JP2530221B2 - Waste heat recovery type heat storage cooling system - Google Patents

Waste heat recovery type heat storage cooling system

Info

Publication number
JP2530221B2
JP2530221B2 JP1057783A JP5778389A JP2530221B2 JP 2530221 B2 JP2530221 B2 JP 2530221B2 JP 1057783 A JP1057783 A JP 1057783A JP 5778389 A JP5778389 A JP 5778389A JP 2530221 B2 JP2530221 B2 JP 2530221B2
Authority
JP
Japan
Prior art keywords
heat
absorption liquid
waste heat
absorption
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1057783A
Other languages
Japanese (ja)
Other versions
JPH02238269A (en
Inventor
章 山田
勝也 江原
康雄 小関
秀昭 黒川
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP1057783A priority Critical patent/JP2530221B2/en
Publication of JPH02238269A publication Critical patent/JPH02238269A/en
Application granted granted Critical
Publication of JP2530221B2 publication Critical patent/JP2530221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収式冷房システムに係わり、特に、廃熱発
生箇所と冷熱必要箇所とが遠隔地である廃熱を回収して
冷房する際に好適な廃熱回収型蓄熱冷房システムに関す
る。
Description: TECHNICAL FIELD The present invention relates to an absorption type cooling system, and in particular, when collecting waste heat and cooling the waste heat where a waste heat generation location and a cooling heat requirement location are remote locations. The present invention relates to a suitable waste heat recovery type heat storage cooling system.

〔従来の技術〕[Conventional technology]

従来の廃熱回収型吸収冷凍システムは第6図に示すよ
うに、廃熱源と吸収式冷凍機の再生器とをヒートパイプ
で接続して成り、廃熱から熱を受けて吸収液の再生(濃
縮)熱源としていた。しかしながら、高い温度の廃熱を
出す装置(例えば窯業用の焼成炉、製鉄所の各種炉等)
では、熱効率向上の点から昼夜連続運転されるのが一般
的である。一方上述した工場等の事務室等の居室の冷房
が必要な時間は、通常昼間のみである。
As shown in FIG. 6, a conventional waste heat recovery type absorption refrigeration system is constituted by connecting a waste heat source and a regenerator of an absorption chiller with a heat pipe, and receives heat from the waste heat to regenerate the absorption liquid ( It was used as a heat source. However, equipment that produces high-temperature waste heat (eg, kilns for kilns, various furnaces in steelworks, etc.)
In general, continuous operation is performed day and night from the viewpoint of improving thermal efficiency. On the other hand, the time required to cool the living room such as the office of the factory is usually only during the daytime.

したがって、吸収冷凍材の吸収液再生に必要なヒート
パイプからの熱源、即ち工場廃熱が利用可能な時間は昼
間のみであり、夜間は熱回収することなく、排出されて
しまう結果、熱利用率の低減を余儀なくされていた。
Therefore, the heat source from the heat pipe necessary for the absorption liquid regeneration of the absorption refrigeration material, that is, the factory waste heat can be used only in the daytime, and is exhausted without recovering the heat at night. Had to be reduced.

一方、特開昭61−180891号公報には濃度差蓄熱の原理
が記されているが、蓄熱と放熱を交互に繰り返す断熱運
転であるため、蓄熱時のみ加熱源が必要であり、前述し
たように連続で熱が発生する場合には適用できない。
On the other hand, Japanese Patent Laid-Open No. 61-180891 discloses the principle of concentration difference heat storage, but since it is an adiabatic operation in which heat storage and heat dissipation are alternately repeated, a heating source is required only during heat storage, and as described above. It is not applicable when heat is continuously generated.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は熱源系と熱利用系の位置的関係及び運
転時間の差は考慮されておらず、廃熱の発生場所と冷熱
の必要場所が相違する場合とか熱回収率向上の面から問
題があった。
The above-mentioned conventional technology does not consider the positional relationship between the heat source system and the heat utilization system and the difference in the operating time, and there is a problem in terms of improving the heat recovery rate, such as when the waste heat generation location and the cold heat requirement location are different. there were.

本発明の目的は、前述した位置的関係と運転時間の差
に着目し蓄熱機能を備えることで熱回収率を大幅に向上
せしめると共に、各要素機器寸法を最小にすることがで
き、熱源部と再生器を廃熱発生場所に設置し、当該場所
から遠隔地に冷熱発生部を配置しても熱損失が生じない
ヒートパイプ利用の廃熱回収型蓄熱冷房システムを提供
することにある。
The object of the present invention is to significantly improve the heat recovery rate by providing a heat storage function by paying attention to the difference between the positional relationship and the operating time described above, and at the same time, it is possible to minimize the size of each element device, An object of the present invention is to provide a waste heat recovery type heat storage cooling system using a heat pipe in which a regenerator is installed at a waste heat generation place and a heat loss does not occur even if a cold heat generation unit is arranged at a remote place from the place.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、廃熱回収蓄熱型冷房システムにおいて、
吸収液再生部で廃熱を利用して濃縮した吸収液と濃縮さ
れた時に発生して復水された水とをそれぞれ貯蔵するた
めの貯蔵を、吸収液再生部とは別に設けると共に、水蒸
気吸収部と放熱器とを冷熱必要地点に設けることにより
達成される。
The above-mentioned purpose is in a waste heat recovery heat storage type cooling system,
Storage is provided separately for the absorption liquid regenerator, which uses the waste heat to concentrate the condensed liquid and the water that is generated and condensed when it is condensed, separately from the absorption liquid regenerator, and to absorb water vapor. This is achieved by providing the section and the radiator at the required cooling point.

