JP4566919B2 - Double-effect absorption chill generation / output device - Google Patents

Double-effect absorption chill generation / output device Download PDF

Info

Publication number
JP4566919B2
JP4566919B2 JP2006015116A JP2006015116A JP4566919B2 JP 4566919 B2 JP4566919 B2 JP 4566919B2 JP 2006015116 A JP2006015116 A JP 2006015116A JP 2006015116 A JP2006015116 A JP 2006015116A JP 4566919 B2 JP4566919 B2 JP 4566919B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
temperature regenerator
absorbent
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006015116A
Other languages
Japanese (ja)
Other versions
JP2007198625A (en
Inventor
寧和 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2006015116A priority Critical patent/JP4566919B2/en
Publication of JP2007198625A publication Critical patent/JP2007198625A/en
Application granted granted Critical
Publication of JP4566919B2 publication Critical patent/JP4566919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

本発明は、二重効用吸収式冷熱発生・出力装置に関し、特に、揮発性二次冷媒冷熱出力方式、蒸発器、流下液膜式再生器と流下液膜式再生凝縮器の組み合わせ使用または単独使用により、成績係数の向上及び装置の簡素化を図るための新規な改良に関する。   The present invention relates to a double-effect absorption-type cold heat generation / output device, and in particular, a volatile secondary refrigerant cold-heat output method, an evaporator, a combined use of a falling liquid film type regenerator and a falling liquid film type regenerative condenser, or a single use. Thus, the present invention relates to a new improvement for improving the coefficient of performance and simplifying the apparatus.

従来の汎用リチウム/水素二重効用吸収冷凍機は、吸収液の再生方式によりシリーズ、パラレルとリバースフローを適用するものに分類され、さらに二段吸収、蒸発サイクルの適用や、再生器部、吸収器部と蒸発器部における違う種類の熱交換器、違う熱交換方式の適用や違う熱交換器の構成と配置により違うものに分類される。
また、どの種類の二重効用吸収冷凍機であっても、蒸発器部において循環冷水による発生冷熱の出力方式を採用しており、つまりこの様な蒸発器は冷熱発生・出力のための冷媒と循環冷水の熱交換器である。ここで、循環冷水による冷熱発生の出力方式とは、蒸発器伝熱管外壁面に散布される冷媒液の蒸発吸熱による発生冷熱により、前記蒸発器伝熱管管内に流される循環冷水を冷却し、この様に温度が下がった循環冷水を循環冷水ポンプにより、空調機に送り、そこで空調用空気を冷やして冷熱出力をなされるものである。即ち、蒸発器での発生冷熱の出力は、循環冷水の冷却とこれによる空気の冷却を行う循環冷水の顕熱変化を利用してなされるものである。
また、一般に低温再生器または高温再生器には伝熱管横型配置のプール加熱方式が採用されている。
Conventional general-purpose lithium / hydrogen double-effect absorption refrigerators are classified into those that apply series, parallel and reverse flow, depending on the regeneration method of the absorption liquid, and further, two-stage absorption, evaporation cycle application, regenerator part, absorption Different types of heat exchangers in the evaporator and evaporator sections, and different types depending on the application of different heat exchange methods and the configuration and arrangement of different heat exchangers.
In addition, any type of double-effect absorption chiller employs an output system for generating cold heat using circulating chilled water in the evaporator section, that is, such an evaporator is a refrigerant for generating and outputting cold heat. It is a heat exchanger for circulating cold water. Here, the output method of generating cold heat by circulating cold water is to cool the circulating cold water flowing into the evaporator heat transfer tube by the generated cold heat due to the evaporation heat absorption of the refrigerant liquid sprayed on the outer wall surface of the evaporator heat transfer tube. In this way, the circulating cold water whose temperature has been lowered is sent to the air conditioner by the circulating cold water pump, where the air for air conditioning is cooled to produce a cold output. That is, the output of the generated cold heat in the evaporator is made by utilizing the sensible heat change of the circulating cold water that cools the circulating cold water and thereby cools the air.
In general, a pool heating method in which a heat transfer tube is arranged horizontally is adopted for a low temperature regenerator or a high temperature regenerator.

図9は、特許文献等は特に示していないが、本発明者がこれまでに発明した揮発性二次冷媒冷熱発生・出力装置の構成例を示している。
図示の揮発性二次冷媒冷熱発生・出力装置500は、図示しない凝縮器からの冷媒凝縮液を蒸発器501の伝熱管外壁面に散布し、その蒸発吸熱によって発生する冷熱により、前記蒸発器501の伝熱管内側に流される揮発性二次冷媒蒸気を凝縮させ、次にこの様な揮発性二次冷媒凝縮液をいったんレシーバー6に溜めてから揮発性二次冷媒液ポンプ503により空調機7に送り、その蒸発吸熱により前記空調機7を通る空気を冷やして冷熱出力が得られる。
また前記冷熱出力用揮発性二次冷媒に関しては、HFE系冷媒や炭化水素系冷媒や代替フロン系冷媒、アンモニアや二酸化炭素等が適用できる。
FIG. 9 shows a configuration example of a volatile secondary refrigerant cold heat generation / output device that has been invented so far by the present inventor, although patent documents and the like are not particularly shown.
The illustrated volatile secondary refrigerant cold heat generating / outputting device 500 disperses the refrigerant condensate from the condenser (not shown) on the outer wall surface of the heat transfer tube of the evaporator 501, and the evaporator 501 generates cold heat generated by the evaporation heat absorption. Volatile secondary refrigerant vapor flowing inside the heat transfer tube is condensed, and then such volatile secondary refrigerant condensate is once accumulated in the receiver 6 and then stored in the air conditioner 7 by the volatile secondary refrigerant liquid pump 503. The air passing through the air conditioner 7 is cooled by the evaporation heat absorption, and a cold output is obtained.
As the volatile secondary refrigerant for cold output, HFE refrigerant, hydrocarbon refrigerant, alternative chlorofluorocarbon refrigerant, ammonia, carbon dioxide, or the like can be applied.

図10は、本発明者はこれまでに発明した揮発性二次冷媒冷熱出力用蒸発器600の構成例を示している。
図示の蒸発器伝熱管は伝熱管の間に前記伝熱管外径より薄いプレート部が設けられるプレートチューブ伝熱管601で構成され、図10の管内流体初期分配器602はこれに入ってくる揮発性二次冷媒流体(蒸気)を、複数のプレートチューブ伝熱管601のそれぞれの複数チューブ管内に分配するものである。
図10の管内流体サブ分配器603は図示しない上流側プレートチューブの複数管内流路からの蒸気または蒸気と流体の二相流体を混合してその下流側プレートチューブの複数並列流路に分配する機能を備えるものである。
また、管外液サブ分配装置604はプレートチューブ管外壁面に沿って流下した液流体を受けた後、その下流側プレートチューブの外壁面に再散布する機能を有するものである。
図10の出口ヘッダー605は複数のプレートチューブからの管内流体を集合して導出するものである。
従って、図10に示した熱交換器は上述の管内流体初期分配器602、管内流体サブ分配器603、管外液サブ分配器604、出口ヘッダー605とプレートチューブ伝熱管601より構成されるコンパクト熱交換器である。
図11は、本発明者がこれまでに発明した吸収冷熱発生装置に適用する揮発性二次冷媒冷熱出力装置に含まれる空調機熱交換器700の構成例を示す。図示の空調機熱交換器700は、伝熱管702内に揮発性二次冷媒液703を流し、管外のプレートフィン701間流路に空調用空気を流して、揮発性二次冷媒による空調用空気の冷却用3層パネル型コンパクト熱交換器である。
FIG. 10 shows a configuration example of an evaporator 600 for volatile secondary refrigerant cold output that has been invented so far.
The illustrated evaporator heat transfer tube is composed of a plate tube heat transfer tube 601 in which a plate portion thinner than the outer diameter of the heat transfer tube is provided between the heat transfer tubes, and the in-pipe fluid initial distributor 602 in FIG. The secondary refrigerant fluid (steam) is distributed into the plurality of tube tubes of each of the plurality of plate tube heat transfer tubes 601.
The in-pipe fluid sub-distributor 603 in FIG. 10 has a function of mixing steam or two-phase fluid of steam and fluid from a plurality of in-pipe channels of an upstream plate tube (not shown) and distributing it to a plurality of parallel channels in the downstream plate tube. Is provided.
Further, the extra-liquid sub-distributor 604 has a function of receiving the liquid fluid flowing down along the outer wall surface of the plate tube and then re-spraying it on the outer wall surface of the downstream side plate tube.
The outlet header 605 in FIG. 10 collects and extracts the in-tube fluid from the plurality of plate tubes.
Therefore, the heat exchanger shown in FIG. 10 is a compact heat composed of the above-described in-pipe fluid initial distributor 602, in-pipe fluid sub-distributor 603, extra-tube liquid sub-distributor 604, outlet header 605 and plate tube heat transfer tube 601. It is an exchanger.
FIG. 11 shows a configuration example of an air conditioner heat exchanger 700 included in a volatile secondary refrigerant cold output device applied to the absorption cold heat generator invented by the present inventors so far. The air conditioner heat exchanger 700 shown in the figure flows the volatile secondary refrigerant liquid 703 in the heat transfer tube 702, flows the air-conditioning air to the flow path between the plate fins 701 outside the tube, and uses the volatile secondary refrigerant for air-conditioning. It is a three-layer panel type compact heat exchanger for cooling air.

従来の二重効用吸収冷凍機には、次のような課題が存在していた。
(1)、循環冷水冷熱出力は循環冷水の顕熱を利用するものなので、蒸発器部においてなるべく低い冷熱発生温度、例えば5℃が求められている。よって、一般に希吸収液と再生済吸収液の濃度を58〜64wt%の範囲に設定している。冷熱発生温度が低い場合、再生済吸収液は濃度が高いと、まず吸収器へ戻される際、低温溶液熱交換器下流側の吸収液出口または吸収液戻し管における局部温度低下による結晶現象が生じやすく、これにより、運転支障が生じる場合もある。
(2)、蒸発器部での発生冷熱温度の設定が低いと、逆に再生器部または高温再生器での吸収液再生操作温度が高くなり、所用熱源流体をより低温または低品位まで利用できなく、一次エネルギー利用効率が劣っている。
(3)、蒸発器部における循環冷水側の局部熱伝達係数が比較的低いことにより、所要蒸発器伝熱面積あるいは熱交換器サイズが大きく、所用材料が多い。
(4)、空調器部における循環冷水側局部熱伝達係数が比較的低いことと、空気側局部熱伝達係数が低いことにより、熱交換器のコンパクト化が困難であり、所用材料が多い。
(5)、循環冷水量が多いため、所用循環冷水ポンプ動力または電力が多い。
(6)、循環冷水装置所用材料が多い。
(7)、補給水による蒸発器部熱交換器伝熱管管内の汚れの定期的清掃が必要となる。
(8)、再生器内の吸収液プール側局部熱伝達係数が低く、所用伝熱管内凝縮冷媒液の流れにより管内局部熱伝達係数が劣っている場合も多く、所用伝熱面積または所用材料が多いと見られる。
Conventional double-effect absorption refrigerators have the following problems.
(1) Since the circulating chilled water cooling output uses the sensible heat of the circulating chilled water, the lowest possible cold heat generation temperature, for example, 5 ° C. is required in the evaporator section. Therefore, generally, the concentration of the diluted absorbent and the regenerated absorbent is set in the range of 58 to 64 wt%. When the cold heat generation temperature is low and the concentration of the regenerated absorbent is high, a crystal phenomenon occurs due to a local temperature drop at the absorbent outlet or the absorbent return pipe downstream of the low-temperature solution heat exchanger when it is first returned to the absorber. It is easy and driving trouble may be caused by this.
(2) When the setting of the generated cold heat temperature in the evaporator section is low, the absorption liquid regeneration operation temperature in the regenerator section or the high temperature regenerator becomes high, and the required heat source fluid can be used to a lower temperature or lower quality. There is no primary energy utilization efficiency.
(3) Because the local heat transfer coefficient on the circulating cold water side in the evaporator section is relatively low, the required evaporator heat transfer area or heat exchanger size is large, and there are many necessary materials.
(4) Since the circulating cold water side local heat transfer coefficient in the air conditioner section is relatively low and the air side local heat transfer coefficient is low, it is difficult to make the heat exchanger compact, and there are many necessary materials.
(5) Since the amount of circulating chilled water is large, the required circulating chilled water pump power or electric power is large.
(6) There are many materials for circulating chilled water equipment.
(7) Periodic cleaning of dirt in the evaporator heat exchanger tube with makeup water is necessary.
(8) The absorption pool side local heat transfer coefficient in the regenerator is low, and the local heat transfer coefficient in the pipe is often inferior due to the flow of the condensed refrigerant liquid in the heat transfer pipe. It seems that there are many.

