JP4266697B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4266697B2
JP4266697B2 JP2003129971A JP2003129971A JP4266697B2 JP 4266697 B2 JP4266697 B2 JP 4266697B2 JP 2003129971 A JP2003129971 A JP 2003129971A JP 2003129971 A JP2003129971 A JP 2003129971A JP 4266697 B2 JP4266697 B2 JP 4266697B2
Authority
JP
Japan
Prior art keywords
absorber
evaporator
pipe
refrigerant
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003129971A
Other languages
Japanese (ja)
Other versions
JP2004333019A (en
Inventor
秀樹 府内
数恭 伊良皆
春樹 西本
朗 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003129971A priority Critical patent/JP4266697B2/en
Priority to CNB2004100040077A priority patent/CN1260534C/en
Priority to KR1020040031573A priority patent/KR100554061B1/en
Publication of JP2004333019A publication Critical patent/JP2004333019A/en
Application granted granted Critical
Publication of JP4266697B2 publication Critical patent/JP4266697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/10Sorption machines, plants or systems, operating continuously, e.g. absorption type with inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/005Regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機(吸収式冷温水機を含む)に関するものである。
【0002】
【従来の技術】
この種の吸収式冷凍機としては、例えば図2に示したように第1の蒸発器5Aと第1の吸収器6Aとを上下に有する第1ブロックAと、第2の蒸発器5Bと第2の吸収器6Bとを有する第2ブロックBとを、単一の下胴7内に仕切り壁41を隔てて並設し、第1ブロックAの第1の蒸発器5Aで蒸発した冷媒蒸気を第1の吸収器6Aで吸収液に吸収させ、その第1の吸収器6Aで冷媒を吸収した吸収液が第2ブロックBの第2の蒸発器5Bで蒸発した冷媒蒸気を第2の吸収器6Bで吸収するように構成した吸収式冷凍機100Xが周知である(例えば、特許文献1参照。)。
【0003】
上記従来の吸収式冷凍機100Xにおいては、冷水と熱交換する冷媒の蒸発温度レベルを2段階に分けることが可能であるため、第2ブロックBにおける吸収液の第2の吸収器6Bでの飽和蒸気温度を第1ブロックAにおけるそれよりも高くすることができる。そのため、吸収液濃度をその分薄くすることができる。
【0004】
したがって、上記構成の吸収式冷凍機100Xにおいては、吸収液を加熱する熱源としてそれまでは利用することのできなかった低温度域の利用が可能となり、その結果、吸収液の循環量が低減されて熱源の有効利用が促進され、冷凍効率が向上すると云った利点がある。
【0005】
【特許文献1】
特開2000−266422号公報(図1)
【0006】
【発明が解決しようとする課題】
しかし、上記従来の吸収式冷凍機は、第1蒸発器と第1吸収器とを上下に有する第1ブロックと、第2蒸発器と第2吸収器とを有する第2ブロックとを単一の下胴内に設置する構造であったため、その下胴が大型化し、設置する際の通路の確保や設置場所の選定で制約を受けることがあった。また、その下胴の内部構造が複雑化し、保守点検する際や修理する際に十分なスペースを確保することができないと云った問題点もあり、これらの解決が課題となっていた。
【0007】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、凝縮器と再生器とを内蔵した上胴の下方に蒸発器と吸収器とを並列配置して内蔵した下胴が複数個同じ高さに並列設置される吸収式冷凍機であって、凝縮器の下部側と少なくとも1つの蒸発器とは管路により接続され、蒸発器同士は管路により互いに下部側が連通され、一つの蒸発器の冷媒液を全ての蒸発器内で散布可能とするため一つの冷媒ポンプを備えて一端が一つの蒸発器の下部側に接続された管路の他端が分岐して全ての蒸発器の上部側散布器それぞれ接続され、一つの吸収器の吸収液を他の吸収器内に散布可能に吸収液ポンプを備えて一端が一つの吸収器の下端側に接続された管路の他端が他の吸収器の上部側散布器に接続され、その吸収器の吸収液をさらに他の吸収器内に散布可能に吸収液ポンプを備えて一端がその吸収器の下部側に接続された管路の他端がさらに他の吸収器の上部側散布器に順次接続され、その最後に接続された吸収器の下部側と高温再生器とは吸収液ポンプ、低温熱交換器、高温熱交換器が介在する吸収液管により接続するようにした吸収式冷凍機を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図1に基づいて説明する。なお、理解を容易にするため、この図1においても前記図2において説明した部分と同様の機能を有する部分には同一の符号を付した。
【0009】
図1に例示した本発明の吸収式冷凍機100においては、例えばガスバーナ1Aを加熱手段として備えた高温再生器1と、低温再生器2、凝縮器3を内蔵した上胴4と、蒸発器5A、吸収器6Aを内蔵した下胴7Aと、蒸発器5B、吸収器6Bを内蔵した下胴7Bとを備えている。
