrigerant vapor generated and separated by the low temperature regenerator 40. In addition, a bleeder 93 is connected to the condenser 50, and noncondensable gas is extracted from the refrigerant vapor and removed from the cycle.
[0017]
A heat transfer tube 51 is disposed in the condenser 50, and cooling water from the heat transfer tube 21 of the absorber 20 flows through the heat transfer tube 51. The refrigerant vapor from the low temperature regenerator 40 is cooled and condensed by cooling water flowing in the pipe on the heat transfer pipe 51, mixed with the liquid refrigerant condensed in the heat transfer pipe 41 of the low temperature regenerator 40, and passes through the refrigerant pipe 52. Are sent to the evaporator 10 and stored in the refrigerant tank 13.
Thus, the cycle during the cooling operation is completed.
[0018]
Here, a part of the refrigerant vapor also flows into the refrigerant liquid reservoir 47 from the refrigerant outlet header 45 of the low-temperature regenerator 40, and a refrigerant vapor part exists above the refrigerant liquid reservoir 47. When this refrigerant vapor flows out to the condenser 50 through the float valve 48 and the refrigerant outlet pipe 49, the latent heat of condensation of the refrigerant vapor is not used for heating the solution in the low temperature regenerator 40. The amount of generated refrigerant decreases, and the performance of the absorption chiller / heater decreases. However, in this embodiment, the inlet of the valve body that becomes the throttle resistance of the float valve 48 (variable resistance throttle) is submerged in the liquid refrigerant, and when the liquid level becomes low, the throttle resistance of the float valve 48 is reduced. And the outflow of the liquid refrigerant is suppressed, and the liquid level is prevented from being lowered. Therefore, the opening of the float valve 48 is not exposed to the refrigerant vapor, the refrigerant vapor is prevented from flowing into the condenser side through the float valve 48 and the refrigerant outlet pipe 49, and the performance deterioration of the absorption chiller / heater is prevented. can do.
[0019]
Further, the non-condensable gas contained in the refrigerant vapor generated in the high temperature regenerator 30 is sent together with the refrigerant vapor from the refrigerant outlet header 45 of the low temperature regenerator 40 through the vapor escape pipe 91 and the throttle 92 to the condenser 50. The non-condensable gas is quickly removed from the cycle by the bleeder 93 in the condenser 50, and the performance degradation of the cycle due to the non-condensable gas can be prevented.
[0020]
As described above, in this embodiment, a liquid reservoir is installed in the outlet flow path through which the liquid refrigerant heated by the low-temperature regenerator flows, and a float valve is provided as a variable resistance throttle in the flow path from which the liquid refrigerant flows out. The float valve throttle operates to increase the resistance value when the liquid level in the liquid reservoir is low, and to decrease the resistance value of the float valve throttle when the liquid level is high. Therefore, an absorption chiller / heater that prevents the uncondensed refrigerant vapor from flowing through the flow path of the condensate refrigerant from the heat transfer tube of the low-temperature regenerator to the condenser and suppresses the deterioration in performance is provided. Can be provided.
In this embodiment, the vapor section of the refrigerant outlet header (flow path) of the low-temperature regenerator and the condenser are connected by a flow path through a throttle, so that the non-condensable gas generated in the high-temperature regenerator is quickly condensed. It is possible to provide an absorption chiller / heater that can be sent to a container and discharged from a bleeder to prevent deterioration in cycle performance due to non-condensable gas.
[0021]
Next, another embodiment of the present invention will be described with reference to FIG.
1 differs from the embodiment of FIG. 1 in that a flow rate adjusting valve 98 (variable resistance throttle) is installed in the refrigerant outlet pipe 49 in place of the float valve 48 of the refrigerant liquid reservoir 47, and the refrigerant liquid reservoir 47 contains liquid. A surface sensor 99 is installed, and the flow rate adjusting valve 98 is controlled by a signal from the liquid level sensor 99. Other configurations are the same as those of the embodiment of FIG.
[0022]
In this embodiment, since the opening of the flow rate adjustment valve is controlled by the signal of the liquid level sensor, it is possible to control the opening of the flow rate adjustment valve to a more appropriate value according to the liquid level height. Thus, there is an advantage that it is possible to constitute a high-efficiency absorption refrigeration cycle without preventing the refrigerant vapor from flowing out and increasing the throttle resistance more than necessary to increase the pressure of the high-temperature regenerator.
[0023]
Still another embodiment of the present invention will be described with reference to FIG.
The difference from the embodiment of FIG. 1 is that a refrigerant liquid reservoir 47 is installed at the outlet of the heat transfer tube 41 in the low temperature regenerator 40 so that the condensed refrigerant liquid in the heat transfer tube 41 flows directly into the liquid reservoir 47. The refrigerant outlet pipe 46 on the outlet side of the float valve 48 is connected to the drain heat exchange 81, and the drain heat exchanger 81 and the condenser 50 are connected by the refrigerant outlet pipe 49. The dilute solution flowing out from the solution pump 72 branches into the drain heat exchanger 81 before the solution heat exchanger 61 and flows into the drain heat exchanger 81. The outlet side solution pipe of the drain heat exchanger 81 is connected to the outlet side pipe of the solution heat exchanger 61. In the drain heat exchanger 81, the liquid refrigerant from the low temperature regenerator 40 and the dilute solution from the solution pump 72 are connected. It flows in a counterflow and exchanges heat. Further, the vapor portion of the refrigerant liquid reservoir 47 is connected to the condenser 50 via a vapor escape pipe 91 and a throttle 92. Other configurations are the same as those of the embodiment of FIG.
[0024]
In this embodiment, the sensible heat of the liquid refrigerant condensed in the low temperature regenerator is used to heat the dilute solution sent from the absorber to the high temperature regenerator and the low temperature regenerator. There is an advantage that efficiency can be further increased. And since the uncondensed refrigerant vapor does not flow into the drain heat exchanger by the action of the float valve, the sensible heat of the liquid refrigerant can be sufficiently recovered, and the efficiency of the absorption chiller / heater can be improved. it can. Further, in this embodiment, since the refrigerant liquid reservoir is installed at the liquid refrigerant outlet portion of the low temperature regenerator, there is an advantage that the refrigerant outlet header can be omitted, the structure is simplified, and the cost can be reduced.
[0025]
Still another embodiment of the present invention will be described with reference to FIG.
The difference from the embodiment of FIG. 3 is that the refrigerant liquid reservoir 47 is provided in the middle of the refrigerant outlet pipe 49 connecting the drain heat exchanger 81 and the condenser 50. Further, the outlet of the heat transfer pipe 41 in the low temperature regenerator 40 is directly connected to the refrigerant outlet pipe 46. Other configurations are the same as those of the embodiment of FIG.
[0026]
In the present embodiment, since the outlet of the heat transfer tube in the low temperature regenerator is directly connected to the refrigerant outlet pipe, there is an advantage that the refrigerant outlet header can be omitted, the structure is simplified, and the cost can be reduced. . In addition, since the liquid refrigerant passes through the float valve, which is a variable resistance throttle, after being cooled by the drain heat exchanger, there is little generation of steam due to flash when the refrigerant passes, and the operation of the float valve becomes smooth and stable control is achieved. There is an advantage that can be done.
In the above-described embodiment, the double-effect absorption chiller / heater has been described, but it goes without saying that the same effect can be obtained even when used in an absorption refrigerator.
[0027]
【The invention's effect】
According to the present invention described above, to prevent the outflow of uncondensed refrigerant vapor flowing through the liquid refrigerant flow path to the heat transfer tubes or et condenser of the low temperature regenerator, suppress a reduction in performance In addition, it is possible to provide an absorption chiller / heater that can send non-condensable gas generated in the high-temperature regenerator to the condenser and discharge the non-condensable gas from the extraction device, thereby preventing deterioration in cycle performance due to the non-condensable gas .
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of an absorption chiller / heater according to the present invention.
FIG. 2 is a system diagram of another embodiment of the absorption chiller / heater according to the present invention.
FIG. 3 is a system diagram of still another embodiment of the absorption chiller / heater according to the present invention.
FIG. 4 is a system diagram of still another embodiment of the absorption chiller / heater according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Evaporator, 20 ... Absorber, 30 ... High temperature regenerator, 40 ... Low temperature regenerator, 45 ... Refrigerant outlet header, 46, 49 ... Refrigerant outlet piping (outlet flow path), 47 ... Refrigerant liquid reservoir, 48 ... Float Valve (variable resistance throttle), 50 ... condenser, 61, 62 ... solution heat exchanger, 71 ... refrigerant pump, 72, 73 ... solution pump, 81 ... drain heat exchanger, 91 ... steam escape piping, 98 ... flow rate adjustment Valve (variable resistance throttle).

Claims (1)

蒸発器、吸収器、高温再生器、低温再生器、凝縮器を接続して冷凍サイクルを構成し、
前記高温再生器で発生した冷媒蒸気を前記低温再生器内に配置された伝熱管を通すことにより凝縮させ、この凝縮した冷媒を絞りを通して前記凝縮器に送る二重効用の吸収冷温水機において、
前記伝熱管の出口側に前記低温再生器を加熱した冷媒を液冷媒と冷媒蒸気とに分離する液溜め手段を設け、
前記液溜め手段の液冷媒を前記凝縮器に流出させる液冷媒流路を設け、
前記液冷媒流路に可変抵抗絞りを設け、
前記液溜め手段の液面高さが低くなった場合に前記可変抵抗絞りの抵抗値を大きくし、前記液面高さが高くなった場合に前記可変抵抗絞りの抵抗値を小さくして、前記液溜め手段内の液冷媒が前記液冷媒流路を通して前記凝縮器に送られるように制御する制御手段を設け、
前記液溜め手段内の冷媒蒸気を前記凝縮器に流出させる蒸気逃がし流路を設け、
前記蒸気逃がし流路に絞りを設け、
前記凝縮器内の冷媒蒸気中から不凝縮ガスを抽出して前記冷凍サイクルから除去する抽気装置を設けたことを特徴とする吸収冷温水機。
Connect the evaporator, absorber, high temperature regenerator, low temperature regenerator, and condenser to configure the refrigeration cycle,
In the double-effect absorption chiller / heater, the refrigerant vapor generated in the high-temperature regenerator is condensed by passing through a heat transfer tube disposed in the low-temperature regenerator, and the condensed refrigerant is sent to the condenser through a throttle .
A liquid reservoir means for separating the refrigerant that has heated the low-temperature regenerator into liquid refrigerant and refrigerant vapor is provided on the outlet side of the heat transfer tube,
Providing a liquid refrigerant flow path for allowing the liquid refrigerant in the liquid reservoir means to flow out to the condenser;
A variable resistance throttle is provided in the liquid refrigerant flow path,
When the liquid level of the liquid reservoir is low, the resistance value of the variable resistance throttle is increased, and when the liquid level is high, the resistance value of the variable resistance throttle is decreased, Providing a control means for controlling the liquid refrigerant in the liquid storage means to be sent to the condenser through the liquid refrigerant flow path;
Providing a steam escape passage for allowing the refrigerant vapor in the liquid storage means to flow out to the condenser;
A restriction is provided in the steam escape passage,
An absorption chiller / heater having an extraction device for extracting non-condensable gas from the refrigerant vapor in the condenser and removing it from the refrigeration cycle .
JP2002049469A 2002-02-26 2002-02-26 Absorption chiller / heater Expired - Lifetime JP4073219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049469A JP4073219B2 (en) 2002-02-26 2002-02-26 Absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049469A JP4073219B2 (en) 2002-02-26 2002-02-26 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2003247762A JP2003247762A (en) 2003-09-05
JP4073219B2 true JP4073219B2 (en) 2008-04-09

Family

ID=28661976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049469A Expired - Lifetime JP4073219B2 (en) 2002-02-26 2002-02-26 Absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP4073219B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885467B2 (en) * 2005-03-25 2012-02-29 川重冷熱工業株式会社 Absorption heat pump

Also Published As

Publication number Publication date
JP2003247762A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP4885467B2 (en) Absorption heat pump
JP4073219B2 (en) Absorption chiller / heater
JP2012202589A (en) Absorption heat pump apparatus
JP5098547B2 (en) Absorption refrigeration system
JP3920619B2 (en) Absorption chiller / heater and control method thereof
JPH0733937B2 (en) Absorption refrigerator
JPH074769A (en) Single and double effect absorption refrigerating device
JP3813348B2 (en) Absorption refrigerator
JP3225155B2 (en) Absorption air conditioner
JP2011047522A (en) Absorption refrigerating machine
JP4201418B2 (en) Control method of absorption chiller / heater
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JPS6148064B2 (en)
JP2883372B2 (en) Absorption chiller / heater
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3161321B2 (en) Absorption heat pump
JPH0692856B2 (en) Absorption refrigerator
JPH073301B2 (en) Absorption refrigerator
KR100339361B1 (en) Absorption heating and cooling system
JP2019190707A (en) Absorptive refrigerator
JPH03244971A (en) Absorption freezer
JPH0680378B2 (en) Absorption refrigerator
JPH09203568A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term