本発明による二重効用吸収式冷熱発生・出力装置は、少なくとも低温再生器、高温再生器、凝縮器、吸収器と揮発性二次冷媒冷熱出力用の蒸発器より構成され、吸収液の再生を低温再生器と高温再生器により行い、前記高温再生器からの発生冷媒蒸気を前記低温再生器に供給してそこでの吸収液再生用熱源として使用し、前記低温再生器からの発生冷媒蒸気を前記凝縮器にフラッシュさせ、そこで冷却水により冷媒液に凝縮させ、前記低温再生器において吸収液を冷媒蒸気により加熱して生じた冷媒凝縮液を希吸収液または要再生吸収液と熱交換させて熱回収がなされてから前記凝縮器にフラッシュさせるかあるいは直後に前記凝縮器にフラッシュさせるかどうかに拘わらずただし、そこでの発生冷媒蒸気を冷却水により凝縮させ、前記凝縮器内の冷媒凝縮液を圧力差によりU字管を経て前記蒸発器内に供給し、前記循環冷媒液ポンプにより前記蒸発器底部の冷媒液貯室内の冷媒液を循環し、このような循環冷媒液と前記凝縮器からの冷媒凝縮液を共に蒸発器の伝熱管外壁面に散布し、その蒸発吸熱による発生冷熱により、蒸発器の伝熱管内に入ってくる揮発性二次冷媒蒸気を凝縮させて得た揮発性二次冷媒液をレシーバーに流入させていったん溜めてから揮発性二次冷媒液ポンプにより揮発性二次冷媒/空気熱交換器(以下、空調機と称す)に送り、そこで送風される空調用空気を冷却して冷熱出力をなされ、前記吸収器において循環希吸収液ポンプにより前記吸収器底部の希吸収液貯室からの希吸収液を循環し、低温溶液熱交換器を出た再生済吸収液と共に前記吸収器の伝熱管外壁面に散布して流下させながら前記蒸発器からの発生冷媒蒸気を吸収し、その際の吸収熱を前記吸収器の伝熱管内に流される冷却水により除去する構成とした二重効用吸収式冷熱発生・出力装置において、前記高温再生器からの高温の発生冷媒蒸気を低温再生器に供給し吸収液の再生に使用して生じる冷媒凝縮液を、低温溶液熱交換器の希吸収液出口付近に設けられる希吸収液/冷媒液熱交換器において前記低温再生器からの前記低温溶液熱交換器を出た希吸収液の再予熱に使用して熱回収が行われる構成であり、また、少なくとも低温再生器、高温再生器、凝縮器、吸収器と揮発性二次冷媒冷熱出力用の蒸発器より構成され、吸収液の再生を低温再生器と高温再生器により行い、前記高温再生器からの発生冷媒蒸気を前記低温再生器に供給してそこでの吸収液再生用熱源として使用し、前記低温再生器からの発生冷媒蒸気を前記凝縮器にフラッシュさせ、そこで冷却水により冷媒液に凝縮させ、前記低温再生器において吸収液を冷媒蒸気により加熱して生じた冷媒凝縮液を希吸収液または要再生吸収液と熱交換させて熱回収がなされてから前記凝縮器にフラッシュさせるかあるいは直後に前記凝縮器にフラッシュさせるかどうかに拘わらずただし、そこでの発生冷媒蒸気を冷却水により凝縮させ、前記凝縮器内の冷媒凝縮液を圧力差によりU字管を経て前記蒸発器内に供給し、前記循環冷媒液ポンプにより前記蒸発器底部の冷媒液貯室内の冷媒液を循環し、このような循環冷媒液と前記凝縮器からの冷媒凝縮液を共に蒸発器の伝熱管外壁面に散布し、その蒸発吸熱による発生冷熱により、蒸発器の伝熱管内に入ってくる揮発性二次冷媒蒸気を凝縮させて得た揮発性二次冷媒液をレシーバーに流入させていったん溜めてから揮発性二次冷媒液ポンプにより揮発性二次冷媒/空気熱交換器(以下、空調機と称す)に送り、そこで送風される空調用空気を冷却して冷熱出力をなされ、前記吸収器において循環希吸収液ポンプにより前記吸収器底部の希吸収液貯室からの希吸収液を循環し、低温溶液熱交換器を出た再生済吸収液と共に前記吸収器の伝熱管外壁面に散布して流下させながら前記蒸発器からの発生冷媒蒸気を吸収し、その際の吸収熱を前記吸収器の伝熱管内に流される冷却水により除去する構成とした二重効用吸収式冷熱発生・出力装置において、希吸収液/冷媒液熱交換器を、低温溶液熱交換器の付近における希吸収液の分流流路に設置し、シリーズフローの場合、希吸収液ポンプにより前記吸収器底部の希吸収液貯室から送ってくる希吸収液を分流し、主流の希吸収液を低温溶液熱交換器に送って低温再生器からの再生済吸収液により予熱し、リバースフローの場合、主流の希吸収液を高温再生器からの高温溶液熱交換器を経た再生済吸収液により予熱し、パラレルフローの場合、主流の希吸収液を低温溶液熱交換器において低温再生器からの再生済吸収液と高温再生器からの高温溶液熱交換器を経てきた再生済吸収液との合流吸収液により予熱してから分流してそれぞれ低温再生器と高温溶液熱交換器を経て高温再生器へ供給するかあるいは分流してからそれぞれ低温溶液熱交換器と高温溶液熱交換器を経て低温再生器と高温再生器へ供給するかに拘わらず、いずれの場合において、支流の希吸収液を前記希吸収液/冷媒液熱交換器に送り、そこで前記低温再生器からの冷媒凝縮液により予熱し、また前記希吸収液/冷媒液熱交換器を出た支流の希吸収液を、低温溶液熱交換器を出た主流の希吸収液に合流させる構成であり、また、前記高温再生器に燃料ガスまたは燃料油直だき再生器を適用し、前記低温再生器には流下液膜式再生凝縮器またはプール加熱方式再生器を適用する構成であり、また、前記高温再生器に流下液膜式再生器を適用し、相変化のない熱源流体または排熱を高温再生器の熱源とし、低温再生器には流下液膜式再生凝縮器またはプール加熱方式再生器を適用する構成であり、また、前記高温再生器に流下液膜式再生凝縮器を適用し、相変化のある熱源流体または高温水蒸気を高温再生器の熱源とし、低温再生器には流下液膜式再生凝縮器またはプール加熱方式再生器を適用する構成である。 The double-effect absorption-type cold generator / output device according to the present invention comprises at least a low-temperature regenerator, a high-temperature regenerator, a condenser, an absorber and an evaporator for volatile secondary refrigerant cold-heat output, and regenerates the absorbing liquid. The low-temperature regenerator and the high-temperature regenerator are used to supply the generated refrigerant vapor from the high-temperature regenerator to the low-temperature regenerator and use it as a heat source for absorbing liquid regeneration there, and the generated refrigerant vapor from the low-temperature regenerator is The condenser is flushed and condensed into a refrigerant liquid by cooling water, and the refrigerant condensate generated by heating the absorption liquid with the refrigerant vapor in the low-temperature regenerator is heat-exchanged with the rare absorption liquid or the regenerated absorption liquid to be heated. Regardless of whether the condenser is flushed after recovery or whether the condenser is flushed immediately thereafter, the generated refrigerant vapor is condensed with cooling water, and the condensation is performed. The refrigerant condensate is supplied into the evaporator through a U-tube due to a pressure difference, and the refrigerant liquid in the refrigerant liquid storage chamber at the bottom of the evaporator is circulated by the circulation refrigerant liquid pump. And the refrigerant condensate from the condenser are sprayed on the outer wall surface of the heat transfer tube of the evaporator, and the volatile secondary refrigerant vapor that enters the heat transfer tube of the evaporator is condensed by the cold heat generated by the evaporation heat absorption. The obtained volatile secondary refrigerant liquid is allowed to flow into the receiver and is temporarily stored. Then, the volatile secondary refrigerant liquid is sent to a volatile secondary refrigerant / air heat exchanger (hereinafter referred to as an air conditioner) by a volatile secondary refrigerant liquid pump, and blown there. The cooling air is cooled and the cooling output is made. In the absorber, the diluted absorbent from the diluted absorbent storage chamber at the bottom of the absorber is circulated by the circulating diluted absorbent pump, and the low temperature solution heat exchanger is exited. Heat exchanger tube of the absorber together with regenerated absorbent While flowing down sprayed on the wall absorbs the generated refrigerant vapor from the evaporator, the double effect absorption cold energy is configured to be removed by the cooling water flowing the absorption heat of the heat transfer tube of the absorber in generating and outputting equipment, the refrigerant condensate hot occurrence refrigerant vapor generated by using the playback is supplied to the low-temperature regenerator absorbing solution from the high temperature generator, near the dilute absorbent liquid outlet of the low-temperature solution heat exchanger using said re-preheating the dilute absorbent solution, wherein exiting the low-temperature solution heat exchanger from the low-temperature regenerator in a dilute absorbent solution / refrigerant liquid heat exchanger provided in a configuration heat recovery is carried out, also, at least It is composed of a low temperature regenerator, a high temperature regenerator, a condenser, an absorber and an evaporator for volatile secondary refrigerant cold output, and the absorption liquid is regenerated by the low temperature regenerator and the high temperature regenerator. Supply generated refrigerant vapor to the low-temperature regenerator Then, the refrigerant vapor generated from the low-temperature regenerator is flushed to the condenser and condensed into a refrigerant liquid by cooling water. Regardless of whether the refrigerant condensate produced by heating is heat-recovered by exchanging heat with the dilute absorbent or the regeneration-needed absorbent, and then the condenser is flushed or immediately after the condenser is flushed. However, the generated refrigerant vapor is condensed by cooling water, and the refrigerant condensate in the condenser is supplied into the evaporator through a U-shaped pipe due to a pressure difference, and the circulating refrigerant liquid pump The refrigerant liquid in the refrigerant liquid storage chamber is circulated, and both the circulating refrigerant liquid and the refrigerant condensate from the condenser are sprayed on the outer wall surface of the heat transfer tube of the evaporator, and the generated cold heat due to the evaporation heat absorption. Therefore, the volatile secondary refrigerant liquid obtained by condensing the volatile secondary refrigerant vapor that enters the heat transfer tube of the evaporator flows into the receiver and is temporarily stored, and then volatile by the volatile secondary refrigerant liquid pump. The refrigerant is sent to a secondary refrigerant / air heat exchanger (hereinafter referred to as an air conditioner), where the air-conditioning air blown there is cooled to produce a cold output. Circulating dilute absorbent from the dilute absorbent storage chamber and generating refrigerant vapor from the evaporator while spraying and flowing down the outer wall surface of the heat transfer tube of the absorber together with the regenerated absorbent exiting the low temperature solution heat exchanger absorb, in the double effect absorption cold generating and output equipment for the absorption heat and the structure is removed by cooling water flowing to the heat transfer tube of the absorber at that time, a dilute absorbent solution / refrigerant liquid heat exchanger Near the low-temperature solution heat exchanger. Installed in the diversion flow path of the collected liquid, and in the case of series flow, dilute absorption liquid sent from the dilute absorption liquid storage chamber at the bottom of the absorber is diverted by the dilute absorption liquid pump, and the main dilute absorption liquid is converted into low-temperature solution heat. It is sent to the exchanger and preheated with the regenerated absorbent from the low temperature regenerator, and in the case of reverse flow, the mainstream dilute absorbent is preheated with the regenerated absorbent through the high temperature solution heat exchanger from the high temperature regenerator. In the case of flow, preheat the mainstream diluted absorbent in the low-temperature solution heat exchanger with the combined absorbent of the regenerated absorbent from the low-temperature regenerator and the regenerated absorbent from the high-temperature regenerator through the high-temperature solution heat exchanger. And then supply to the high temperature regenerator via the low temperature regenerator and the high temperature solution heat exchanger, respectively, or after diversion, the low temperature regenerator and the high temperature regeneration via the low temperature solution heat exchanger and the high temperature solution heat exchanger, respectively. Whether or not to supply Regardless, in either case, the tributary dilute absorbent is sent to the dilute absorbent / refrigerant liquid heat exchanger where it is preheated by the refrigerant condensate from the low temperature regenerator and the dilute absorbent / refrigerant liquid heat The configuration is such that the tributary dilute absorbent exiting the exchanger is merged with the main dilute absorbent exiting the low temperature solution heat exchanger, and a fuel gas or fuel oil direct regenerator is applied to the high temperature regenerator. In addition, the low temperature regenerator is configured to apply a falling liquid film type regenerative condenser or a pool heating type regenerator, and the low temperature regenerator applies a falling liquid film type regenerator to the high temperature regenerator so that a heat source without phase change is applied. Fluid or exhaust heat is used as a heat source for the high temperature regenerator, and a falling liquid film type regenerative condenser or a pool heating type regenerator is applied to the low temperature regenerator, and the falling liquid film type regenerative condensation is applied to the high temperature regenerator. A heat source fluid or hot water with phase change The air as a heat source of the high-temperature regenerator, a structure for applying falling film reproducing condenser or pool heating system regenerator to the low temperature generator.