【0010】
下胴7A、7Bは同じ大きさであり、高さを備えて上胴4の下方に設置され、下胴7Aの蒸発器5Aと下胴7Bの蒸発器5Bとは冷媒管17により互いの下部側が接続されて、それぞれの下部側に溜まった冷媒液の往来を可能にしている。
【0011】
そして、上胴4の凝縮器3の下部側と、下胴7Bの蒸発器5BとはU字状部を備えた冷媒管19を介して接続され、重力の作用により冷媒管19を介して流下する凝縮器3内の冷媒液が蒸発器5Bに流入するように構成されている。
【0012】
また、下胴7Bの蒸発器5Bの下部側と、蒸発器5B内側上部に設けられた散布器5B1、および下胴7Aの蒸発器5A内側上部に設けられた散布器5A1とは、冷媒ポンプ10が介在して終端側が分岐した冷媒管20により接続されて、蒸発器5Bの下部に溜まった冷媒液を蒸発器5A内と蒸発器5B内において、冷媒ポンプ10の運転によりブライン管22の上に散布可能に構成されている。
【0013】
また、下胴7Aの吸収器6A下部側と下胴7Bの吸収器6B内側上部に設けられた散布器6B1とは、吸収液ポンプ11が介在する吸収液管13により接続されて、吸収器6Aの下部に溜まった吸収液を吸収液ポンプ11の運転により吸収器6B内において冷却水管21の上に散布可能に構成されている。
【0014】
そして、下胴7Bの吸収器6B下部側と高温再生器1とは、吸収液ポンプ12、低温熱交換器8、高温熱交換器9が介在する吸収液管14により接続されて、吸収器6Bの下部に溜まった吸収液を吸収液ポンプ12の運転により高温再生器1に搬送可能に構成されている。
【0015】
また、高温再生器1と上胴4の低温再生器2とは、高温熱交換器9が介在する吸収液管15により接続されて、高温再生器1で冷媒を蒸発分離して吸収液濃度が高まった中間吸収液を低温再生器2に送ることができるようになっている。
【0016】
さらに、高温再生器1と上胴4の凝縮器3とは、低温再生器2の内部を経由して設けられた冷媒管18により接続されて、高温再生器1でガスバーナ1Aにより加熱されて吸収液から蒸発分離して供給される冷媒が低温再生器2を経由して上胴4の凝縮器3に流入可能に構成されている。
【0017】
また、上胴4の低温再生器2の下部側と、下胴7Aの吸収器6A内側上部に設けられた散布器6A1とは、低温熱交換器8が介在する吸収液管16により接続されて、低温再生器2で冷媒の吸収が可能に再生された濃吸収液が低温熱交換器8で稀吸収液に放熱して吸収器6Aに流入可能に構成されている。
【0018】
上記構成になる本発明の吸収式冷凍機100においては、ガスバーナ1Aに点火されると、高温再生器1内の稀吸収液は燃焼熱により加熱され、沸騰して稀吸収液から蒸発分離した冷媒蒸気と、冷媒を蒸発分離して吸収液の濃度が高くなった中間吸収液とが得られる。
【0019】
高温再生器1で生成された高温の冷媒蒸気は、冷媒管18を通って上胴4の低温再生器2に入り、高温再生器1で生成され吸収液管15により高温熱交換器9を経由して稀吸収液に放熱して低温再生器2に入った中間吸収液を加熱して放熱凝縮し、凝縮器3に入る。
【0020】
また、上胴4の低温再生器2で加熱されて中間吸収液から蒸発分離した冷媒はエリミネータを介して隣接する凝縮器3へ入り、冷却水管21内を流れる冷却水と熱交換して凝縮液化し、冷媒管18から凝縮して供給される冷媒と一緒になって冷媒管19を通って一方の下胴7Bの蒸発器5Bに入る。
【0021】
蒸発器5Bに入って下部に溜まった冷媒液は、冷媒ポンプ10により蒸発器5Bの散布器5B1と、蒸発器5Aの散布器5A1からブライン管22の上に散布され、ブライン管22を介して供給される水などのブラインから熱を奪って蒸発し、ブライン管22の内部を流れるブラインを冷却する。
【0022】
下胴7Aの蒸発器5Aで蒸発した冷媒はエリミネータを介して隣接する吸収器6Aに入り、低温再生器2において冷媒を蒸発分離して濃縮再生された吸収液、すなわち吸収液管16により低温熱交換器8を経由して供給され、冷却水管21の上に散布器6A1から散布されている濃吸収液に吸収される。
【0023】
また、下胴7Bの蒸発器5Bで蒸発した冷媒はエリミネータを介して隣接された吸収器6Bに入り、下胴7Aの吸収器6Aで冷媒を吸収して吸収液濃度が少し低下して吸収液ポンプ11の運転により吸収液管13を介して供給され、散布器6B1から冷却水管21の上に散布されている吸収液に吸収される。
【0024】
そして、下胴7Bの吸収器6Bで冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ12の運転により吸収液管14を介して低温熱交換器8、高温熱交換器9それぞれにおいて加熱されて高温再生器1に送られる。
【0025】
冷媒と吸収液とが上記のように循環することにより、下胴7B内の蒸発器5Bと、下胴7A内の蒸発器5Aの内部を経由して設けられたブライン管22内で冷媒の気化熱により冷却された水などのブラインが、ブライン管22を介して図示しない空調負荷などに循環供給できるので、冷房などの冷却運転が行える。
【0026】
そして、吸収液が二つの下胴7A、7Bにおいて冷媒を順次吸収する構成とされ、したがって図2に示した従来の吸収式冷凍機100Xと同様、吸収液を加熱する熱源としてそれまでは利用することのできなかった低温度域の利用が可能となり、その結果、吸収液の循環量が低減できて熱源の有効利用が促進され、冷凍効率を向上させることは可能になったが、本発明の吸収式冷凍機100においては低温再生器2、凝縮器3を内蔵した上胴4の下方に蒸発器5A、吸収器6Aを内蔵した下胴7Aと、蒸発器5B、吸収器6Bを内蔵した下胴7Bとを高さを揃えて設置しているので、下胴7A、7Bが単体として大型化することはない。
【0027】
したがって、下胴7A、7Bを設置する際に通路の確保や設置場所の選定で制約を受ける度合が減少する。また、その下胴7A、7Bは従来と同様に蒸発器と吸収器とを並設したものであるので、内部構造が複雑化することはないし、保守点検する際や修理する際にも従来と同じスペースを確保することができる。
【0028】
しかも、下胴7Aの蒸発器5Aと下胴7Bの蒸発器5Bとは同じ高さに設置され、下部側同士が冷媒管17により接続されて冷媒液の往来が可能に設けられているので、上胴4の凝縮器3から流下して下胴7Aの蒸発器5Aに入った冷媒液は下胴7Aの蒸発器5Aにも冷媒管17を通って流入する。