すなわち、本発明は、廃熱回収器、吸収液再生部、水
蒸気吸収部、放熱器、吸収液貯槽、冷媒水槽とから成
り、前記廃熱回収器で回収した熱を前記吸収液の再生に
使用する廃熱回収型蓄熱冷房システムにおいて、 廃熱が利用できる近傍に廃熱回収器、吸収液再生部、
吸収液貯槽及び冷媒水槽を設置し、遠隔地の冷熱を必要
としている地点に水蒸気吸収部と放熱器を設置してお
き、廃熱を利用して吸収液再生部で吸収液を濃縮し、濃
縮された吸収液を吸収液貯槽に貯蔵し、この濃縮吸収液
を冷熱必要地まで輸送して、そこに設置した水蒸気吸収
部と放熱器に前記濃縮吸収液を導入して冷熱を発生させ
ることを特徴とする廃熱回収型蓄熱冷房システムであ
る。
That is, the present invention comprises a waste heat recovery unit, an absorption liquid regeneration unit, a water vapor absorption unit, a radiator, an absorption liquid storage tank, and a refrigerant water tank, and the heat recovered by the waste heat recovery unit is used to regenerate the absorption liquid. In the waste heat recovery type heat storage cooling system, the waste heat recovery unit, the absorption liquid regeneration unit,
An absorption liquid storage tank and a refrigerant water tank are installed, a steam absorption unit and a radiator are installed in a remote place where cold heat is required, and the waste heat is used to concentrate and concentrate the absorption liquid in the absorption liquid regeneration unit. The absorbed absorption liquid is stored in an absorption liquid storage tank, and the concentrated absorption liquid is transported to a place where cooling is required, and the concentrated absorption liquid is introduced into the steam absorbing section and the radiator installed there to generate cold heat. The feature is a waste heat recovery type heat storage cooling system.

本発明をより詳しく説明すると、本発明のシステムに
使用される装置としては、濃縮吸収液を貯蔵しておく貯
蔵と凝縮した復水を貯蔵する水槽、吸収液を濃縮するた
めの廃熱回収器と連結したヒートパイプを内蔵した再生
器と発生した水蒸気を凝縮するための凝縮器とから成る
吸収液再生部、水を蒸発させる蒸発器と発生した水蒸気
を吸収液に吸収させる吸収器とから成る水蒸気吸収部
と、前記貯槽と吸収液再生部、又は水蒸気吸収部を各々
接続する吸収液配管及び輸送手段から構成される。
The present invention will be described in more detail. Examples of the apparatus used in the system of the present invention include a storage tank for storing a concentrated absorption liquid, a water tank for storing condensed condensate, and a waste heat recovery device for concentrating the absorption liquid. An absorbent regenerator consisting of a regenerator having a heat pipe connected to it and a condenser for condensing the generated water vapor; an evaporator for evaporating water and an absorber for absorbing the water vapor generated by the absorbent. It is composed of a water vapor absorbing part, an absorbing liquid pipe and a transportation means which respectively connect the storage tank and the absorbing liquid regenerating part, or the water vapor absorbing part.

本発明においては、前記の吸収液再生部と水蒸気吸収
部は、それぞれ分離して別個に設け、吸収液再生部は熱
損失を少なくするために廃熱が利用できる近くに設置
し、水蒸気吸収部は冷熱必要地すなわち冷房の必要な事
務所等の近くに設置する。
In the present invention, the absorbent regenerator and the water vapor absorber are separately provided separately, and the absorbent regenerator is installed in the vicinity where waste heat can be used to reduce heat loss. Will be installed near the area where cooling is required, that is, near offices that require cooling.

また、吸収液再生部は、複数段としてそれぞれの濃縮
器と廃熱回収器とを複数のヒートパイプて接続すること
ができるし、一方、水蒸気吸収部も複数段で設置でき、
発生した冷熱の温度の高い順に熱交換して冷熱を取り出
すように構成することもできる。
Further, the absorbent regenerator can be connected to each concentrator and the waste heat recovery unit as a plurality of heat pipes in a plurality of stages, while the water vapor absorber can be installed in a plurality of stages.
It is also possible to perform a heat exchange in the descending order of the temperature of the generated cold heat to take out the cold heat.