本発明による二重効用吸収式冷熱発生・出力装置は、以上のように構成されているため、次のような効果を得ることができる。
(1)、揮発性二次冷媒冷熱出力方式は、循環揮発性二次冷媒の潜熱を利用して冷熱出力をなされるため、循環揮発性二次冷媒の圧損による温度変化を小さく抑えられるように設計でき、これにより、冷熱出力時に蒸発器部の冷熱発生温度を高く設定できる。
(2)、蒸発器部冷熱発生温度が高く設定できるため、冷媒蒸気と吸収液との気液平衡関係により、吸収器部吸収操作温度一定の条件下において再生済吸収液の濃度を低く設定でき、これにより再生器部または高温再生器部の吸収液再生操作温度を低く設定でき、熱源流体をより低温または低品位まで利用でき、熱源の熱エネルギー利用効率の向上が図れる。
(3)、再生済吸収液濃度を低く設定できることにより、吸収液の結晶現象による運転支障発生の可能性は低くなるかあるいは無くなる。
(4)、蒸発器と空調機のコンパクト化が図られ、所用熱交換器サイズが小さくなり、省材料が図れる。
(5)、循環冷水冷熱出力時に比較的大きい循環冷水動力の代わりに、所要循環二次冷媒動力は極小さく、省エネの効果が顕著である。
(6)、循環冷水装置や膨張タンクは不要である。
(7)、蒸発器熱交換器伝熱管内の定期的清掃は不要である。
すなわち、揮発性二次冷媒の凝縮、蒸発潜熱を利用して冷熱出力をなされるため、蒸発器部の冷熱発生温度を合理的に高く設定でき、これにより最高再生温度の低下と成績係数の向上が図られる。
また、最高再生温度の低下により、熱源流体をより低温または低品位まで利用でき、熱源の熱エネルギー利用効率の向上が図れる。また、蒸発器と空調機のコンパクト化、装置全体のサイズが低減、省材料が図れる。また、所要循環二次冷媒動力は極小さく、省エネの効果が顕著である。さらに、循環冷水装置や膨張タンク不要であり、これにより、蒸発器熱交換器伝熱管内の定期的清掃は不要となる。
Since the double effect absorption-type cold generation / output device according to the present invention is configured as described above, the following effects can be obtained.
(1) Since the volatile secondary refrigerant cold output system uses the latent heat of the circulating volatile secondary refrigerant to generate cold output, the temperature change due to the pressure loss of the circulating volatile secondary refrigerant can be kept small. It can design and can set the cold generation temperature of an evaporator part high by this at the time of cold output.
(2) Since the evaporator cold generating temperature can be set high, the concentration of the regenerated absorbent can be set low under the condition that the absorber absorption operation temperature is constant due to the vapor-liquid equilibrium relationship between the refrigerant vapor and the absorbent. Thus, the absorption liquid regeneration operation temperature of the regenerator unit or the high temperature regenerator unit can be set low, the heat source fluid can be used at a lower temperature or lower quality, and the heat energy utilization efficiency of the heat source can be improved.
(3) Since the concentration of the regenerated absorbent solution can be set low, the possibility of occurrence of operational troubles due to the crystal phenomenon of the absorbent solution is reduced or eliminated.
(4) The evaporator and the air conditioner can be made compact, the required heat exchanger size can be reduced, and materials can be saved.
(5) Instead of the relatively large circulating chilled water power at the time of circulating chilled water cold heat output, the required circulating secondary refrigerant power is extremely small and the energy saving effect is remarkable.
(6) No circulating chilled water device or expansion tank is required.
(7) Periodic cleaning of the evaporator heat exchanger heat transfer tube is not necessary.
In other words, since the cooling output is made by using the condensation and latent heat of evaporation of the volatile secondary refrigerant, the temperature of the evaporator can be set to a reasonably high temperature, thereby reducing the maximum regeneration temperature and improving the coefficient of performance. Is planned.
In addition, since the maximum regeneration temperature is lowered, the heat source fluid can be used at a lower temperature or lower quality, and the heat energy utilization efficiency of the heat source can be improved. In addition, the evaporator and the air conditioner can be made compact, the overall size of the apparatus can be reduced, and materials can be saved. Further, the required circulating secondary refrigerant power is extremely small, and the energy saving effect is remarkable. Furthermore, there is no need for a circulating chilled water device or an expansion tank, which eliminates the need for periodic cleaning in the evaporator heat exchanger heat transfer tubes.

本発明は、揮発性二次冷媒冷熱出力方式、蒸発器、流下液膜式再生器と流下液膜式再生凝縮器の組み合わせ使用または単独使用により、成績係数の向上及び装置の簡素化を図るようにした二重効用吸収式冷熱発生・出力装置を提供することを目的とする。   The present invention aims to improve the coefficient of performance and simplify the apparatus by using a volatile secondary refrigerant cold output system, an evaporator, a falling liquid film type regenerator and a falling liquid film type regenerative condenser in combination or single use. An object of the present invention is to provide a double-effect absorption-type cold heat generation / output device.

以下、図面と共に本発明による二重効用吸収式冷熱発生・出力装置の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分には、同一符号を付して説明する。
本発明は、上述した本発明者の従来の発明、特に揮発性二次冷媒冷熱出力用蒸発器500を利用して構成した二重効用吸収式冷熱発生・出力装置であり、この実施形態については以下のように詳細に説明する。
1は、吸収液のシリーズ再生フロー、揮発性二次冷媒冷熱出力方式、蒸発器と流下液膜式再生凝縮器を適用する二重効用吸収式冷熱発生方法と装置の構成例を示す。ここで、高温再生器2には、燃料ガスまたは燃料油直だき再生器を、低温再生器1には流下液膜式再生凝縮器を適用し、凝縮器3、吸収器4と揮発性二次冷媒冷熱出力用の蒸発器5を同胴体12で収納して構成している。
Hereinafter, preferred embodiments of a double-effect absorption-type cold heat generation / output device according to the present invention will be described with reference to the drawings.
In addition, the same code | symbol is attached | subjected and demonstrated to a part the same as that of a prior art example, or an equivalent part.
The present invention is the above-described conventional invention of the present inventor, in particular, a double effect absorption-type cold generation / output device constructed using the volatile secondary refrigerant cold-power output evaporator 500. This will be described in detail as follows.
Figure 1 shows the series reproduction flow of the intake Osamueki, volatile secondary refrigerant cold output method, an example of the structure of the evaporator and the falling film reproducing condenser double effect absorption cold generating method for applying the device. Here, a fuel gas or fuel oil direct regenerator is applied to the high temperature regenerator 2, and a falling liquid film type regenerative condenser is applied to the low temperature regenerator 1, and the condenser 3, the absorber 4 and the volatile secondary are used. The evaporator 5 for refrigerant cooling / heating output is housed and configured in the same body 12.

図1に示した二重効用吸収式冷熱発生装置による冷熱発生・出力は以下のように行われる。
すなわち、希吸収液ポンプ4dにより吸収器4から送られる希吸収液4gを、低温溶液熱交換器9と高温溶液熱交換器10において低温再生器1の図8の流下液膜式再生凝縮器200からの再生済吸収液1cと高温再生器2の直だき再生器からのワンステップ再生後吸収液2bにより順次に予熱してから、前記直だきの高温再生器2に供給して再生し、そこからのワンステップ再生後吸収液2bを高温溶液熱交換器10において希吸収液4gと熱交換させて熱回収を行ってから、前記低温再生器1に供給して再生し、また前記低温再生器1からの再生済吸収液1cを低温溶液熱交換器9において希吸収液4gと熱交換させて熱回収をしてから吸収器4に戻して蒸発器5からの発生冷媒蒸気の吸収に使用し、その際の吸収熱を冷却水26により除去する。
また、直だきの高温再生器2からの発生冷媒蒸気2aを低温再生器1の吸収液再生用熱源にして利用する。
Cold generation and output by the double effect absorption type cold generator shown in FIG. 1 is performed as follows.
That is, the diluted absorbent 4g sent from the absorber 4 by the diluted absorbent pump 4d is used as the falling liquid film regenerative condenser 200 of the low temperature regenerator 1 in FIG. 8 in the low temperature solution heat exchanger 9 and the high temperature solution heat exchanger 10. From the regenerated absorbent 1c from the high temperature regenerator 2 and the absorbent 2b after the one-step regeneration from the direct regenerator of the high temperature regenerator 2, and then sequentially supplied to the direct high temperature regenerator 2 for regeneration. After the one-step regeneration from, the heat-recovered absorbent 2b is exchanged with the diluted absorbent 4g in the high-temperature solution heat exchanger 10 for heat recovery, and then supplied to the low-temperature regenerator 1 for regeneration, and the low-temperature regenerator The regenerated absorbent 1c from 1 is heat-exchanged with the diluted absorbent 4g in the low-temperature solution heat exchanger 9 to recover the heat and then returned to the absorber 4 to be used for absorbing the generated refrigerant vapor from the evaporator 5. , The absorption heat at that time by the cooling water 26 It is removed by.
Further, the generated refrigerant vapor 2 a from the direct high temperature regenerator 2 is used as a heat source for regenerating the absorbing liquid of the low temperature regenerator 1.

また、流下液膜式再生凝縮器200からなる低温再生器1において吸収液を加熱して再生する際に生じる冷媒凝縮液を、その顕熱の回収有無に拘わらず、バルブ13により凝縮器3内にフラッシュさせ、その際の発生冷媒蒸気と前記低温再生器1からの発生冷媒蒸気と共に冷却水26により冷却する。また前記凝縮器3から冷媒液を蒸発器5に供給して循環冷媒液8bと共に蒸発器5の熱交換器伝熱管外壁面に散布し、その蒸発吸熱による発生冷熱により、前記蒸発器伝熱管管内に流される揮発性二次冷媒蒸気を凝縮させる。この様になった揮発性二次冷媒凝縮液5dをいったん揮発性二次冷媒のレシーバー6に溜めてから、揮発性二次冷媒液ポンプ6aにより、空調機7に送り、そこで揮発性二次冷媒液5dの蒸発吸熱により空調用空気を冷やして冷熱出力が得られる。またその際の揮発性二次冷媒蒸気5cを前記蒸発器5に戻して凝縮させる。   In addition, the refrigerant condensate generated when the absorbing liquid is heated and regenerated in the low temperature regenerator 1 composed of the falling liquid film type regenerative condenser 200 is supplied to the condenser 3 by the valve 13 regardless of whether or not the sensible heat is recovered. And the generated refrigerant vapor and the generated refrigerant vapor from the low temperature regenerator 1 are cooled by the cooling water 26. In addition, the refrigerant liquid is supplied from the condenser 3 to the evaporator 5 and dispersed on the outer wall surface of the heat exchanger heat transfer pipe of the evaporator 5 together with the circulating refrigerant liquid 8b. Volatile secondary refrigerant vapor flowing through the The volatile secondary refrigerant condensate 5d thus formed is once stored in the volatile secondary refrigerant receiver 6 and then sent to the air conditioner 7 by the volatile secondary refrigerant liquid pump 6a, where the volatile secondary refrigerant is supplied. Cooling output is obtained by cooling the air-conditioning air by the evaporation heat absorption of the liquid 5d. At that time, the volatile secondary refrigerant vapor 5c is returned to the evaporator 5 to be condensed.

2は、吸収液再生のパラレルフローと揮発性二次冷媒冷熱出力方式を組み合わせた二重効用吸収式冷熱発生・出力方法と装置の例を示す。ここで、高温再生器2には、燃料ガスまたは燃料油直だき再生器を、低温再生器1には流下液膜式再生凝縮器200を適用し、凝縮器3、吸収器4と蒸発器5を同胴体12で収納して構成している。 Figure 2 shows an example of the intake Osamueki reproduction parallel flows and volatile secondary refrigerant cold output format double effect absorption cold generating and outputting method and apparatus that combines the. Here, a fuel gas or fuel oil direct regenerator is applied to the high temperature regenerator 2, and a falling liquid film type regenerative condenser 200 is applied to the low temperature regenerator 1, and the condenser 3, the absorber 4 and the evaporator 5 are applied. Are housed in the same body 12.

前述の図2に示した装置構成による冷熱発生・出力は以下のようになされる。
すなわち、希吸収液ポンプ4dにより吸収器4から送られる希吸収液4gを分流し、それぞれ低温溶液熱交換器9と高温溶液熱交換器10において低温再生器1の流下液膜式再生凝縮器200からの再生済吸収液1cと高温再生器2の直だき再生器からの再生済吸収液2bにより予熱してから前記低温再生器1と前記高温再生器2に供給するかあるいは図3に示した様に、前記希吸収液4gを低温溶液熱交換器9において前記低温再生器1からの再生済吸収液1cと前記高温再生器2からの高温溶液熱交換器10を経た再生済吸収液2bとの合流吸収液と熱交換させて予熱してから分流し、一部を前記低温再生器1の流下液膜式再生器100に供給して再生し、一部を前記高温溶液熱交換器10により予熱してから前記高温再生器2の直だき再生器に供給して再生する。
また、この様に得られた再生済吸収液を吸収器4に戻して蒸発器5からの発生冷媒蒸気の吸収に使用し、その際の吸収熱を冷却水26により除去する。
また高温再生器2からの発生冷媒蒸気2aを流下液膜式の低温再生器1の吸収液再生用熱源にして利用する。
また蒸発器3の揮発性二次冷媒出力方法は以上に説明したシリーズフローを適用する二重効用吸収式冷熱発生・出力装置のケースと同様のため、説明を省略する。
尚、図2及び図3の構成において、図1と同一部分には同一符号を付し、その説明は省略している。
The cold heat generation / output by the apparatus configuration shown in FIG. 2 is performed as follows.
That is, the dilute absorbent 4g sent from the absorber 4 is diverted by the dilute absorbent pump 4d, and the falling liquid film regenerative condenser 200 of the low temperature regenerator 1 in the low temperature solution heat exchanger 9 and the high temperature solution heat exchanger 10, respectively. Is supplied to the low temperature regenerator 1 and the high temperature regenerator 2 after being preheated with the regenerated absorbent 1c from the high temperature regenerator 2 and the regenerated absorbent 2b from the direct regenerator of the high temperature regenerator 2 or as shown in FIG. In the same manner, the diluted absorbent 4g is passed through the regenerated absorbent 1c from the low temperature regenerator 1 and the regenerated absorbent 2b through the high temperature solution heat exchanger 10 from the high temperature regenerator 2 in the low temperature solution heat exchanger 9. Heat-exchanged with the combined absorption liquid of the pre-heated and diverted, a part is supplied to the falling-film regenerator 100 of the low-temperature regenerator 1 and regenerated, and a part is regenerated by the high-temperature solution heat exchanger 10 After preheating, the high temperature regenerator 2 Play is supplied to the raw device.
Further, the regenerated absorption liquid thus obtained is returned to the absorber 4 and used for absorbing the generated refrigerant vapor from the evaporator 5, and the heat absorbed at that time is removed by the cooling water 26.
Further, the generated refrigerant vapor 2a from the high temperature regenerator 2 is used as a heat source for regenerating the absorbing liquid of the falling film type low temperature regenerator 1.
Further, the volatile secondary refrigerant output method of the evaporator 3 is the same as that of the case of the double effect absorption chill generation / output device to which the series flow described above is applied, and thus the description thereof is omitted.
2 and 3, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

4は、吸収液再生のリバースフローと揮発性二次冷媒冷熱出力方式を組み合わせた二重効用吸収式冷熱発生・出力方法と装置の例を示す。ここで、高温再生器2には、燃料ガスまたは燃料油直だき再生器を、低温再生器1には流下液膜式再生凝縮器200を適用し、凝縮器3、吸収器4と蒸発器5を同胴体12で収納して構成している。 Figure 4 shows an example of a reverse flow and volatile secondary refrigerant cold output method and the double effect absorption cold generating and output method combining apparatus of the intake Osamueki playback. Here, a fuel gas or fuel oil direct regeneration regenerator is applied to the high temperature regenerator 2, and a falling liquid film regenerative condenser 200 is applied to the low temperature regenerator 1, and the condenser 3, the absorber 4 and the evaporator 5 are applied. Are housed in the same body 12.

図4に示した装置構成による冷熱発生・出力は以下のように行われる。
すなわち、希吸収液ポンプ4dにより吸収器4から送られる希吸収液4gを、低温溶液熱交換器9において高温再生器2の直だき再生器から送られ、高温溶液熱交換器10を経た再生後吸収液2bと熱交換させて予熱した後、低温再生器1の流下液膜式再生凝縮器200に供給して再生する。また前記低温再生器1に接続された吸収液ポンプ11により前記低温再生器1の流下液膜式再生凝縮器200から送られるワンステップ再生済吸収液1cを高温溶液熱交換器10において高温再生器2の直だき再生器からの再生済吸収液2bと熱交換させて予熱してから前記直だき再生器に供給して再生する。この様にして前記直だき再生器からの再生済吸収液を高温溶液熱交換器10と低温溶液熱交換器9を経て順次熱回収を行ってから吸収器4に戻して蒸発器部からの発生冷媒蒸気の吸収に使用し、その際の吸収熱を冷却水26により除去する。
The generation and output of cold by the apparatus configuration shown in FIG. 4 is performed as follows.
That is, the diluted absorbent 4g sent from the absorber 4 by the diluted absorbent pump 4d is sent from the direct regenerator of the high temperature regenerator 2 in the low temperature solution heat exchanger 9, and after regeneration through the high temperature solution heat exchanger 10. After heat-exchanging with the absorbing liquid 2b and preheating, it is supplied to the falling liquid film type regeneration condenser 200 of the low temperature regenerator 1 for regeneration. Further, the one-step regenerated absorbent 1c sent from the falling film regenerative condenser 200 of the low temperature regenerator 1 by the absorbent liquid pump 11 connected to the low temperature regenerator 1 is converted into the high temperature regenerator in the high temperature solution heat exchanger 10. Heat is exchanged with the regenerated absorbent 2b from No. 2 direct regenerator and preheated, and then supplied to the direct regenerator for regeneration. In this way, the regenerated absorption liquid from the direct regenerator is sequentially recovered through the high temperature solution heat exchanger 10 and the low temperature solution heat exchanger 9, and then returned to the absorber 4 to be generated from the evaporator section. Used for absorbing the refrigerant vapor, the absorbed heat at that time is removed by the cooling water 26.

また高温再生器2からの発生冷媒蒸気2aを流下液膜式再生器100からなる低温再生器1の吸収液再生用熱源として利用する。
また蒸発器3の揮発性二次冷媒出力方法は以上に説明したシリーズフローを適用する二重効用吸収式冷熱発生・出力装置のケースと同様のため、説明を省略する。
尚、図4の構成において、図1と同一部分には同一符号を付し、その説明は省略している。
The generated refrigerant vapor 2 a from the high temperature regenerator 2 is used as a heat source for regenerating the absorbing liquid of the low temperature regenerator 1 including the falling liquid film type regenerator 100.
Further, the volatile secondary refrigerant output method of the evaporator 3 is the same as that of the case of the double effect absorption chill generation / output device to which the series flow described above is applied, and thus the description thereof is omitted.
In the configuration of FIG. 4, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

図5はシリーズ再生フローと揮発性二次冷媒冷熱出力方式適用の二重効用吸収式冷熱発生装置を例にして、請項1に記載の冷媒凝縮液から熱回収なされる方法と装置について説明するものである。ただし、ここで高温再生器2に図8に示した流下液膜式再生凝縮器200を適用している。 Figure 5 is a double effect absorption cold generating apparatus series playback flow and volatile secondary refrigerant cold output method applied to an example, a method and apparatus for heat recovery is made from the refrigerant condensate according to billed to claim 1 Is described. However, the falling film type regenerative condenser 200 shown in FIG. 8 is applied to the high temperature regenerator 2 here.

前記吸収器4から送られてきた希吸収液4gを前記流下液膜式再生凝縮器200の伝熱管内壁面に分布して膜状に流下させ、この様な流下吸収液膜を管外加熱室に導入される相変化のある熱源流体またはボイラからの高温水蒸気2dにより加熱して再生する。ここで、吸収器4からの希吸収液は低温溶液熱交換器9において低温再生器1からのワンステップ再生済吸収液1cにより予熱してから、希吸収液/冷媒液熱交換器9aに送られ、そこで低温再生器1からの冷媒凝縮液1bにより再予熱してから低温再生器1に供給して再生する。尚、図5において、図1と同一部分には同一符号を付し、その説明は省略する。   4 g of the diluted absorbent sent from the absorber 4 is distributed on the inner wall surface of the heat transfer tube of the falling liquid film type regenerative condenser 200 and flows down in the form of a film, and this falling absorption liquid film is heated outside the tube. It is regenerated by heating with a high-temperature steam 2d from a heat source fluid or boiler having a phase change introduced into the boiler. Here, the dilute absorbent from the absorber 4 is preheated by the one-step regenerated absorbent 1c from the low temperature regenerator 1 in the low temperature solution heat exchanger 9, and then sent to the dilute absorbent / refrigerant liquid heat exchanger 9a. Therefore, the refrigerant condensate 1b from the low temperature regenerator 1 is re-preheated and then supplied to the low temperature regenerator 1 for regeneration. In FIG. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

図6はシリーズ再生フローと揮発性二次冷媒冷熱出力方式適用の二重効用吸収式冷熱発生装置を例にして、請項2に記載の冷媒凝縮液から熱回収を行う方法と装置について説明するものである。ただし、ここで高温再生器2に図7に示した流下液膜式再生器100を適用している。
前記吸収器4から送られた希吸収液4gを前記流下液膜式再生器100の所有伝熱管内壁面に分布して膜状に流下させ、この様な流下吸収液膜を管外加熱室に導入される相変化のない熱源流体または排熱2cにより加熱して再生する。
6 by a double effect absorption cold generating apparatus series playback flow and volatile secondary refrigerant cold output method applied to an example, a method and apparatus for heat recovery from the refrigerant condensate according to billed to claim 2 Explain. However, the falling film type regenerator 100 shown in FIG. 7 is applied to the high temperature regenerator 2 here.
4 g of the diluted absorbent sent from the absorber 4 is distributed on the inner wall surface of the owned heat transfer pipe of the falling liquid film regenerator 100 and flows down into a film shape, and such falling absorbent liquid film is transferred to the outside heating chamber. It is regenerated by being heated by the heat source fluid having no phase change introduced or the exhaust heat 2c.

低温再生器1の冷媒凝縮液からの熱回収は以下のようになされる。
すなわち、前記吸収器4からの希吸収液4gを分流して低温溶液熱交換器9と希吸収液/冷媒液熱交換器9aにおいてそれぞれ前記低温再生器1の流下液膜式再生凝縮器200からのワンステップ再生後吸収液1cと冷媒凝縮液1bと熱交換させ、また希吸収液/冷媒液熱交換器9aを出た希吸収液を、低温溶液熱交換器9を出た主流の希吸収液に合流させ、この様にして低温再生器1からの冷媒凝縮液1bより熱回収を行う。
Heat recovery from the refrigerant condensate of the low-temperature regenerator 1 is performed as follows.
That is, the dilute absorbent 4g from the absorber 4 is divided to flow from the falling liquid film regenerative condenser 200 of the low temperature regenerator 1 in the low temperature solution heat exchanger 9 and the dilute absorbent / refrigerant liquid heat exchanger 9a, respectively. After one-step regeneration, heat exchange is performed between the absorption liquid 1c and the refrigerant condensate 1b, and the rare absorption liquid that has exited the rare absorption liquid / refrigerant liquid heat exchanger 9a is used as the mainstream rare absorption that has exited the low temperature solution heat exchanger 9. In this way, heat is recovered from the refrigerant condensate 1b from the low-temperature regenerator 1.

以上で説明した低温再生器1からの冷媒凝縮液からの熱回収の例は前述のパラレルフローやリバースフローを適用する二重効用吸収式冷熱発生・出力装置にも適用することが容易に分かるので、その説明を省略する。
また本発明の揮発性二次冷媒冷熱出力方式を適用する二重効用吸収式冷熱発生装置は低温再生器1にも高温再生器2にもプール加熱方式の再生器が適用できることが容易に分かるので、これについての説明も省略する。尚、図6において、図1と同一部分については同一符号を付し、その説明は省略する。
Since examples of the heat recovery from the refrigerant condensate from the low temperature regenerator 1 described it is readily seen to be applicable to the above-mentioned applying the path Rarerufuro and reverse flow double effect absorption cold generating and output device in the above The description is omitted.
In addition, it can be easily understood that the double-effect absorption refrigeration generator to which the volatile secondary refrigerant refrigeration output system of the present invention is applied can be applied to the low-temperature regenerator 1 and the high-temperature regenerator 2 using a pool heating regenerator. The description about this is also omitted. In FIG. 6, the same parts as those in FIG.

図7は、吸収液の再生過程にわたって相変化のない高温排熱を吸収液の再生に利用する前記流下液膜式再生装置100の構成について説明するものである。
まず、図7に示した様に、本発明の流下液膜式再生装置100は、縦型筒状の胴体40を上仕切板41と下仕切板42により区切って形成される吸収液分配室30、加熱室35と気液分離室38を備えている。
前記吸収液分配室30は、前記胴体40の上部と上仕切板41との間の空間より形成され、吸収液導入部31、前記吸収液を吸収液プール42内に散液するための散液器43、前記吸収液を伝熱管34の管束34Aの各管内に均等の流量で分配すること及び管内壁面に膜状に分布する機能を有する流下液分配器50が設けられている。
FIG. 7 illustrates the configuration of the falling film type regenerator 100 that utilizes high-temperature exhaust heat without phase change throughout the process of regenerating the absorbing solution for the regeneration of the absorbing solution.
First, as shown in FIG. 7, the falling liquid film type regeneration device 100 of the present invention includes an absorbent liquid distribution chamber 30 formed by dividing a vertical cylindrical body 40 by an upper partition plate 41 and a lower partition plate 42. A heating chamber 35 and a gas-liquid separation chamber 38 are provided.
The absorption liquid distribution chamber 30 is formed by a space between the upper portion of the body 40 and the upper partition plate 41, and is used to spray the absorption liquid introduction part 31 and the absorption liquid into the absorption liquid pool 42. 43, a falling liquid distributor 50 having a function of distributing the absorption liquid in each tube of the tube bundle 34A of the heat transfer tube 34 at an equal flow rate and distributing it in a film shape on the inner wall surface of the tube.

また、前記加熱室35が、上仕切板41、下仕切板42及び胴体40で囲まれる空間より形成され、熱源流体である高温排熱や高温水と流下吸収液膜との熱交換部を形成する伝熱管34の管束34A、排熱導入部36と排熱導出部32とを備え、伝熱管34の管外加熱側流路に複数のじゃま板33が所要の間隔で千鳥状に設けられている。そのため、前記排熱導入部36と前記排熱導出部32をそれぞれ前記加熱室35の下端部と上端部に設けている。また、下仕切板42と吸収液導出部39間には気液分離室38が形成され、発生冷媒蒸気導出部37が形成されている。   Further, the heating chamber 35 is formed by a space surrounded by the upper partition plate 41, the lower partition plate 42, and the body 40, and forms a heat exchange portion between the high temperature exhaust heat that is a heat source fluid and the high temperature water and the falling absorption liquid film. The heat transfer tube 34 includes a tube bundle 34A, an exhaust heat introduction unit 36, and an exhaust heat derivation unit 32, and a plurality of baffle plates 33 are provided in a staggered manner in the external heating side flow path of the heat transfer tube 34 at a required interval. Yes. Therefore, the exhaust heat introduction part 36 and the exhaust heat derivation part 32 are provided at the lower end part and the upper end part of the heating chamber 35, respectively. Further, a gas-liquid separation chamber 38 is formed between the lower partition plate 42 and the absorbing liquid outlet 39, and a generated refrigerant vapor outlet 37 is formed.

前記流下液分配器50には、吸収液は吸収液プール42からこの間隙流路部41により容易に伝熱管34の管内壁面に膜状に分布されて流下する。また各々の伝熱管34に設置される流下液分配器50が同じ形状のため、同じ液位差により各伝熱管34に分配される要再生の吸収液の流量は同一である。   In the falling liquid distributor 50, the absorbing liquid is easily distributed from the absorbing liquid pool 42 to the inner wall surface of the heat transfer pipe 34 by the gap channel portion 41 and flows down. Further, since the falling liquid distributors 50 installed in the respective heat transfer tubes 34 have the same shape, the flow rate of the absorption liquids requiring regeneration distributed to the respective heat transfer tubes 34 due to the same liquid level difference is the same.

次に、前述の構成において、吸収液分配室30内において要再生の吸収液、例えば希吸収液が散液器43より吸収液プール42に散布された後、流下液分配器50により伝熱管34の管内壁面に分布されて流下液膜状に流下し、その際、加熱室35に導入される相変化のない、例えば、ガス状高温排熱からなる熱源流体により加熱されてその中から冷媒成分が蒸発していく。また伝熱管34の底部を出た再生後の吸収液は下方の吸収液貯室51に入っていったん溜まる。また、伝熱管34底部を出た冷媒蒸気は、その中の飛沫がエリミネータ37aにより捕獲されて発生冷媒蒸気導出部37より導出される。   Next, in the above-described configuration, an absorption liquid requiring regeneration in the absorption liquid distribution chamber 30, for example, a diluted absorption liquid, is sprayed from the sprayer 43 to the absorption liquid pool 42, and then the falling liquid distributor 50 causes the heat transfer tube 34 to flow. The refrigerant component is distributed on the inner wall surface of the pipe and flows down in the form of a falling liquid film, and is heated by a heat source fluid having no phase change, for example, gaseous high-temperature exhaust heat, and introduced into the heating chamber 35. Evaporates. Further, the regenerated absorption liquid exiting the bottom of the heat transfer tube 34 enters the lower absorption liquid storage chamber 51 and temporarily accumulates. In addition, the refrigerant vapor that has exited the bottom of the heat transfer tube 34 is extracted from the generated refrigerant vapor deriving unit 37 by the droplets therein being captured by the eliminator 37a.

また、前記流下液膜式再生凝縮器200は、図8に示されるように相変化のある熱源流体又は高温水蒸気を用いて構成され、図7と同一部分には同一符号を付して説明する。
図8に示した様に、本発明の流下液膜式再生凝縮装置200は、要再生吸収液(または希吸収液)を伝熱管34の内壁面に分布させて膜状に流下させながら、伝熱管34の管外流路から凝縮性熱源流体を提供して伝熱管34の壁を通じて加熱し、この様な吸収液膜中の冷媒を液位差の影響を受けない条件下で蒸発させ、前記流下吸収液膜を再生し、基本的に、縦型筒状の胴体40を上仕切板41、下仕切板42により区切って形成される吸収液分配室30、加熱室35及び気液分離室38を有するものである。
Further, the falling liquid film type regenerative condenser 200 is configured using a heat source fluid having a phase change or high temperature steam as shown in FIG. 8, and the same parts as those in FIG. .
As shown in FIG. 8, the falling liquid film type regeneration condensing apparatus 200 of the present invention distributes the regenerative absorption liquid (or dilute absorption liquid) required on the inner wall surface of the heat transfer tube 34 and flows it down in the form of a film. A condensable heat source fluid is provided from the external flow path of the heat pipe 34 and heated through the wall of the heat transfer pipe 34, and the refrigerant in the absorbing liquid film is evaporated under a condition that is not affected by the liquid level difference. The absorption liquid film is regenerated, and basically the absorption liquid distribution chamber 30, the heating chamber 35 and the gas-liquid separation chamber 38 formed by dividing the vertical cylindrical body 40 by the upper partition plate 41 and the lower partition plate 42 are provided. It is what you have.

また、前記吸収液分配室30が、胴体40の上部と上仕切板41との間の空間より形成され、吸収液導入部31、前記要再生吸収液を伝熱管34の管束34Aの管内壁面に散液するための散液器43、吸収液プール42、前記プール42内の要再生吸収液を各伝熱管34の各管内に均等の流量で分配すると共に前記各伝熱管34の各管内壁面に膜状に分布する機能を有する流下液分配器50を備えている。また、散液器43は吸収液プール42上方の胴体42内に設置され、その吸収液導入部31は胴体40を貫通して設けられている。   The absorbing liquid distribution chamber 30 is formed by a space between the upper portion of the body 40 and the upper partition plate 41, and the absorbing liquid introducing portion 31 and the regenerating absorbing liquid required on the inner wall surface of the tube bundle 34 </ b> A of the heat transfer tube 34. A sprayer 43 for spraying, an absorption liquid pool 42, and a regeneration-required absorption liquid in the pool 42 are distributed at an equal flow rate in each tube of each heat transfer tube 34, and on each tube inner wall surface of each heat transfer tube 34. A falling liquid distributor 50 having a function of being distributed in a film form is provided. Further, the sprayer 43 is installed in the trunk 42 above the absorbent pool 42, and the absorbent introduction part 31 is provided so as to penetrate the trunk 40.

また、前記胴体40の中部の加熱室35は、前記上仕切板41、下仕切板42の間で胴体40で囲まれる空間により形成され、加熱用の凝縮性熱源流体と吸収液膜との熱交換部を形成する伝熱管34の管束34A、凝縮性の熱源流体導入部60と凝縮液導出部61a付き凝縮液貯室61を備えている。また、前記熱源流体導入部60と凝縮液貯室61はそれぞれ前記加熱室35の胴体40の上端部側と下端部に設けられている。   The heating chamber 35 in the middle of the fuselage 40 is formed by a space surrounded by the fuselage 40 between the upper partition plate 41 and the lower partition plate 42, and the heat of the condensable heat source fluid for heating and the absorbing liquid film. A tube bundle 34A of heat transfer tubes 34 forming an exchange unit, a condensable heat source fluid introduction unit 60, and a condensate storage chamber 61 with a condensate outlet 61a are provided. The heat source fluid introduction part 60 and the condensate storage chamber 61 are provided on the upper end side and the lower end part of the body 40 of the heating chamber 35, respectively.

また、前記下仕切板42の下方には気液分離室38が形成され、この気液分離室38の側部には、エリミネータ37a付きエントレ防止装置37Aと発生冷媒蒸気導出部37とが設けられている。   A gas-liquid separation chamber 38 is formed below the lower partition plate 42, and an entrance prevention device 37A with an eliminator 37a and a generated refrigerant vapor deriving portion 37 are provided on the side of the gas-liquid separation chamber 38. ing.

従って、要再生吸収液は前記吸収液分配室30の散液器43より前記吸収液分配室30内の吸収液プール42に散布された後、流下液分配器50により各伝熱管34の管内壁面に膜状に分布されて流下し、その際加熱室35に導入される加熱用の凝縮性熱源流体60aにより加熱され、その中から冷媒成分が蒸発していく。また伝熱管34の底部を出た再生後の吸収液51aは下方の吸収液貯室51に入っていったん溜まる。また、前記伝熱管34の底部を出た冷媒蒸気は、前記エントレ防止装置37Aに入り、その持っている飛沫がエリミネータ37aにより捕獲されて発生冷媒蒸気導出部37より下流側の図示しない低温再生器部または凝縮器部に導入される。
また、伝熱管34の構成材料としては、銅系材またはキュプロニッケル材が好適である。
Accordingly, after the regeneration-requiring absorbent is sprayed from the sprayer 43 of the absorbent distribution chamber 30 to the absorbent pool 42 in the absorbent distribution chamber 30, the falling wall distributor 50 causes the inner wall surface of each heat transfer tube 34 to flow. In this case, the refrigerant component flows down and is heated by the condensing heat source fluid 60a for heating introduced into the heating chamber 35, and the refrigerant component evaporates therefrom. In addition, the regenerated absorption liquid 51a exiting the bottom of the heat transfer tube 34 enters the lower absorption liquid storage chamber 51 and temporarily accumulates. Further, the refrigerant vapor exiting from the bottom of the heat transfer tube 34 enters the entrainment prevention device 37A, and the droplets held by the refrigerant vapor are captured by the eliminator 37a, and a low-temperature regenerator (not shown) downstream from the generated refrigerant vapor deriving unit 37. Section or condenser section.
Moreover, as a constituent material of the heat exchanger tube 34, a copper-type material or a cupronickel material is suitable.

本発明は、二重効用吸収冷凍機に関して揮発性二次冷媒冷熱出力方式、蒸発器、流下液膜式再生器及び流下液膜式再生凝縮器の組合せ使用又は単独使用により、成績係数の向上及び簡素化のために適用可能である。   The present invention improves the coefficient of performance by using a combination of a volatile secondary refrigerant cold output system, an evaporator, a falling liquid film regenerator and a falling liquid film regenerative condenser or a single use for a double effect absorption refrigerator, and Applicable for simplicity.

本発明による二重効用吸収式冷熱発生・出力装置を示す構成図である。It is a block diagram which shows the double effect absorption type cold heat generation and output device by this invention. 図1の他の形態を示す構成図である。It is a block diagram which shows the other form of FIG. 図2の他の形態を示す構成図である。It is a block diagram which shows the other form of FIG. 図1の他の形態を示す構成図である。It is a block diagram which shows the other form of FIG. 図1の他の形態を示す構成図である。It is a block diagram which shows the other form of FIG. 図5の他の形態を示す構成図である。It is a block diagram which shows the other form of FIG. 本発明に使用される流下液膜式再生器を示す構成図である。It is a block diagram which shows the falling liquid film type | mold regenerator used for this invention. 本発明に使用される流下液膜式再生凝縮器を示す構成図である。It is a block diagram which shows the falling liquid film type | mold reproduction | regeneration condenser used for this invention. 従来の揮発性二次冷媒冷熱出力装置の構成図である。It is a block diagram of the conventional volatile secondary refrigerant | coolant output device. 従来の揮発性二次冷媒冷熱出力用蒸発器の構成図である。It is a block diagram of the conventional volatile secondary refrigerant | coolant output evaporator. 従来の揮発性二次冷媒冷熱出力用空調機の構成図である。It is a block diagram of the conventional volatile secondary refrigerant cold output air conditioner.

1 低温再生器(流下液膜式再生凝縮器、プール加熱方式再生器適用)
1a 低温再生器からの発生冷媒蒸気
1b 冷媒凝縮液
1c 低温再生器からのワンステップ再生後吸収液(リバースフロー)または再生済吸収液(シリーズフローまたはパラレルフロー)
2 高温再生器(直だき再生器、流下液膜式再生器、流下液膜式再生凝縮器、プール加熱方式再生器適用)
2a 高温再生器からの発生冷媒蒸気
2b 高温再生器からのワンステップ再生後吸収液(シリーズフロー)または再生済吸収液(リバースフローまたはパラレルフロー)
3 凝縮器
4 吸収器
4a 循環希吸収液ポンプ
4b 希吸収液貯室
4d 希吸収液ポンプ
4e 循環希吸収液
4f 再生済吸収液
4g 希吸収液
5 揮発性二次冷媒冷熱出力用の蒸発器
5a 循環冷媒液ポンプ
5b 冷媒貯室
5c 揮発性二次冷媒蒸気
5d 揮発性二次冷媒凝縮液
6 レシーバー
6a 揮発性二次冷媒液ポンプ
7 空調機
8 U字管
8a 凝縮器からの冷媒凝縮液
8b 循環冷媒液
9 低温溶液熱交換器
9a 希吸収液/冷媒液熱交換器
10 高温溶液熱交換器
11 吸収液ポンプ
12 胴体
13 バルブ
20 凝縮器・吸収器・蒸発器ユニット装置
26 冷却水
100 流下液膜式再生器
200 流下液膜式再生凝縮器
31 吸収液導入部
32 排熱導出部
33 じゃま板
34 伝熱管
34A 伝熱管管束
35 加熱室
36 排熱導入部
37 発生冷媒蒸気導出部
37a エリミネータ
37A エントレ防止装置
38 気液分離室
39 吸収液導出部
40 胴体
41 上仕切板
41a 下仕切板
42 吸収液プール
43 散液器
50 流下液分配器
51 吸収液貯室
51a 再生後吸収液
60 高温水蒸気導入部
61a 凝縮液導出部
500 揮発性二次冷媒冷熱発生・出力装置
501 揮発性二次冷媒冷熱出力用蒸発器
503 揮発性二次冷媒液ポンプ
600 揮発性二次冷媒冷熱出力用蒸発器
601 プレートチューブ伝熱管
602 管内流体初期分配器
603 管内流体サブ分配器
604 管外流体サブ分配装置
605 出口ヘッダー
700 空調器熱交換器
701 プレートフィン
702 伝熱管
703 揮発性二次冷媒液
1 Low temperature regenerator (applied by falling film regenerative condenser and pool heating regenerator)
1a Generated refrigerant vapor 1b from a low-temperature regenerator Refrigerant condensate 1c Absorbed liquid after one-step regeneration (reverse flow) or regenerated absorbent (series flow or parallel flow) from a low-temperature regenerator
2 High-temperature regenerator (applying direct regenerator, falling liquid film regenerator, falling liquid film regenerator, pool heating regenerator)
2a Refrigerant vapor generated from high-temperature regenerator 2b Absorbed liquid after one-step regeneration (series flow) or regenerated absorbent (reverse flow or parallel flow) from high-temperature regenerator
3 Condenser 4 Absorber 4a Circulating rare absorbent pump 4b Diluted absorbent storage chamber 4d Diluted absorbent pump 4e Circulating diluted absorbent 4f Regenerated absorbent 4g Diluted absorbent 5 Evaporator 5a for volatile secondary refrigerant cold output Circulating refrigerant liquid pump 5b Refrigerant storage chamber 5c Volatile secondary refrigerant vapor 5d Volatile secondary refrigerant condensate 6 Receiver 6a Volatile secondary refrigerant liquid pump 7 Air conditioner 8 U-shaped tube 8a Refrigerant condensate 8b from condenser Refrigerant liquid 9 Low temperature solution heat exchanger 9a Diluted absorbent / refrigerant liquid heat exchanger 10 High temperature solution heat exchanger 11 Absorbent liquid pump 12 Body 13 Valve 20 Condenser / absorber / evaporator unit device 26 Cooling water 100 Falling liquid film Regenerator 200 Flowing film regenerative condenser 31 Absorbing liquid introduction part 32 Waste heat derivation part 33 Baffle plate 34 Heat transfer tube 34A Heat transfer tube bundle 35 Heating chamber 36 Exhaust heat introduction part 37 Generated refrigerant vapor derivation part 37a Eliminator 37A Entreprevention device 38 Gas-liquid separation chamber 39 Absorbed liquid outlet 40 Body 41 Upper partition plate 41a Lower partition plate 42 Absorbed liquid pool 43 Sprinkler 50 Falling liquid distributor 51 Absorbed liquid storage chamber 51a Regenerated absorbent 60 High temperature Steam introduction unit 61a Condensate outlet unit 500 Volatile secondary refrigerant cold heat generation / output device 501 Volatile secondary refrigerant cold output evaporator 503 Volatile secondary refrigerant liquid pump 600 Volatile secondary refrigerant cold output evaporator 601 Plate tube heat transfer tube 602 In-pipe fluid initial distributor 603 In-pipe fluid sub-distributor 604 Extra-tube fluid sub-distributor 605 Outlet header 700 Air conditioner heat exchanger 701 Plate fin 702 Heat transfer tube 703 Volatile secondary refrigerant liquid

Claims (5)

少なくとも低温再生器(1)、高温再生器(2)、凝縮器(3)、吸収器(4)と揮発性二次冷媒冷熱出力用の蒸発器(5)より構成され、吸収液の再生を低温再生器(1)と高温再生器(2)により行い、前記高温再生器(2)からの発生冷媒蒸気(2a)を前記低温再生器(1)に供給してそこでの吸収液再生用熱源として使用し、前記低温再生器(1)からの発生冷媒蒸気(1a)を前記凝縮器(3)にフラッシュさせ、そこで冷却水(26)により冷媒液に凝縮させ、
前記低温再生器(1)において吸収液を冷媒蒸気により加熱して生じた冷媒凝縮液(1b)を希吸収液または要再生吸収液と熱交換させて熱回収がなされてから前記凝縮器(3)にフラッシュさせるかあるいは直後に前記凝縮器(3)にフラッシュさせるかどうかに拘わらずただし、そこでの発生冷媒蒸気を冷却水(26)により凝縮させ、
前記凝縮器(3)内の冷媒凝縮液(8a)を圧力差によりU字管(8)を経て前記蒸発器(5)内に供給し、前記循環冷媒液ポンプ(5a)により前記蒸発器(5)底部の冷媒液貯室(5b)内の冷媒液を循環し、このような循環冷媒液(8b)と前記凝縮器(3)からの冷媒凝縮液(8a)を共に蒸発器(5)の伝熱管外壁面に散布し、その蒸発吸熱による発生冷熱により、蒸発器(5)の伝熱管内に入ってくる揮発性二次冷媒蒸気(5c)を凝縮させて得た揮発性二次冷媒液(5d)をレシーバー(6)に流入させていったん溜めてから揮発性二次冷媒液ポンプ(6a)により揮発性二次冷媒/空気熱交換器(以下、空調機と称す)(7)に送り、そこで送風される空調用空気を冷却して冷熱出力をなされ、
前記吸収器(4)において循環希吸収液ポンプ(4a)により前記吸収器(4)底部の希吸収液貯室(4b)からの希吸収液(4e)を循環し、低温溶液熱交換器(9)を出た再生済吸収液(2b)と共に前記吸収器(4)の伝熱管外壁面に散布して流下させながら前記蒸発器(5)からの発生冷媒蒸気を吸収し、その際の吸収熱を前記吸収器(4)の伝熱管内に流される冷却水(26)により除去する構成とした二重効用吸収式冷熱発生・出力装置において、
前記高温再生器(2)からの高温の発生冷媒蒸気(2a)を低温再生器(1)に供給し吸収液の再生に使用して生じる冷媒凝縮液(1b)を、低温溶液熱交換器(9)の希吸収液出口付近に設けられる希吸収液/冷媒液熱交換器(9a)において前記低温再生器(1)からの前記低温溶液熱交換器(9)を出た希吸収液の再予熱に使用して熱回収が行われることを特徴とする請求項1記載の二重効用吸収式冷熱発生・出力装置。
It consists of at least a low-temperature regenerator (1), a high-temperature regenerator (2), a condenser (3), an absorber (4), and an evaporator (5) for volatile secondary refrigerant cold output, and regenerates the absorbing liquid. A low-temperature regenerator (1) and a high-temperature regenerator (2) are used, and the generated refrigerant vapor (2a) from the high-temperature regenerator (2) is supplied to the low-temperature regenerator (1) and the heat source for regenerating the absorbent there The generated refrigerant vapor (1a) from the low temperature regenerator (1) is flushed to the condenser (3), where it is condensed into a refrigerant liquid by cooling water (26),
In the low-temperature regenerator (1), the refrigerant condensate (1b) generated by heating the absorption liquid with the refrigerant vapor is heat-exchanged with a dilute absorption liquid or a regenerative absorption liquid to be recovered, and then the condenser (3 ) Or whether the condenser (3) is flushed immediately after, however, the refrigerant vapor generated therein is condensed with cooling water (26),
The refrigerant condensate (8a) in the condenser (3) is supplied into the evaporator (5) via a U-shaped tube (8) due to a pressure difference, and the evaporator (5a) is supplied to the evaporator (5a). 5) Circulate the refrigerant liquid in the refrigerant liquid storage chamber (5b) at the bottom, and combine the circulating refrigerant liquid (8b) and the refrigerant condensate (8a) from the condenser (3) together with the evaporator (5). Volatile secondary refrigerant obtained by condensing the volatile secondary refrigerant vapor (5c) entering the heat transfer tube of the evaporator (5) by the cold heat generated by the evaporation endotherm The liquid (5d) flows into the receiver (6) and is temporarily stored. Then, the volatile secondary refrigerant liquid pump (6a) sends the liquid (5d) to the volatile secondary refrigerant / air heat exchanger (hereinafter referred to as air conditioner) (7). The air conditioning air blown there is cooled to produce cold output,
In the absorber (4), the circulating rare absorbent pump (4a) circulates the rare absorbent (4e) from the rare absorbent reservoir (4b) at the bottom of the absorber (4), and a low-temperature solution heat exchanger ( 9) Absorbs the generated refrigerant vapor from the evaporator (5) while spraying and flowing down on the outer wall surface of the heat transfer tube of the absorber (4) together with the regenerated absorbent (2b) exiting 9), and absorbing at that time the heat absorber in the double effect absorption cold generating and output equipment that is configured to be removed by the cooling water (26) which flows through the heat transfer tube (4),
Refrigerant condensate (1b) generated by supplying high-temperature generated refrigerant vapor (2a) from the high-temperature regenerator (2) to the low-temperature regenerator (1) and used to regenerate the absorbing liquid is converted into a low-temperature solution heat exchanger ( 9) In the dilute absorbent / refrigerant liquid heat exchanger (9a) provided in the vicinity of the dilute absorbent exit of 9), the retentate of the dilute absorbent exiting the low temperature solution heat exchanger (9) from the low temperature regenerator (1) is recovered. The double-effect absorption-type cold generation / output device according to claim 1, wherein heat recovery is performed using preheating.
少なくとも低温再生器(1)、高温再生器(2)、凝縮器(3)、吸収器(4)と揮発性二次冷媒冷熱出力用の蒸発器(5)より構成され、吸収液の再生を低温再生器(1)と高温再生器(2)により行い、前記高温再生器(2)からの発生冷媒蒸気(2a)を前記低温再生器(1)に供給してそこでの吸収液再生用熱源として使用し、前記低温再生器(1)からの発生冷媒蒸気(1a)を前記凝縮器(3)にフラッシュさせ、そこで冷却水(26)により冷媒液に凝縮させ、
前記低温再生器(1)において吸収液を冷媒蒸気により加熱して生じた冷媒凝縮液(1b)を希吸収液または要再生吸収液と熱交換させて熱回収がなされてから前記凝縮器(3)にフラッシュさせるかあるいは直後に前記凝縮器(3)にフラッシュさせるかどうかに拘わらずただし、そこでの発生冷媒蒸気を冷却水(26)により凝縮させ、
前記凝縮器(3)内の冷媒凝縮液(8a)を圧力差によりU字管(8)を経て前記蒸発器(5)内に供給し、前記循環冷媒液ポンプ(5a)により前記蒸発器(5)底部の冷媒液貯室(5b)内の冷媒液を循環し、このような循環冷媒液(8b)と前記凝縮器(3)からの冷媒凝縮液(8a)を共に蒸発器(5)の伝熱管外壁面に散布し、その蒸発吸熱による発生冷熱により、蒸発器(5)の伝熱管内に入ってくる揮発性二次冷媒蒸気(5c)を凝縮させて得た揮発性二次冷媒液(5d)をレシーバー(6)に流入させていったん溜めてから揮発性二次冷媒液ポンプ(6a)により揮発性二次冷媒/空気熱交換器(以下、空調機と称す)(7)に送り、そこで送風される空調用空気を冷却して冷熱出力をなされ、
前記吸収器(4)において循環希吸収液ポンプ(4a)により前記吸収器(4)底部の希吸収液貯室(4b)からの希吸収液(4e)を循環し、低温溶液熱交換器(9)を出た再生済吸収液(2b)と共に前記吸収器(4)の伝熱管外壁面に散布して流下させながら前記蒸発器(5)からの発生冷媒蒸気を吸収し、その際の吸収熱を前記吸収器(4)の伝熱管内に流される冷却水(26)により除去する構成とした二重効用吸収式冷熱発生・出力装置において、
希吸収液/冷媒液熱交換器(9a)を、低温溶液熱交換器(9)の付近における希吸収液(4g)の分流流路に設置し、
シリーズフローの場合、希吸収液ポンプ(4a)により前記吸収器(4)底部の希吸収液貯室(4b)から送ってくる希吸収液を分流し、主流の希吸収液を低温溶液熱交換器(9)に送って低温再生器(1)からの再生済吸収液(1c)により予熱し、
リバースフローの場合、主流の希吸収液を高温再生器(2)からの高温溶液熱交換器(10)を経た再生済吸収液(2b)により予熱し、
パラレルフローの場合、主流の希吸収液を低温溶液熱交換器(9)において低温再生器(1)からの再生済吸収液(1c)と高温再生器からの高温溶液熱交換器(10)を経てきた再生済吸収液(2b)との合流吸収液により予熱してから分流してそれぞれ低温再生器(1)と高温溶液熱交換器(10)を経て高温再生器(2)へ供給するかあるいは分流してからそれぞれ低温溶液熱交換器(9)と高温溶液熱交換器(10)を経て低温再生器(1)と高温再生器(2)へ供給するかに拘わらず、
いずれの場合において、支流の希吸収液を前記希吸収液/冷媒液熱交換器(9a)に送り、そこで前記低温再生器(1)からの冷媒凝縮液(1b)により予熱し、また前記希吸収液/冷媒液熱交換器(9a)を出た支流の希吸収液を、低温溶液熱交換器(9)を出た主流の希吸収液に合流させることを特徴とする二重効用吸収式冷熱発生・出力装置。
It consists of at least a low-temperature regenerator (1), a high-temperature regenerator (2), a condenser (3), an absorber (4), and an evaporator (5) for volatile secondary refrigerant cold output, and regenerates the absorbing liquid. A low-temperature regenerator (1) and a high-temperature regenerator (2) are used, and the generated refrigerant vapor (2a) from the high-temperature regenerator (2) is supplied to the low-temperature regenerator (1) and the heat source for regenerating the absorbent there The generated refrigerant vapor (1a) from the low temperature regenerator (1) is flushed to the condenser (3), where it is condensed into a refrigerant liquid by cooling water (26),
In the low-temperature regenerator (1), the refrigerant condensate (1b) generated by heating the absorption liquid with the refrigerant vapor is heat-exchanged with a dilute absorption liquid or a regenerative absorption liquid to be recovered, and then the condenser (3 ) Or whether the condenser (3) is flushed immediately after, however, the refrigerant vapor generated therein is condensed with cooling water (26),
The refrigerant condensate (8a) in the condenser (3) is supplied into the evaporator (5) via a U-shaped tube (8) due to a pressure difference, and the evaporator (5a) is supplied to the evaporator (5a). 5) Circulate the refrigerant liquid in the refrigerant liquid storage chamber (5b) at the bottom, and combine the circulating refrigerant liquid (8b) and the refrigerant condensate (8a) from the condenser (3) together with the evaporator (5). Volatile secondary refrigerant obtained by condensing the volatile secondary refrigerant vapor (5c) entering the heat transfer tube of the evaporator (5) by the cold heat generated by the evaporation endotherm The liquid (5d) flows into the receiver (6) and is temporarily stored. Then, the volatile secondary refrigerant liquid pump (6a) sends the liquid (5d) to the volatile secondary refrigerant / air heat exchanger (hereinafter referred to as air conditioner) (7). The air conditioning air blown there is cooled to produce cold output,
In the absorber (4), the circulating rare absorbent pump (4a) circulates the rare absorbent (4e) from the rare absorbent reservoir (4b) at the bottom of the absorber (4), and a low-temperature solution heat exchanger ( 9) Absorbs the generated refrigerant vapor from the evaporator (5) while spraying and flowing down on the outer wall surface of the heat transfer tube of the absorber (4) together with the regenerated absorbent (2b) exiting 9), and absorbing at that time the heat absorber in the double effect absorption cold generating and output equipment that is configured to be removed by the cooling water (26) which flows through the heat transfer tube (4),
Install the dilute absorbent / refrigerant liquid heat exchanger (9a) in the diverted flow path of dilute absorbent (4g) near the low temperature solution heat exchanger (9),
In the case of series flow, the dilute absorption liquid sent from the dilute absorption liquid storage chamber (4b) at the bottom of the absorber (4) is diverted by the dilute absorption liquid pump (4a), and the mainstream dilute absorption liquid is subjected to low-temperature solution heat exchange. To the regenerator (9) and preheated with the regenerated absorbent (1c) from the low temperature regenerator (1),
In the case of reverse flow, the mainstream diluted absorbent is preheated by the regenerated absorbent (2b) that has passed through the high temperature solution heat exchanger (10) from the high temperature regenerator (2),
In the case of parallel flow, the mainstream dilute absorbent is passed through the regenerated absorbent (1c) from the low temperature regenerator (1) and the high temperature solution heat exchanger (10) from the high temperature regenerator in the low temperature solution heat exchanger (9). Is it preheated by the combined absorption liquid with the regenerated absorption liquid (2b) that has passed and then divided and supplied to the high temperature regenerator (2) via the low temperature regenerator (1) and the high temperature solution heat exchanger (10), respectively? Alternatively, whether it is supplied to the low temperature regenerator (1) and the high temperature regenerator (2) through the low temperature solution heat exchanger (9) and the high temperature solution heat exchanger (10) after being divided,
In any case, the tributary diluted absorbent is sent to the diluted absorbent / refrigerant liquid heat exchanger (9a), where it is preheated by the refrigerant condensate (1b) from the low temperature regenerator (1), and A dual-effect absorption system characterized by merging the tributary dilute absorbent from the absorbent / refrigerant liquid heat exchanger (9a) with the main dilute absorbent from the low temperature solution heat exchanger (9) Cold heat generation / output device.
前記高温再生器(2)に燃料ガスまたは燃料油直だき再生器を適用し、前記低温再生器(1)には流下液膜式再生凝縮器(200)またはプール加熱方式再生器を適用することを特徴とする請求項1又は2に記載の二重効用吸収式冷熱発生・出力装置。Apply a fuel gas or fuel oil direct regenerator to the high temperature regenerator (2), and apply a falling liquid film regenerative condenser (200) or a pool heating type regenerator to the low temperature regenerator (1). The double-effect absorption-type cold generation / output device according to claim 1 or 2. 前記高温再生器(2)に流下液膜式再生器(100)を適用し、相変化のない熱源流体または排熱を高温再生器(2)の熱源とし、低温再生器(1)には流下液膜式再生凝縮器(200)またはプール加熱方式再生器を適用することを特徴とする請求項1又は2に記載の二重効用吸収式冷熱発生・出力装置。A falling film type regenerator (100) is applied to the high-temperature regenerator (2), and a heat source fluid or exhaust heat without phase change is used as a heat source for the high-temperature regenerator (2), and the down-flow regenerator (1) The double-effect absorption cold generation / output device according to claim 1 or 2, wherein a liquid film regenerative condenser (200) or a pool heating regenerator is applied. 前記高温再生器(2)に流下液膜式再生凝縮器(200)を適用し、相変化のある熱源流体または高温水蒸気を高温再生器(2)の熱源とし、低温再生器(1)には流下液膜式再生凝縮器(200)またはプール加熱方式再生器を適用することを特徴とする請求項1又は2に記載の二重効用吸収式冷熱発生・出力装置。A falling film type regenerative condenser (200) is applied to the high temperature regenerator (2), a heat source fluid having a phase change or high temperature steam is used as a heat source of the high temperature regenerator (2), and the low temperature regenerator (1) The double effect absorption type cold generating / output device according to claim 1 or 2, wherein a falling liquid film type regenerative condenser (200) or a pool heating type regenerator is applied.
JP2006015116A 2006-01-24 2006-01-24 Double-effect absorption chill generation / output device Expired - Fee Related JP4566919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015116A JP4566919B2 (en) 2006-01-24 2006-01-24 Double-effect absorption chill generation / output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015116A JP4566919B2 (en) 2006-01-24 2006-01-24 Double-effect absorption chill generation / output device

Publications (2)

Publication Number Publication Date
JP2007198625A JP2007198625A (en) 2007-08-09
JP4566919B2 true JP4566919B2 (en) 2010-10-20

Family

ID=38453397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015116A Expired - Fee Related JP4566919B2 (en) 2006-01-24 2006-01-24 Double-effect absorption chill generation / output device

Country Status (1)

Country Link
JP (1) JP4566919B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107161A (en) * 1982-12-07 1984-06-21 ダイキン工業株式会社 Absorption type refrigerator
JPH04350473A (en) * 1991-05-27 1992-12-04 Osaka Gas Co Ltd Temperature controller for absorbing refrigerator
JPH09217971A (en) * 1996-02-09 1997-08-19 Tokyo Gas Co Ltd Absorption water cooler water warmer
JPH10232064A (en) * 1997-02-19 1998-09-02 Yazaki Corp Cooling operation control method of absorption cooling and heating device
JPH11182966A (en) * 1997-12-19 1999-07-06 Tokyo Gas Co Ltd Absorption hot and chilled water generator
JP2003343940A (en) * 2002-05-24 2003-12-03 Sanyo Electric Co Ltd Absorption water cooler/heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107161A (en) * 1982-12-07 1984-06-21 ダイキン工業株式会社 Absorption type refrigerator
JPH04350473A (en) * 1991-05-27 1992-12-04 Osaka Gas Co Ltd Temperature controller for absorbing refrigerator
JPH09217971A (en) * 1996-02-09 1997-08-19 Tokyo Gas Co Ltd Absorption water cooler water warmer
JPH10232064A (en) * 1997-02-19 1998-09-02 Yazaki Corp Cooling operation control method of absorption cooling and heating device
JPH11182966A (en) * 1997-12-19 1999-07-06 Tokyo Gas Co Ltd Absorption hot and chilled water generator
JP2003343940A (en) * 2002-05-24 2003-12-03 Sanyo Electric Co Ltd Absorption water cooler/heater

Also Published As

Publication number Publication date
JP2007198625A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4396986B2 (en) Falling liquid film regenerator
JP2007327658A (en) Single effect absorption-type cold generating/outputting device
JPH08105669A (en) Regenerator for absorption refrigerator
JP2009168271A (en) Double effect absorption type cold and heat generating/outputting device
RU2735052C2 (en) Method of absorption and cooling system modernization
JP4566919B2 (en) Double-effect absorption chill generation / output device
JP4318679B2 (en) Regenerative condenser
KR20150007131A (en) Absoption chiller
JP2007298240A (en) Triple effect absorption cold generation/output device
KR20200120186A (en) Absorption type chiller-heater
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
GB2167847A (en) Absorption type refrigeration system
JP2530221B2 (en) Waste heat recovery type heat storage cooling system
KR20200120190A (en) Absorption type chiller
JPS6122225B2 (en)
KR100517000B1 (en) Double effect model direct connection absorbtion type refrigerator
JP4266697B2 (en) Absorption refrigerator
JPH10122686A (en) Air-cooled absorption refrigerating apparatus
JP2004144394A (en) Multi-stage absorption freezing machine and freezing system
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
CN216977243U (en) Generator for refrigerating system
JP2007271165A (en) Absorption-type refrigerating device
JP2973653B2 (en) Absorption refrigerator
JP2974005B2 (en) Absorption refrigerator
JP2007240062A (en) Cold/hot heat output method and device for absorption cooling/heating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees