JP4166037B2 - Absorption chiller / heater - Google Patents

Absorption chiller / heater Download PDF

Info

Publication number
JP4166037B2
JP4166037B2 JP2002150752A JP2002150752A JP4166037B2 JP 4166037 B2 JP4166037 B2 JP 4166037B2 JP 2002150752 A JP2002150752 A JP 2002150752A JP 2002150752 A JP2002150752 A JP 2002150752A JP 4166037 B2 JP4166037 B2 JP 4166037B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant liquid
evaporator
valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002150752A
Other languages
Japanese (ja)
Other versions
JP2003343940A (en
Inventor
秀樹 府内
志奥 山崎
英一 榎本
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002150752A priority Critical patent/JP4166037B2/en
Priority to CNB031239374A priority patent/CN1229609C/en
Priority to KR1020030032722A priority patent/KR100589557B1/en
Publication of JP2003343940A publication Critical patent/JP2003343940A/en
Application granted granted Critical
Publication of JP4166037B2 publication Critical patent/JP4166037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷温水機に関するものである。
【0002】
【従来の技術】
図3に示したように、ガスバーナ2を備えた高温再生器1、低温再生器3、凝縮器4、蒸発器6、吸収器7、低温熱交換器9、高温熱交換器10、吸収液ポンプ17、冷媒ポンプ22などを吸収液管と冷媒管とで連結し、高温再生器1と低温再生器3で加熱した吸収液から蒸発分離した冷媒蒸気を凝縮器4に送って冷却水管24内を流れる冷却水で冷却して凝縮させ、その凝縮した冷媒液を蒸発器6に送って蒸発させ、冷媒の蒸発熱により冷却した冷水を冷/温水管23を介して冷却負荷に循環供給して行う冷房などの冷却運転と、高温再生器1で加熱した吸収液から蒸発分離した冷媒蒸気と、冷媒を蒸発分離した吸収液とを低温胴8に直接送って、主に冷媒の凝縮熱により加熱した温水を冷/温水管23を介して加熱負荷に循環供給して行う暖房などの加熱運転とが、選択実施できるように構成した吸収冷温水機が周知である。
【0003】
上記構成の吸収冷温水機においては、冷却水管24の内部を流れる冷却水に放熱して凝縮した冷媒液を貯留する冷媒タンク4Aが凝縮器4の内部に設けられており、そこに貯留される冷媒液の量は負荷の大小によって決まる。すなわち、冷房負荷が大きい時には吸収液の濃度差が大きくなり(換言すれば、冷媒溜りの冷媒量が増大)、冷房負荷が小さい時には吸収液の濃度差が小さくなる(換言すれば、冷媒溜りの冷媒量が減少)。そのため、冷却水温度が低く、低濃度・低負荷運転時には、蒸発器6で冷媒液が不足し、冷媒ポンプ22がキャビテーションを起こし損傷することがあった。
【0004】
また、冷房などの冷却運転を停止する際には、加熱して濃縮した吸収液が温度低下しても結晶化しないように開閉弁V4を手動により開弁して蒸発器6に溜まっている冷媒液を吸収器7に戻して吸収液を稀釈する他、冷媒タンク4Aの冷媒液を吸収器7に戻すことも行われている。
【0005】
【発明が解決しようとする課題】
しかし、従来の吸収冷温水機は凝縮器の冷媒タンクに貯留された冷媒の全てが吸収器に戻される構造となっていたため、前記冷媒タンクから吸収器に冷媒を戻した時には必要以上に吸収液の稀釈が進んでしまい、冷房運転を再開する時には必要な量の冷媒を確保するのに長時間を要し、設定温度まで冷却する時間が大きく延びる時があると云った問題点があった。
【0006】
したがって、冷却水の温度が低く、低濃度・低負荷運転時にも蒸発器で冷媒は不足せず、そのため冷媒ポンプがキャビテーションを起こすことはなく、また、冷却運転停止時に吸収液が結晶化しないように、且つ、冷房運転の再開時には必要な量の冷媒が短時間で確保できて設定温度まで速やかに冷却することができるように適度な稀釈を可能にする必要があり、それが解決すべき課題であった。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため、
蒸発器・吸収器・再生器・凝縮器を連結して冷媒と吸収液とを循環させ、上記の冷媒の蒸発熱によりブラインを冷却させる冷却運転と、主に上記の冷媒の凝縮熱によりブラインを加熱させる加熱運転とが選択実施可能な吸収冷温水機において、
上記の凝縮器で上記の冷媒を冷却水に放熱させて凝縮した冷媒液を貯留するための冷媒液貯留部と、
上記の冷媒液貯留部からあふれ出た上記の冷媒液を流出させるための冷媒液流出路と、
上記の冷媒液流出路を、U字状の垂下部分を設けた第1の冷媒管によって、上記の蒸発器に連結することにより、上記のあふれ出た冷媒液を上記の蒸発器に流入させるための第1の冷媒液流入路と、
上記の冷媒液貯留部の底部を、開閉弁または流量制御弁を介在させた第2の冷媒管によって、上記の第1の冷媒管に連結することにより、上記の冷媒液貯留部に貯留された上記の冷媒液を上記の蒸発器に流入させるための第2の冷媒液流入路と、
上記の冷却運転時に、上記の冷却水の温度の高・低に基づいて上記の開閉弁を閉・開し、または、上記の流量制御弁の弁開度を上記の冷却水の温度に対して逆比例的に制御する弁制御手段と
を設けた第1の構成の吸収冷温水機と、
【0008】
上記の第1の構成の吸収冷温水機における
上記の第2の冷媒流入路に代えて、
上記の冷媒液貯留部の底部を、開閉弁または流量制御弁を介在させた第2の冷媒管によって、上記の蒸発器または上記の吸収器に連結することにより、上記の冷媒液貯留部に貯留された上記の冷媒を上記の蒸発器または上記の吸収器に流入させる第3の冷媒液流入路を設けた第2の構成の吸収冷温水機と、
【0009】
上記の第1の吸収冷温水機または第2の構成の吸収冷温水機において、
上記の冷却運転を停止する際に、外気温度が所定温度以下であるときは、上記の開閉弁を開弁するように制御する外気温度弁制御手段を設けた第3の構成の吸収冷温水機と
を提供するものである。
【0010】
【発明の実施の形態】
以下、図1、図2に基づいて本発明の実施形態を詳細に説明する。なお、理解を容易にするため、これらの図面においても前記図3において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0011】
図1に示した本発明の実施形態では、水を冷媒とし、臭化リチウム(LiBr)水溶液を吸収液とした吸収冷温水機としている。
そして、冷媒タンク4A、すなわち、冷媒液貯留部からあふれ出た冷媒液を流出させるための冷媒液流出路4bを、U字状の垂下部分20aを設けた冷媒管20によって、蒸発器6に連結することにより、あふれ出た冷媒液を蒸発器6に流入させるようにした冷媒液流入路によって、蒸発器6に冷媒液を供給している。
また、冷媒タンク4A、すなわち、冷媒液貯留部の底部を、開閉弁V3させた冷媒管20Aによって、冷媒管20に連結することにより、冷媒タンク4Aに貯留された冷媒液4aを蒸発器6に流入させようにした冷媒液流入路によっても、蒸発器6に冷媒液を供給しており、開閉弁V3を開閉することにより、冷媒タンク4Aから蒸発器6に供給する冷媒液の量が制御可能となっている。
【0012】
また、符号Cは、マイコンなどを備えて構成される本発明の制御装置であり、この制御器Cの図示しない記憶部に格納された制御プログラムによって、開閉弁V3は後述するように適宜開閉される。
【0013】
上記構成の吸収冷温水機においては、開閉弁V1〜V4を閉弁して冷却水管24に冷却水を流しながら、ガスバーナ2で都市ガスなどを燃焼して高温再生器1で稀吸収液を加熱沸騰させると、稀吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが得られる。
【0014】
高温再生器1で生成された高温の冷媒蒸気は、冷媒管19の上流部分を通って低温再生器3に入り、高温再生器1で生成され吸収液管15により高温熱交換器10を経由して低温再生器3に入った中間吸収液を加熱して放熱凝縮し、冷媒ドレン熱回収器11が介在する冷媒管19の下流部分を通って凝縮器4に入る。
【0015】
また、低温再生器3で加熱されて中間吸収液から蒸発分離した冷媒は凝縮器4へ入り、冷却水管24内を流れる冷却水と熱交換して凝縮液化し、冷媒管19から凝縮して供給される冷媒と一緒になって冷媒管20を通って蒸発器6に入る。
【0016】
蒸発器6の冷媒溜まりに溜まった冷媒液は、冷/温水管23に接続された伝熱管23Aの上に冷媒管21に介在する冷媒ポンプ22によって散布され、冷/温水管23を介して供給される水と熱交換して蒸発し、伝熱管23Aの内部を流れる水を冷却する。
【0017】
蒸発器6で蒸発した冷媒は吸収器7に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液は、吸収液管16から低温熱交換器9を経由して吸収器8に供給され、吸収器7内の上方から散布される。
【0018】
そして、吸収器7で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ17の運転により高温再生器1に戻される。
【0019】
上記のように吸収冷温水機が運転されると、蒸発器6の内部に配管された伝熱管23Aにおいて冷媒の気化熱によって冷却された冷水が、冷/温水管23を介して図示しない空調負荷に循環供給できるので、冷房などの冷却運転が行える。
【0020】
また、上記構成の吸収冷温水機においては、開閉弁V1・V2を開弁し、冷却水管24に冷却水を流すことなく、ガスバーナ2で都市ガスなどを燃焼して高温再生器1で稀吸収液を加熱沸騰させると、稀吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった吸収液とが得られ、それらは流路抵抗の関係から低温再生器3ではなく何れも吸収器7に入る。
【0021】
そして、吸収器7に入った冷媒蒸気は隣設する蒸発器6に入り、冷/温水管23A内を流れる水に放熱して凝縮し、冷/温水管23内を流れる水を加熱する。蒸発器6で凝縮した冷媒液は溢れて吸収器7に戻り、吸収液管15Aから入った吸収液に混合(吸収)され、吸収液ポンプ17により高温再生器1に戻される。
【0022】
上記のように吸収冷温水機が運転されると、蒸発器6の内部に配管された伝熱管23Aにおいて主に冷媒の凝縮熱によって加熱された温水が、冷/温水管23を介して図示しない空調負荷に循環供給できるので、暖房などの加熱運転が行える。
【0023】
そして、本発明の吸収冷温水機においては、蒸発器6内の伝熱管23Aで冷却した冷水を冷/温水管23から負荷に循環供給して冷房などの冷却運転を行う時には、制御器Cが開閉弁V3を、例えば図2(A) に示すように冷却水管24の吸収器7入口側に設置した温度センサS1が検出する冷却水入口温度が所定温度、例えば25℃以上になると閉弁し、温度センサ S1が検出する冷却水入口温度が他の所定温度、例えば20℃以下になると開弁するように構成してある(設定温度はマイコン上などで可変)。
つまり、冷却水の所定温度より高いときには開閉弁V3を閉じ、冷却水の所定温度より低いときには開閉弁V3を開くように制御しているものであり、簡潔に言えば、「冷却水の温度の高・低に基づいて開閉弁を閉・開する」ように制御していることになる。
【0024】
そのため、冷却水管24から吸収器7に供給される冷却水の温度が低く、吸収器7における吸収液による冷媒の吸収作用が進み易く、したがって蒸発器6における冷媒の量が不足し勝ちとなる時には、冷媒管20Aに介在する開閉弁V3が開弁されて凝縮器4の冷媒タンクにある冷媒液が冷媒管20A・20を介して蒸発器6に供給されるので、低濃度・低負荷運転時にも蒸発器6において冷媒が不足し、冷媒ポンプ22がキャビテーションを起こす懸念はない。
【0025】
なお、冷媒管20Aに介在する開閉弁V3は、開度制御が自在な流量制御弁V3に変更し、その開度を制御器Cにより、例えば図2(B)に示すように温度センサS1が検出する冷却水入口温度を変数として逆比例的に制御する構成としても(設定温度はマイコン上などで可変)、前記したのと同様の作用効果が得られる。
【0026】
また、制御器Cは、ガスバーナ2の燃焼を停止して冷房などの冷却運転を終了する時には、ガスバーナ2の燃焼停止後、開閉弁V4を開弁して所定時間、例えば10分間だけ冷媒ポンプ22の運転を継続し、蒸発器6の冷媒溜まりに溜まっている冷媒液を冷媒管21Aを介して吸収器7に移し、蒸発器6から供給する冷媒によって稀釈した吸収液を高温再生器1、低温再生器3などに循環供給して、吸収液全体の稀釈を図るように構成してある。
【0027】
さらに、制御器Cは、温度センサS2が検出する外気温度が所定温度、例えば5℃以下である時には、冷媒管20Aに介在する開閉弁V3を開弁し(開弁時間を外気温度に基づいて制御する構成とすることも可能)、凝縮器4内の冷媒タンク4Aに溜まっていた冷媒液を蒸発器6を経由して吸収器7に供給し、吸収液のさらなる稀釈を図るように構成してある。そのため、寒冷地でも吸収液が結晶化することがないし、不要な稀釈を行うこともない。
【0028】
すなわち、本発明の吸収冷温水機によれば、寒冷地でも吸収液を結晶化させない稀釈運転が可能であり、且つ、不要な稀釈運転が行われることはないので、冷房などの冷却運転開始に必要な量の冷媒を短時間で蒸発分離し、冷房などの冷却運転を速やかに開始することができる。
【0029】
また、制御器Cは、蒸発器6内の伝熱管23Aで加熱した温水を冷/温水管23から負荷に循環供給して暖房などの加熱運転を行う時には、冷媒管20Aに介在する開閉弁V3を開弁するように構成してあるので、冷房などの冷却運転時に凝縮器4内の冷媒タンク4Aに貯留されていた冷媒液は蒸発器6を経由して吸収器7に戻され、吸収液に混合(吸収)される。
【0030】
そのため、機内を循環する吸収液の濃度は全体に低下し、サイクルの温度レベルが下がるので、吸収冷温水機の耐久性が改善される。
【0031】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0032】
例えば、開閉弁V3が介在する冷媒管20Aは、冷媒タンク4Aから直接蒸発器6または吸収器7に至るように設けることも可能である。
【0033】
また、冷/温水管23から冷水を循環供給する冷却運転中に、ガスバーナ2の燃焼が所定時間、例えば5分間を超えて停止している時には、温度センサS1が所定の20℃より低い温度を検出しても、開閉弁V3に対する開弁信号を出力しないように、制御器Cを構成することも可能である。制御器Cをこのように構成することにより、開閉弁V3の不要な開弁操作が回避できる。
【0034】
また、蒸発器6で冷却などして空調負荷などに供給するために冷/温水管23に流通させる流体、すなわち、上記の解決手段及び特許請求の範囲に記載しているブラインは、水などを上記実施形態のように相変化させないで供給するほか、潜熱を利用した熱搬送が可能なようにフロンなどを相変化させて供給するようにしても良い。
【0035】
【発明の効果】
以上説明したように本発明の吸収冷温水機においては、冷却水の温度が十分に低い低濃度・低負荷運転時にも蒸発器で蒸発させる冷媒液は不足せず、そのため冷媒ポンプがキャビテーションを起こす懸念はない。
【0036】
また、加熱作用運転時に流量弁を開弁する機能を制御手段が備えるようにした吸収冷温水機においては、暖房などの加熱運転時には機内を循環する吸収液の濃度は低下し、サイクルの温度レベルが下がるので、吸収冷温水機の耐久性が改善される。
【0037】
また、外気温度が所定温度より低い時の冷却作用運転停止時に流量制御弁を外気温度に基づいて開弁する機能を制御手段が備えるようにした吸収冷温水機においては、冷却運転停止時に吸収液が結晶化しないように、吸収液の稀釈を行うが、不要な稀釈は行わないので、冷房などの冷却運転に必要な冷媒は短時間で蒸発分離することが可能であり、冷房などを速やかに開始することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す説明図である。
【図2】図1に示した吸収冷温水機の制御例を示す説明図であり、(A)は冷媒管20Aに介在する弁を開閉弁として開閉制御する制御例、(B)は冷媒管20Aに介在する弁を流量制御としてその開度を制御する制御例である。
【図3】従来技術を示す説明図である。
【符号の説明】
1 高温再生器
2 ガスバーナ
3 低温再生器
4 凝縮器
4A 冷媒タンク
5 高温胴
6 蒸発器
7 吸収器
8 低温胴
9 低温熱交換器
10 高温熱交換器
12〜16 吸収液管
17 吸収液ポンプ
19〜21 冷媒管
22 冷媒ポンプ
23 冷/温水管
23A 伝熱管
24 冷却水管
C 制御器
S1・S2 温度センサ
V1〜V4 開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption chiller / heater.
[0002]
[Prior art]
As shown in FIG. 3, the high-temperature regenerator 1, the low-temperature regenerator 3, the condenser 4, the evaporator 6, the absorber 7, the low-temperature heat exchanger 9, the high-temperature heat exchanger 10, and the absorption liquid pump provided with the gas burner 2. 17, the refrigerant pump 22 and the like are connected by the absorption liquid pipe and the refrigerant pipe, and the refrigerant vapor evaporated and separated from the absorption liquid heated by the high temperature regenerator 1 and the low temperature regenerator 3 is sent to the condenser 4 to pass through the inside of the cooling water pipe 24. Cooled with flowing cooling water and condensed, the condensed refrigerant liquid is sent to the evaporator 6 to evaporate, and cold water cooled by the evaporation heat of the refrigerant is circulated and supplied to the cooling load via the cold / hot water pipe 23. Cooling operation such as cooling, the refrigerant vapor evaporated and separated from the absorption liquid heated in the high-temperature regenerator 1, and the absorption liquid obtained by evaporating and separating the refrigerant are directly sent to the low-temperature cylinder 8 and heated mainly by the heat of condensation of the refrigerant. Hot water is circulated and supplied to the heating load via the cold / hot water pipe 23. And heating operation such as heating, is configured absorption chiller is well-known so as to select implementation.
[0003]
In the absorption chiller / heater configured as described above, the refrigerant tank 4A that stores the refrigerant liquid that has dissipated heat and condensed in the cooling water flowing inside the cooling water pipe 24 is provided inside the condenser 4, and is stored therein. The amount of refrigerant liquid is determined by the magnitude of the load. That is, when the cooling load is large, the concentration difference of the absorbing liquid becomes large (in other words, the amount of refrigerant in the refrigerant pool increases), and when the cooling load is small, the concentration difference of the absorbing liquid becomes small (in other words, the refrigerant pool Refrigerant amount decreases). Therefore, when the cooling water temperature is low and the low concentration / low load operation is performed, the refrigerant liquid is insufficient in the evaporator 6 and the refrigerant pump 22 may be damaged due to cavitation.
[0004]
Further, when the cooling operation such as cooling is stopped, the on-off valve V4 is manually opened so that the absorption liquid heated and concentrated does not crystallize even if the temperature is lowered, and the refrigerant accumulated in the evaporator 6 In addition to returning the liquid to the absorber 7 and diluting the absorbing liquid, the refrigerant liquid in the refrigerant tank 4 </ b> A is also returned to the absorber 7.
[0005]
[Problems to be solved by the invention]
However, since the conventional absorption chiller / heater has a structure in which all of the refrigerant stored in the refrigerant tank of the condenser is returned to the absorber, the absorption liquid is more than necessary when the refrigerant is returned from the refrigerant tank to the absorber. However, when the cooling operation is restarted, it takes a long time to secure a necessary amount of refrigerant, and there is a problem that the cooling time to the set temperature may be greatly extended.
[0006]
Therefore, the temperature of the cooling water is low and the evaporator does not run out of refrigerant even during low-concentration / low-load operation, so that the refrigerant pump does not cause cavitation, and the absorption liquid does not crystallize when the cooling operation is stopped. In addition, when resuming the cooling operation, it is necessary to allow an appropriate dilution so that a necessary amount of refrigerant can be secured in a short time and can be quickly cooled to the set temperature. Met.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
Evaporator-absorber-regenerator-condenser connected to circulate and the absorption liquid refrigerant and a cooling operation for cooling the brine by evaporation heat of the cold medium, mainly by heat of condensation of the above-described refrigerant In the absorption chiller / heater that can selectively carry out the heating operation for heating the brine,
A refrigerant liquid storage unit for storing the refrigerant liquid condensed by dissipating the refrigerant to the cooling water in the condenser;
A refrigerant liquid outflow passage for causing the refrigerant liquid overflowing from the refrigerant liquid storage section to flow out;
In order to allow the overflowing refrigerant liquid to flow into the evaporator by connecting the refrigerant liquid outflow path to the evaporator with a first refrigerant pipe provided with a U-shaped hanging portion. A first refrigerant liquid inflow path,
The bottom part of the refrigerant liquid storage part is stored in the refrigerant liquid storage part by connecting the bottom part of the refrigerant liquid storage part to the first refrigerant pipe by a second refrigerant pipe through which an on-off valve or a flow control valve is interposed. A second refrigerant liquid inflow passage for allowing the refrigerant liquid to flow into the evaporator;
During the cooling operation, the on-off valve is closed / opened based on the high / low temperature of the cooling water, or the valve opening of the flow control valve is set to the temperature of the cooling water. Valve control means for controlling in inverse proportion;
A first configuration of the absorption chiller having a,
[0008]
In the absorption chiller / heater of the first configuration described above
In place of the second refrigerant inflow path,
The bottom of the refrigerant liquid reservoir is connected to the evaporator or the absorber by a second refrigerant pipe with an on-off valve or a flow rate control valve interposed therein, whereby the refrigerant liquid reservoir is stored in the refrigerant liquid reservoir. An absorption chiller / heater having a second configuration provided with a third refrigerant liquid inflow passage for allowing the refrigerant to flow into the evaporator or the absorber ;
[0009]
In the above-mentioned first absorption chiller / heater, or the absorption chiller / heater of the second configuration,
When the cooling operation is stopped, if the outside air temperature is equal to or lower than the predetermined temperature, the absorption chiller / heater of the third configuration provided with the outside air temperature valve control means for controlling the on-off valve to open. And provide.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. In order to facilitate understanding, in these drawings, parts having the same functions as those described with reference to FIG.
[0011]
In the embodiment of the present invention shown in FIG. 1, an absorption chiller / heater using water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid is used.
Then, the refrigerant tank 4A, that is, the refrigerant liquid outflow path 4b for allowing the refrigerant liquid overflowing from the refrigerant liquid storage section to flow out is connected to the evaporator 6 by the refrigerant pipe 20 provided with the U-shaped hanging portion 20a. As a result, the refrigerant liquid is supplied to the evaporator 6 through the refrigerant liquid inflow path in which the overflowing refrigerant liquid flows into the evaporator 6.
Further, the refrigerant tank 4A, that is, the bottom of the refrigerant liquid storage part is connected to the refrigerant pipe 20 by the refrigerant pipe 20A having the open / close valve V3, whereby the refrigerant liquid 4a stored in the refrigerant tank 4A is supplied to the evaporator 6. The refrigerant liquid is also supplied to the evaporator 6 through the refrigerant liquid inflow path that is allowed to flow, and the amount of the refrigerant liquid supplied from the refrigerant tank 4A to the evaporator 6 can be controlled by opening and closing the on-off valve V3. It has become.
[0012]
Reference numeral C is a control device of the present invention configured with a microcomputer or the like, and the on-off valve V3 is appropriately opened and closed as will be described later by a control program stored in a storage unit (not shown) of the controller C. The
[0013]
In the absorption chiller / heater having the above-described configuration, the on-off valves V1 to V4 are closed and the cooling water is supplied to the cooling water pipe 24, while the gas burner 2 burns city gas and the like, and the high temperature regenerator 1 heats the rare absorbent. When boiling, a refrigerant vapor evaporated and separated from the rare absorption liquid and an intermediate absorption liquid in which the concentration of the absorption liquid is increased by separating the refrigerant vapor are obtained.
[0014]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 passes through the upstream portion of the refrigerant pipe 19 and enters the low-temperature regenerator 3, and is generated in the high-temperature regenerator 1 and passes through the high-temperature heat exchanger 10 through the absorption liquid pipe 15. Then, the intermediate absorption liquid that has entered the low-temperature regenerator 3 is heated and condensed, and enters the condenser 4 through the downstream portion of the refrigerant pipe 19 in which the refrigerant drain heat recovery unit 11 is interposed.
[0015]
Further, the refrigerant heated by the low temperature regenerator 3 and evaporated and separated from the intermediate absorption liquid enters the condenser 4, exchanges heat with the cooling water flowing in the cooling water pipe 24 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 19. The refrigerant 6 enters the evaporator 6 through the refrigerant pipe 20 together.
[0016]
The refrigerant liquid accumulated in the refrigerant pool of the evaporator 6 is sprayed by the refrigerant pump 22 interposed in the refrigerant pipe 21 on the heat transfer pipe 23 </ b> A connected to the cold / hot water pipe 23 and supplied through the cold / hot water pipe 23. Heat is exchanged with the water to be evaporated, and the water flowing inside the heat transfer tube 23A is cooled.
[0017]
The refrigerant evaporated by the evaporator 6 enters the absorber 7 and is heated by the low-temperature regenerator 3 to evaporate and separate the refrigerant. The absorption liquid whose concentration of the absorption liquid is further increased is transferred from the absorption liquid pipe 16 to the low-temperature heat exchanger 9. Is supplied to the absorber 8 via, and sprayed from above in the absorber 7.
[0018]
Then, the absorption liquid whose concentration has been reduced by absorbing the refrigerant by the absorber 7, that is, the rare absorption liquid, is returned to the high-temperature regenerator 1 by the operation of the absorption liquid pump 17.
[0019]
When the absorption chiller / hot water machine is operated as described above, the chilled water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 23A piped inside the evaporator 6 is not shown through the cold / hot water pipe 23. Since it can be circulated and supplied, it can be cooled and cooled.
[0020]
In the absorption chiller / heater configured as described above, the on-off valves V1 and V2 are opened, and the city gas and the like are burned by the gas burner 2 without flowing the cooling water through the cooling water pipe 24. When the liquid is heated to boiling, the refrigerant vapor evaporated and separated from the rare absorption liquid and the absorption liquid with the concentration of the absorption liquid increased by separating the refrigerant vapor are obtained. Any but three will enter the absorber 7.
[0021]
Then, the refrigerant vapor entering the absorber 7 enters the adjacent evaporator 6, dissipates heat to the water flowing in the cold / hot water pipe 23 </ b> A, condenses, and heats the water flowing in the cold / hot water pipe 23. The refrigerant liquid condensed in the evaporator 6 overflows and returns to the absorber 7, is mixed (absorbed) with the absorption liquid that has entered from the absorption liquid pipe 15 </ b> A, and is returned to the high-temperature regenerator 1 by the absorption liquid pump 17.
[0022]
When the absorption chiller / heater is operated as described above, the hot water heated mainly by the heat of condensation of the refrigerant in the heat transfer pipe 23A piped inside the evaporator 6 is not shown via the cold / hot water pipe 23. Since it can be circulated and supplied to the air conditioning load, heating operation such as heating can be performed.
[0023]
In the absorption chiller / heater of the present invention, when the chilled water cooled by the heat transfer pipe 23A in the evaporator 6 is circulated and supplied from the cold / hot water pipe 23 to the load to perform a cooling operation such as cooling, the controller C For example, as shown in FIG. 2A, the on-off valve V3 is closed when the cooling water inlet temperature detected by the temperature sensor S1 installed on the inlet side of the absorber 7 of the cooling water pipe 24 becomes a predetermined temperature, for example, 25 ° C. or more. The temperature sensor S1 is configured to open when the coolant inlet temperature detected by the temperature sensor S1 becomes another predetermined temperature, for example, 20 ° C. or less (the set temperature is variable on a microcomputer or the like).
That is, the on-off valve V3 is closed when the temperature is higher than the predetermined temperature of the cooling water, and the on-off valve V3 is opened when the temperature is lower than the predetermined temperature of the cooling water. The on-off valve is controlled to be closed / open based on high / low ”.
[0024]
Therefore, when the temperature of the cooling water supplied from the cooling water pipe 24 to the absorber 7 is low and the absorption of the refrigerant by the absorption liquid in the absorber 7 is likely to proceed, and therefore the amount of the refrigerant in the evaporator 6 tends to be insufficient. Since the on-off valve V3 interposed in the refrigerant pipe 20A is opened and the refrigerant liquid in the refrigerant tank of the condenser 4 is supplied to the evaporator 6 through the refrigerant pipes 20A and 20, the low-concentration and low-load operation is performed. However, there is no concern that the refrigerant is insufficient in the evaporator 6 and the refrigerant pump 22 causes cavitation.
[0025]
Note that the opening / closing valve V3 interposed in the refrigerant pipe 20A is changed to a flow rate control valve V3 whose opening degree can be freely controlled, and the opening degree is controlled by the controller C, for example, as shown in FIG. Even if the detected cooling water inlet temperature is controlled as a variable in inverse proportion (the set temperature is variable on a microcomputer or the like), the same effect as described above can be obtained.
[0026]
In addition, when the controller C stops the combustion of the gas burner 2 and ends the cooling operation such as cooling, the controller C opens the on-off valve V4 after stopping the combustion of the gas burner 2, and opens the refrigerant pump 22 for a predetermined time, for example, 10 minutes. The refrigerant liquid accumulated in the refrigerant reservoir of the evaporator 6 is transferred to the absorber 7 through the refrigerant pipe 21A, and the absorption liquid diluted with the refrigerant supplied from the evaporator 6 is converted into the high temperature regenerator 1, It is configured so as to circulate and supply to the regenerator 3 and so on to dilute the entire absorbent.
[0027]
Furthermore, when the outside air temperature detected by the temperature sensor S2 is a predetermined temperature, for example, 5 ° C. or less, the controller C opens the on-off valve V3 interposed in the refrigerant pipe 20A (the opening time is based on the outside air temperature). The refrigerant liquid accumulated in the refrigerant tank 4A in the condenser 4 is supplied to the absorber 7 via the evaporator 6 so that the absorption liquid can be further diluted. It is. Therefore, the absorption liquid does not crystallize even in a cold region, and unnecessary dilution does not occur.
[0028]
That is, according to the absorption chiller / heater of the present invention, it is possible to perform a dilution operation that does not crystallize the absorbing solution even in a cold region, and an unnecessary dilution operation is not performed. A necessary amount of the refrigerant can be evaporated and separated in a short time, and a cooling operation such as cooling can be quickly started.
[0029]
When the controller C circulates and supplies hot water heated by the heat transfer pipe 23A in the evaporator 6 to the load from the cold / hot water pipe 23 to perform heating operation such as heating, the on-off valve V3 interposed in the refrigerant pipe 20A. Therefore, the refrigerant liquid stored in the refrigerant tank 4A in the condenser 4 during the cooling operation such as cooling is returned to the absorber 7 via the evaporator 6 and is absorbed. Mixed (absorbed).
[0030]
Therefore, the concentration of the absorbing liquid circulating in the machine is reduced to the whole, and the temperature level of the cycle is lowered, so that the durability of the absorption chiller / hot water machine is improved.
[0031]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0032]
For example, the refrigerant pipe 20A in which the on-off valve V3 is interposed can be provided so as to reach the evaporator 6 or the absorber 7 directly from the refrigerant tank 4A.
[0033]
Further, during the cooling operation in which cold water is circulated and supplied from the cold / hot water pipe 23, when the combustion of the gas burner 2 has stopped for a predetermined time, for example, more than 5 minutes, the temperature sensor S1 has a temperature lower than the predetermined 20 ° C. It is also possible to configure the controller C so as not to output a valve opening signal for the on-off valve V3 even if it is detected. By configuring the controller C in this way, unnecessary opening operation of the on-off valve V3 can be avoided.
[0034]
The fluid to be circulated to the cold / hot water pipe 23 in order to supply to such an air conditioning load by such as cooling in the evaporator 6, i.e., the brine that has been described in the above range of solutions and claims, water, etc. May be supplied without changing the phase as in the above embodiment, or may be supplied with changing the phase of chlorofluorocarbon or the like so as to enable heat transfer using latent heat.
[0035]
【The invention's effect】
As described above, in the absorption chiller / heater of the present invention, the refrigerant liquid evaporated by the evaporator is not insufficient even during low concentration / low load operation where the temperature of the cooling water is sufficiently low, and the refrigerant pump causes cavitation. There is no concern.
[0036]
In addition, in an absorption chiller / heater in which the control means has a function of opening the flow valve during the heating operation, the concentration of the absorbing liquid circulating in the apparatus decreases during the heating operation such as heating, and the temperature level of the cycle As a result, the durability of the absorption chiller / heater is improved.
[0037]
Further, in the absorption chiller / heater in which the control means has a function of opening the flow rate control valve based on the outside air temperature when the cooling operation is stopped when the outside air temperature is lower than the predetermined temperature, the absorption liquid The absorption liquid is diluted so that it does not crystallize, but unnecessary dilution is not performed, so the refrigerant required for cooling operation such as cooling can be evaporated and separated in a short time, and cooling etc. can be performed quickly. Can start.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
2A and 2B are explanatory views showing a control example of the absorption chiller / heater shown in FIG. 1, in which FIG. 2A is a control example in which opening and closing control is performed using a valve interposed in the refrigerant pipe 20A, and FIG. This is a control example in which the opening degree is controlled by using a valve interposed in 20A as a flow control.
FIG. 3 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Gas burner 3 Low temperature regenerator 4 Condenser 4A Refrigerant tank 5 High temperature cylinder 6 Evaporator 7 Absorber 8 Low temperature cylinder 9 Low temperature heat exchanger 10 High temperature heat exchanger 12-16 Absorption liquid pipe 17 Absorption liquid pump 19 21 Refrigerant pipe 22 Refrigerant pump 23 Cold / hot water pipe 23A Heat transfer pipe 24 Cooling water pipe C Controllers S1 and S2 Temperature sensors V1 to V4 On-off valve

Claims (3)

蒸発器・吸収器・再生器・凝縮器を連結して冷媒と吸収液とを循環させ、前記冷媒の蒸発熱によりブラインを冷却させる冷却運転と、主に前記冷媒の凝縮熱によりブラインを加熱させる加熱運転とが選択実施可能な吸収冷温水機において、
前記凝縮器で前記冷媒を冷却水に放熱させて凝縮した冷媒液を貯留するための冷媒液貯留部と、
前記冷媒液貯留部からあふれ出た前記冷媒液を流出させるための冷媒液流出路と、
前記冷媒液流出路を、U字状の垂下部分を設けた第1の冷媒管によって、前記蒸発器に連結することにより、前記あふれ出た冷媒液を前記蒸発器に流入させるための第1の冷媒液流入路と、
前記冷媒液貯留部の底部を、開閉弁または流量制御弁を介在させた第2の冷媒管によって、前記第1の冷媒管に連結することにより、前記冷媒液貯留部に貯留された前記冷媒液を前記蒸発器に流入させるための第2の冷媒液流入路と、
前記冷却運転時に、前記冷却水の温度の高・低に基づいて前記開閉弁を閉・開し、または、前記流量制御弁の弁開度を前記冷却水の温度に対して逆比例的に制御する弁制御手段と
を設けたことを特徴とする吸収冷温水機。
Evaporator-absorber-regenerator-condenser connected to a by circulating the absorbing solution and refrigerant, and the cooling operation for cooling the brine by evaporation heat of the refrigerant, a brine by condensation heat mainly the refrigerant In an absorption chiller / heater that can be selectively operated with heating operation ,
A refrigerant liquid storage section for storing the refrigerant liquid condensed by dissipating the refrigerant to the cooling water in the condenser;
A refrigerant liquid outflow passage for flowing out the refrigerant liquid overflowing from the refrigerant liquid storage section;
The refrigerant liquid outflow path is connected to the evaporator by a first refrigerant pipe provided with a U-shaped drooping portion, thereby allowing the overflowing refrigerant liquid to flow into the evaporator. A refrigerant liquid inflow path;
The refrigerant liquid stored in the refrigerant liquid storage section by connecting the bottom of the refrigerant liquid storage section to the first refrigerant pipe through a second refrigerant pipe with an on-off valve or a flow control valve interposed therebetween. A second refrigerant liquid inflow passage for allowing the refrigerant to flow into the evaporator;
During the cooling operation, the on-off valve is closed / opened based on the high / low temperature of the cooling water, or the valve opening degree of the flow control valve is controlled in inverse proportion to the temperature of the cooling water. Valve control means to
Absorption chiller / heater characterized by the provision of
前記第2の冷媒流入路に代えて、
前記冷媒液貯留部の底部を、開閉弁または流量制御弁を介在させた第2の冷媒管によって、前記蒸発器または前記吸収器に連結することにより、前記冷媒液貯留部に貯留された前記冷媒を前記蒸発器または前記吸収器に流入させる第3の冷媒液流入路を設けたことを特徴とする請求項1記載の吸収冷温水機。
Instead of the second refrigerant inflow path,
The refrigerant stored in the refrigerant liquid storage unit by connecting the bottom of the refrigerant liquid storage unit to the evaporator or the absorber by a second refrigerant pipe with an on-off valve or a flow rate control valve interposed therebetween. The absorption chiller / heater according to claim 1, further comprising a third refrigerant liquid inflow passage through which the refrigerant flows into the evaporator or the absorber .
前記冷却運転を停止する際に、外気温度が所定温度以下であるときは、前記開閉弁を開弁するように制御する外気温度弁制御手段を設けたことを特徴とする請求項1または請求項2記載の吸収冷温水機。  The outside air temperature valve control means is provided for controlling the open / close valve to open when the outside air temperature is equal to or lower than a predetermined temperature when the cooling operation is stopped. 2. Absorption cold / hot water machine of 2 description.
JP2002150752A 2002-05-24 2002-05-24 Absorption chiller / heater Expired - Lifetime JP4166037B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002150752A JP4166037B2 (en) 2002-05-24 2002-05-24 Absorption chiller / heater
CNB031239374A CN1229609C (en) 2002-05-24 2003-05-22 Absorption type cold/hot water machine
KR1020030032722A KR100589557B1 (en) 2002-05-24 2003-05-23 Absorption Water Chiller/Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150752A JP4166037B2 (en) 2002-05-24 2002-05-24 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2003343940A JP2003343940A (en) 2003-12-03
JP4166037B2 true JP4166037B2 (en) 2008-10-15

Family

ID=29706426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150752A Expired - Lifetime JP4166037B2 (en) 2002-05-24 2002-05-24 Absorption chiller / heater

Country Status (3)

Country Link
JP (1) JP4166037B2 (en)
KR (1) KR100589557B1 (en)
CN (1) CN1229609C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1634520A1 (en) * 2004-09-13 2006-03-15 Nestec S.A. Device and method for heating a liquid
JP4326461B2 (en) * 2004-11-15 2009-09-09 Smc株式会社 Temperature control system for small flow rate liquid
JP4566919B2 (en) * 2006-01-24 2010-10-20 株式会社日本製鋼所 Double-effect absorption chill generation / output device
JP5091590B2 (en) * 2007-08-30 2012-12-05 矢崎総業株式会社 Absorption type water heater
JP5098547B2 (en) * 2007-10-03 2012-12-12 ダイキン工業株式会社 Absorption refrigeration system
JP2009236368A (en) 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Absorption chiller/heater
JP5097593B2 (en) * 2008-03-28 2012-12-12 三洋電機株式会社 Absorption heat pump
JP5575519B2 (en) * 2010-03-26 2014-08-20 三洋電機株式会社 Absorption refrigerator
CN102123533A (en) * 2010-12-30 2011-07-13 北京华进创威电子有限公司 Method for protecting induction heating coil by using water temperature relay
JP2011202948A (en) * 2011-06-06 2011-10-13 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2011220675A (en) * 2011-06-06 2011-11-04 Sanyo Electric Co Ltd Absorption refrigerating machine

Also Published As

Publication number Publication date
KR20030091755A (en) 2003-12-03
CN1460827A (en) 2003-12-10
KR100589557B1 (en) 2006-06-14
JP2003343940A (en) 2003-12-03
CN1229609C (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP4606255B2 (en) Operation method of single double effect absorption refrigerator
JP4166037B2 (en) Absorption chiller / heater
JP2002147885A (en) Absorption refrigerating machine
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
KR100448424B1 (en) Control method of absorption refrigerator
JP2008025915A (en) Absorption refrigerator system
JP5575519B2 (en) Absorption refrigerator
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3883894B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP4079570B2 (en) Control method of absorption refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JP7054855B2 (en) Absorption chiller
JP4278315B2 (en) Absorption refrigerator
JP3831425B2 (en) Control method of absorption chiller / heater
JP6765056B2 (en) Absorption chiller
JP2895974B2 (en) Absorption refrigerator
JP4596683B2 (en) Absorption refrigerator
JP2004286244A (en) Absorption heat pump device
JP2005106408A (en) Absorption type freezer
JP2009085508A (en) Absorption type refrigerating machine
JP2000227263A (en) Control for absorption water chiller boiler
JP2000257979A (en) Method for operating absorption heater chiller utilizing exhaust heat
JP2005326089A (en) Absorption refrigerating machine
JP2001317836A (en) Method for controlling absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R151 Written notification of patent or utility model registration

Ref document number: 4166037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term