〔作 用〕[Work]

廃熱部と吸収液を濃縮するための吸収液再生部を接続
するヒートパイプは、廃熱部からの熱を吸収液再生部の
再生器へ伝え、伝熱面を介して吸収液を加熱し水蒸気を
発生させ、吸収液を濃縮する。発生した水蒸気は凝縮室
へ移動し凝縮され復水する。
The heat pipe that connects the waste heat part and the absorbent regenerator for concentrating the absorbent, transfers the heat from the waste heat part to the regenerator of the absorbent regenerator, and heats the absorbent via the heat transfer surface. Generate water vapor and concentrate the absorption liquid. The generated steam moves to the condensation chamber where it is condensed and condensed.

濃縮された吸収液は貯槽へ、復水された水は水槽へ流
れ込み貯蔵される。貯蔵された吸収液と水は、必要に応
じて貯槽から取り出され、輸送されて、遠隔地の水蒸気
吸収部の吸収器へ送られ、熱交換器で当該吸収液が冷却
されることで、水蒸気吸収部内の圧力が低下して、蒸発
器に散布されている水を蒸発させ、潜熱を奪うことによ
り降温する。当該冷熱は熱交換器を介して外部へ取り出
され、冷房源となる。
The concentrated absorption liquid flows into the storage tank, and the condensed water flows into the water tank for storage. The stored absorption liquid and water are taken out of the storage tank as needed, transported, and sent to the absorber of the water vapor absorption unit at a remote place, and the absorption liquid and water are cooled by the heat exchanger. The pressure in the absorption section is reduced, the water sprinkled in the evaporator is evaporated, and the latent heat is removed to lower the temperature. The cold heat is taken out through the heat exchanger and serves as a cooling source.

係る構成により、第1に吸収液貯槽と水槽を備えたこ
とで連続して廃熱が回収でき、熱エネルギーを濃度差に
変換して蓄えておくことが可能である。さらに、冷房時
間を半日(12時間)と仮定すると、冷房出力と廃熱から
回収する熱量の2倍とすることが可能である。第2に吸
収液再生部と水蒸気吸収部を別置としたことで、両者を
遠く隔てて各々別々に設置することが可能であり、以下
に述べる効果が生まれる。即ち、通常の使用形態におい
ては熱発生部である工場装置と、冷房必要個所例えば事
務室等の居室と遠く隔てて位置している。このことは何
らかの手段で高温熱を冷熱発生部まで熱輸送するか、逆
に発生した冷熱を前記居室まで熱輸送するかの方法が考
えられるが、いづれの方法でも、従来の熱輸送技術では
熱損失が極めて大きく問題があったが、本発明によれ
ば、濃度差の異なる液を熱源側から冷熱発生部側へ移送
することで熱を輸送したことになり、熱損失は全く生じ
ない。
With such a configuration, first, since the absorbing liquid storage tank and the water tank are provided, waste heat can be continuously recovered, and thermal energy can be converted into a concentration difference and stored. Furthermore, assuming that the cooling time is half a day (12 hours), it is possible to make it twice the amount of heat recovered from the cooling output and waste heat. Secondly, since the absorbent regenerating unit and the water vapor absorbing unit are separately arranged, it is possible to separately install the absorbing liquid regenerating unit and the water vapor absorbing unit, and the following effects are produced. That is, it is located far away from the factory device, which is a heat generating portion in a normal usage mode, and a place where cooling is required, for example, a living room such as an office. This may be achieved by some method of transporting high-temperature heat to the cold heat generating section or conversely, transporting the cold heat generated to the living room, but in either method, the heat is not transferred by the conventional heat transfer technology. Although the loss was extremely large, there was a problem. However, according to the present invention, the heat is transported by transferring the liquids having different concentration differences from the heat source side to the cold heat generating section side, and no heat loss occurs.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に用いて説明するが、本
発明はこれらの実施例に限定されない。
Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited to these examples.

実施例1 本発明の一実施例を第1図により説明する。Embodiment 1 An embodiment of the present invention will be described with reference to FIG.

第1図は本発明の基礎となる基本的な系統図であり、
1は廃熱回収器、2は隔壁26で隔離された希薄吸収液の
濃縮器21と凝縮器22とから構成される吸収液再生部、3
は吸収液の濃厚液を下方に、希薄液を上方に比重差で貯
蔵する吸収液貯槽、4は隔壁46により仕切られて水の蒸
発器42と発生した水蒸気を濃厚媒体に吸収される吸収器
41とから構成される水蒸気吸収部、5は希薄吸収液から
蒸発した水蒸気が凝縮し復水された水を貯える水槽、6
は濃厚吸収液と希薄吸収液との熱交換器、7は放熱器で
ある。
FIG. 1 is a basic system diagram which is the basis of the present invention.
Reference numeral 1 is a waste heat recovery device, 2 is an absorption liquid regenerator comprising a dilute absorption liquid concentrator 21 and a condenser 22 separated by a partition wall 26, 3
Is an absorption liquid storage tank for storing the concentrated liquid of the absorbing liquid in the lower part and the dilute liquid in the upper part with a specific gravity difference, and 4 is a partition wall 46 for partitioning the water vaporizer 42 and the absorber for absorbing the generated water vapor in the concentrated medium.
41 is a water vapor absorbing section, 5 is a water tank for storing the water condensed and condensed by the water vapor evaporated from the lean absorbent, 6
Is a heat exchanger for the concentrated and dilute absorbents, and 7 is a radiator.

さらに、前述した水蒸気吸収部4は、配管111と112、
113と115、120と121により各部と切り離されており、熱
源系と冷熱発生系とは遠隔して設置し、前述した当該個
所の配管を移送先で各々接続することにより、本システ
ムが形成される。
Further, the water vapor absorption unit 4 described above is provided with the pipes 111 and 112,
It is separated from each part by 113 and 115, 120 and 121, the heat source system and the cold heat generation system are installed remotely, and this system is formed by connecting the pipes of the above-mentioned location at the transfer destination. It

以上のシステム構成において、その作動状況を以下に
述べる。
The operating conditions of the above system configuration will be described below.

高温廃熱1000は廃熱回収器1へ導入され、ヒートパイ
プ10の受熱端11を加熱し、降温して管(煙突)2000から
外部へ放出される。受熱端11で受けた熱はヒートパイプ
10を伝わって、放熱端23へ移動する。
The high temperature waste heat 1000 is introduced into the waste heat recovery unit 1, heats the heat receiving end 11 of the heat pipe 10, lowers the temperature, and is discharged from the pipe (chimney) 2000 to the outside. The heat received at the heat receiving end 11 is a heat pipe
It travels along 10 and moves to the heat dissipation end 23.

吸収液再生部2の濃縮器21には管102、散布ノズル25
を経て供給される希薄吸収液が、前述したヒートパイプ
の放熱端23へ散布され、加熱されて水蒸気が発生する。
発生した水蒸気は、管107により導入された伝熱管24、
管108を経て排出される冷却水によって冷却されて、復
水され、管106を経て水槽5へ流れ込んで貯蔵される。
蒸発により濃縮された吸収液は管103を経て、大部分は
管104により再循環され、残りは熱交換器6、管105を経
て吸収液貯層3の下層へ導入される。吸収液貯層3の上
方層は希薄吸収液が溜まっており、管101により熱交換
器6へ導入される。熱交換器6では前述した如く高い温
度の濃厚吸収液と熱交換して昇温され、管102を経て前
述した流れとなる。
The condenser 102 of the absorbent regenerator 2 has a pipe 102 and a spray nozzle 25.
The diluted absorbing liquid supplied via the above is sprayed onto the heat radiating end 23 of the heat pipe described above and heated to generate water vapor.
The generated steam is a heat transfer tube 24 introduced by a tube 107,
It is cooled by the cooling water discharged through the pipe 108, condensed, and flows into the water tank 5 through the pipe 106 for storage.
The absorption liquid concentrated by evaporation is recirculated through the pipe 103, most of it through the pipe 104, and the rest is introduced into the lower layer of the absorption liquid storage layer 3 through the heat exchanger 6 and the pipe 105. The upper layer of the absorbent storage layer 3 stores the diluted absorbent and is introduced into the heat exchanger 6 through the pipe 101. In the heat exchanger 6, the temperature is increased by exchanging heat with the concentrated absorbent having a high temperature as described above, and the above-described flow is performed through the pipe 102.

以上が廃熱回収熱源により希薄吸収液を濃縮し濃厚吸
収液と水とに分離貯蔵する操作である。
The above is the operation of concentrating the lean absorbent by the waste heat recovery heat source and separating and storing it into the concentrated absorbent and water.

次に、濃厚吸収液と水を用い冷房を発生する操作につ
いて述べる。
Next, the operation of generating cooling by using the concentrated absorbent and water will be described.

濃厚吸収液は貯槽3の下層から管111により引き出さ
れ移送されて管112、散布ノズル45によって水蒸気吸収
部4の吸収器41内に配置されている冷却伝熱管43上に散
布される。この時、後述するように水蒸気吸収部4の圧
力は低下する。一方貯水槽5から引き出され水は管12
0、121、122を経て、散布ノズル47を経て蒸発器42の伝
熱管44上に散布されており、前述した器内圧力低下のた
めに当該散布水は蒸発する。この時蒸発潜熱が奪われ降
温するが、放冷器7により室内空気で昇温した水が管13
1により伝熱管44へ流れ、前述した散布水を加熱し、自
身は降温して、管132から抜き出され放冷器7へ再循環
され、伝熱管71を流れている時、ファン72により室内空
気と熱交換して降温される。
The concentrated absorbing liquid is drawn out from the lower layer of the storage tank 3 by a pipe 111 and transferred, and is sprayed by a pipe 112 and a spraying nozzle 45 onto a cooling heat transfer pipe 43 arranged in the absorber 41 of the water vapor absorbing section 4. At this time, as will be described later, the pressure of the water vapor absorption section 4 decreases. On the other hand, the water drawn from the water tank 5 is pipe 12
It is sprayed on the heat transfer tube 44 of the evaporator 42 through the spray nozzles 47 through 0, 121 and 122, and the sprayed water is evaporated due to the above-mentioned internal pressure drop. At this time, the latent heat of vaporization is removed and the temperature drops.
1 flows to the heat transfer tube 44, heats the sprayed water described above, cools itself, is withdrawn from the tube 132 and is recirculated to the cooler 7, and while flowing through the heat transfer tube 71, is blown indoors by the fan 72. The temperature is lowered by exchanging heat with air.

蒸発器42で発生した水蒸気は吸収器41へ流れ、一方未
蒸発の水は管123により再循環される。
The water vapor generated in the evaporator 42 flows to the absorber 41, while the non-evaporated water is recirculated by the pipe 123.

吸収器41へ導入された水蒸気は前述した濃厚吸収液に
吸収され、吸収液は希釈され、管113、114により再循環
され、残りは移送されて管115を経て管101に合流すると
共に、一部は管116により貯槽3の上方層へ戻る。
The water vapor introduced into the absorber 41 is absorbed by the above-mentioned concentrated absorbing liquid, the absorbing liquid is diluted and recirculated by the pipes 113 and 114, and the rest is transferred and merges with the pipe 101 via the pipe 115, and The section returns to the upper layer of the storage tank 3 by the pipe 116.

以上が、冷熱発生操作に係る説明であり、次に第2図
とも合わせて定量的な説明を以下に行う。
The above is the description relating to the cold heat generating operation, and a quantitative description will be given below together with FIG.

第2図は本発明のサイクルに好適な吸収液の温度と水
蒸気特性を、濃度をパラメータとして示したものであ
る。
FIG. 2 shows the temperature and water vapor characteristics of the absorbing liquid suitable for the cycle of the present invention, using the concentration as a parameter.

第1図に於いて、非凝縮姓ガスが抽気された吸収液再
生部2の濃縮器21へ、希薄吸収液が導入される。この場
合、吸収液の加熱温度を100℃(単位時間当たりの入熱
量を1とする)とし、凝縮器22の伝熱管24により冷却さ
れた水蒸気の凝縮温度を40℃(冷却熱量約1)とした
時、吸収液濃度は約66%(図中A点)、温度100℃とな
る。この濃厚液は熱交換器6で、希薄吸収液(常温、30
℃とする)と熱交換して42℃(温度効率80%とする)と
なり貯槽3の下層へ導入され貯えられる。この操作は24
時間連続で実施されるために入熱量の総量は24となる。
In FIG. 1, the lean absorbent is introduced into the concentrator 21 of the absorbent regenerator 2 from which the non-condensed residual gas has been extracted. In this case, the heating temperature of the absorbing liquid is 100 ° C. (the heat input amount per unit time is 1), and the condensation temperature of the steam cooled by the heat transfer tube 24 of the condenser 22 is 40 ° C. (cooling heat amount of about 1). At that time, the concentration of the absorbing solution is about 66% (point A in the figure) and the temperature is 100 ° C. This concentrated liquid is used in the heat exchanger 6 to dilute the absorbent (at room temperature, 30
The temperature is changed to 42 ° C. (temperature efficiency is 80%) to be stored in the lower layer of the storage tank 3. This operation is 24
The total heat input is 24 because it is carried out continuously over time.

一方、冷熱発生操作に於いては、非凝縮姓ガスが抽気
された水蒸気吸収部4の伝熱管43で濃厚吸収液が冷却さ
れる温度を42℃、単位時間冷却熱量を2、希薄吸収液の
濃度を60%とした時、水蒸気吸収部4の器内圧力は6mmH
g程度となり、第2図に於ける水との交点Bより、約7
℃で水が蒸発する。この水と管131から導入される水が
熱交換器44で熱交換され降温して管132から抜き出さ
れ、放冷器7により、室内空気と熱交換して冷房に供さ
れる。この放熱量は約2であり、12時間運転として放熱
総量は2×12=24となる。
On the other hand, in the cold heat generation operation, the temperature at which the concentrated absorbing liquid is cooled in the heat transfer tube 43 of the water vapor absorbing portion 4 from which the non-condensing gas has been extracted is 42 ° C., the cooling heat amount per unit time is 2, and the dilute absorbing liquid When the concentration is 60%, the internal pressure of the water vapor absorption part 4 is 6mmH.
It is about g and about 7 from the intersection B with water in Fig. 2.
Water evaporates at ° C. This water and the water introduced from the pipe 131 are heat-exchanged by the heat exchanger 44, the temperature is lowered, and the water is extracted from the pipe 132. The cooler 7 exchanges heat with the indoor air to be used for cooling. This heat radiation amount is about 2, and the total heat radiation amount is 2 × 12 = 24 after 12 hours of operation.

したがって、入熱量の総量を12時間運転することによ
り、すべて放熱出来ることとなる。
Therefore, by operating the total heat input for 12 hours, all the heat can be released.

以上に述べたように本発明によれば、吸収液貯槽を設
置したことで、昼夜連続運転により廃熱を24時間回収
し、昼間の12時間のみを冷房運転するシステムが完成
し、夜間は吸収液の再生(濃縮)専用に廃熱を利用して
濃厚吸収液を貯蔵しておき、昼間は廃熱利用による吸収
液再生を実施して貯槽に溜めながら、一方では、吸収液
貯槽から濃厚吸収液を引き抜いて水蒸気吸収部へ導入
し、冷熱を発生させることができる。そのため、単位時
間当たりの廃熱量の2倍の冷熱量を発生することができ
る特徴を有すると共に、廃熱回収部と水蒸気吸収部を分
離して別置として両者間を輸送手段で接続することで、
熱回収部を廃熱源に近接して設置し、冷熱発生部を冷熱
需要場所内に設置することが可能である。そして、両者
間の熱移動は濃度の異なる吸収液が移動することから、
温度には全く無関係であり、熱損失を生じないという従
来にない極めて顕著な特徴を有する。
As described above, according to the present invention, by installing the absorbing liquid storage tank, a system for recovering waste heat for 24 hours by continuous operation during the day and night and completing cooling operation for only 12 hours during the day is completed, and absorption at night. The concentrated absorption liquid is stored by using waste heat exclusively for liquid regeneration (concentration), and the absorption liquid is regenerated by using the waste heat during the daytime and stored in the storage tank, while on the other hand, the concentrated absorption liquid is absorbed from the absorption liquid storage tank. The liquid can be drawn out and introduced into the water vapor absorption section to generate cold heat. Therefore, it has a feature that it can generate a quantity of cold heat twice as much as the quantity of waste heat per unit time, and separates the waste heat recovery part and the water vapor absorption part and separately connects them by a transportation means. ,
It is possible to install the heat recovery unit in the vicinity of the waste heat source and install the cold heat generation unit in the cold heat demand place. And the heat transfer between the two is because the absorbing liquid with different concentration moves,
It is completely independent of temperature and has a very outstanding feature that no heat loss occurs.

実施例2 本発明の他の実施例を第3図、第4図を用いて説明す
る。第3図は吸収液再生部2を2段とし、当該吸収部に
見合う熱回収が可能なヒートパイプ10a、10bも2系列と
して、廃熱をより効果的に利用する手段と構成材料の腐
食環境軽減を目的に成されたものである。さらに第3図
に示す如く、水蒸気吸収部4を2段として、吸収後の希
薄吸収液の濃度をより低くすることが可能となってい
る。
Embodiment 2 Another embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 shows that the absorption liquid regenerating section 2 has two stages, and the heat pipes 10a and 10b capable of heat recovery corresponding to the absorption section also have two series, and means for more effectively utilizing waste heat and a corrosive environment of constituent materials. It was made for the purpose of mitigation. Further, as shown in FIG. 3, the water vapor absorption section 4 is provided in two stages, so that the concentration of the diluted absorbent after absorption can be further lowered.

その他の各構成は、操作は第1図と同じである。 The operation of the other components is the same as in FIG.

第5図は濃度変化率δと蓄熱密度φとの関係を示すグ
ラフである。即ち、第5図に示すように吸収液の濃度変
化幅を大きくすることで、単位吸収液重量当たりの蓄熱
量が増大でき、その分貯槽3の容積を小型化することが
可能となる。
FIG. 5 is a graph showing the relationship between the concentration change rate δ and the heat storage density φ. That is, as shown in FIG. 5, by increasing the variation range of the concentration of the absorbing liquid, the heat storage amount per unit weight of the absorbing liquid can be increased, and the volume of the storage tank 3 can be reduced accordingly.

第3図に示した実施例では吸収液再生部2と水蒸気吸
収部4の両者を2段として示しているが、いづれか一方
を2段とした装置も当然本発明に含まれると共に、各部
を2段に限定するものではなく、複数段とすることも本
発明の範囲である。
In the embodiment shown in FIG. 3, both the absorbing liquid regenerating section 2 and the water vapor absorbing section 4 are shown as two stages, but a device having either one of them as two stages is naturally included in the present invention, and each section is divided into two stages. The number of stages is not limited, and a plurality of stages is also within the scope of the present invention.

第4図は前述した両者をそれぞれ2段とした時の操作
線図を示したもので、吸収液再生部2の第2段2bでの吸
収液加熱温度を110℃、凝縮温度52℃とした時(第4図
中A点)、吸収液濃度66%が得られ、管103より貯槽3
へ溜められる一方、第1段2aでの吸収液加熱温度を105
℃、凝縮温度を60℃とした時(第4図中B点)、吸収液
濃度60%が得られる。次に、水蒸気吸収部4では第1段
4a、第2段4bともに40℃で吸収液が保持されていると
き、第1段4aでは吸収液濃度60%、蒸発温度4℃(図中
C点)、第2段4bでは54%、12℃(図中D点)が得られ
る。
FIG. 4 shows an operation diagram when both of the above-mentioned two stages are used. The absorption liquid heating temperature in the second stage 2b of the absorption liquid regeneration section 2 is 110 ° C. and the condensation temperature is 52 ° C. At this time (point A in Fig. 4), an absorption liquid concentration of 66% was obtained, and the storage tank 3
The temperature of the absorption liquid heating in the first stage 2a is increased to 105
When the condensing temperature is 60 ° C. and the condensing temperature is 60 ° C. (point B in FIG. 4), the absorption liquid concentration is 60%. Next, in the water vapor absorbing section 4, the first stage
When the absorption liquid is held at 40 ° C in both 4a and the second stage 4b, the concentration of the absorption liquid is 60% in the first stage 4a, the evaporation temperature is 4 ° C (point C in the figure), and 54% in the second stage 4b. C (point D in the figure) is obtained.

したがって吸収液濃度変化幅は12%となって、第2図
に示した6%の2倍となる。第5図に示す如く当該濃度
変化幅に対する蓄熱密度は第2図に示した実施例ではC1
=60%、C2=66%から横軸δの値は10、その時の蓄熱密
度φは54kcal/kgであるのに対し、第4図に示した実施
例ではC1=50%、C2=66%、δ=26、φ=110kcal/kgと
なっている。したがって、蓄熱密度が2倍となってお
り、同一熱量を貯蔵するための吸収液貯槽は1/2とな
り、大幅な小型化が可能である。
Therefore, the variation range of the absorption liquid concentration is 12%, which is twice the 6% shown in FIG. As shown in FIG. 5, the heat storage density with respect to the range of concentration change is C 1 in the embodiment shown in FIG.
= 60%, C 2 = 66%, the value on the horizontal axis δ is 10, and the heat storage density φ at that time is 54 kcal / kg, whereas in the embodiment shown in FIG. 4, C 1 = 50%, C 2 = 66%, δ = 26, φ = 110 kcal / kg. Therefore, the heat storage density has been doubled, and the absorption liquid storage tank for storing the same amount of heat has been halved, enabling a significant reduction in size.

〔発明の効果〕〔The invention's effect〕

以上、本発明によれば蓄熱槽を設けることで、熱源系
の運転時間と冷熱系の運転時間及び場所を任意に選定で
き、工場廃熱をヒートパイプで熱回収を行うに好適なシ
ステムを提供できる。特に、24時間操業の工場廃熱利用
時には、冷房時間を12時間とすると、単位時間当たりの
廃熱量の2倍の冷熱出力が得られる効果を有すると共
に、吸収液再生部を従来の1/2の寸法に低減できる効果
がある。さらに、本発明の効果は、吸収液再生部と水蒸
気吸収部を別置としたことで、熱源系に接近して吸収再
生部を設置でき、ヒートパイプの長さを短縮できるとと
もに、水蒸気吸収部を冷熱需要場所に設置でき、両者間
は、吸収液を移送することで熱輸送が可能であり、従来
例に見られる熱損失を完全に防止できる効果がある。
As described above, according to the present invention, by providing the heat storage tank, it is possible to arbitrarily select the operating time of the heat source system and the operating time and place of the cold heat system, and to provide a system suitable for recovering the waste heat from the factory with the heat pipe. it can. Especially, when using the factory waste heat of 24-hour operation, if the cooling time is set to 12 hours, it has the effect that the cold heat output of twice the amount of waste heat per unit time can be obtained, and the absorption liquid regenerator is half of the conventional one. There is an effect that the size can be reduced. Furthermore, the effect of the present invention is that the absorption liquid regeneration unit and the water vapor absorption unit are separately arranged, so that the absorption regeneration unit can be installed close to the heat source system, and the length of the heat pipe can be shortened, and the water vapor absorption unit can be shortened. Can be installed in a cold heat demand place, and heat can be transported between the two by transferring an absorbing liquid, which has the effect of completely preventing the heat loss seen in the conventional example.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明から成る廃熱回収型蓄熱冷房システムの
基本系統図、 第2図は第1図の系統での操作線図、 第3図は本発明の他の実施例を示す系統図、 第4図は第3図の系統での操作線図、 第5図は吸収液濃度変化幅と蓄熱密度との関係を示すグ
ラフ、 第6図は従来例に見られる廃熱回収型冷房システムの系
統図である。 1……廃熱回収器、2……吸収液再生部、3……吸収液
貯槽、4……水蒸気吸収部、5……水槽、6……熱交換
器、7……放熱器、10……ヒートパイプ、1000……廃熱
FIG. 1 is a basic system diagram of a waste heat recovery type heat storage cooling system according to the present invention, FIG. 2 is an operation diagram in the system of FIG. 1, and FIG. 3 is a system diagram showing another embodiment of the present invention. , Fig. 4 is an operation diagram in the system of Fig. 3, Fig. 5 is a graph showing the relationship between the absorption liquid concentration change width and the heat storage density, and Fig. 6 is a waste heat recovery type cooling system seen in a conventional example. FIG. 1 ... Waste heat recovery device, 2 ... Absorbing liquid regeneration part, 3 ... Absorbing liquid storage tank, 4 ... Water vapor absorbing part, 5 ... Water tank, 6 ... Heat exchanger, 7 ... Radiator, 10 ... … Heat pipe, 1000 …… Waste heat source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 康雄 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 黒川 秀昭 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 高橋 燦吉 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 昭55−14416(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Ozeki 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory Ltd. (72) Hideaki Kurokawa 4026 Kuji Town, Hitachi City, Ibaraki Hitachi Research Laboratory, Hitachi Ltd. In-house (72) Inventor Yasukichi Takahashi 4026 Kuji-cho, Hitachi-shi, Ibaraki Hitachi Research Laboratory, Hitachi, Ltd. (56) Reference JP-A-55-14416 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】廃熱回収器、吸収液再生部、水蒸気吸収
部、放熱器、吸収液貯槽、冷媒水槽とから成り、前記廃
熱回収器で回収した熱を前記吸収液の再生に使用する廃
熱回収型蓄熱冷房システムにおいて、 廃熱が利用できる近傍に廃熱回収器、吸収液再生部、吸
収液貯槽及び冷媒水槽を設置し、遠隔地の冷熱を必要と
している地点に水蒸気吸収部と放熱器を設置しておき、
廃熱を利用して吸収液再生部で吸収液を濃縮し、濃縮さ
れた吸収液を吸収液貯槽に貯蔵し、この濃縮吸収液を冷
熱必要地まで輸送して、そこに設置した水蒸気吸収部と
放熱器に前記濃縮吸収液を導入して冷熱を発生させるこ
とを特徴とする廃熱回収型蓄熱冷房システム。
1. A waste heat recovery unit, an absorption liquid regeneration unit, a water vapor absorption unit, a radiator, an absorption liquid storage tank, and a refrigerant water tank, wherein the heat recovered by the waste heat recovery unit is used to regenerate the absorption liquid. In a waste heat recovery type heat storage cooling system, a waste heat recovery unit, an absorption liquid regeneration unit, an absorption liquid storage tank and a refrigerant water tank are installed near the place where waste heat can be used, and a steam absorption unit is installed in a remote place where cold heat is required. Install a radiator,
The waste liquid is used to concentrate the absorption liquid in the absorption liquid regeneration unit, the concentrated absorption liquid is stored in the absorption liquid storage tank, and the concentrated absorption liquid is transported to the cold heat-required area, and the water vapor absorption unit installed there. And a waste heat recovery type heat storage cooling system which introduces the concentrated absorbent into a radiator to generate cold heat.
JP1057783A 1989-03-13 1989-03-13 Waste heat recovery type heat storage cooling system Expired - Lifetime JP2530221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057783A JP2530221B2 (en) 1989-03-13 1989-03-13 Waste heat recovery type heat storage cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057783A JP2530221B2 (en) 1989-03-13 1989-03-13 Waste heat recovery type heat storage cooling system

Publications (2)

Publication Number Publication Date
JPH02238269A JPH02238269A (en) 1990-09-20
JP2530221B2 true JP2530221B2 (en) 1996-09-04

Family

ID=13065475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057783A Expired - Lifetime JP2530221B2 (en) 1989-03-13 1989-03-13 Waste heat recovery type heat storage cooling system

Country Status (1)

Country Link
JP (1) JP2530221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031882A1 (en) * 2001-10-04 2003-04-17 Ebara Corporation Absorption refrigeration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060463B2 (en) * 2014-10-23 2017-01-18 クラフトワーク株式会社 Heat pump system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514416A (en) * 1978-07-14 1980-01-31 Toyota Motor Co Ltd Absorption type regenerative refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031882A1 (en) * 2001-10-04 2003-04-17 Ebara Corporation Absorption refrigeration device

Also Published As

Publication number Publication date
JPH02238269A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
JPH08151933A (en) Gas turbine intake air cooling device
JPS61110852A (en) Absorption heat pump/refrigeration system
JPH07504741A (en) Air conditioning systems and related cooling storage systems that instantly improve heat quality
JP2530221B2 (en) Waste heat recovery type heat storage cooling system
JP2007327658A (en) Single effect absorption-type cold generating/outputting device
JP2858908B2 (en) Absorption air conditioner
JP2009168271A (en) Double effect absorption type cold and heat generating/outputting device
JP4266697B2 (en) Absorption refrigerator
EP0082018B1 (en) Absorption refrigeration system
JPH1019415A (en) Absorption water cooling/heating machine
JP2005042944A (en) Multi-stage absorption refrigerating machine
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP2806189B2 (en) Absorption refrigerator
JPS6122225B2 (en)
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat
JP3489934B2 (en) Evaporator in absorption refrigerator
JPS60181587A (en) Cascade cycle type heat converting system
JPH0350373Y2 (en)
JP4566919B2 (en) Double-effect absorption chill generation / output device
JP3851837B2 (en) Waste heat recovery type absorption refrigerator
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JP3298689B2 (en) Net evaporator with spiral gutter
JP2004053085A (en) Triple effect absorbing type freezing device
JPH0213764A (en) Latent heat retriever