【0029】
また、蒸発器5A内の散布器5A1と蒸発器5B内の散布器5B1から散布された冷媒が、ブライン管22内を流れる水などのブラインから蒸発熱を奪って蒸発する蒸発量に大きな差が生じることがあっても、下胴7Aの蒸発器5Aと下胴7Bの蒸発器5Bは冷媒管17により連通しているので、蒸発器5A、5Bの間で冷媒液に過不足が生じることはなく、1台の冷媒ポンプ10により蒸発器5A、5B内に冷媒液が均等に散布される。
【0030】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0031】
例えば、上胴4の下に蒸発器と吸収器とを内蔵して設置される下胴は、高さを揃えて3個以上が並設されても良い。また、上胴4の下に設置される下胴は、互いに遠く離れて設置されても冷媒管と吸収液管とで接続することができるので、設置場所の選定に制約を受け難い。
【0032】
また、高温再生器1で吸収液を加熱するための熱源としては、コージェネレーションシステムなどから供給される高温蒸気などの排熱などであっても良い。また、高温再生器1を備えず、したがって下胴7Bの吸収器6Bで冷媒を吸収した吸収液が低温熱交換器8を経由して低温再生器2に導入され、適宜の熱源により吸収液が加熱再生されるように吸収液管14を接続することも可能である。
【0033】
【発明の効果】
以上説明したように本発明の吸収式冷凍機においては、冷凍効率を向上させるために吸収液が複数の下胴において順次冷媒を吸収する構成としたが、再生器と凝縮器を内蔵した上胴の下方に蒸発器と吸収器を内蔵した複数の下胴を高さを揃えて設置するものであるので、下胴が単体として大型化することはない。
【0034】
したがって、下胴などを設置する際に通路の確保や設置場所の選定で制約を受ける度合が減少する。また、その下胴は従来と同様に蒸発器と吸収器とを並設したものであるので、内部構造が複雑化することはないし、保守点検する際や修理する際にも従来と同しスペースを確保することができる。
【0035】
しかも、下胴は同じ高さに設置され、その下胴内の蒸発器は下部側同士が冷媒管により接続されて冷媒液の往来が可能に設けられているので、蒸発器同士の間で冷媒液に過不足が生じることはなく、1台の冷媒ポンプにより全ての蒸発器内に冷媒液を均等に散布することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す説明図である。
【図2】従来技術を示す説明図である。
【符号の説明】
1 高温再生器
2 低温再生器
3 凝縮器
4 上胴
5A、5B 蒸発器
6A、6B 吸収器
7A、7B 下胴
8 低温熱交換器
9 高温熱交換器
10 冷媒ポンプ
11、12 吸収液ポンプ
13〜16 吸収液管
17〜20 冷媒管
21 冷却水管
22 ブライン管
100、100X 吸収式冷凍機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator (including an absorption chiller / heater).
[0002]
[Prior art]
As this type of absorption refrigerator, for example, as shown in FIG. 2, a first block A having a first evaporator 5A and a first absorber 6A on the top and bottom, a second evaporator 5B and a first evaporator The second block B having two absorbers 6B is juxtaposed in the single lower body 7 with the partition wall 41 therebetween, and the refrigerant vapor evaporated in the first evaporator 5A of the first block A is obtained. The absorption liquid absorbed by the first absorber 6A and absorbed by the first absorber 6A, and the refrigerant vapor evaporated by the second evaporator 5B of the second block B is absorbed by the second absorber B. An absorption refrigerator 100X configured to absorb at 6B is well known (see, for example, Patent Document 1).
[0003]
In the conventional absorption refrigeration machine 100X, the evaporation temperature level of the refrigerant that exchanges heat with cold water can be divided into two stages, so that the absorption liquid in the second block B is saturated in the second absorber 6B. The steam temperature can be higher than that in the first block A. Therefore, the absorbent concentration can be reduced accordingly.
[0004]
Therefore, in the absorption refrigerator 100X having the above-described configuration, it is possible to use a low temperature region that could not be used as a heat source for heating the absorption liquid, and as a result, the amount of circulation of the absorption liquid is reduced. Thus, there is an advantage that effective use of the heat source is promoted and refrigeration efficiency is improved.
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-266422 (FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the conventional absorption refrigerator has a single first block having a first evaporator and a first absorber and a second block having a second evaporator and a second absorber. Since the structure was installed in the lower torso, the lower torso was enlarged, and there were cases where it was restricted by securing a passage and selecting an installation location when installing. In addition, the internal structure of the lower body is complicated, and there is a problem that a sufficient space cannot be ensured when performing maintenance and repair, and solving these problems has been a problem.
[0007]
[Means for Solving the Problems]
The present invention is described above in order to solve the problems of the prior art, condenser and the regenerator and a lower cylinder with a built-in parallel arranged an evaporator and absorber beneath the barrel top with a built-in parallel a plurality flush a installed the absorption chiller, the lower side of the condenser and at least one evaporator connected by a pipe, the evaporator to each other is passed through the lower side with each other via line, the refrigerant liquid of one evaporator In order to enable spraying in all evaporators, one refrigerant pump is provided and the other end of the pipe connected at one end to the lower side of one evaporator branches off the upper side sprayer of all evaporators the respectively connected one of the absorber of the absorption liquid and another absorber in the sprayable the other end of the one end provided with an absorbent liquid pump one absorber connected pipeline on the lower side of the other absorbent connected to the upper side dispenser vessels, spraying accepted in the absorption liquid of the absorber still other absorbent vessel Bottom of the absorbing liquid end provided with a pump the other end of the conduit connected to the lower side of the absorber is further sequentially connected to other absorber upper side dispenser, absorber which is connected to the end The side and the high-temperature regenerator provide an absorption refrigerator that is connected by an absorption liquid pipe, a low-temperature heat exchanger, and an absorption liquid pipe interposing a high-temperature heat exchanger .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. In order to facilitate understanding, in FIG. 1 as well, parts having the same functions as those described in FIG.
[0009]
In the absorption refrigerator 100 of the present invention illustrated in FIG. 1, for example, a high temperature regenerator 1 provided with a gas burner 1A as a heating means, a low temperature regenerator 2 and an upper body 4 incorporating a condenser 3, and an evaporator 5A. , A lower body 7A having a built-in absorber 6A, an evaporator 5B, and a lower body 7B having a built-in absorber 6B.
[0010]
The lower cylinders 7A and 7B have the same size and are provided below the upper cylinder 4 with a height. The evaporator 5A of the lower cylinder 7A and the evaporator 5B of the lower cylinder 7B are connected to each other by a refrigerant pipe 17 below each other. The sides are connected to allow the refrigerant liquid accumulated on the lower side of each to come and go.
[0011]
The lower side of the condenser 3 in the upper body 4 and the evaporator 5B in the lower body 7B are connected via a refrigerant pipe 19 having a U-shaped portion, and flow down through the refrigerant pipe 19 by the action of gravity. The refrigerant liquid in the condenser 3 is configured to flow into the evaporator 5B.
[0012]
Further, the lower side of the evaporator 5B of the lower barrel 7B, the spreader 5B1 provided on the inner upper side of the evaporator 5B, and the spreader 5A1 provided on the inner upper side of the evaporator 5A of the lower barrel 7A are the refrigerant pump 10 Is connected by a refrigerant pipe 20 branched at the terminal end side, and the refrigerant liquid accumulated in the lower part of the evaporator 5B is put on the brine pipe 22 by operating the refrigerant pump 10 in the evaporator 5A and the evaporator 5B. It is configured to be sprayable.
[0013]
Also, the lower body 7A of the absorber 6A lower side and the lower body 7B of the absorber 6B provided on the inner upper side of the absorber 6B1 are connected by the absorbent liquid pipe 13 with the absorbent pump 11 interposed therebetween, and the absorbent 6A. The absorption liquid accumulated in the lower part of the gas generator can be sprayed onto the cooling water pipe 21 in the absorber 6B by the operation of the absorption liquid pump 11.
[0014]
Then, the lower side of the absorber 6B of the lower body 7B and the high temperature regenerator 1 are connected by an absorption liquid pipe 14 including an absorption liquid pump 12, a low temperature heat exchanger 8, and a high temperature heat exchanger 9, and the absorber 6B. The absorption liquid accumulated in the lower part of the gas can be conveyed to the high temperature regenerator 1 by the operation of the absorption liquid pump 12.
[0015]
The high-temperature regenerator 1 and the low-temperature regenerator 2 of the upper body 4 are connected by an absorption liquid pipe 15 with a high-temperature heat exchanger 9 interposed therebetween. The increased intermediate absorption liquid can be sent to the low temperature regenerator 2.
[0016]
Further, the high-temperature regenerator 1 and the condenser 3 of the upper body 4 are connected by a refrigerant pipe 18 provided via the inside of the low-temperature regenerator 2 and are absorbed by the high-temperature regenerator 1 by being heated by the gas burner 1A. The refrigerant supplied after being evaporated and separated from the liquid is configured to be able to flow into the condenser 3 of the upper body 4 via the low-temperature regenerator 2.
[0017]
Further, the lower side of the low temperature regenerator 2 of the upper body 4 and the spreader 6A1 provided on the inner upper side of the absorber 6A of the lower body 7A are connected by an absorption liquid pipe 16 with a low temperature heat exchanger 8 interposed therebetween. The concentrated absorbent regenerated so that the refrigerant can be absorbed by the low-temperature regenerator 2 can be radiated to the rare absorbent by the low-temperature heat exchanger 8 and flow into the absorber 6A.
[0018]
In the absorption refrigerator 100 of the present invention having the above-described configuration, when the gas burner 1A is ignited, the rare absorbent in the high-temperature regenerator 1 is heated by the combustion heat, boiled, and evaporated and separated from the rare absorbent. Steam and an intermediate absorption liquid in which the concentration of the absorption liquid is increased by evaporating and separating the refrigerant are obtained.
[0019]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 passes through the refrigerant pipe 18 and enters the low-temperature regenerator 2 of the upper body 4, and is generated in the high-temperature regenerator 1 and passes through the high-temperature heat exchanger 9 through the absorbing liquid pipe 15. Then, the intermediate absorbent that has radiated heat to the rare absorbent and has entered the low-temperature regenerator 2 is heated and condensed by heat, and enters the condenser 3.
[0020]
Further, the refrigerant heated by the low temperature regenerator 2 of the upper body 4 and evaporated and separated from the intermediate absorbing liquid enters the adjacent condenser 3 through the eliminator, and exchanges heat with the cooling water flowing in the cooling water pipe 21 to be condensed and liquefied. Then, together with the refrigerant that is condensed and supplied from the refrigerant pipe 18, it passes through the refrigerant pipe 19 and enters the evaporator 5B of the lower barrel 7B.
[0021]
The refrigerant liquid that has entered the evaporator 5B and accumulated in the lower part is sprayed from the sprayer 5B1 of the evaporator 5B and the sprayer 5A1 of the evaporator 5A onto the brine pipe 22 by the refrigerant pump 10, and through the brine pipe 22 Heat is taken from the supplied brine such as water to evaporate, and the brine flowing inside the brine tube 22 is cooled.
[0022]
The refrigerant evaporated in the evaporator 5A of the lower barrel 7A enters the adjacent absorber 6A via the eliminator, and is absorbed and regenerated by evaporating and separating the refrigerant in the low temperature regenerator 2, that is, the low temperature heat is generated by the absorption liquid pipe 16. It is supplied via the exchanger 8 and is absorbed by the concentrated absorbent sprayed from the sprayer 6A1 onto the cooling water pipe 21.
[0023]
Further, the refrigerant evaporated in the evaporator 5B of the lower body 7B enters the adjacent absorber 6B via the eliminator, and the refrigerant is absorbed by the absorber 6A of the lower body 7A, so that the concentration of the absorption liquid is slightly reduced and the absorption liquid The pump 11 is supplied through the absorption liquid pipe 13 by the operation of the pump 11, and is absorbed by the absorption liquid sprayed on the cooling water pipe 21 from the sprayer 6B1.
[0024]
Then, the absorption liquid whose concentration is reduced by absorbing the refrigerant in the absorber 6B of the lower body 7B, that is, the rare absorption liquid, is supplied to the low temperature heat exchanger 8 and the high temperature heat via the absorption liquid pipe 14 by the operation of the absorption liquid pump 12. Each of the exchangers 9 is heated and sent to the high temperature regenerator 1.
[0025]
By circulating the refrigerant and the absorbing liquid as described above, the vaporization of the refrigerant is performed in the evaporator 5B in the lower body 7B and the brine pipe 22 provided via the inside of the evaporator 5A in the lower body 7A. Brine such as water cooled by heat can be circulated and supplied to an air conditioning load or the like (not shown) via the brine pipe 22, so that a cooling operation such as cooling can be performed.
[0026]
The absorption liquid sequentially absorbs the refrigerant in the two lower cylinders 7A and 7B. Therefore, as in the conventional absorption refrigerator 100X shown in FIG. 2, the absorption liquid is used as a heat source until then. It became possible to use the low temperature range that could not be performed, and as a result, the circulation amount of the absorption liquid could be reduced, the effective use of the heat source was promoted, and the refrigeration efficiency could be improved. In the absorption refrigeration machine 100, a lower body 7A including an evaporator 5A and an absorber 6A, an evaporator 5B and an absorber 6B are provided below an upper body 4 including a low-temperature regenerator 2 and a condenser 3. Since the cylinder 7B is installed with the same height, the lower cylinders 7A and 7B are not enlarged as a single unit.
[0027]
Therefore, when installing lower trunks 7A and 7B, the degree to which restrictions are imposed by securing passages and selecting installation locations is reduced. Further, since the lower barrels 7A and 7B are provided with an evaporator and an absorber arranged in parallel as in the conventional case, the internal structure is not complicated, and the conventional case is also used for maintenance and repair. The same space can be secured.
[0028]
In addition, the evaporator 5A of the lower barrel 7A and the evaporator 5B of the lower barrel 7B are installed at the same height, and the lower sides are connected by the refrigerant pipe 17 so that the refrigerant liquid can come and go. The refrigerant liquid flowing down from the condenser 3 of the upper cylinder 4 and entering the evaporator 5A of the lower cylinder 7A also flows into the evaporator 5A of the lower cylinder 7A through the refrigerant tube 17.
[0029]
Further, there is a large difference in the amount of evaporation that the refrigerant sprayed from the sprayer 5A1 in the evaporator 5A and the sprayer 5B1 in the evaporator 5B takes the heat of evaporation from the brine such as water flowing in the brine pipe 22 and evaporates. Even if it occurs, the evaporator 5A of the lower barrel 7A and the evaporator 5B of the lower barrel 7B are communicated with each other by the refrigerant pipe 17, so that excess or deficiency of the refrigerant liquid occurs between the evaporators 5A and 5B. Instead, the refrigerant liquid is evenly dispersed in the evaporators 5A and 5B by one refrigerant pump 10.
[0030]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0031]
For example, three or more lower cylinders that are installed with an evaporator and an absorber built under the upper cylinder 4 may be arranged in parallel. In addition, the lower body installed under the upper body 4 can be connected by the refrigerant pipe and the absorbing liquid pipe even if they are installed far away from each other, and thus it is difficult to be restricted by the selection of the installation location.
[0032]
Further, the heat source for heating the absorbing liquid in the high temperature regenerator 1 may be exhaust heat such as high temperature steam supplied from a cogeneration system or the like. Also, the high temperature regenerator 1 is not provided, and therefore the absorbing liquid that has absorbed the refrigerant by the absorber 6B of the lower body 7B is introduced into the low temperature regenerator 2 via the low temperature heat exchanger 8, and the absorbing liquid is supplied by an appropriate heat source. It is also possible to connect the absorption liquid pipe 14 so as to be regenerated by heating.
[0033]
【The invention's effect】
As described above, in the absorption refrigerator of the present invention, in order to improve the refrigeration efficiency, the absorbing liquid sequentially absorbs the refrigerant in the plurality of lower cylinders, but the upper cylinder incorporating the regenerator and the condenser. Since a plurality of lower cylinders having an evaporator and an absorber built in are arranged at the same height below the lower cylinder, the lower cylinder does not increase in size as a single unit.
[0034]
Therefore, the degree to which restrictions are imposed by securing the passage and selecting the installation location when installing the lower body or the like is reduced. In addition, the lower body has an evaporator and an absorber arranged side by side as before, so the internal structure is not complicated, and the same space is used for maintenance and repairs. Can be secured.
[0035]
In addition, the lower cylinder is installed at the same height, and the evaporators in the lower cylinder are connected to each other by refrigerant pipes so that refrigerant liquid can be transferred between the evaporators. There is no excess or deficiency in the liquid, and the refrigerant liquid can be uniformly distributed in all the evaporators by one refrigerant pump.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Upper cylinder 5A, 5B Evaporator 6A, 6B Absorber 7A, 7B Lower cylinder 8 Low temperature heat exchanger 9 High temperature heat exchanger 10 Refrigerant pump 11, 12 Absorbing liquid pump 13 ~ 16 Absorption liquid pipes 17-20 Refrigerant pipe 21 Cooling water pipe 22 Brine pipe 100, 100X Absorption type refrigerator

Claims (1)

凝縮器と再生器とを内蔵した上胴の下方に蒸発器と吸収器とを並列配置して内蔵した下胴が複数個同じ高さに並列設置される吸収式冷凍機であって、凝縮器の下部側と少なくとも1つの蒸発器とは管路により接続され、蒸発器同士は管路により互いに下部側が連通され、一つの蒸発器の冷媒液を全ての蒸発器内で散布可能とするため一つの冷媒ポンプを備えて一端が一つの蒸発器の下部側に接続された管路の他端が分岐して全ての蒸発器の上部側散布器それぞれ接続され、一つの吸収器の吸収液を他の吸収器内に散布可能に吸収液ポンプを備えて一端が一つの吸収器の下端側に接続された管路の他端が他の吸収器の上部側散布器に接続され、その吸収器の吸収液をさらに他の吸収器内に散布可能に吸収液ポンプを備えて一端がその吸収器の下部側に接続された管路の他端がさらに他の吸収器の上部側散布器に順次接続され、その最後に接続された吸収器の下部側と高温再生器とは吸収液ポンプ、低温熱交換器、高温熱交換器が介在する吸収液管により接続されたことを特徴とする吸収式冷凍機。An absorption type refrigerator in which an evaporator and an absorber are arranged in parallel below an upper cylinder containing a condenser and a regenerator, and a plurality of lower cylinders are installed in parallel at the same height. the lower portion of the at least one evaporator connected by a pipe, the evaporator to each other is lower-side to each other is communicated via line one to allow sprayed refrigerant liquid of a single evaporator in all the evaporator one end includes a coolant pump is connected to the upper side dispenser of all evaporator branches other end of the conduit connected to the lower side of the one of the evaporator, the absorption liquid of one absorber The other end of the pipe connected to the lower end side of one absorber is equipped with an absorption liquid pump so that it can be sprayed into the other absorber, and connected to the upper side spreader of the other absorber. It comprises a sprayable absorption liquid pump absorption liquid still another absorber within one end of the absorber Department side and the other end of the connected pipe is further sequentially connected to other absorber upper side dispenser, the lower side and absorbing liquid pump and the high-temperature regenerator connected absorber on its last, low temperature heat An absorption refrigerating machine characterized in that it is connected by an absorption liquid pipe interposing an exchanger and a high-temperature heat exchanger .
JP2003129971A 2003-05-08 2003-05-08 Absorption refrigerator Expired - Fee Related JP4266697B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003129971A JP4266697B2 (en) 2003-05-08 2003-05-08 Absorption refrigerator
CNB2004100040077A CN1260534C (en) 2003-05-08 2004-02-04 Absorption refrigerating machine
KR1020040031573A KR100554061B1 (en) 2003-05-08 2004-05-06 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129971A JP4266697B2 (en) 2003-05-08 2003-05-08 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2004333019A JP2004333019A (en) 2004-11-25
JP4266697B2 true JP4266697B2 (en) 2009-05-20

Family

ID=33505628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129971A Expired - Fee Related JP4266697B2 (en) 2003-05-08 2003-05-08 Absorption refrigerator

Country Status (3)

Country Link
JP (1) JP4266697B2 (en)
KR (1) KR100554061B1 (en)
CN (1) CN1260534C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994751B2 (en) * 2008-04-30 2018-06-12 Honeywell International Inc. Absorption refrigeration cycles using a LGWP refrigerant
CN105890220A (en) * 2016-06-02 2016-08-24 松下制冷(大连)有限公司 Direct-fired efficient environment-friendly lithium bromide absorption hot and cold water unit
CN117450687B (en) * 2023-12-21 2024-03-15 安徽普泛能源技术有限公司 Multi-heat source multi-stage cold absorption refrigerating unit and process for energy cascade utilization

Also Published As

Publication number Publication date
JP2004333019A (en) 2004-11-25
CN1260534C (en) 2006-06-21
KR20040095666A (en) 2004-11-15
CN1550736A (en) 2004-12-01
KR100554061B1 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
US6993933B2 (en) Absorption refrigerating machine
US5857355A (en) Ammonia generator absorber heat exchanger cycle
JP4266697B2 (en) Absorption refrigerator
EP0354749B1 (en) Air-cooled absorption Air-conditioner
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3935610B2 (en) Heat exchanger and absorption refrigerator
JP4079576B2 (en) Absorption refrigerator
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP2003106702A (en) Absorption refrigerating machine
KR20200120186A (en) Absorption type chiller-heater
JP3889655B2 (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP2001082824A (en) Absorption refrigerating machine
JPS6122225B2 (en)
JP4282225B2 (en) Absorption refrigerator
JP2009068816A (en) Absorption refrigerating machine
JP2002243309A (en) Absorptive freezer
KR19990001571A (en) Hot water supply system of absorption type air conditioner.
JP2004011928A (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator
JP3277349B2 (en) Evaporation absorber for absorption refrigerator
JPS6022251B2 (en) absorption refrigerator
JPH10197089A (en) Absorption refrigerator
JP4322997B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R151 Written notification of patent or utility model registration

Ref document number: 4266697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees