JP3225155B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JP3225155B2
JP3225155B2 JP01144994A JP1144994A JP3225155B2 JP 3225155 B2 JP3225155 B2 JP 3225155B2 JP 01144994 A JP01144994 A JP 01144994A JP 1144994 A JP1144994 A JP 1144994A JP 3225155 B2 JP3225155 B2 JP 3225155B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
absorption
solution
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01144994A
Other languages
Japanese (ja)
Other versions
JPH07218026A (en
Inventor
大資 久島
章 西口
達郎 藤居
富久 大内
敏彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01144994A priority Critical patent/JP3225155B2/en
Priority to KR1019940039265A priority patent/KR0153799B1/en
Publication of JPH07218026A publication Critical patent/JPH07218026A/en
Application granted granted Critical
Publication of JP3225155B2 publication Critical patent/JP3225155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、吸収冷暖房機に係り、
冷媒散布式の蒸発器の冷媒散布量の制御に好適な吸収冷
暖房機に関するものである。 【0002】 【従来の技術】従来、吸収冷暖房機では、吸収溶液とし
て臭化リチウム水溶液、冷媒として水を用いるものが主
流である。しかし、水は、吸収冷暖房機の作動温度では
その蒸気圧力が数mmHgと低く、満液式蒸発器では、
その水深による圧力増加が蒸発に対しては不利に作用す
る。したがって通常、小さな圧力差での蒸発に有利な液
膜散布式の蒸発器が用いられる。 【0003】液膜散布式の蒸発器では、冷媒が蒸発器内
に散布され蒸発伝熱管上を流下したのち、蒸発しきれな
かった冷媒を蒸発器内で再循環させる方式と、冷媒が凝
縮器から蒸発器に流入し蒸発伝熱管上を流下したのち、
蒸発しきれなかった冷媒を再循環することなしに吸収器
へ流出させる方式との2方式がある。前者を図7、後者
を図8を参照して説明する。図7は、従来の吸収冷暖房
機のサイクル系統図、図8は、従来の他の吸収冷暖房機
のサイクル系統図である。 【0004】まず、図7,8において、1は高温再生
器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸
収器、7は溶液ポンプ、8はエゼクタ、9は低温熱交換
器、10は高温熱交換器、11は、高温再生器1の熱源
となるボイラ、16は、高温再生器1と低温再生器2と
を結ぶ冷媒蒸気配管、15は、冷媒蒸気配管16の制御
弁、21は、蒸発器4における冷媒散布装置、22は、
吸収器5における溶液散布装置、24は、高温再生器1
と蒸発器4とを結ぶ冷媒蒸気配管、23は、冷媒蒸気配
管の制御弁、25は、蒸発器4の伝熱管に通じる冷水配
管、26は、吸収器5および凝縮器3の伝熱管に通じる
冷却水配管である。 【0005】図7に示す従来の吸収冷暖房機において
は、蒸発器4の下部に、冷媒ポンプ44を冷媒配管に設
けている。すなわち、蒸発器4内に散布された冷媒は、
冷水の流れる蒸発伝熱管4a上を流下し、蒸発しきれな
かった冷媒は冷媒ンプ44によって冷媒散布装置21を
介して再度蒸発伝熱管4a上を流下するように構成した
ものである。この方式では、蒸発伝熱管上を流下する冷
媒量を大きくすることができ、流下する冷媒の伝熱管軸
方向の流れの不均一を少なくできること、凝縮器3から
蒸発器4に流入する冷媒量のコントロールが不要である
ことなどの利点がある。 【0006】図8に示す他の従来の吸収冷暖房機におい
ては、凝縮器3と蒸発器4とを結ぶ冷媒配管に流量調整
弁19を備えている。この流量調整弁19で流量を調整
された冷媒が蒸発器4に流入し、冷媒散布装置21によ
り、冷水の流れる蒸発伝熱管4a上に散布される。この
とき、冷媒の蒸発量は、冷凍負荷および吸収溶液の濃度
等の関数となり、前記流量調整弁19によってすべてが
蒸発すると思われる流量に調整されるが、それでも蒸発
しきれなかった冷媒は、液体のままで蒸発器4の底に到
達し、そのまま吸収器5に流入し吸収溶液に混入する。 【0007】 【発明が解決しようとする課題】上述のように、凝縮器
から蒸発器に流入し蒸発伝熱管上を流下したのち、蒸発
しきれなかった冷媒を再循環することなしに吸収器に流
出させる方式では、吸収器に流入する冷媒は無効冷媒と
呼ばれ、吸収器内の吸収溶液の濃度を、冷凍能力を発揮
すること無しに薄くする。 【0008】吸収冷暖房機は、冷媒と吸収溶液の濃度差
エネルギーによつて冷凍能力を発揮するもので、この無
効冷媒量が多いほど、吸収冷暖房機全体の冷房能率は落
ちてゆく。また、蒸発器で蒸発する冷媒の量は、そのと
きの冷房負荷の大きさによって異なる。もし冷媒散布量
を一定にした場合、冷房負荷が小さくなった場合は蒸発
する冷媒量は少なくなり、その分無効冷媒量が増加し、
吸収冷暖房機全体の冷房効率を落すことになる。したが
って、蒸発器に散布する冷媒量の制御が不可欠となる。 【0009】冷媒散布量の制御方法としては、例えば、
特開平3−211371号公報に記載されているよう
に、蒸発器内の冷媒の温度を検出し、この温度が低い場
合は冷媒散布量を増加させ、またこの温度が高い場合は
冷媒散布量を減少させる方法が知られている。しかし、
この方法では、冷媒負荷の大きいときは冷媒散布量は多
くなり、冷媒負荷の小さいときは冷媒散布量を少なくな
るように制御でき、無効冷媒量をある程度少なくするこ
とはできるが、溶液の濃度、冷却水の温度等の条件によ
っては、冷媒散布量が不足したり、過剰になったりする
ので、冷媒散布量の最適制御とはならない。 【0010】本発明は、上記従来技術の問題点を解決す
るためになされたもので、冷凍負荷の状態によって蒸発
器内の冷媒蒸発量が変化しても、吸収器に流入する無効
冷媒の量を最小限度に押えうる、高効率で低コストな吸
収冷暖房機を提供することを目的とする。 【0011】 【課題を解決するための手段】上記目的を達成するため
に、本発明の吸収冷暖房機に係る第一の発明の構成は、
液膜散布式の蒸発器を有し、蒸発しきれなかった冷媒を
再循環することなしに、あるいは一部のみを再循環させ
て、冷媒を液体のまま蒸発器から流出させ吸収溶液と混
合させる吸収冷暖房機において、この流出する冷媒流量
を検知する検知手段と、その流出する冷媒流量を一定に
保つように蒸発器における冷媒散布量を制御する冷媒散
布量調節手段とを設けたものである。 【0012】上記目的を達成するために、本発明の吸収
冷暖房機に係る第二の発明の構成は、液膜散布式の蒸発
器を有し、蒸発しきれなかった冷媒を再循環することな
しに、あるいは一部のみを再循環させて、冷媒を液体の
まま蒸発器から流出させ吸収溶液と混合させる吸収冷暖
房機において、この流出する冷媒流量を一定とする弁
と、この弁の上部に貯溜される冷媒の液面の高さを検知
する検知手段と、その液面高さを一定に保つように蒸発
器における冷媒散布量を制御する冷媒散布量調節手段と
設けたものである。 【0013】 【作用】上記の各技術的手段による働きは下記のとおり
である。上記第一の発明によれば、蒸発器の構成要素と
して、蒸発器内で蒸発しきれなかった冷媒の流出量を検
知する検知手段と、蒸発器における冷媒散布量をコント
ロールする冷媒散布量調節手段とを備えたことにより、
その流出する冷媒量を一定に保つようにでき、蒸発器内
から無駄に流出する冷媒の量を極力少なくすることがで
きる。 【0014】また、上記第二の発明によれば、蒸発器の
構成要素として、蒸発器より流出する冷媒量を一定とす
る弁と、この弁の上部に貯溜される冷媒の液面の高さを
検知する検知手段と、その液面高さを一定に保つように
蒸発器における冷媒散布量を制御する冷媒散布量調節手
段とを備えるようにし、このとき、冷媒液面検出手段お
よび冷媒散布量調節手段をフロート弁にて構成するよう
にすれば、制御系が簡単になり、これらに要する費用も
安価にすることができる。 【0015】 【実施例】以下、本発明の各実施例を図1ないし図6を
参照して説明する。まず、第一の発明の実施例から説明
する。 〔実施例 1〕 図1は、本発明の一実施例に係る吸収冷暖房機のサイク
ル系統図である。図中、図7と同一符号のものは従来技
術と同等部分を示している。なお、冷媒、吸収溶液、冷
水、冷却水等の流れ方向を矢印に示し、電気的な制御系
の接続関係は破線で示している。 【0016】図1に示す吸収冷暖房機は、高温再生器
1、低温再生器2、凝縮器3、蒸発器4、吸収器5、溶
液ポンプ7、エゼクタ8、低温熱交換器9、高温熱交換
器10、およびこれらを作動的に接続する配管系によっ
て構成されている。蒸発器4内の蒸発伝熱管4aには冷
水配管25の冷水が流通している。また、吸収器5およ
び凝縮器3の各伝熱管5a,3aには冷却水配管26の
冷却水が流通している。 【0017】本実施例の吸収冷暖房機は、図7に示した
従来技術に較べ次のような異なる構成を有する。図1に
おいて、6は、蒸発器4の底部に設けた冷媒受け、19
は、凝縮器3と蒸発器4とを結ぶ冷媒配管に設けた流量
調整弁で、この流量調整弁19は、蒸発器4における冷
媒散布量をコントロールするものである。また、20
は、凝縮器3と吸収器5とを結ぶ冷媒配管に設けた流量
調整弁である。28は、蒸発器4より流出する冷媒流量
を検知する手段に係る流量計、27はエゼクタで、この
エゼクタ27は、蒸発器4より流出する冷媒を、吸収器
5の出口にある溶液ポンプ7により吐出される吸収溶液
に混合させる吸引混合手段として機能する。 【0018】ここで、溶液ポンプ7により吸収器5から
吐出された吸収溶液が、再生器に流入するものと一部が
吸収器へ再循環するものとに分岐する場合には、蒸発器
4より流出する冷媒を吸収溶液に混合させる前記エゼク
タ27の位置を、この分岐より再生器側に設けるように
する。 【0019】30a,30bは、蒸発器4に対する冷水
配管25の出入口に備えた温度センサ、29は、流量調
整弁19,20、流量計28、温度センサ30a,30
b、高温再生器1のボイラ11等に、破線に示すごとく
電気的に接続するコントローラである。 【0020】このような構成の吸収冷暖房機の作用を説
明する。高温再生器1で発生し冷媒蒸気配管16で低温
再生器2に送られた冷媒蒸気は、吸収器5から溶液ポン
プ7を経て低温再生器2に溶液散布装置14を介して流
入する吸収溶液と熱交換し、吸収溶液から冷媒蒸気を蒸
発させながら凝縮し、液冷媒となってオリフィス18で
減圧され凝縮器3に流入する。また、低温再生器2で蒸
発した冷媒蒸気は、凝縮器3で凝縮伝熱管3a内を流れ
る冷却水と熱交換し、冷却水を加熱しながら凝縮する。 【0021】凝縮器3で凝縮した冷媒は、流量調整弁1
9を介して蒸発器4に流入し、冷媒散布装置21により
蒸発伝熱管4a上に散布され、蒸発伝熱管4a内を流れ
る冷水と熱交換し、冷水を冷却しながら蒸発し蒸気とな
って吸収器5へ流出する。蒸発器4で蒸発しきれなかっ
た冷媒は、冷媒受け6で受けられ、その後、液体のまま
吸収溶液に混入することになる。 【0022】蒸発器4で発生した冷媒蒸気は、吸収器5
内の吸収伝熱管5a上を流下する吸収溶液に吸収され、
このとき発生する吸収熱は吸収伝熱管5a内を流れる冷
却水に除去される。吸収器5内を流下した吸収溶液は、
溶液ポンプ7により低温熱交換器9、高温熱交換器10
を経て高温再生器1へ送られるとともに、低温熱交換器
9を経て低温再生器2へも送られる。また、前記吸収溶
液の一部は、エゼクタ8を経て吸収器5へ再循環され
る。 【0023】吸収器5から高温再生器1へ、フロートボ
ックス13内のフロート弁12で流量調整されながら送
られた吸収溶液は、高温再生器1においてボイラ11で
加熱され、一部は冷媒蒸気となり低温再生器2へ流入
し、一方、濃縮された吸収溶液は、高温熱交換器10を
経て、低温再生器2から戻る濃縮吸収溶液と混合し低温
熱交換器9、エゼクタ8を経て、溶液散布装置22を介
して吸収器5に流下しサイクルが構成される。 【0024】このような吸収冷暖房機の作用のうち、本
実施例の特徴をさらに説明する。図1に示す吸収冷暖房
機では、蒸発器4における冷媒散布量を最適制御するた
めに、冷媒液が蒸発伝熱管4aに散布され蒸発伝熱管4
a内を流れる冷水と熱交換し、冷水を冷却しながら蒸発
するときに、蒸発しきれなかった冷媒を冷媒受け6によ
って集め、冷媒受け6に接続する冷媒配管を経て、エゼ
クタ27を介して、吸収器5から溶液ポンプ7によって
吐出される吸収溶液に混入するようにする。 【0025】この冷媒の吸収溶液への混入量は流量計2
8によって測定され、この流量が一定となるように流量
調整弁19によって冷媒散布量が制御される。この流量
を、例えば冷媒の全体循環量の1%程度となるように定
めれば、この吸収冷暖房機の冷凍効率は1%以上低下す
ることはない。また、このときの流量調整弁19の弁開
度が小さい場合は冷凍能力が小さいと見なせるので、そ
れによって高温再生器1におけるボイラ11の出力を小
さくするように制御することも可能である。 【0026】さらに、冷水配管25に備えた温度センサ
30a,30bによって検出される冷水温度と流量調整
弁19の弁開度とを比較することによって、冷水の流量
変化を間接的に測定することも可能となる。なお、流量
調節弁20は、吸収冷暖房機の停止時、あるいは吸収溶
液が過度に濃縮されたときに、冷媒を吸収溶液に混合す
ることによって吸収溶液結晶や冷媒凍結等の事故を防止
するものである。 【0027】本実施例によれば、コントローラ29によ
って上記制御を行うことにより、吸収冷暖房機の冷凍負
荷の状態によって蒸発器内での冷媒蒸発量が変化して
も、無効となる冷媒量を全体冷媒循環量の1%程度に保
つことができ、吸収冷暖房機の効率が冷凍負荷変化によ
って落ちることを防止する効果があり、従来よりもさら
に高効率な吸収冷暖房機を提供することができる。 【0028】〔実施例 2〕 図2は、本発明(第一の発明)の他の実施例に係る吸収
冷暖房機のサイクル系統図である。図中、図1と同一符
号のものは先の第一の実施例と同等部分を示すものであ
るから、その説明を省略する。図2の実施例が図1の実
施例と異なるところは、流量調節弁20を備えた、凝縮
器3と吸収器5とを結ぶ冷媒配管を有しないものであ
る。本実施例では、吸収冷暖房機の停止時、あるいは吸
収溶液が過度に濃縮されたときに、吸収溶液結晶や冷媒
凍結等の事故を防止するために冷媒を吸収溶液に混合さ
せる作用を、コントローラ31により流量調節弁19の
みによって行うものである。本実施例によれば、先の第
一の実施例と同様の効果が得られる。 【0029】〔実施例 3〕 図3は、本発明(第一の発明)のさらに他の実施例に係
る吸収冷暖房機のサイクル系統図である。図中、図1と
同一符号のものは先の第一の実施例と同等部分を示すも
のであるから、その説明を省略する。図3の実施例が図
1の実施例と異なるところは、蒸発器4より流出する冷
媒を吸収溶液に混合するために、吸収器5出口にある溶
液ポンプ7より吸収器5側に混合地点を設けるように構
成したものである。図3において、50は、冷媒受け6
に接続し流量計28を有する冷媒配管と、溶液ポンプ7
より吸収器5側の吸収溶液配管との接合部、すなわち、
蒸発しきれなかった冷媒が吸収溶液に混入する混合地点
である。 【0030】図3に示す吸収冷暖房機では、蒸発伝熱管
4aに散布された冷媒が、蒸発伝熱管4a内を流れる冷
水と熱交換して蒸発するときに、蒸発しきれなかった冷
媒を冷媒受け6によって集め、冷媒受け6に接続する冷
媒配管を経て、混合地点50で吸収器5から吐出される
吸収溶液に混入される。この冷媒の吸収溶液への混入量
は流量計28によって測定され、この流量が一定となる
ように流量調整弁19によって冷媒散布量が制御され
る。図3の実施例における各制御は、コントローラ32
によって行われる。 【0031】本実施例によれば、先の第一の実施例と同
様の効果が得られるほか、図1に示したエゼクタ27が
不要になるという利点がある。ただし、本実施例の場
合、エゼクタ8を介して、吸収器5内に再循環して散布
される吸収溶液の濃度は薄くなり、吸収器5における冷
却水との熱交換量が少なくなってしまうことを考慮しな
ければならない。 【0032】次に、第二の発明の実施例を説明する。 〔実施例 4〕 図4は、本発明(第二の発明)の一実施例に係る吸収冷
暖房機のサイクル系統図である。図中、図1と同一符号
のものは先の第一の実施例と同等部分を示すものである
から、その説明を省略する。図4において、33は、蒸
発器4の冷媒受け6に接続する冷媒配管上に設けた冷媒
タンク、34は、冷媒タンク33の下部に設けた流量調
整弁である。 【0033】図4に示す吸収冷暖房機では、蒸発器4に
おいて蒸発しきれずに、蒸発器4から流出する冷媒の一
部を一時冷媒タンク33に貯溜し、吸収冷暖房機の停止
時、あるいは吸収溶液が過度に濃縮されたときに、流量
調整弁34を介して吸収溶液に混合するように制御する
ものである。図4の実施例における各制御は、コントロ
ーラ35によって行われる。 【0034】本実施例によれば、先の第一の実施例と同
様の効果が得られるほか、特に、吸収冷暖房機の停止
時、あるいは部分負荷運転によって吸収溶液が過度に濃
縮されたときに、冷媒タンク33に貯溜した冷媒を吸収
溶液に混合することによって吸収溶液を稀釈することが
できるので、無効冷媒を有効に活用することができ、全
体的に見て省エネルギーとすることができる。 【0035】〔実施例 5〕 次に、図5は、本発明(第二の発明)の他の実施例に係
る吸収冷暖房機のサイクル系統図である。図中、図1と
同一符号のものは先の第一実施例の吸収冷暖房機と同等
部分であるので、その説明を省略する。図5において、
36は、蒸発器4の冷媒受け6に設けたフロート弁、4
5は、冷媒受け6に接続する冷媒配管に設けた流量調整
弁で、この流量調整弁45は、流出する冷媒流量を一定
に保つためのものである。 【0036】図5に示す吸収冷暖房機では、フロート弁
36にて冷媒受け6上の液面の高さを一定となるように
冷媒の散布量を調整することができ、流量調整弁45に
より蒸発器4から流出する冷媒量を一定となるようにす
るので、無効冷媒量を最小にすることができる。図5の
実施例における各制御は、コントローラ37によって行
われる。本実施例によれば、先の第一の実施例と同様の
効果が得られるほか、制御系が簡単になり、これらにか
かる費用も安価となる。 【0037】本発明の冷媒流量制御方法は水冷の吸収冷
凍機に限らず、空冷の吸収冷凍機にも適用可能である。
図6にその実施例を示す。 〔実施例 6〕 図6は、本発明のさらに他の実施例に係る空冷式吸収冷
暖房機のサイクル系統図である。図中、図1と同一符号
のものは先の第一実施例の吸収冷暖房機と同等部分であ
るので、その説明を省略する。 【0038】図6において、38は、空冷凝縮器3Aを
構成する空気冷却フィン、39は、空気冷却フィン38
に通風するためのファン、40は、空冷吸収器5Aの吸
収溶液配管に設けた空気冷却フィン、41は、空気冷却
フィン40に通風するためのファン、42は、空冷吸収
器5Aにおける溶液散布装置である。蒸発器4に設けた
冷媒受け6、蒸発器4より流出する冷媒流量を検知する
手段に係る流量計28、蒸発器4より流出する冷媒を、
吸収器5の出口にある溶液ポンプ7により吐出される吸
収溶液に混合させる吸引混合手段として機能するエゼク
タ27等の構成およびその作用は、図1の実施例と同等
である。図6の実施例における各制御は、コントローラ
43によって行われる。 【0039】図6に示す空冷式吸収冷暖房機によれば、
先の第一の実施例と同様の効果が得られるほか、空冷の
場合は、特に外気温度の変化に冷凍サイクルが影響を受
けやすいので、水冷に比べて本発明の効果はさらに高く
なる。 【0040】 【発明の効果】以上詳細に説明したように、本発明によ
れば、冷凍負荷の状態によって蒸発器内の冷媒蒸発量が
変化しても、吸収器に流入する無効冷媒の量を最小限度
に押え、高効率で低コストな吸収冷暖房機を提供するこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption cooling / heating machine,
The present invention relates to an absorption air conditioner and a heater suitable for controlling the amount of refrigerant sprayed on a refrigerant spray type evaporator. 2. Description of the Related Art Conventionally, absorption air-conditioners mainly use an aqueous solution of lithium bromide as an absorption solution and water as a refrigerant. However, water has a low steam pressure of several mmHg at the operating temperature of the absorption air conditioner,
The pressure increase due to the water depth has a disadvantageous effect on evaporation. Therefore, a liquid film spraying type evaporator which is advantageous for evaporation with a small pressure difference is usually used. [0003] In the evaporator of the liquid film spraying type, a refrigerant is dispersed in the evaporator and flows down on the evaporative heat transfer tube, and then the refrigerant that has not been completely evaporated is recirculated in the evaporator. After flowing into the evaporator and flowing down on the evaporative heat transfer tube,
There are two methods: a method in which the refrigerant that has not been completely evaporated flows out to the absorber without being recirculated. The former will be described with reference to FIG. 7, and the latter will be described with reference to FIG. FIG. 7 is a cycle diagram of a conventional absorption air conditioner, and FIG. 8 is a cycle diagram of another conventional absorption air heater. First, in FIGS. 7 and 8, 1 is a high temperature regenerator, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 7 is a solution pump, 8 is an ejector, and 9 is a low temperature. A heat exchanger, 10 is a high-temperature heat exchanger, 11 is a boiler serving as a heat source of the high-temperature regenerator 1, 16 is a refrigerant vapor pipe connecting the high-temperature regenerator 1 and the low-temperature regenerator 2, and 15 is a refrigerant vapor pipe 16 The control valve 21 is a refrigerant spraying device in the evaporator 4, and 22 is
The solution spraying device 24 in the absorber 5 is a high-temperature regenerator 1
Vapor pipe connecting the evaporator 4 to the evaporator 4, 23 is a control valve of the refrigerant vapor pipe, 25 is a cold water pipe communicating with a heat transfer pipe of the evaporator 4, 26 is communicating with a heat transfer pipe of the absorber 5 and the condenser 3. Cooling water piping. [0005] In the conventional absorption air conditioner shown in FIG. 7, a refrigerant pump 44 is provided in a refrigerant pipe below the evaporator 4. That is, the refrigerant sprayed in the evaporator 4 is:
The refrigerant which has flowed down on the evaporative heat transfer tube 4a through which the cold water flows and has not been completely evaporated flows down the evaporative heat transfer tube 4a again through the refrigerant dispersion device 21 by the refrigerant pump 44. In this method, the amount of the refrigerant flowing down the evaporative heat transfer tube can be increased, the unevenness of the flow of the flowing down refrigerant in the axial direction of the heat transfer tube can be reduced, and the amount of the refrigerant flowing from the condenser 3 to the evaporator 4 can be reduced. There are advantages such as no need for control. [0008] In another conventional absorption air conditioner shown in FIG. 8, a refrigerant pipe connecting the condenser 3 and the evaporator 4 is provided with a flow control valve 19. The refrigerant whose flow rate has been adjusted by the flow control valve 19 flows into the evaporator 4, and is sprayed by the refrigerant spraying device 21 onto the evaporative heat transfer tube 4 a through which the cold water flows. At this time, the evaporation amount of the refrigerant is a function of the refrigeration load and the concentration of the absorbing solution, and is adjusted to a flow rate at which all of the refrigerant is supposed to evaporate. As it reaches the bottom of the evaporator 4 as it is, it flows into the absorber 5 as it is and is mixed with the absorbing solution. As described above, after flowing into the evaporator from the condenser and flowing down on the evaporative heat transfer tube, the refrigerant that has not been completely evaporated is recycled to the absorber without being recirculated. In the outflow method, the refrigerant flowing into the absorber is called an ineffective refrigerant, and the concentration of the absorbing solution in the absorber is reduced without exerting the refrigerating ability. [0008] The absorption cooling / heating machine exerts the refrigerating capacity by the energy of the difference in concentration between the refrigerant and the absorbing solution. As the amount of the ineffective refrigerant increases, the cooling efficiency of the entire absorption cooling / heating machine decreases. Further, the amount of the refrigerant evaporated in the evaporator differs depending on the magnitude of the cooling load at that time. If the amount of refrigerant sprayed is constant, if the cooling load is reduced, the amount of refrigerant that evaporates decreases, and the amount of ineffective refrigerant increases accordingly,
The cooling efficiency of the entire absorption air conditioner will be reduced. Therefore, it is indispensable to control the amount of the refrigerant sprayed on the evaporator. As a method of controlling the amount of refrigerant to be sprayed, for example,
As described in JP-A-3-211371, the temperature of the refrigerant in the evaporator is detected, and when the temperature is low, the amount of the refrigerant sprayed is increased. When the temperature is high, the amount of the refrigerant sprayed is reduced. Methods for reducing are known. But,
In this method, when the refrigerant load is large, the amount of refrigerant sprayed is increased, and when the refrigerant load is small, the amount of refrigerant sprayed can be controlled to be small, and the amount of ineffective refrigerant can be reduced to some extent. Depending on the conditions such as the temperature of the cooling water, the amount of the sprayed refrigerant may be insufficient or excessive, and therefore, the optimum control of the amount of the sprayed refrigerant may not be achieved. The present invention has been made in order to solve the above-mentioned problems of the prior art. Even if the amount of refrigerant evaporating in the evaporator changes depending on the state of the refrigeration load, the amount of ineffective refrigerant flowing into the absorber is reduced. It is an object of the present invention to provide a high-efficiency and low-cost absorption air conditioner that can minimize the temperature. [0011] To achieve the above object, a first aspect of the invention relating to an absorption air conditioner of the present invention comprises:
Having a liquid film spraying type evaporator, the refrigerant that could not evaporate is recirculated without recirculation or only part of it, and the refrigerant flows out of the evaporator as a liquid and is mixed with the absorbing solution The absorption cooling / heating machine is provided with a detecting means for detecting the flow rate of the outflowing refrigerant and a refrigerant spraying amount adjusting means for controlling the spraying amount of the refrigerant in the evaporator so as to keep the outflowing refrigerant flow rate constant . [0012] In order to achieve the above object, a second aspect of the invention relating to an absorption cooling / heating device of the present invention has a liquid film spraying type evaporator and does not recirculate the refrigerant that has not been completely evaporated. Or a part of the refrigerant is recirculated so that the refrigerant flows out of the evaporator in a liquid state and mixes with the absorbing solution. A detecting means for detecting the level of the liquid level of the refrigerant to be performed and a refrigerant spray amount adjusting means for controlling the refrigerant spray amount in the evaporator so as to keep the liquid level constant . The function of each of the above technical means is as follows. According to the first aspect, as components of the evaporator, detection means for detecting an outflow amount of the refrigerant that has not been completely evaporated in the evaporator, and refrigerant distribution amount adjusting means for controlling the refrigerant distribution amount in the evaporator By having
That the can the amount of the refrigerant flowing out so as to maintain constant, to minimize the amount of refrigerant wastefully flowing out from the evaporator
Wear. [0014] According to the second invention, as a component of the evaporator, a valve for a fixed amount of refrigerant flowing out from the evaporator, the liquid level of the refrigerant accumulated in the upper portion of the valve Detecting means, and a refrigerant spray amount adjusting means for controlling the spray amount of the refrigerant in the evaporator so as to keep the liquid level at a constant level. At this time, the refrigerant liquid level detecting means and the refrigerant spray amount If the adjusting means is constituted by a float valve, the control system can be simplified and the cost required for these can be reduced. Embodiments of the present invention will be described below with reference to FIGS. 1 to 6. First, an embodiment of the first invention will be described. Embodiment 1 FIG. 1 is a cycle diagram of an absorption air conditioner according to one embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 7 indicate the same parts as those in the prior art. Note that arrows indicate the flow directions of the refrigerant, the absorbing solution, the chilled water, the chilled water, and the like, and the connection relationship of the electrical control system is indicated by a broken line. The absorption air conditioner shown in FIG. 1 includes a high-temperature regenerator 1, a low-temperature regenerator 2, a condenser 3, an evaporator 4, an absorber 5, a solution pump 7, an ejector 8, a low-temperature heat exchanger 9, a high-temperature heat exchange It comprises a vessel 10 and a piping system operatively connecting them. The cold water in the cold water pipe 25 flows through the evaporative heat transfer tube 4a in the evaporator 4. The cooling water of the cooling water pipe 26 flows through the heat transfer tubes 5 a and 3 a of the absorber 5 and the condenser 3. The absorption air conditioner of this embodiment has a different configuration as follows from the prior art shown in FIG. In FIG. 1, reference numeral 6 denotes a refrigerant receiver provided at the bottom of the evaporator 4;
Is a flow control valve provided in a refrigerant pipe connecting the condenser 3 and the evaporator 4. The flow control valve 19 controls the amount of refrigerant sprayed in the evaporator 4. Also, 20
Is a flow control valve provided in a refrigerant pipe connecting the condenser 3 and the absorber 5. 28 is a flow meter relating to a means for detecting the flow rate of the refrigerant flowing out of the evaporator 4, and 27 is an ejector. The ejector 27 controls the refrigerant flowing out of the evaporator 4 by the solution pump 7 at the outlet of the absorber 5. It functions as a suction mixing means for mixing with the discharged absorbing solution. Here, when the absorbing solution discharged from the absorber 5 by the solution pump 7 branches into one that flows into the regenerator and one that partially recirculates to the absorber, the evaporator 4 The position of the ejector 27 for mixing the outflowing refrigerant with the absorbing solution is provided on the regenerator side from this branch. Reference numerals 30a and 30b denote temperature sensors provided at the entrance and exit of the chilled water pipe 25 with respect to the evaporator 4, and 29 denotes flow control valves 19 and 20, a flow meter 28, and temperature sensors 30a and 30.
b, a controller electrically connected to the boiler 11 and the like of the high temperature regenerator 1 as shown by a broken line. The operation of the absorption air conditioner having such a configuration will be described. The refrigerant vapor generated in the high-temperature regenerator 1 and sent to the low-temperature regenerator 2 by the refrigerant vapor pipe 16 flows into the low-temperature regenerator 2 from the absorber 5 via the solution pump 7 via the solution spraying device 14. The refrigerant exchanges heat and condenses while evaporating the refrigerant vapor from the absorption solution. The refrigerant becomes a liquid refrigerant and is decompressed by the orifice 18 and flows into the condenser 3. The refrigerant vapor evaporated in the low-temperature regenerator 2 exchanges heat with the cooling water flowing in the condensing heat transfer tube 3a in the condenser 3, and condenses while heating the cooling water. The refrigerant condensed in the condenser 3 is supplied to the flow control valve 1
9, flows into the evaporator 4, is dispersed on the evaporative heat transfer tube 4 a by the refrigerant dispersing device 21, exchanges heat with cold water flowing in the evaporative heat transfer tube 4 a, evaporates while cooling the cold water, and absorbs as steam. Outflow into vessel 5. The refrigerant that has not been completely evaporated by the evaporator 4 is received by the refrigerant receiver 6, and then mixed with the absorbing solution as a liquid. The refrigerant vapor generated in the evaporator 4 is supplied to the absorber 5
Is absorbed by the absorbing solution flowing down on the absorption heat transfer tube 5a in the inside,
The absorption heat generated at this time is removed by the cooling water flowing in the absorption heat transfer tube 5a. The absorbing solution flowing down in the absorber 5 is
Low temperature heat exchanger 9 and high temperature heat exchanger 10 by solution pump 7
Is sent to the high-temperature regenerator 1 through the low-temperature heat exchanger 9 and to the low-temperature regenerator 2 via the low-temperature heat exchanger 9. A part of the absorption solution is recirculated to the absorber 5 through the ejector 8. The absorbing solution sent from the absorber 5 to the high-temperature regenerator 1 while the flow rate is adjusted by the float valve 12 in the float box 13 is heated by the boiler 11 in the high-temperature regenerator 1 and partly turns into refrigerant vapor. The concentrated absorption solution flowing into the low-temperature regenerator 2 is mixed with the concentrated absorption solution returned from the low-temperature regenerator 2 through the high-temperature heat exchanger 10 and sprayed through the low-temperature heat exchanger 9 and the ejector 8. A flow-down cycle is configured to the absorber 5 via the device 22. Among the functions of the absorption air conditioner, the features of the present embodiment will be further described. In the absorption cooler / heater shown in FIG. 1, in order to optimally control the amount of refrigerant sprayed in the evaporator 4, the refrigerant liquid is sprayed on the evaporative heat transfer tubes 4a and the evaporative heat transfer tubes 4a.
When the refrigerant exchanges heat with the cold water flowing in a and evaporates while cooling the cold water, the refrigerant that has not completely evaporated is collected by the refrigerant receiver 6, via the refrigerant pipe connected to the refrigerant receiver 6, and via the ejector 27, The solution is mixed with the absorbing solution discharged from the absorber 5 by the solution pump 7. The amount of the refrigerant mixed into the absorbing solution is measured by the flow meter 2
8 and the flow rate of the refrigerant is controlled by the flow control valve 19 so that the flow rate is constant. If this flow rate is determined to be, for example, about 1% of the total circulation amount of the refrigerant, the refrigeration efficiency of the absorption cooling / heating machine does not decrease by 1% or more. In addition, if the opening degree of the flow control valve 19 at this time is small, it can be considered that the refrigeration capacity is small, so that it is possible to control the output of the boiler 11 in the high temperature regenerator 1 to be small. Further, by comparing the chilled water temperature detected by the temperature sensors 30a and 30b provided in the chilled water pipe 25 with the valve opening of the flow control valve 19, the change in the flow rate of the chilled water can be indirectly measured. It becomes possible. The flow control valve 20 prevents accidents such as absorption solution crystals and refrigerant freezing by mixing the refrigerant with the absorption solution when the absorption cooling / heating machine is stopped or when the absorption solution is excessively concentrated. is there. According to the present embodiment, by performing the above control by the controller 29, even if the refrigerant evaporation amount in the evaporator changes due to the state of the refrigeration load of the absorption cooling / heating machine, the ineffective refrigerant amount is reduced. The amount of refrigerant circulating can be maintained at about 1%, and there is an effect of preventing the efficiency of the absorption cooling / heating machine from being reduced due to a change in the refrigeration load. Thus, it is possible to provide an absorption cooling / heating machine with higher efficiency than before. Embodiment 2 FIG. 2 is a cycle system diagram of an absorption cooling / heating machine according to another embodiment of the present invention (first invention). In the figure, those having the same reference numerals as those in FIG. 1 indicate the same parts as those in the first embodiment, and the description thereof will be omitted. The embodiment of FIG. 2 differs from the embodiment of FIG. 1 in that a refrigerant pipe connecting the condenser 3 and the absorber 5 with the flow control valve 20 is not provided. In the present embodiment, when the absorption cooler / heater is stopped, or when the absorption solution is excessively concentrated, the controller 31 controls the operation of mixing the refrigerant with the absorption solution in order to prevent accidents such as absorption solution crystals and refrigerant freezing. This is performed only by the flow control valve 19. According to this embodiment, the same effects as those of the first embodiment can be obtained. [Embodiment 3] FIG. 3 is a cycle system diagram of an absorption air conditioner according to still another embodiment of the present invention (first invention). In the figure, those having the same reference numerals as those in FIG. 1 indicate the same parts as those in the first embodiment, and the description thereof will be omitted. The embodiment of FIG. 3 differs from the embodiment of FIG. 1 in that, in order to mix the refrigerant flowing out of the evaporator 4 into the absorbing solution, the mixing point is set closer to the absorber 5 by the solution pump 7 at the outlet of the absorber 5. It is configured to be provided. In FIG. 3, reference numeral 50 denotes a refrigerant receiver 6.
Refrigerant pipe having a flow meter 28 connected to the
The junction with the absorption solution pipe on the side of the absorber 5, that is,
This is the mixing point where the refrigerant that has not completely evaporated mixes into the absorbing solution. In the absorption cooler / heater shown in FIG. 3, when the refrigerant sprayed on the evaporative heat transfer tube 4a exchanges heat with the cold water flowing in the evaporative heat transfer tube 4a and evaporates, the refrigerant that has not been completely evaporated receives the refrigerant. The water is collected by the cooling medium 6, and is mixed with the absorbing solution discharged from the absorber 5 at the mixing point 50 through the refrigerant pipe connected to the cooling medium receiver 6. The amount of the refrigerant mixed into the absorbing solution is measured by the flow meter 28, and the amount of the refrigerant sprayed is controlled by the flow regulating valve 19 so that the flow rate becomes constant. Each control in the embodiment of FIG.
Done by According to this embodiment, the same effects as those of the first embodiment can be obtained, and there is an advantage that the ejector 27 shown in FIG. 1 becomes unnecessary. However, in the case of the present embodiment, the concentration of the absorbing solution that is recirculated and sprayed into the absorber 5 via the ejector 8 becomes thin, and the amount of heat exchange with the cooling water in the absorber 5 decreases. Must be taken into account. Next, an embodiment of the second invention will be described. Embodiment 4 FIG. 4 is a cycle diagram of an absorption air conditioner according to an embodiment of the present invention (second invention). In the figure, those having the same reference numerals as those in FIG. 1 indicate the same parts as those in the first embodiment, and the description thereof will be omitted. In FIG. 4, reference numeral 33 denotes a refrigerant tank provided on a refrigerant pipe connected to the refrigerant receiver 6 of the evaporator 4, and reference numeral 34 denotes a flow control valve provided below the refrigerant tank 33. In the absorption air conditioner shown in FIG. 4, a part of the refrigerant flowing out of the evaporator 4 without being completely evaporated in the evaporator 4 is temporarily stored in a refrigerant tank 33, and when the absorption air conditioner is stopped, or Is controlled to be mixed with the absorbing solution via the flow rate regulating valve 34 when excessively concentrated. Each control in the embodiment of FIG. 4 is performed by the controller 35. According to this embodiment, the same effects as those of the first embodiment can be obtained. In particular, when the absorption solution is excessively concentrated by stopping the absorption air conditioner or the partial load operation. Since the absorption solution can be diluted by mixing the refrigerant stored in the refrigerant tank 33 with the absorption solution, the ineffective refrigerant can be effectively used, and energy can be saved as a whole. [Embodiment 5] FIG. 5 is a cycle diagram of an absorption air conditioner according to another embodiment of the present invention (second invention). In the figure, those having the same reference numerals as those in FIG. 1 are the same as those in the absorption air conditioner of the first embodiment, and therefore the description thereof is omitted. In FIG.
36 is a float valve provided on the refrigerant receiver 6 of the evaporator 4;
Reference numeral 5 denotes a flow control valve provided in a refrigerant pipe connected to the refrigerant receiver 6, and the flow control valve 45 is for keeping the flow rate of the refrigerant flowing out constant. In the absorption cooler / heater shown in FIG. 5, the amount of the refrigerant to be sprayed can be adjusted by the float valve 36 so that the liquid level on the refrigerant receiver 6 becomes constant. Since the amount of refrigerant flowing out of the vessel 4 is made constant, the amount of ineffective refrigerant can be minimized. Each control in the embodiment of FIG. 5 is performed by the controller 37. According to this embodiment, the same effects as those of the first embodiment can be obtained, the control system can be simplified, and the cost for these can be reduced. The refrigerant flow control method of the present invention is applicable not only to a water-cooled absorption refrigerator but also to an air-cooled absorption refrigerator.
FIG. 6 shows the embodiment. Embodiment 6 FIG. 6 is a cycle system diagram of an air-cooled absorption air conditioner according to still another embodiment of the present invention. In the figure, those having the same reference numerals as those in FIG. 1 are the same as those in the absorption air conditioner of the first embodiment, and therefore the description thereof is omitted. In FIG. 6, reference numeral 38 denotes an air cooling fin constituting the air-cooled condenser 3A, and 39 denotes an air cooling fin 38.
, An air cooling fin provided in the absorption solution pipe of the air-cooled absorber 5A, 41 a fan for ventilating the air-cooled fin 40, 42 a solution spraying device in the air-cooled absorber 5A It is. The refrigerant receiver 6 provided in the evaporator 4, the flow meter 28 relating to the means for detecting the flow rate of the refrigerant flowing out of the evaporator 4, the refrigerant flowing out of the evaporator 4
The structure and operation of the ejector 27 and the like which function as suction mixing means for mixing with the absorbing solution discharged by the solution pump 7 at the outlet of the absorber 5 are the same as those in the embodiment of FIG. Each control in the embodiment of FIG. 6 is performed by the controller 43. According to the air-cooled absorption air conditioner shown in FIG.
In addition to obtaining the same effects as in the first embodiment, in the case of air cooling, the effect of the present invention is further enhanced as compared with water cooling, since the refrigeration cycle is particularly susceptible to changes in the outside air temperature. As described above in detail, according to the present invention, even if the refrigerant evaporation amount in the evaporator changes due to the state of the refrigerating load, the amount of the ineffective refrigerant flowing into the absorber is reduced. It is possible to provide a high-efficiency and low-cost absorption air conditioner that can be held down to a minimum.

【図面の簡単な説明】 【図1】本発明の一実施例に係る吸収冷暖房機のサイク
ル系統図である。 【図2】本発明の他の実施例に係る吸収冷暖房機のサイ
クル系統図である。 【図3】本発明のさらに他の実施例に係る吸収冷暖房機
のサイクル系統図である。 【図4】本発明のさらに他の実施例に係る吸収冷暖房機
のサイクル系統図である。 【図5】本発明のさらに他の実施例に係る吸収冷暖房機
のサイクル系統図である。 【図6】本発明のさらに他の実施例に係る空冷式吸収冷
暖房機のサイクル系統図である。 【図7】従来の吸収冷暖房機のサイクル系統図である。 【図8】従来の他の吸収冷暖房機のサイクル系統図であ
る。 【符号の説明】 1…高温再生器、2…低温再生器、3…凝縮器、3A…
空冷凝縮器、3a…凝縮伝熱管、4…蒸発器、4a…蒸
発伝熱管、5…吸収器、5A…空冷吸収器、5a…吸収
伝熱管、6…冷媒受け、7…溶液ポンプ、9…低温熱交
換器、10…高温熱交換器、19,20,34,45…
流量調整弁、21…冷媒散布装置、22,42…溶液散
布装置、25…冷水配管、26…冷却水配管、27…エ
ゼクタ、28…流量計、33…冷媒タンク、36…フロ
ート弁、38,40…空気冷却フィン、39,41…フ
ァン、50…混合地点。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cycle diagram of an absorption air conditioner according to one embodiment of the present invention. FIG. 2 is a cycle system diagram of an absorption air conditioner according to another embodiment of the present invention. FIG. 3 is a cycle system diagram of an absorption air conditioner according to still another embodiment of the present invention. FIG. 4 is a cycle system diagram of an absorption air conditioner according to still another embodiment of the present invention. FIG. 5 is a cycle system diagram of an absorption air conditioner according to still another embodiment of the present invention. FIG. 6 is a cycle diagram of an air-cooled absorption air conditioner according to still another embodiment of the present invention. FIG. 7 is a cycle system diagram of a conventional absorption cooling / heating machine. FIG. 8 is a cycle diagram of another conventional absorption air conditioner. [Description of Signs] 1 ... High temperature regenerator, 2 ... Low temperature regenerator, 3 ... Condenser, 3A ...
Air-cooled condenser, 3a condensation heat transfer tube, 4 evaporator, 4a evaporation heat transfer tube, 5 absorber, 5A air-cooled absorber, 5a absorption heat transfer tube, 6 refrigerant receiver, 7 solution pump, 9 ... Low-temperature heat exchanger, 10 ... high-temperature heat exchanger, 19, 20, 34, 45 ...
Flow control valve, 21: refrigerant spraying device, 22, 42: solution spraying device, 25: cold water piping, 26: cooling water piping, 27: ejector, 28: flow meter, 33: refrigerant tank, 36: float valve, 38, 40: air cooling fins, 39, 41: fan, 50: mixing point.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 富久 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 福島 敏彦 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (56)参考文献 特開 平3−211371(JP,A) 実開 昭54−155656(JP,U) 実開 昭52−150849(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomihisa 502, Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. (56) References JP-A-3-211371 (JP, A) Japanese Utility Model Application Sho 54-155656 (JP, U) Japanese Utility Model Application Utility Model Sho 52-150849 (JP, U) (58) Fields investigated (Int. . 7, DB name) F25B 15/00 306

Claims (1)

(57)【特許請求の範囲】 【請求項1】 液膜散布式の蒸発器を有し、蒸発しきれ
なかった冷媒を再循環することなしに、あるいは一部の
みを再循環させて、冷媒を液体のまま蒸発器から流出さ
せ吸収溶液と混合させる吸収冷暖房機において、 この流出する冷媒流量を検知する検知手段と、 その流出する冷媒流量を一定に保つように蒸発器におけ
る冷媒散布量を制御する冷媒散布量調節手段とを設けた
ことを特徴とする吸収冷暖房機。 【請求項2】 液膜散布式の蒸発器を有し、蒸発しきれ
なかった冷媒を再循環することなしに、あるいは一部の
みを再循環させて、冷媒を液体のまま蒸発器から流出さ
せ吸収溶液と混合させる吸収冷暖房機において、 この流出する冷媒流量を一定にする弁と、 この弁の上部に貯溜される冷媒の液面の高さを検知する
検知手段と、 その液面高さを一定に保つように蒸発器における冷媒散
布量を制御する冷媒散布量調節手段とを設けたことを特
徴とする吸収冷暖房機。 【請求項3】 冷媒蒸気を発生させる再生器と、再生器
で発生した冷媒蒸気を凝縮させる凝縮器と、凝縮器で凝
縮した液冷媒が散布される液膜散布式の蒸発器と、蒸発
器で蒸発した冷媒を吸収する吸収溶液が収納される吸収
器と、吸収溶液を予熱する溶液熱交換器と、この溶液熱
交換器と前記吸収器の下部とを結ぶ配管中に配置された
溶液ポンプとを備え、前記蒸発器で蒸発しきれなかった
冷媒は蒸発器に戻されることなく吸収溶液に吸収される
かあるいは一部のみが蒸発器に戻される吸収冷暖房機に
おいて、 前記蒸発器で蒸発しきれなかった冷媒を集める冷媒受け
と、この冷媒受けに流入した蒸発しきれなかった冷媒量
を検出するとともに前記冷媒受けの近傍に配置された流
量検出手段と、前記溶液ポンプの上流側または下流側の
少なくとも一方側の配管に合流し、凝縮器から蒸発器へ
流入する冷媒流量を調整する流量調整手段を介して前記
冷媒受けに接続された冷媒配管と、前記流量検出手段が
検出した蒸発しきれなかった冷媒量に基づき前記流量調
整手段を制御する制御手段とを設けたことを特徴とする
吸収冷暖房機。 【請求項】 冷媒蒸気を発生させる再生器と、再生器で
発生した冷媒蒸気を凝縮させる凝縮器と、凝縮器で凝縮
した液冷媒を散布される液膜散布式の蒸発器と、蒸発器
で蒸発した冷媒を吸収する吸収溶液が収納される吸収器
と、吸収溶液を予熱する溶液熱交換器と、この溶液熱交
換器と前記吸収器の下部とを結ぶ配管中に配置された溶
液ポンプとを備え、前記蒸発器で蒸発しきれなかった冷
媒は蒸発器に戻されることなく吸収溶液に吸収されるか
あるいは一部のみが蒸発器に戻される吸収冷暖房機にお
いて、 前記蒸発器で蒸発しきれなかった冷媒を集める冷媒受け
と、この冷媒受けに流入した冷媒量を検出する冷媒液面
検出手段と、前記溶液ポンプの上流側または下流側の少
なくとも一方側の配管に合流し、凝縮器から蒸発器へ流
入する冷媒流量を調整する流量調整手段を介して前記冷
媒受けに接続された冷媒配管と、前記冷媒液面検出手段
が検出した蒸発しきれなかった冷媒量に基づき前記流量
調整手段を制御する制御手段とを設けたことを特徴とす
る吸収冷暖房機。 【請求項5】 前記合流部は、エゼクタを形成している
ことを特徴とする請求項3または4に記載の吸収冷暖房
機。 【請求項6】 前記溶液ポンプから吐出される吸収溶液
を前記再生器と前記吸収器とに分岐させる分岐部を設
け、前記合流部をこの分岐部より再生器側に設けたこと
を特徴とす請求項3または4に記載の吸収冷暖房機。 【請求項7】 前記蒸発器から流出する冷媒を前記吸収
器内または吸収器と前記溶液ポンプ間において吸収溶液
に混合させることを特徴とする請求項3または4に記載
の吸収冷暖房機。 【請求項8】 前記蒸発器から流出する冷媒を貯留する
冷媒タンクと、吸収冷暖房機の停止時あるいは吸収溶液
が過度に濃縮されたときにこの冷媒タンクに貯留された
冷媒を吸収溶液に混合可能にする制御弁とを設けたこと
を特徴とす請求項3または4に記載の吸収冷暖房機。 【請求項9】 前記冷媒液面検出手段及び流量調整手段
はフロート弁であることを特徴とす請求項4に記載の吸
収冷暖房機。
(57) [Claims 1] A refrigerant having a liquid film spraying type evaporator, and without recirculating a refrigerant that has not completely evaporated, or by recirculating only a part thereof, In the absorption air conditioner, which flows out of the evaporator as a liquid and mixes with the absorbing solution, a detecting means for detecting the flow rate of the refrigerant flowing out, and controlling the amount of refrigerant sprayed in the evaporator so as to keep the flow rate of the refrigerant flowing out constant An absorption air conditioner comprising: 2. A liquid film dispersing type evaporator having a refrigerant that has not been completely evaporated without recirculating the refrigerant or recirculating only a part of the refrigerant so that the refrigerant flows out of the evaporator as a liquid. In an absorption air conditioner that mixes with an absorption solution, a valve for making the flow rate of the refrigerant flowing out constant, a detecting means for detecting a liquid level of the refrigerant stored in an upper portion of the valve, and a liquid level height for the refrigerant An absorption air-conditioning and heating machine comprising a refrigerant spray amount adjusting means for controlling a refrigerant spray amount in an evaporator so as to keep the refrigerant spray amount constant. 3. A regenerator for generating a refrigerant vapor, a condenser for condensing the refrigerant vapor generated by the regenerator, a liquid film spraying type evaporator for spraying the liquid refrigerant condensed by the condenser, and an evaporator. An absorber in which an absorbing solution that absorbs the refrigerant evaporated in the above is stored, a solution heat exchanger that preheats the absorbing solution, and a solution pump that is arranged in a pipe connecting the solution heat exchanger and a lower portion of the absorber. In the absorption air conditioner, the refrigerant that has not completely evaporated in the evaporator is absorbed by the absorbing solution without being returned to the evaporator, or only a part of the refrigerant is returned to the evaporator. A refrigerant receiver for collecting the refrigerant that could not be exhausted, a flow detecting means arranged near the refrigerant receiver for detecting the amount of the refrigerant that has not completely evaporated flowing into the refrigerant receiver, and an upstream or downstream side of the solution pump. At least The refrigerant pipe connected to the refrigerant receiver via the flow rate adjusting means for adjusting the flow rate of the refrigerant flowing into the evaporator from the condenser, which merges with the pipe on one side, and the evaporation detected by the flow rate detecting means could not be completed. A control unit for controlling the flow rate adjusting unit based on the amount of the refrigerant. A regenerator for generating a refrigerant vapor, a condenser for condensing the refrigerant vapor generated in the regenerator, a liquid film spraying type evaporator for spraying the liquid refrigerant condensed in the condenser, and an evaporator. An absorber in which an absorbing solution for absorbing the evaporated refrigerant is stored, a solution heat exchanger for preheating the absorbing solution, and a solution pump disposed in a pipe connecting the solution heat exchanger and a lower portion of the absorber. Wherein the refrigerant that has not completely evaporated in the evaporator is absorbed in the absorbing solution without being returned to the evaporator, or only a part of the refrigerant is returned to the evaporator. A refrigerant receiver that collects the refrigerant that did not exist, a refrigerant liquid level detecting unit that detects the amount of refrigerant that has flowed into the refrigerant receiver, and merges with at least one of the upstream and downstream pipes of the solution pump to evaporate from the condenser. Refrigerant flowing into the vessel A refrigerant pipe connected to the refrigerant receiver via a flow rate adjusting means for adjusting the amount, and a control means for controlling the flow rate adjusting means based on the amount of refrigerant that has not completely evaporated detected by the refrigerant liquid level detecting means. An absorption air conditioner, which is provided. 5. The absorption cooling / heating machine according to claim 3, wherein the junction forms an ejector. 6. A branching section for branching the absorbing solution discharged from the solution pump into the regenerator and the absorber, and the merging section is provided on the regenerator side from the branching section. The absorption cooling / heating machine according to claim 3 or 4. 7. The absorption air conditioner according to claim 3, wherein the refrigerant flowing out of the evaporator is mixed with the absorption solution in the absorber or between the absorber and the solution pump. 8. A refrigerant tank for storing the refrigerant flowing out of the evaporator, and the refrigerant stored in the refrigerant tank can be mixed with the absorption solution when the absorption cooling / heating unit is stopped or when the absorption solution is excessively concentrated. The absorption cooling / heating machine according to claim 3 or 4, further comprising a control valve for setting the temperature. 9. The absorption air conditioner according to claim 4, wherein said refrigerant liquid level detecting means and flow rate adjusting means are float valves.
JP01144994A 1994-02-03 1994-02-03 Absorption air conditioner Expired - Fee Related JP3225155B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01144994A JP3225155B2 (en) 1994-02-03 1994-02-03 Absorption air conditioner
KR1019940039265A KR0153799B1 (en) 1994-02-03 1994-12-30 Absorption type airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01144994A JP3225155B2 (en) 1994-02-03 1994-02-03 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH07218026A JPH07218026A (en) 1995-08-18
JP3225155B2 true JP3225155B2 (en) 2001-11-05

Family

ID=11778412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01144994A Expired - Fee Related JP3225155B2 (en) 1994-02-03 1994-02-03 Absorption air conditioner

Country Status (2)

Country Link
JP (1) JP3225155B2 (en)
KR (1) KR0153799B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648014B2 (en) * 2005-01-26 2011-03-09 株式会社荏原製作所 Absorption heat pump
JP5260895B2 (en) * 2007-06-19 2013-08-14 大阪瓦斯株式会社 Absorption refrigerator
KR102000763B1 (en) 2018-02-07 2019-07-16 주식회사 인프라웨어테크놀러지 Smart mirror device for providing personal training service

Also Published As

Publication number Publication date
KR0153799B1 (en) 1999-01-15
KR950025375A (en) 1995-09-15
JPH07218026A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
JP3414249B2 (en) Absorption refrigerator
CN1097708C (en) Absorption refrgerating machine
US4791790A (en) Air-cooled absorption-type water cooling and heating apparatus
JP3002620B2 (en) Absorption chiller / heater
JP3225155B2 (en) Absorption air conditioner
JP3434281B2 (en) Absorption refrigerator
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP5098547B2 (en) Absorption refrigeration system
JPS62186178A (en) Absorption refrigerator
JP3638408B2 (en) Absorption cogeneration system using engine exhaust heat and its operation control method
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP3281228B2 (en) Absorption type cold / hot water unit
JP3813348B2 (en) Absorption refrigerator
JP3451539B2 (en) Absorption type cold heat generator
JP3434280B2 (en) Absorption refrigerator and its operation method
JP3434284B2 (en) Absorption refrigerator
JP4073219B2 (en) Absorption chiller / heater
JP3434279B2 (en) Absorption refrigerator and how to start it
KR0139349Y1 (en) Circulation of condensed water of evaporator for absorption type refrigerator
JP2883372B2 (en) Absorption chiller / heater
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JPH0810090B2 (en) Double-effect air cooling absorption type water heater
JP3434282B2 (en) Absorption refrigerator
JP3344430B2 (en) Absorption refrigeration equipment
JPS6148064B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees