JP2003106702A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JP2003106702A
JP2003106702A JP2001293693A JP2001293693A JP2003106702A JP 2003106702 A JP2003106702 A JP 2003106702A JP 2001293693 A JP2001293693 A JP 2001293693A JP 2001293693 A JP2001293693 A JP 2001293693A JP 2003106702 A JP2003106702 A JP 2003106702A
Authority
JP
Japan
Prior art keywords
pressure stage
condenser
absorber
cooling water
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001293693A
Other languages
Japanese (ja)
Inventor
Hajime Yatsuhashi
元 八橋
Shiro Yakushiji
史朗 薬師寺
Tatsuki Takase
達己 高瀬
Kenji Yasuda
賢二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001293693A priority Critical patent/JP2003106702A/en
Publication of JP2003106702A publication Critical patent/JP2003106702A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To upgrade performance by improving a cooling water supply system in an absorption refrigerating machine. SOLUTION: An absorption refrigerating machine includes a circulation cycle provided by operatively connecting a condenser C, an evaporator E, an absorber A, and regenerators Gn to G1 each of which has a different operating temperature by means of a solution piping system and a refrigerant piping system. The absorption refrigerating machine concentrates absorption solution sequentially from the regenerator Gn on the highest temperature side to the regenerator G1 on the lowest temperature side, and uses the refrigerant steam that is generated in the regenerator Gn on the highest temperature side as a heat source of the regenerator Gn-1 on the lower temperature side. In this absorption refrigerating machine, cooling water Wa is made to flow into the absorber A and the condenser C in parallel and the cooling water that cooled the absorber A is combined with the cooling water that is supplied to the condenser C. With this configuration, in the condenser C, the high condensation performance is achieved by assuring the flow rate and the low temperature of the cooling water, and accordingly the working pressure of the regenerators is reduced. By the reduction of the working pressure, the inner pressure of the absorption refrigerating machine is reduced and the reliability on the operation is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、吸収式冷凍装
置、特に作動温度の異なる複数の再生器を備えてなる吸
収式冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system, and more particularly to an absorption refrigeration system equipped with a plurality of regenerators having different operating temperatures.

【0002】[0002]

【従来の技術】一般に、吸収式冷凍装置は、凝縮器と蒸
発器と吸収器及び再生器を基本構成要素とし、且つこれ
ら各構成要素を溶液配管系と冷媒配管系とにより順次作
動的に接続して構成される。
2. Description of the Related Art Generally, an absorption refrigeration system has a condenser, an evaporator, an absorber and a regenerator as basic constituent elements, and these constituent elements are sequentially and operatively connected by a solution piping system and a refrigerant piping system. Configured.

【0003】かかる吸収式冷凍装置においては、上記吸
収器において生成された希溶液を上記再生器で加熱濃縮
して濃溶液とし、さらにこれを上記吸収器に還流させる
一方、上記再生器での希溶液の加熱濃縮によって生成さ
れた冷媒蒸気を上記凝縮器で凝縮させて液冷媒とすると
ともに、この液冷媒を上記蒸発器において蒸発させ、こ
こで発生した冷媒蒸気を上記吸収器で濃溶液に吸収させ
て希溶液を生成することで、吸収溶液と冷媒の循環サイ
クルが実現される。そして、通常、上記蒸発器における
冷媒の蒸発熱が冷凍装置の冷熱源として利用される。
In such an absorption refrigerating apparatus, the dilute solution produced in the absorber is heated and concentrated in the regenerator to give a concentrated solution, which is then refluxed to the absorber while the dilute solution in the regenerator is diluted. The refrigerant vapor generated by heating and condensing the solution is condensed in the condenser to form a liquid refrigerant, the liquid refrigerant is evaporated in the evaporator, and the refrigerant vapor generated here is absorbed in a concentrated solution in the absorber. By generating a dilute solution by doing so, a circulation cycle of the absorbing solution and the refrigerant is realized. The heat of vaporization of the refrigerant in the evaporator is usually used as the cold heat source of the refrigeration system.

【0004】[0004]

【発明が解決しようとする課題】ところで、吸収式冷凍
装置では、その性能向上を図るには、溶液・冷媒循環系
の熱効率を高めることが最も有効であることが知られて
おり、これを具現化する手法として、再生器を複数設け
て一つの外部熱源の熱を繰り返し再利用することが提案
されている。即ち、再生器として、作動温度の異なるも
のを複数備え、高温で作動する高温側再生器の加熱によ
って生成される冷媒蒸気を、低温で作動する低温側再生
器に導入し、これを該低温側再生器の加熱熱源として利
用するものである。
In the absorption refrigeration system, it is known that increasing the thermal efficiency of the solution / refrigerant circulation system is the most effective in order to improve its performance. It has been proposed that a plurality of regenerators be provided and the heat of one external heat source be repeatedly reused as a method for realizing the above. That is, a plurality of regenerators having different operating temperatures are provided, and the refrigerant vapor generated by heating of the high temperature side regenerator operating at high temperature is introduced into the low temperature side regenerator operating at low temperature, and the regenerator is operated at the low temperature side. It is used as a heat source for heating the regenerator.

【0005】ところが、吸収式冷凍装置においては、こ
のように再生器を複数化することに伴って機内圧力(作
動圧)が高くなるという問題があった。
However, in the absorption type refrigerating apparatus, there is a problem that the internal pressure (operating pressure) is increased due to the plurality of regenerators.

【0006】即ち、吸収式冷凍装置においては、上述の
ように作動温度が異なる複数の再生器を備えた場合、こ
れら各再生器の作動温度は、最も下段に位置する再生器
の作動温度によって支配され、この最下段の再生器の作
動温度を低く抑えるほど最上段の再生器の作動温度、即
ち、作動圧力を低く抑えることができ、延いては最上段
の再生器の作動圧によって規定される吸収式冷凍装置の
システム全体としての機内圧力を低く抑えることができ
ることになる。
That is, when the absorption refrigerating apparatus is provided with a plurality of regenerators having different operating temperatures as described above, the operating temperature of each of these regenerators is governed by the operating temperature of the regenerator located at the lowest stage. The lower the operating temperature of the lowermost regenerator is, the more the operating temperature of the uppermost regenerator, that is, the operating pressure can be kept low, which is defined by the operating pressure of the uppermost regenerator. The internal pressure of the absorption refrigeration system as a whole can be kept low.

【0007】一方、吸収式冷凍装置においては、最も作
動温度の低い最下段の再生器と凝縮器とを連通させ、該
最下段の再生器において生成される冷媒蒸気をそのまま
凝縮器に送給し、ここで凝縮させて液冷媒とし且つこれ
を蒸発器側へ送給するようになっている。
On the other hand, in the absorption refrigerating apparatus, the lowermost regenerator having the lowest operating temperature is communicated with the condenser, and the refrigerant vapor generated in the lowermost regenerator is directly fed to the condenser. The liquid refrigerant is condensed here and is fed to the evaporator side.

【0008】従って、機内圧力の低下を図るには、最下
段の再生器の作動温度を下げること、換言すれば、上記
凝縮器における冷媒凝縮温度を低下させることが必要で
あるといえる。そして、この凝縮器の冷媒凝縮温度を低
下させる手段としては、該凝縮器に供給される冷却水の
温度を低くして、あるいはその流量を多くして、その冷
却効率を高めることが有効であると言える。
Therefore, it can be said that it is necessary to lower the operating temperature of the lowermost regenerator, in other words, to lower the refrigerant condensing temperature in the condenser, in order to reduce the internal pressure. Then, as a means for lowering the refrigerant condensing temperature of the condenser, it is effective to lower the temperature of the cooling water supplied to the condenser or increase the flow rate thereof to improve the cooling efficiency. Can be said.

【0009】しかるに、従来の吸収式冷凍装置において
は、上記凝縮器を冷却水によって冷却する場合、吸収器
と凝縮器とを冷却水配管によって直列に接続し、該冷却
水配管に供給される冷却水を、先ず吸収器に導入してこ
れを冷却させた後、さらにこれを上記凝縮器に導入して
これを冷却させるような冷却水循環構成を採用するのが
一般的であった。このため、上記吸収器に導入される冷
却水は、その前段の上記凝縮器での熱交換によって昇温
した後のものであることから、その温度は比較的高く、
従って、上記凝縮器における冷却効率が低劣であり、結
果的に、機内圧力の低下という点においては十分な効果
が得られなかった。
However, in the conventional absorption refrigeration system, when cooling the condenser with cooling water, the absorber and the condenser are connected in series by a cooling water pipe, and cooling is supplied to the cooling water pipe. In general, a cooling water circulation structure is adopted in which water is first introduced into an absorber to cool it and then introduced into the condenser to cool it. For this reason, the cooling water introduced into the absorber is one after being heated by the heat exchange in the condenser of the preceding stage, so that the temperature is relatively high,
Therefore, the cooling efficiency in the condenser is low and inferior, and as a result, a sufficient effect cannot be obtained in terms of lowering the internal pressure.

【0010】そこで本願発明は、吸収式冷凍装置におい
て、冷却水供給系の改善によって性能向上を図ることを
目的としてなされたものである。
Therefore, the present invention has been made for the purpose of improving the performance of an absorption refrigeration system by improving the cooling water supply system.

【0011】[0011]

【課題を解決するための手段】本願発明ではかかる課題
を解決するための具体的手段として次のような構成を採
用している。
In the present invention, the following constitution is adopted as a concrete means for solving such a problem.

【0012】本願の第1の発明では、少なくとも1個以
上の凝縮器C、蒸発器E、吸収器Aと、冷媒を含む吸収
溶液が供給される作動温度の異なるn個(n≧2)の再
生器Gn〜G1を溶液配管系と冷媒配管系とで作動的に
接続して循環サイクルを構成し、高温側の再生器Gnで
発生した冷媒蒸気を低温側の再生器Gn-1に順次導入し
てこれを該低温側の再生器Gn-1の加熱源として利用し
て該低温側の再生器Gn-1の吸収溶液を加熱濃縮するこ
とを最も作動温度の低い再生器G1まで繰り返すように
してなる吸収式冷凍装置において、同一の冷却水供給系
から供給される冷却水Waを、上記吸収器Aと凝縮器C
とに並列に流すとともに、上記吸収器Aを冷却した後の
冷却水を、上記凝縮器Cに供給される冷却水に合流させ
るように構成したことを特徴としている。
In the first invention of the present application, at least one or more condensers C, evaporators E and absorbers A, and n (n ≧ 2) n (n ≧ 2) different operating temperatures are supplied with the absorption solution containing the refrigerant. The regenerators Gn to G 1 are operatively connected by the solution piping system and the refrigerant piping system to form a circulation cycle, and the refrigerant vapor generated in the high temperature side regenerator Gn is sequentially transferred to the low temperature side regenerator Gn −1 . This is repeated by introducing to the lower regenerator G 1 most operating temperatures to absorb the solution heated and concentrated in the low temperature side of the regenerator Gn -1 heating regenerator low temperature side by using as a source Gn -1 In the absorption refrigerating apparatus thus configured, the cooling water Wa supplied from the same cooling water supply system is supplied to the absorber A and the condenser C.
And the cooling water after cooling the absorber A is combined with the cooling water supplied to the condenser C.

【0013】本願の第2の発明では、上記第1の発明に
かかる吸収式冷凍装置において、上記吸収器Aと上記蒸
発器Eとを共に冷媒蒸発温度が異なる低圧段Aa,同E
aと高圧段Ab,Ebに分割構成し、又は上記凝縮器C
と最も作動温度の低い再生器G1とを共に冷媒凝縮温度
が異なる高圧段Ca,同G1aと低圧段Cb,G1bに分
割構成し、又は上記吸収器Aと上記蒸発器Eとを共に冷
媒蒸発温度が異なる低圧段Aa,同Eaと高圧段Ab,
Ebに分割構成するとともに、上記凝縮器Cと最も作動
温度の低い再生器G1とを共に冷媒凝縮温度が異なる高
圧Ca,同G1aと低圧段Cb,G1bに分割構成する一
方、上記吸収器Aと上記凝縮器Cにおいては上記冷却水
Waを上記高圧段Ab,上記低圧段Cb側から上記低圧
段Aa,上記高圧段Ca側へ向けて流すように構成した
ことを特徴としている。
According to a second invention of the present application, in the absorption refrigerating apparatus according to the first invention, the absorber A and the evaporator E are both low pressure stages Aa and E having different refrigerant evaporation temperatures.
a and the high pressure stages Ab and Eb, or the condenser C
And a regenerator G 1 having the lowest operating temperature are divided into high pressure stages Ca and G 1 a and low pressure stages Cb and G 1 b having different refrigerant condensation temperatures, or the absorber A and the evaporator E. Are both low-pressure stages Aa, Ea and high-pressure stages Ab, which have different refrigerant evaporation temperatures.
While divided into Eb, the condenser C and the regenerator G 1 having the lowest operating temperature are divided into high pressure Ca and G 1 a having different refrigerant condensation temperatures and low pressure stages Cb and G 1 b, respectively. The absorber A and the condenser C are characterized in that the cooling water Wa is made to flow from the high pressure stage Ab, the low pressure stage Cb side toward the low pressure stage Aa, the high pressure stage Ca side. .

【0014】本願の第3の発明では、上記第1又は第2
の発明にかかる吸収式冷凍装置において、上記吸収器A
と上記凝縮器Cとに分流して供給される上記冷却水Wa
の上記吸収器A側への分流率を50%より大きく100
%未満の値に設定したことを特徴としている。
In the third invention of the present application, the above-mentioned first or second
In the absorption refrigerating apparatus according to the invention of claim 1,
And the cooling water Wa that is supplied separately to the condenser C
The diversion rate to the absorber A side above 100% greater than 50%.
It is characterized by setting to a value less than%.

【0015】本願の第4の発明では、少なくとも1個以
上の凝縮器C、蒸発器E、吸収器Aと、冷媒を含む吸収
溶液が供給される作動温度の異なるn個(n≧2)の再
生器Gn〜G1を溶液配管系と冷媒配管系とで作動的に
接続して循環サイクルを構成し、高温側の再生器Gnで
発生した冷媒蒸気を低温側の再生器Gn-1に順次導入し
てこれを該低温側の再生器Gn-1の加熱源として利用し
て該低温側の再生器Gn-1の吸収溶液を加熱濃縮するこ
とを最も作動温度の低い再生器G1まで繰り返すように
してなる吸収式冷凍装置において、同一の冷却水供給系
から供給される冷却水Waを上記吸収器Aと凝縮器Cと
に並列に流すとともに、上記凝縮器Cを冷却した後の冷
却水を、上記吸収器Aに供給される冷却水に合流させる
ように構成したことを特徴としている。
In the fourth invention of the present application, at least one condenser C, evaporator E, absorber A, and n (n ≧ 2) n (n ≧ 2) different operating temperatures are supplied with the absorption solution containing the refrigerant. The regenerators Gn to G 1 are operatively connected by the solution piping system and the refrigerant piping system to form a circulation cycle, and the refrigerant vapor generated in the high temperature side regenerator Gn is sequentially transferred to the low temperature side regenerator Gn −1 . This is repeated by introducing to the lower regenerator G 1 most operating temperatures to absorb the solution heated and concentrated in the low temperature side of the regenerator Gn -1 heating regenerator low temperature side by using as a source Gn -1 In the absorption refrigerating apparatus thus configured, the cooling water Wa supplied from the same cooling water supply system is caused to flow in parallel to the absorber A and the condenser C, and the cooling water after cooling the condenser C is obtained. Is configured to join with the cooling water supplied to the absorber A. Is characterized by.

【0016】本願の第5の発明では、上記第4の発明に
かかる吸収式冷凍装置において、上記吸収器Aと上記蒸
発器Eとを共に冷媒蒸発温度が異なる低圧段Aa,同E
aと高圧段Ab,Ebに分割構成し、又は上記凝縮器C
と最も作動温度の低い再生器G1とを共に冷媒凝縮温度
が異なる高圧段Ca,同G1aと低圧段Cb,G1bに分
割構成し、又は上記吸収器Aと上記蒸発器Eとを共に冷
媒蒸発温度が異なる低圧段Aa,同Eaと高圧段Ab,
Ebに分割構成するとともに、上記凝縮器Cと最も作動
温度の低い再生器G1とを共に冷媒凝縮温度が異なる高
圧段Ca,同G1aと低圧段Cb,G1bに分割構成する
一方、上記吸収器Aと上記凝縮器Cにおいては上記冷却
水Waを上記高圧段Ab,上記低圧段Cb側から上記低
圧段Aa,上記高圧段Ca側へ向けて流れるように構成
したことを特徴としている。
According to a fifth aspect of the present invention, in the absorption refrigerating apparatus according to the fourth aspect of the invention, the absorber A and the evaporator E are both low pressure stages Aa and E having different refrigerant evaporation temperatures.
a and the high pressure stages Ab and Eb, or the condenser C
And a regenerator G 1 having the lowest operating temperature are divided into high pressure stages Ca and G 1 a and low pressure stages Cb and G 1 b having different refrigerant condensation temperatures, or the absorber A and the evaporator E. Are both low-pressure stages Aa, Ea and high-pressure stages Ab, which have different refrigerant evaporation temperatures.
In addition to dividing into Eb, the condenser C and the regenerator G 1 having the lowest operating temperature are divided into high pressure stages Ca and G 1 a and low pressure stages Cb and G 1 b having different refrigerant condensation temperatures. In the absorber A and the condenser C, the cooling water Wa is configured to flow from the high pressure stage Ab, the low pressure stage Cb side toward the low pressure stage Aa, the high pressure stage Ca side. There is.

【0017】本願の第6の発明では、上記第4又は第5
の発明にかかる吸収式冷凍装置において、上記吸収器A
と上記凝縮器Cとに分流して供給される上記冷却水Wa
の上記凝縮器C側への分流率を50%より大きく100
%未満の値に設定したことを特徴としている。
In the sixth invention of the present application, the above-mentioned fourth or fifth invention is provided.
In the absorption refrigerating apparatus according to the invention of claim 1,
And the cooling water Wa that is supplied separately to the condenser C
Of the flow rate to the condenser C side of 100
It is characterized by setting to a value less than%.

【0018】本願の第7の発明では、上記第1,第2,
第3,第4,第5又は第6の発明にかかる吸収式冷凍装
置において、上記再生器の数nを2又は3としてことを
特徴としている。
In the seventh invention of the present application, the above-mentioned first, second, and
The absorption refrigerating apparatus according to the third, fourth, fifth or sixth invention is characterized in that the number n of the regenerators is 2 or 3.

【0019】[0019]

【発明の効果】本願発明ではかかる構成とすることによ
り次のような効果が得られる。
According to the present invention, the following effects can be obtained by adopting such a configuration.

【0020】 本願の第1の発明にかかる吸収式冷凍
装置によれば、同一の冷却水供給系から供給される冷却
水Waを、上記吸収器Aと凝縮器Cとに並列に流すとと
もに、上記吸収器Aを冷却した後の冷却水を、上記凝縮
器Cに供給される冷却水に合流させるように構成してい
るので、上記吸収器Aと凝縮器Cにはそれぞれ直接に上
記冷却水Waが略半量づつ供給されるとともに、さらに
該凝縮器Cには上記吸収器Aを冷却した後の冷却水も供
給される。
According to the absorption type refrigeration system of the first invention of the present application, the cooling water Wa supplied from the same cooling water supply system is caused to flow in parallel to the absorber A and the condenser C, and Since the cooling water after cooling the absorber A is combined with the cooling water supplied to the condenser C, the cooling water Wa is directly supplied to the absorber A and the condenser C, respectively. Is supplied to each of the condensers C, and cooling water after cooling the absorber A is also supplied to the condenser C.

【0021】従って、上記凝縮器C側についてみれば、
上記冷却水供給系から供給される冷却水Waの全量が、
しかもその略半量は上記吸収器Aを通過することなく
(即ち、冷却水供給系への導入時の低水温を略維持した
状態のまま)供給されることから、例えば従来のよう
に、凝縮器には冷却水の全量が供給されるものの、その
水温は前段の吸収器での熱交換によって昇温して比較的
高温となっている場合に比して、上記凝縮器Cに供給さ
れる冷却水のもつ冷熱量が多く、それだけ該凝縮器Cに
おける凝縮効率が向上し、これに対応して該凝縮器Cと
連通した最も作動温度の低い再生器の作動圧が低下し、
延いては吸収式冷凍装置のシステム全体としての機内圧
力が低下し、吸収式冷凍装置の作動上の信頼性が向上す
るものである。
Therefore, looking at the condenser C side,
The total amount of cooling water Wa supplied from the cooling water supply system is
Moreover, since about half of the amount is supplied without passing through the absorber A (that is, while keeping the low water temperature at the time of introduction into the cooling water supply system), for example, as in the conventional case, a condenser is used. Although the entire amount of the cooling water is supplied to the condenser C, the cooling water supplied to the condenser C is higher than the case where the temperature of the water is relatively high due to the heat exchange in the preceding absorber. The amount of cold heat of water is large, the condensing efficiency in the condenser C is improved accordingly, and the operating pressure of the regenerator having the lowest operating temperature communicating with the condenser C is correspondingly reduced.
As a result, the internal pressure of the absorption refrigeration system as a whole is lowered, and the operational reliability of the absorption refrigeration system is improved.

【0022】一方、上記吸収器Aと凝縮器Cとに上記冷
却水Waを並列に流したことで、該吸 収器Aにおいて
は、例えば従来の構造の場合に比して、冷却水の流量が
半減し吸収性能が低下することは避けることができない
が、吸収式冷凍装置のトータル的な性能という点からす
れば、上記吸収器Aにおける吸収性能の低下というデメ
リットよりも、上記凝縮器Cの凝縮性能の向上による機
内圧力の低下に基づくメリットの方が遥かに大きく、結
果的に、吸収器A側のデメリットの存在に拘わらず吸収
式冷凍装置全体とした高い性能が確保されることにな
る。
On the other hand, by flowing the cooling water Wa in parallel to the absorber A and the condenser C, the flow rate of the cooling water in the absorber A is smaller than that in the conventional structure, for example. However, in terms of the total performance of the absorption type refrigerating apparatus, the absorption performance of the absorber A is rather lower than the disadvantage of the condenser C. The merit due to the decrease of the internal pressure due to the improvement of the condensing performance is much larger, and as a result, the high performance of the entire absorption refrigeration system is secured regardless of the demerits of the absorber A side. .

【0023】 本願の第2の発明にかかる吸収式冷凍
装置では、上記第1の発明にかかる吸収式冷凍装置にお
いて、上記吸収器Aと上記蒸発器Eとを共に冷媒蒸発温
度が異なる低圧段Aa,同Eaと高圧段Ab,Ebに分
割構成し、又は上記凝縮器Cと最も作動温度の低い再生
器G1とを共に冷媒凝縮温度が異なる高圧段Ca,同G1
aと低圧段Cb,G1bに分割構成し、又は上記吸収器
Aと上記蒸発器Eとを共に冷媒蒸発温度が異なる低圧段
Aa,同Eaと高圧段Ab,Ebに分割構成するととも
に、上記凝縮器Cと最も作動温度の低い再生器G1とを
共に冷媒凝縮温度が異なる高圧Ca,同G1aと低圧段
Cb,G1bに分割構成する一方、上記吸収器Aと上記
凝縮器Cにおいては上記冷却水Waを上記高圧段Ab,
上記低圧段Cb側から上記低圧段Aa,上記高圧段Ca
側へ向けて流すように構成している。
In the absorption refrigeration system according to the second aspect of the present invention, in the absorption refrigeration system according to the first aspect of the invention, the absorber A and the evaporator E are both low-pressure stages Aa having different refrigerant evaporation temperatures. , Ea and high pressure stages Ab and Eb, or the condenser C and the regenerator G 1 having the lowest operating temperature are both high pressure stages Ca and G 1 having different refrigerant condensation temperatures.
a and the low-pressure stage Cb, divided constructed G 1 b, or the absorber A and the evaporator E and the both refrigerant evaporation temperature is different pressure stage Aa, the Ea of the high pressure stage Ab, with split configuration Eb, Both the condenser C and the regenerator G 1 having the lowest operating temperature are divided into high pressure Ca and G 1 a having different refrigerant condensation temperatures and low pressure stages Cb and G 1 b, while the absorber A and the condensation are used. In the vessel C, the cooling water Wa is supplied to the high pressure stage Ab,
From the low pressure stage Cb side to the low pressure stage Aa, the high pressure stage Ca
It is configured to flow to the side.

【0024】従って、この発明の吸収式冷凍装置におい
ては、上記各機器の高低二段分割構造は上記吸収器Aと
凝縮器Cに対する冷却水Waの供給系には何ら影響を及
ぼすものではないことから、上記各機器の高低二段分割
構造とした構成をもつものでありながら、上記に記載
したと同様の効果を確実に得ることができるものであ
る。
Therefore, in the absorption refrigeration system of the present invention, the high and low two-stage divided structure of each of the above-mentioned devices does not affect the supply system of the cooling water Wa to the absorber A and the condenser C at all. Therefore, the same effects as those described above can be reliably obtained even though each of the above devices has a structure in which the device is divided into high and low stages.

【0025】さらに、この発明の吸収式冷凍装置のよう
に、高低二段に分割された構成をもつ上記吸収器Aと凝
縮器Cにおいて、それぞれその高圧段Ab,低圧段Cb
から低圧段Aa,高圧段Caに向けて冷却水Waを流す
ことで、該各高圧段Ab,低圧段Cb側における吸収能
力あるいは凝縮能力が上記各低圧段Aa,高圧段Ca側
のそれらよりも高くなる。従って、上記吸収器Aにおい
ては、これに並設された蒸発器Eの低圧段Eaと高圧段
Ebとにおいてそれぞれ生成される気化冷媒の該低圧段
Eaと高圧段Ebの間における温度勾配と、上記吸収器
Aにおける気化冷媒の吸収液への吸収作用に伴う吸収熱
の放熱能力勾配とが対応し、該吸収器A全体としてより
高い吸収効率が得られる。また、上記凝縮器Cにおいて
も、これに並設された上記再生器G1の高圧段G1aと低
圧段G1bとにおいてそれぞれ生成される冷媒蒸気の該
高圧段G1aと低圧段G1bの間における温度勾配と、上
記凝縮器Cにおける冷媒蒸気の凝縮熱の温度勾配とが対
応し、該凝縮器C全体としてより高い凝縮効率が得られ
る。これらの相乗効果として、この吸収式冷凍装置にお
いては、上記吸収器Aの吸収能力と上記凝縮器Cの凝縮
能力を共に高水準に維持することができ、延いては装置
全体として高い性能が確保されるものである。
Further, in the absorption refrigerating apparatus of the present invention, in the absorber A and the condenser C having the structure of being divided into high and low stages, the high pressure stage Ab and the low pressure stage Cb thereof are respectively.
By flowing the cooling water Wa from the low pressure stage Aa to the high pressure stage Ca, the absorption capacity or the condensation capacity on the high pressure stage Ab side and the low pressure stage Cb side is higher than those on the low pressure stage Aa side and the high pressure stage Ca side. Get higher Therefore, in the absorber A, the temperature gradient between the low-pressure stage Ea and the high-pressure stage Eb of the vaporized refrigerant produced in the low-pressure stage Ea and the high-pressure stage Eb of the evaporator E arranged in parallel with the absorber A, respectively, This corresponds to the heat dissipation capacity gradient of the absorption heat accompanying the absorption action of the vaporized refrigerant on the absorption liquid in the absorber A, and a higher absorption efficiency can be obtained for the absorber A as a whole. Further, the condenser also in C, which in juxtaposed the regenerator the high-pressure stage G 1 a and the low-pressure stage of the refrigerant vapor produced respectively in the high-pressure stage G 1 a in G 1 and the low-pressure stage G 1 b The temperature gradient between G 1 b and the temperature gradient of the heat of condensation of the refrigerant vapor in the condenser C correspond to each other, and higher condensation efficiency can be obtained for the entire condenser C. As a synergistic effect of these, in this absorption refrigeration system, both the absorption capacity of the absorber A and the condensation capacity of the condenser C can be maintained at a high level, and as a result, high performance as a whole is secured. It is what is done.

【0026】 本願の第3の発明では、上記又は
に記載の効果に加えて次のような特有の効果が得られ
る。即ち、この発明では、上記第1又は第2の発明にか
かる吸収式冷凍装置において、上記吸収器Aと上記凝縮
器Cとに分流して供給される上記冷却水Waの上記吸収
器A側への分流率を50%より大きく100%未満の値
に設定している。
According to the third invention of the present application, the following unique effect is obtained in addition to the effect described above or. That is, in the present invention, in the absorption refrigerating apparatus according to the first or second invention, the cooling water Wa that is divided and supplied to the absorber A and the condenser C is supplied to the absorber A side. Is set to a value greater than 50% and less than 100%.

【0027】ここで、上記吸収器Aと凝縮器Cの間にお
ける冷却水供給系の構成からして上記凝縮器Cには常に
冷却水Waの全量が供給されるものであることから、こ
の発明のように、上記吸収器A側への分流率を50%よ
り大きく100%未満の値に設定しても(換言すれば、
吸収器Aと凝縮器Cに冷却水Waを並列に流す場合に通
常設定される分流率50%を越えてそれ以上に流して
も)、該吸収器A側への分流率の大小の如何に拘わら
ず、上記凝縮器C側の冷却水の供給量が確保される。
Since the cooling water supply system between the absorber A and the condenser C is configured so that the entire amount of the cooling water Wa is always supplied to the condenser C, the present invention is used. As described above, even if the diversion rate to the absorber A side is set to a value greater than 50% and less than 100% (in other words,
Even when the cooling water Wa flows in parallel to the absorber A and the condenser C in excess of the diversion rate of 50% that is usually set), the flow rate of the cooling water Wa to the absorber A side may be larger or smaller. Regardless, the supply amount of the cooling water on the condenser C side is secured.

【0028】このことからして、この発明の吸収式冷凍
装置によれば、上記吸収器Aの吸収能力と上記凝縮器C
の凝縮能力とを両立させて装置全体として高い性能を得
ることができるとともに、例えば、上記冷却水Waの分
流率を変更可能とすることで、吸収能力重視の吸収式冷
凍装置と凝縮能力重視の吸収式冷凍装置とを必要に応じ
て選択できることになり、それだけ吸収式冷凍装置の汎
用性が促進される、等の効果が得られるものである。
Therefore, according to the absorption refrigeration system of the present invention, the absorption capacity of the absorber A and the condenser C are
It is possible to obtain a high performance as the entire device by making both the condensing capacity and the condensing capacity compatible with each other. The absorption refrigerating device can be selected according to need, and the versatility of the absorption refrigerating device is promoted accordingly.

【0029】 本願の第4の発明にかかる吸収式冷凍
装置によれば、同一の冷却水供給系から供給される冷却
水Waを上記吸収器Aと凝縮器Cとに並列に流すととも
に、上記凝縮器Cを冷却した後の冷却水を、上記吸収器
Aに供給される冷却水に合流させるように構成している
ので、上記吸収器Aと凝縮器Cにはそれぞれ直接に上記
冷却水Waが略半量づつ供給されるとともに、さらに該
吸収器Aには上記凝縮器Cを冷却した後の冷却水も供給
される。
According to the absorption type refrigeration system of the fourth aspect of the present application, the cooling water Wa supplied from the same cooling water supply system is caused to flow in parallel to the absorber A and the condenser C, and the condensation is performed. Since the cooling water after cooling the vessel C is combined with the cooling water supplied to the absorber A, the cooling water Wa is directly supplied to the absorber A and the condenser C, respectively. In addition to being supplied in approximately half amounts, the absorber A is also supplied with cooling water after cooling the condenser C.

【0030】従って、上記凝縮器C側についてみれば、
上記冷却水供給系から供給される冷却水Waの略半量し
か供給されないものの、従来のように上記吸収器Aを介
することなく直接に供給されることから、その水温は低
水温に維持される。この結果、上記凝縮器Cにおいて
は、例え冷却水の供給量は少なくてもその水温が低いこ
とから該冷却水のもつ冷熱量は多く、従って上記凝縮器
Cにおける凝縮効率が向上し、これに対応して該凝縮器
Cと連通した最も作動温度の低い再生器の作動圧が低下
し、延いては吸収式冷凍装置のシステム全体としての機
内圧力が低下し、その作動上の信頼性が向上するもので
ある。
Therefore, looking at the condenser C side,
Although only approximately half of the cooling water Wa supplied from the cooling water supply system is supplied, since it is directly supplied without passing through the absorber A as in the conventional case, the water temperature is kept low. As a result, in the condenser C, even if the supply amount of the cooling water is small, the temperature of the cooling water is low, so that the cooling water has a large amount of cold heat, and therefore the condensation efficiency in the condenser C is improved. Correspondingly, the operating pressure of the regenerator having the lowest operating temperature, which communicates with the condenser C, decreases, and the internal pressure of the absorption refrigeration system as a whole decreases, which improves the operational reliability. To do.

【0031】一方、上記吸収器A側についてみれば、該
吸収器Aには上記冷却水Waの略半量が低水温のまま直
接供給されるとともに、上記凝縮器Cを通過後の冷却水
も供給されることから、例えば従来のように冷却水Wa
の全量が直接供給される場合に比して、冷却効率が幾分
低くなり吸収能力が低下するものの、依然として高い吸
収能力を維持することになる。このことからして、この
発明の吸収式冷凍装置は、機内圧力の低下による作動上
の信頼性の向上と、吸収器Aにおける吸収性能の維持と
の両立を可能とするものと言える。
On the other hand, when viewed from the side of the absorber A, approximately half of the cooling water Wa is directly supplied to the absorber A while maintaining a low water temperature, and the cooling water after passing through the condenser C is also supplied. Therefore, for example, the cooling water Wa as in the related art is used.
Although the cooling efficiency will be somewhat lower and the absorption capacity will be lower than in the case where the entire amount is directly supplied, the high absorption capacity will still be maintained. From this, it can be said that the absorption refrigerating apparatus of the present invention makes it possible to improve the operational reliability due to the decrease in the internal pressure and to maintain the absorption performance of the absorber A at the same time.

【0032】 本願の第5の発明にかかる吸収式冷凍
装置では、上記第4の発明にかかる吸収式冷凍装置にお
いて、上記吸収器Aと上記蒸発器Eとを共に冷媒蒸発温
度が異なる低圧段Aa,同Eaと高圧段Ab,Ebに分
割構成し、又は上記凝縮器Cと最も作動温度の低い再生
器G1とを共に冷媒凝縮温度が異なる高圧段Ca,同G1
aと低圧段Cb,G1bに分割構成し、又は上記吸収器
Aと上記蒸発器Eとを共に冷媒蒸発温度が異なる低圧段
Aa,同Eaと高圧段Ab,Ebに分割構成するととも
に、上記凝縮器Cと最も作動温度の低い再生器G1とを
共に冷媒凝縮温度が異なる高圧段Ca,同G1aと低圧
段Cb,G1bに分割構成する一方、上記吸収器Aと上
記凝縮器Cにおいては上記冷却水Waを上記高圧段A
b,上記低圧段Cb側から上記低圧段Aa,上記高圧段
Ca側へ向けて流れるように構成している。
In the absorption refrigeration system according to the fifth aspect of the present application, in the absorption refrigeration system according to the fourth aspect of the invention, the absorber A and the evaporator E are both low-pressure stages Aa having different refrigerant evaporation temperatures. , Ea and high pressure stages Ab and Eb, or the condenser C and the regenerator G 1 having the lowest operating temperature are both high pressure stages Ca and G 1 having different refrigerant condensation temperatures.
a and the low-pressure stage Cb, divided constructed G 1 b, or the absorber A and the evaporator E and the both refrigerant evaporation temperature is different pressure stage Aa, the Ea of the high pressure stage Ab, with split configuration Eb, Both the condenser C and the regenerator G 1 having the lowest operating temperature are divided into high pressure stages Ca and G 1 a and low pressure stages Cb and G 1 b having different refrigerant condensation temperatures, while the absorber A and the above are used. In the condenser C, the cooling water Wa is supplied to the high pressure stage A.
b, from the low pressure stage Cb side toward the low pressure stage Aa and the high pressure stage Ca side.

【0033】従って、この発明の吸収式冷凍装置におい
ては、上記各機器の高低二段分割構造は上記吸収器Aと
凝縮器Cに対する冷却水Waの供給系には何ら影響を及
ぼすものではないことから、上記各機器の高低二段分割
構造とした構成をもつものでありながら、上記に記載
したと同様の効果を確実に得ることができるものであ
る。
Therefore, in the absorption refrigerating apparatus of the present invention, the high-low two-stage divided structure of each of the above-mentioned devices does not affect the supply system of the cooling water Wa to the absorber A and the condenser C at all. Therefore, the same effects as those described above can be reliably obtained even though each of the above devices has a structure in which the device is divided into high and low stages.

【0034】さらに、この発明の吸収式冷凍装置のよう
に、高低二段に分割された構成をもつ上記吸収器Aと凝
縮器Cにおいて、それぞれその高圧段Ab,低圧段Cb
から低圧段Aa,高圧段Caに向けて冷却水Waを流す
ことで、該各高圧段Ab,低圧段Cb側における吸収能
力あるいは凝縮能力が上記各低圧段Aa,高圧段Ca側
のそれらよりも高くなる。従って、上記吸収器Aにおい
ては、これに並設された蒸発器Eの低圧段Eaと高圧段
Ebとにおいてそれぞれ生成される気化冷媒の該低圧段
Eaと高圧段Ebの間における温度勾配と、上記吸収器
Aにおける気化冷媒の吸収液への吸収作用に伴う吸収熱
の放熱能力勾配とが対応し、該吸収器A全体としてより
高い吸収効率が得られる。また、上記凝縮器Cにおいて
も、これに並設された上記再生器G1の高圧段G1aと低
圧段G1bとにおいてそれぞれ生成される冷媒蒸気の該
高圧段G1aと低圧段G1bの間における温度勾配と、上
記凝縮器Cにおける冷媒蒸気の凝縮熱の温度勾配とが対
応し、該凝縮器C全体としてより高い凝縮効率が得られ
る。これらの相乗効果として、この吸収式冷凍装置にお
いては、上記吸収器Aの吸収能力と上記凝縮器Cの凝縮
能力を共に高水準に維持することができ、延いては装置
全体として高い性能が確保されるものである。
Further, in the absorption refrigerating apparatus of the present invention, in the absorber A and the condenser C having the structure of being divided into high and low stages, the high pressure stage Ab and the low pressure stage Cb thereof, respectively.
By flowing the cooling water Wa from the low pressure stage Aa to the high pressure stage Ca, the absorption capacity or the condensation capacity on the high pressure stage Ab side and the low pressure stage Cb side is higher than those on the low pressure stage Aa side and the high pressure stage Ca side. Get higher Therefore, in the absorber A, the temperature gradient between the low-pressure stage Ea and the high-pressure stage Eb of the vaporized refrigerant produced in the low-pressure stage Ea and the high-pressure stage Eb of the evaporator E arranged in parallel with the absorber A, respectively, This corresponds to the heat dissipation capacity gradient of the absorption heat accompanying the absorption action of the vaporized refrigerant on the absorption liquid in the absorber A, and a higher absorption efficiency can be obtained for the absorber A as a whole. Further, the condenser also in C, which in juxtaposed the regenerator the high-pressure stage G 1 a and the low-pressure stage of the refrigerant vapor produced respectively in the high-pressure stage G 1 a in G 1 and the low-pressure stage G 1 b The temperature gradient between G 1 b and the temperature gradient of the heat of condensation of the refrigerant vapor in the condenser C correspond to each other, and higher condensation efficiency can be obtained for the entire condenser C. As a synergistic effect of these, in this absorption refrigeration system, both the absorption capacity of the absorber A and the condensation capacity of the condenser C can be maintained at a high level, and as a result, high performance as a whole is secured. It is what is done.

【0035】 本願の第6の発明にかかる吸収式冷凍
装置によれば、上記又はに記載の効果に加えて次の
ような特有の効果が得られる。即ち、この発明では、上
記吸収器Aと上記凝縮器Cとに分流して供給される上記
冷却水Waの上記凝縮器C側への分流率を50%より大
きく100%未満の値に設定している。
According to the absorption type refrigeration system of the sixth aspect of the present application, the following peculiar effect can be obtained in addition to the effects described above or. That is, in the present invention, the diversion rate to the condenser C side of the cooling water Wa which is divided and supplied to the absorber A and the condenser C is set to a value greater than 50% and less than 100%. ing.

【0036】ここで、上記吸収器Aと凝縮器Cの間にお
ける冷却水供給系の構成からして上記吸収器Aには常に
冷却水Waの全量が供給されるものであることから、こ
の発明のように、上記凝縮器C側への分流率を50%よ
り大きく100%未満の値に設定しても(換言すれば、
吸収器Aと凝縮器Cに冷却水Waを並列に流す場合に通
常設定される分流率50%を越えてそれ以上に流して
も)、該凝縮器C側への分流率の大小の如何に拘わら
ず、上記吸収器A側の冷却水の供給量が確保される。
Here, because of the structure of the cooling water supply system between the absorber A and the condenser C, the absorber A is always supplied with the entire amount of the cooling water Wa. As described above, even if the diversion rate to the condenser C side is set to a value greater than 50% and less than 100% (in other words,
When the cooling water Wa flows in parallel to the absorber A and the condenser C in excess of the diversion rate of 50% that is usually set), how much the diversion rate to the condenser C is large or small. Regardless, the supply amount of the cooling water on the absorber A side is secured.

【0037】このことからして、この発明の吸収式冷凍
装置によれば、上記吸収器Aの吸収能力と上記凝縮器C
の凝縮能力とを両立させて装置全体として高い性能を得
ることができるとともに、例えば、上記冷却水Waの分
流率を変更可能とすることで、吸収能力重視の吸収式冷
凍装置と凝縮能力重視の吸収式冷凍装置とを必要に応じ
て選択できることになり、それだけ吸収式冷凍装置の汎
用性が促進される、等の効果が得られるものである。
Therefore, according to the absorption refrigeration system of the present invention, the absorption capacity of the absorber A and the condenser C are
It is possible to obtain a high performance as the entire device by making both the condensing capacity and the condensing capacity compatible with each other. The absorption refrigerating device can be selected according to need, and the versatility of the absorption refrigerating device is promoted accordingly.

【0038】 本願の第7の発明では、上記第1,第
2,第3,第4,第5又は第6の発明にかかる吸収式冷
凍装置において、上記再生器の数nを2又は3としてい
る。
According to a seventh invention of the present application, in the absorption refrigerating apparatus according to the first, second, third, fourth, fifth or sixth invention, the number n of the regenerators is 2 or 3. There is.

【0039】ここで、再生器の設置数、即ち、吸収溶液
の濃縮段数を増加させて熱効率を高めることによる吸収
式冷凍装置の性能向上というメリットと、再生器の設置
数の増加に伴って増大する機内圧力の上昇とか製造コス
トの上昇というデメリットとを比較考量すれば、上記再
生器の設置数は2個又は3個が最適と考えられる。
Here, the number of regenerators installed, that is, the merit of improving the performance of the absorption refrigerating apparatus by increasing the number of concentration stages of the absorbing solution and increasing the thermal efficiency, and the number of regenerators installed increases. Considering the disadvantages such as the increase of the internal pressure and the increase of the manufacturing cost, the optimum number of the regenerators installed is two or three.

【0040】この点からして、この発明のように上記再
生器の数nを2又は3に設定した場合には、性能面とコ
スト面とを両立させた実用上極めて有用な吸収式冷凍装
置を提供できることになる。
From this point of view, when the number n of the regenerators is set to 2 or 3 as in the present invention, the absorption type refrigerating apparatus which is practically very useful and has both performance and cost. Will be provided.

【0041】[0041]

【発明の実施の形態】以下、本願発明を好適な実施形態
を、所謂「シリースフローと呼ぶサイクルを例にとって
具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be specifically described below by taking a so-called "serial flow" as an example.

【0042】I:第1の実施形態 図1には、本願発明の第1の実施形態にかかる吸収式冷
凍装置Z1のシステム構成を示している。この吸収式冷
凍装置Z1は、水を冷媒とし、臭化リチウムを吸収液と
する吸収式冷凍装置であって、各1個の凝縮器Cと吸収
器Aと蒸発器E、及び3個の再生器G3,G2,G1を、
溶液配管系と冷媒配管系で作動的に接続して冷媒Rと吸
収溶液Lの循環サイクルを構成している。
I: First Embodiment FIG. 1 shows the system configuration of an absorption refrigerating apparatus Z 1 according to a first embodiment of the present invention. The absorption refrigerating apparatus Z 1 is an absorption refrigerating apparatus that uses water as a refrigerant and lithium bromide as an absorbing liquid, and includes one condenser C, an absorber A, an evaporator E, and three Regenerators G 3 , G 2 , G 1
The solution piping system and the refrigerant piping system are operatively connected to form a circulation cycle of the refrigerant R and the absorbing solution L.

【0043】先ず、上記吸収式冷凍装置Z1を構成する
上記各機器の基本的な機能を説明する。
First, the basic function of each of the above-mentioned devices constituting the absorption refrigerating apparatus Z 1 will be described.

【0044】蒸発器E 上記蒸発器Eは、容器Etの中に、被冷却液Weを通す
熱交換部Ecと該熱交換部Ec上に冷媒Reを散布する
冷媒散布器Esとを有し、被冷却液配管Ueから流入し
て該蒸発器E内の上記熱交換部Ecを流れる被冷却液
(水)Weを冷却する。尚、上記蒸発器E内の冷媒Re
は、冷媒ポンプRPにより、冷媒散布器Es側に汲み上
げられる。
Evaporator E The evaporator E has a heat exchange section Ec for passing the liquid We to be cooled and a refrigerant spreader Es for distributing the refrigerant Re on the heat exchange section Ec in a container Et, The liquid to be cooled (water) We flowing from the liquid to be cooled Ue flowing through the heat exchange section Ec in the evaporator E is cooled. In addition, the refrigerant Re in the evaporator E is
Is pumped up to the refrigerant distributor Es side by the refrigerant pump RP.

【0045】吸収器A 上記吸収器Aは、上記蒸発器Eと連通して該蒸発器Eか
ら流入する低温の気化冷媒(水蒸気)Raを吸収液中に
吸収させる作用を行うものであって、容器At内に、濃
溶液Lgを散布する溶液散布器Asと、該吸収器A内で
発生する吸収熱を除去するための熱交換部Acとを備え
ている。そして、上記熱交換部Acは、冷却水配管Ua
から冷却水Waが供給されることで、上記吸収器A内で
発生する吸収熱を除去する。
Absorber A The absorber A communicates with the evaporator E and serves to absorb low-temperature vaporized refrigerant (water vapor) Ra flowing from the evaporator E into the absorbing liquid. The container At is provided with a solution sprayer As for spraying the concentrated solution Lg and a heat exchange unit Ac for removing the absorption heat generated in the absorber A. And the said heat exchange part Ac is the cooling water piping Ua.
By supplying the cooling water Wa from the absorption water, the absorption heat generated in the absorber A is removed.

【0046】尚、この冷却水Waは、さらに後述する凝
縮器Cに送給されて凝縮器用冷却水としても利用される
が、この冷却水Waの供給系は本願発明の要旨となるも
のであって、その詳細は後述する。
The cooling water Wa is further fed to a condenser C which will be described later and is also used as cooling water for the condenser. The supply system of the cooling water Wa is the gist of the present invention. The details will be described later.

【0047】再生器G3,G2,G1 上記各再生器G3,G2,G1は、共に、冷媒を含む吸収
溶液を加熱濃縮して順次高濃度の濃溶液とするためのも
のであって、これら相互間においてはその作動温度が異
なっており、最も高温で作動する高温再生器G3と、中
温で作動する中温再生器G2と、最も低温で作動する低
温再生器G1とされている。尚、上記吸収器Aからの希
溶液Laは、溶液ポンプLPにより、希溶液配管11を
通って、先ず上記高温再生器G3側に導入されるように
なっている。
Regenerators G 3 , G 2 , G 1 Each of the above-mentioned regenerators G 3 , G 2 , G 1 is for heating and concentrating an absorption solution containing a refrigerant to obtain a concentrated solution of high concentration in sequence. However, their operating temperatures are different from each other, and the high temperature regenerator G 3 that operates at the highest temperature, the middle temperature regenerator G 2 that operates at the middle temperature, and the low temperature regenerator G 1 that operates at the lowest temperature. It is said that. The dilute solution La from the absorber A is first introduced into the high temperature regenerator G 3 side through the dilute solution pipe 11 by the solution pump LP.

【0048】高温再生器G3 上記高温再生器G3は、容器G3t内に外部熱源J(例え
ば、ガス燃焼器)を備え、上記吸収器Aで生成される希
溶液Laを上記容器G3t内に導入し、且つこれを加熱
濃縮して、高温の濃溶液(高温溶液L3)を生成すると
ともに、冷媒蒸気R3を生成する。そして、上記高温再
生器G3で生成される高温溶液L3と冷媒蒸気R3のう
ち、高温溶液L3は高温溶液配管23を通って次段の上
記中温再生器G2内に導入され、また冷媒蒸気R3は高温
蒸気配管33を通って上記中温再生器G2内の溶液加熱
部K2(次述する)に導入される。
High Temperature Regenerator G 3 The high temperature regenerator G 3 is provided with an external heat source J (for example, a gas combustor) in a container G 3 t, and the diluted solution La produced in the absorber A is stored in the container G 3. It is introduced into 3 t and is heated and concentrated to generate a high temperature concentrated solution (high temperature solution L 3 ) and a refrigerant vapor R 3 . Then, of the high temperature solution L 3 and the refrigerant vapor R 3 generated in the high temperature regenerator G 3 , the high temperature solution L 3 is introduced into the intermediate temperature regenerator G 2 of the next stage through the high temperature solution pipe 23, Further, the refrigerant vapor R 3 is introduced into the solution heating section K 2 (described below) in the medium temperature regenerator G 2 through the high temperature vapor pipe 33.

【0049】中温再生器G2 上記中温再生器G2は、容器G2t内に溶液加熱部K2
備えるとともに、該容器G2t内には上記高温溶液配管
23を介して上記高温再生器G3側から高温の濃溶液L3
が導入される。また、上記溶液加熱部K2は、上記高温
再生器G3で生成された冷媒蒸気R3が高温蒸気配管33
を介して導入され、上記濃溶液L3の加熱源として利用
される。
The medium temperature regenerator G 2 the intermediate temperature regenerator G 2 is provided with a solution heating unit K 2 into the container G 2 t, the high temperature through the hot solution pipe 23 into the container G 2 t High-temperature concentrated solution L 3 from the vessel G 3 side
Will be introduced. Further, in the solution heating section K 2 , the refrigerant vapor R 3 generated in the high temperature regenerator G 3 is fed into the high temperature steam pipe 33.
And is used as a heating source for the concentrated solution L 3 .

【0050】上記中温再生器G2においては、上記溶液
加熱部K2によって、上記高温再生器G3から導入される
高温溶液L3が加熱濃縮されて、さらに高濃度で且つ中
温の中温溶液L2が生成されるとともに、冷媒蒸気R2
生成される。そして、上記中温再生器G2で生成された
中温溶液L2と冷媒蒸気R2のうち、中温溶液L2は中温
溶液配管22を通ってさらに次段の低温再生器G1に導
入される一方、冷媒蒸気R2は中温蒸気配管32を通っ
て上記低温再生器G1内に備えられた溶液加熱部K1に導
入される。さらに、上記高温再生器G3から上記中温再
生器G2の上記溶液加熱部K2に導入された冷媒蒸気R3
は、該溶液加熱部K2での潜熱変化による加熱作用で相
変化し、冷媒ドレンRd2となり、冷媒ドレン配管41
を通して、上記低温再生器G1と後述の凝縮器Cとの間
に配置されたドレン配管40に戻され、該ドレン配管4
0を介して上記凝縮器Cに還流される。
[0050] In the intermediate temperature regenerator G 2, the by solution heating unit K 2, hot solution L 3 to be introduced from the high temperature generator G 3 is heated and concentrated, further high concentration and medium temperature solution L mesophilic 2 is generated, and the refrigerant vapor R 2 is also generated. Then, of the medium temperature solution L 2 and the refrigerant vapor R 2 produced in the medium temperature regenerator G 2 , the medium temperature solution L 2 is introduced into the low temperature regenerator G 1 of the next stage through the medium temperature solution pipe 22. The refrigerant vapor R 2 is introduced into the solution heating unit K 1 provided in the low temperature regenerator G 1 through the medium temperature vapor pipe 32. Further, the refrigerant vapor R 3 introduced from the high temperature regenerator G 3 into the solution heating section K 2 of the medium temperature regenerator G 2.
Undergoes a phase change due to a heating action due to a latent heat change in the solution heating section K 2 to become a refrigerant drain Rd 2 , and the refrigerant drain pipe 41
Through the low temperature regenerator G 1 and a condenser C described later, and is returned to the drain pipe 40.
It is returned to the condenser C via 0.

【0051】低温再生器G1 上記低温再生器G1は、容器G1t内に溶液加熱部K1
備えている。この溶液加熱部K1には、上記上記中温再
生器G2で生成される冷媒蒸気R2が上記中温蒸気配管3
2を通って導入され、該冷媒蒸気R2は上記中温再生器
2から上記中温溶液配管22を介して導入される中温
溶液L2の加熱源として利用され、該中温溶液L2を加熱
濃縮してさらに高濃度の低温溶液L1を生成せしめると
ともに、冷媒蒸気R1を生成させる。
Low Temperature Regenerator G 1 The low temperature regenerator G 1 includes a solution heating section K 1 in a container G 1 t. In the solution heating section K 1 , the refrigerant vapor R 2 generated in the medium temperature regenerator G 2 is fed with the medium temperature steam pipe 3
Is introduced through 2, the refrigerant vapor R 2 is utilized as a heat source for medium temperature solution L 2 which is introduced from the intermediate temperature regenerator G 2 through the medium-temperature solution pipe 22, heating concentrated middle warm solution L 2 As a result, a low-temperature solution L 1 having a higher concentration is generated and a refrigerant vapor R 1 is generated.

【0052】上記低温溶液L1は、低温溶液配管21を
通って上記吸収器Aへ導入され、上記溶液散布器Asか
ら濃溶液Lgとして散布される。また、上記吸収器A内
では、上記溶液散布器Asから散布される濃溶液Lg中
に、上記蒸発器Eから導入される低温の冷媒蒸気Raが
吸収され、吸収溶液は希溶液Laとなって上記容器At
の底部に貯留される。また、上記吸収器A内においては
濃溶液Lgが冷媒蒸気Raを吸収する際に吸収熱が発生
するが、この吸収熱は、上記熱交換部Acに供給される
冷却水Waとの熱交換によって除去される。尚、この冷
却水Waは、上記吸収器A通過後、さらに次述の凝縮器
Cに送給される。
The low temperature solution L 1 is introduced into the absorber A through the low temperature solution pipe 21 and is sprayed as a concentrated solution Lg from the solution sprayer As. Further, in the absorber A, the low-temperature refrigerant vapor Ra introduced from the evaporator E is absorbed in the concentrated solution Lg sprayed from the solution sprayer As, and the absorbing solution becomes a dilute solution La. The container At
Stored at the bottom of the. Further, in the absorber A, absorption heat is generated when the concentrated solution Lg absorbs the refrigerant vapor Ra, but this absorption heat is generated by heat exchange with the cooling water Wa supplied to the heat exchange section Ac. To be removed. After passing through the absorber A, the cooling water Wa is further fed to the condenser C described below.

【0053】凝縮器C 上記凝縮器Cは、容器Ct内に、冷媒配管31を介して
上記低温再生器G1から導入される冷媒蒸気R1を冷却凝
縮させて液冷媒Rcを生成させるためのもので、その容
器Ct内には冷媒蒸気R1を冷却して凝縮させるための
熱交換部Ccが設けられている。この熱交換部Ccに
は、上記冷却水配管Uaに導入される冷却水Waが供給
されるが、この冷却水Waの供給系については後に詳述
する。
Condenser C The condenser C cools and condenses the refrigerant vapor R 1 introduced from the low temperature regenerator G 1 through the refrigerant pipe 31 into the container Ct to generate the liquid refrigerant Rc. A heat exchange section Cc for cooling and condensing the refrigerant vapor R 1 is provided in the container Ct. The cooling water Wa introduced into the cooling water pipe Ua is supplied to the heat exchange section Cc, and the supply system of the cooling water Wa will be described in detail later.

【0054】上記低温再生器G1の溶液加熱部K1に導入
され、且つここでの熱交換によって凝縮生成される冷媒
ドレンRd1は、上記中温再生器G2の上記溶液加熱部K
2での加熱作用によって生成され上記冷媒ドレン配管4
1を通して上記ドレン配管40側に合流される冷媒ドレ
ンRd2と共に、該ドレン配管40を通して上記凝縮器
Cに導入され、上記液冷媒Rcに合流する。また、この
液冷媒Rcは、液冷媒配管43を介して上記蒸発器Eに
供給される。
[0054] are introduced into the solution heating unit K 1 of the low temperature regenerator G 1, and the refrigerant drain Rd 1 produced condensed by heat exchange in this case, the solution heated portion K of the medium-temperature regenerator G 2
The refrigerant drain pipe 4 generated by the heating action in 2
Along with the refrigerant drain Rd 2 joined to the drain pipe 40 side through 1 is introduced into the condenser C through the drain pipe 40 and joined to the liquid refrigerant Rc. The liquid refrigerant Rc is supplied to the evaporator E via the liquid refrigerant pipe 43.

【0055】熱交換器H1,H2,H3 一方、上記吸収器Aから上記高温再生器G3に至る希溶
液配管11の途中には、3個の熱交換器H1,H2,H3
が設けられている。これら各熱交換器H1,H2,H
3は、上記各再生器G1,G2,G3で生成される低温溶液
1、中温溶液L2、及び高温溶液L3のそれぞれがもつ
熱を吸収溶液La側へ熱回収するためのものであって、
最も低温側の低温溶液熱交換器H1には低温溶液配管2
1を介して上記低温再生器G1から低温溶液L1が導入さ
れ、中温の中温溶液熱交換器H2には中温溶液配管22
を介して上記中温再生器G2からの中温溶液L2が導入さ
れ、最も高温の高温溶液熱交換器H3には上記高温溶液
配管23を介して高温溶液L3が導入され、これによっ
て希溶液Laは上記吸収器A内での温度から昇温され、
上記低温再生器G1側での加熱濃縮作用が促進される。
On the other hand the heat exchanger H 1, H 2, H 3 , the absorber in the middle of the dilute solution pipe 11 leading to the high-temperature regenerator G 3 are the A, 3 pieces of the heat exchangers H 1, H 2, H 3
Is provided. Each of these heat exchangers H 1 , H 2 , H
3 is for recovering the heat of each of the low temperature solution L 1 , the intermediate temperature solution L 2 and the high temperature solution L 3 generated in each of the regenerators G 1 , G 2 and G 3 to the absorption solution La side. The thing
The low temperature solution heat exchanger H 1 on the lowest temperature side has a low temperature solution pipe 2
The low temperature solution L 1 is introduced from the low temperature regenerator G 1 via 1 and the medium temperature solution pipe 22 is connected to the medium temperature medium temperature solution heat exchanger H 2.
Through the introduction of medium temperature solution L 2 from the intermediate temperature regenerator G 2, most hot high temperature solution heat exchanger H 3 hot solution L 3 through the hot solution pipe 23 is introduced, whereby a dilute The solution La is heated from the temperature in the absorber A,
The heating concentration effect on the low temperature regenerator G 1 side is promoted.

【0056】冷却水供給系 ここで、上記吸収器Aと上記凝縮器Cに冷却水を供給す
る冷却水供給系の構成について説明する。冷却水Waを
導入する冷却水配管Uaは、先ず、上記吸収器Aの熱交
換部Acの冷却水入口側に接続される配管Ua1と、上
記凝縮器Cの熱交換部Ccに接続される配管Ua2とに
分岐される。また、上記配管Ua2の中間位置から分岐
する配管Ua3は、上記吸収器Aの熱交換部Acの冷却
水出口側に接続されている。尚、上記凝縮器Cの熱交換
部Ccの冷却水出口側には、冷却水を外部へ排出する配
管Ua5が接続されている。
Cooling Water Supply System Now, the structure of the cooling water supply system for supplying cooling water to the absorber A and the condenser C will be described. The cooling water pipe Ua for introducing the cooling water Wa is first connected to the pipe Ua 1 connected to the cooling water inlet side of the heat exchange section Ac of the absorber A and the heat exchange section Cc of the condenser C. It is branched to the pipe Ua 2 . The pipe Ua 3 branched from the intermediate position of the pipe Ua 2 is connected to the cooling water outlet side of the heat exchange section Ac of the absorber A. A pipe Ua 5 for discharging the cooling water to the outside is connected to the cooling water outlet side of the heat exchange section Cc of the condenser C.

【0057】従って、この冷却水供給系によれば、上記
冷却水配管Uaに対して上記吸収器Aと凝縮器Cとが並
列に接続されており、該冷却水配管Uaに導入される冷
却水Waは、導入後、上記配管Ua1と配管Ua2に分流
され、該各配管Ua1,Ua2をそれぞれ通って上記吸収
器Aと凝縮器Cに個別に供給されるとともに、上記吸収
器Aを通過した後の冷却水も上記配管Ua2を通って上
記凝縮器C側に供給されるようになっている。
Therefore, according to this cooling water supply system, the absorber A and the condenser C are connected in parallel to the cooling water pipe Ua, and the cooling water introduced into the cooling water pipe Ua is connected. Wa after the introduction, is diverted to the pipe Ua 1 and the pipe Ua 2, through the respective pipe Ua 1, Ua 2 respectively is supplied separately to the condenser C and the absorber a, the absorber a The cooling water after passing through is also supplied to the condenser C side through the pipe Ua 2 .

【0058】吸収式冷凍装置Z1の作動説明 以上のように構成された吸収式冷凍装置Z1において
は、上述のように作動温度の異なる三つの再生器G3
2,G1を備え、これら各再生器G3,G2,G1におい
て吸収溶液を多段階に濃縮させるとともに、上記中温再
生器G2と低温再生器G1においてはそれぞれその上段に
位置する再生器、即ち、上記中温再生器G2にあっては
上記高温再生器G3、上記低温再生器G1にあっては上記
中温再生器G 2で、それぞれ生成される冷媒蒸気R3、R
2を、希溶液Laを濃縮するための加熱源として利用す
ることで、システム全体として高い熱効率が確保され、
より高い性能が得られるものである。
[0058]Operation explanation of absorption refrigeration system Z 1 Absorption refrigeration system Z configured as described above1At
Is the three regenerators G having different operating temperatures as described above.3
G2, G1And each of these regenerators G3, G2, G1smell
The absorption solution is concentrated in multiple stages, and
Organ G2And low temperature regenerator G1In each of the above
The regenerator located, that is, the above-mentioned medium temperature regenerator G2In that case
High temperature regenerator G above3, The low temperature regenerator G1In that case
Medium temperature regenerator G 2And the generated refrigerant vapor R3, R
2As a heating source for concentrating the dilute solution La.
By doing so, high thermal efficiency is secured for the entire system,
Higher performance can be obtained.

【0059】ところで、吸収式冷凍装置Z1には、機内
圧力をできるだけ下げてその運転上の信頼性を確保する
とともに、その低コスト化を図る等の要求があり、これ
を実現する有効な手段として、上記各再生器G3,G2
1のうち、最も作動温度(即ち、作動圧力)の低い低
温再生器G1に付設され、且つ該低温再生器G1側から導
入される冷媒蒸気R1を凝縮して液冷媒Rcを生成する
上記凝縮器Cにおける冷媒凝縮温度を下げること、換言
すれば、該凝縮器Cでの冷却水による冷却能力を高める
ことが有効であることは既述の通りである。しかし、こ
の場合においても、上記吸収器A側の冷却能力をも十分
に考慮する必要があることは言うまでもない。
By the way, the absorption refrigerating apparatus Z 1 is required to lower the internal pressure as much as possible to ensure its operational reliability and to reduce its cost. An effective means for realizing this is required. As the above-mentioned regenerators G 3 , G 2 ,
Of G 1 , the low temperature regenerator G 1 having the lowest operating temperature (that is, operating pressure) is attached, and the refrigerant vapor R 1 introduced from the low temperature regenerator G 1 side is condensed to generate the liquid refrigerant Rc. As described above, it is effective to lower the refrigerant condensing temperature in the condenser C, in other words, to increase the cooling capacity of the condenser C with the cooling water. However, even in this case, needless to say, it is necessary to sufficiently consider the cooling capacity on the absorber A side.

【0060】このような要求に対して、この実施形態の
吸収式冷凍装置Z1においては、上記冷却水供給系を上
述のように構成することでこれに対処している。
In the absorption type refrigerating apparatus Z 1 of this embodiment, such a demand is dealt with by configuring the cooling water supply system as described above.

【0061】即ち、この実施形態の吸収式冷凍装置Z1
においては、上記冷却水配管Uaに供給される冷却水W
aを、上記吸収器Aと凝縮器Cとに並列に接続された二
つの配管Ua1と配管Ua2に分流させて上記吸収器Aの
熱交換部Acと上記凝縮器Cの熱交換部Ccとにそれぞ
れ流す一方、上記吸収器Aの熱交換部Ac側で冷却作用
を行った後、該熱交換部Acから出た冷却水を上記配管
Ua2側に導入し、これを上記凝縮器Cに供給するよう
にしている。尚、以下においては、導入冷却水の全量に
対する上記吸収器A側への冷却水の供給量の率、即ち、
分流率を50%に設定した場合を例として説明する。
That is, the absorption refrigerating apparatus Z 1 of this embodiment
The cooling water W supplied to the cooling water pipe Ua
a is split into two pipes Ua 1 and Ua 2 which are connected in parallel to the absorber A and the condenser C, and the heat exchange section Ac of the absorber A and the heat exchange section Cc of the condenser C are divided. While performing the cooling action on the heat exchange section Ac side of the absorber A, the cooling water discharged from the heat exchange section Ac is introduced to the pipe Ua 2 side, and the cooling water is introduced to the condenser C. I am trying to supply it to. In the following, the ratio of the amount of cooling water supplied to the absorber A side with respect to the total amount of introduced cooling water, that is,
A case where the flow dividing ratio is set to 50% will be described as an example.

【0062】このような冷却水の供給形態によれば、先
ず、上記冷却水配管Uaから導入される温度の低い冷却
水Waが、上記上記配管Ua1を通して上記吸収器Aの
熱交換部Ac側と、上記配管Ua2を通して上記凝縮器
Cの熱交換部Cc側とに、それぞれ略同量づつ分流供給
される。従って、上記吸収器A側においては、全供給量
の略半量の低温冷却水によって上記熱交換部Acにおけ
る冷却作用が実行され、該吸収器Aにおける吸収液への
気化冷媒の吸収に伴う吸収熱の放熱が行われる。従っ
て、この吸収器A側においては、例えば従来のように、
導入冷却水の全量を直接吸収器Aに供給する場合に比し
て、供給量が半減する分だけ、冷却能力が低下するもの
の、供給される冷却水が低温であることからその冷熱量
は十分に大きく、このため冷却水の供給量が半減するに
もかかわらず、依然として比較的高い吸収性能を発揮す
ることになる。
According to this cooling water supply mode, first, the cooling water Wa having a low temperature introduced from the cooling water pipe Ua is passed through the pipe Ua 1 to the heat exchange section Ac side of the absorber A. And the heat exchange section Cc side of the condenser C through the pipe Ua 2 in a substantially equal amount. Therefore, on the absorber A side, the cooling action in the heat exchange section Ac is executed by approximately half the total amount of the low temperature cooling water, and the absorption heat accompanying the absorption of the vaporized refrigerant into the absorption liquid in the absorber A is executed. The heat is dissipated. Therefore, on the absorber A side, for example, as in the conventional case,
Compared to the case where the entire amount of the introduced cooling water is directly supplied to the absorber A, the cooling capacity is reduced by the amount that the supply amount is halved, but the cooling heat amount is sufficient because the supplied cooling water is at a low temperature. However, despite the fact that the amount of cooling water supplied is halved, it still exhibits relatively high absorption performance.

【0063】一方、上記凝縮器C側においては、全供給
量の略半量の低温冷却水と、同じく略半量で且つ上記吸
収器A側での冷却作用を終えた後の冷却水とが合流して
供給され、この冷却水によって上記熱交換部Ccでの冷
媒蒸気R1の凝縮作用がなされる。従って、上記凝縮器
C側においては、導入冷却水の全量が供給され、しかも
その供給量の略半量は導入時の低水温を維持した冷却水
であることから、例えば従来のように導入冷却水の全量
が供給されるものの、その供給冷却水の全てがその前段
の吸収器Aにおいて既に冷却作用を行って昇温した比較
的高水温の冷却水であるような場合に比して、上記凝縮
器Cに供給された冷却水が保有する冷熱量は、未冷却の
略半量の冷却水が存在する分だけ大きく、それだけ上記
凝縮器Cにおける冷媒蒸気R1の凝縮温度(即ち、凝縮
圧力)が低下する。この凝縮器Cの凝縮圧力の低下に対
応して、上記低温再生器G1側における作動圧も低下
し、延いては吸収式冷凍装置Z1のシステム全体として
の機内圧力を確実に低下させることができることにな
る。そして、この機内圧力の低下によって、上記吸収式
冷凍装置Z1の作動上の信頼性が向上するとともに、低
コスト化も促進されるものである。
On the other hand, on the side of the condenser C, about half the low-temperature cooling water of the total supply amount and the cooling water of about half the amount and after the cooling operation on the side of the absorber A are joined together. Is supplied as a cooling medium, and the cooling water condenses the refrigerant vapor R 1 in the heat exchange section Cc. Therefore, on the side of the condenser C, the entire amount of the introduced cooling water is supplied, and about half of the supplied amount is the cooling water that maintains the low water temperature at the time of introduction. However, compared with the case where all of the supplied cooling water is cooling water having a relatively high water temperature that has already been cooled by the absorber A in the preceding stage, the condensed water is The amount of cold heat held by the cooling water supplied to the condenser C is large because the uncooled approximately half amount of the cooling water is present, and the condensing temperature (that is, the condensing pressure) of the refrigerant vapor R 1 in the condenser C is correspondingly large. descend. Corresponding to the decrease in the condensation pressure of the condenser C, the operating pressure on the side of the low temperature regenerator G 1 also decreases, and as a result, the internal pressure of the entire system of the absorption refrigeration apparatus Z 1 is surely decreased. You will be able to The reduction in the internal pressure improves the operational reliability of the absorption refrigeration system Z 1 and promotes cost reduction.

【0064】尚、この実施形態の吸収式冷凍装置Z1
おいては、上述のように、上記凝縮器C側の凝縮圧力の
低下に基づく機内圧力の低下というメリットと、上記吸
収器Aの吸収能力の低下というデメリットとを併有する
が、吸収式冷凍装置Z1の性能面において上記デメリッ
ト要素が与える影響は、上記メリット要素が与える影響
が各段に大きいところから、上記吸収式冷凍装置Z1
体としてみた場合、上記デメリットの存在はほとんど問
題とはならない。
In the absorption refrigeration system Z 1 of this embodiment, as described above, the merit that the internal pressure of the condenser C decreases due to the decrease of the condensation pressure on the side of the condenser C and the absorption capacity of the absorber A. Although having both a disadvantage of decreased, the influence of the disadvantage factors gives in terms of performance of the absorption refrigerating apparatus Z 1, from where the influence of the benefit component gives greater in each stage, a whole the absorption refrigerating apparatus Z 1 In that case, the existence of the above disadvantages does not cause a problem.

【0065】一方、上記実施形態においては、上記冷却
水Waの上記吸収器A側への分流率を50%に設定した
場合を例にとって説明したが、この実施形態の吸収式冷
凍装置Z1では、上記配管Ua1と配管Ua2の分岐部
に、例えば可変分流弁等の分流率変更手段を設けること
で、上記分流率を容易に変更することが可能であり、特
に本願請求項3においては、上記分流率を「50%より
大きく100%未満の値」に設定するようにしている。
On the other hand, in the above-described embodiment, the case where the flow division ratio of the cooling water Wa to the absorber A side is set to 50% has been described as an example, but in the absorption refrigerating apparatus Z 1 of this embodiment, It is possible to easily change the diversion rate by providing a diversion rate changing means such as a variable diversion valve at the branch portion of the pipe Ua 1 and the pipe Ua 2 , and particularly, in claim 3 of the present application, The diversion rate is set to "a value greater than 50% and less than 100%".

【0066】ここで、上記分流率50%に設定した場合
が上記実施形態のものであるが、このように分流率を5
0%に設定しても、上述のように、上記凝縮器C側には
導入される冷却水Waの全量が供給されることから、該
凝縮器Cの凝縮圧力を下げて機内圧力を低下させるとい
う本願発明に特有の効果を得ることができるものであ
る。換言すれば、必ず上記凝縮器Cには導入冷却水の全
量が供給されるので、上記吸収器A側に50%の冷却水
を供給して該吸収器Aの吸収能力を適正に維持したとし
ても、同時に上記凝縮器Cの凝縮能力を高めて機内圧力
の低下効果を得ることができるものである。
Here, the case where the diversion rate is set to 50% is the case of the above-mentioned embodiment, and the diversion rate is set to 5 in this way.
Even if it is set to 0%, as described above, since the entire amount of the cooling water Wa to be introduced is supplied to the condenser C side, the condensing pressure of the condenser C is lowered and the in-machine pressure is lowered. That is, the effect peculiar to the present invention can be obtained. In other words, since the entire amount of the introduced cooling water is always supplied to the condenser C, it is assumed that the absorption capacity of the absorber A is appropriately maintained by supplying 50% of the cooling water to the absorber A side. Also, at the same time, the condensing capacity of the condenser C can be increased to obtain the effect of lowering the internal pressure of the machine.

【0067】一方、上記分流率を100%に設定し、冷
却水Waの全量を上記吸収器A側のみに供給した場合で
あるが、この場合にも、該吸収器Aを通過した後に全冷
却水が上記凝縮器Cに供給されるので、上記凝縮器Cの
凝縮能力の向上による機内圧力の低下効果は低くなるも
のの、吸収式冷凍装置Z1全体としては高い性能をもつ
ことができるものである。
On the other hand, the case where the diversion rate is set to 100% and the entire amount of the cooling water Wa is supplied only to the absorber A side, also in this case, the total cooling is performed after passing through the absorber A. Since water is supplied to the condenser C, the effect of lowering the in-machine pressure by improving the condensing capacity of the condenser C is reduced, but the absorption refrigeration apparatus Z 1 as a whole can have high performance. is there.

【0068】従って、上記実施形態のように、上記吸収
器A側への冷却水の分流率を50%に設定した吸収式冷
凍装置Z1は、上記吸収器Aにおける吸収能力を適正に
維持しつつ、システムの機内圧力を効果的に低下させる
ことを可能とするもの、換言すれば、作動上の信頼性等
を重視した吸収式冷凍装置ということができる。
Therefore, as in the above embodiment, the absorption type refrigerating apparatus Z 1 in which the cooling water diversion rate to the absorber A side is set to 50% maintains the absorption capacity of the absorber A appropriately. On the other hand, it is possible to effectively reduce the in-machine pressure of the system, in other words, an absorption refrigeration system that places importance on operational reliability and the like.

【0069】II:第2の実施形態 図2には、本願発明の第2の実施形態にかかる吸収式冷
凍装置Z2のシステム構成を示している。この実施形態
の吸収式冷凍装置Z2は、上記第1の実施形態の吸収式
冷凍装置Z1と同一のシステム構成をもつものであっ
て、該第1の実施形態の吸収式冷凍装置Z1と異なる点
は、上記吸収器Aと凝縮器Cに対する冷却水供給系の構
成である。
II: Second Embodiment FIG. 2 shows the system configuration of an absorption refrigeration system Z 2 according to a second embodiment of the present invention. Absorption refrigerating apparatus Z 2 in this embodiment is a one having the same system configuration as the absorption refrigerating apparatus Z 1 of the first embodiment, the absorption type refrigerating apparatus according to an embodiment of said 1 Z 1 2 is the configuration of the cooling water supply system for the absorber A and the condenser C.

【0070】即ち、上記第1の実施形態の吸収式冷凍装
置Z1においては、上記冷却水配管Uaから導入される
冷却水Waを上記吸収器Aと凝縮器Cに分流させて並列
に流すとともに、上記吸収器Aを通過後の冷却水をさら
に上記凝縮器Cへ供給するようにしていた。
That is, in the absorption type refrigerating apparatus Z 1 of the first embodiment, the cooling water Wa introduced from the cooling water pipe Ua is split into the absorber A and the condenser C and flows in parallel. The cooling water that has passed through the absorber A is further supplied to the condenser C.

【0071】これに対して、この実施形態の吸収式冷凍
装置Z2においては、上記冷却水配管Uaから導入され
る冷却水Waを上記吸収器Aと凝縮器Cに分流させて並
列に流すとともに、上記凝縮器Cを通過後の冷却水をさ
らに上記吸収器Aへ供給するようにしている。
On the other hand, in the absorption refrigerating apparatus Z 2 of this embodiment, the cooling water Wa introduced from the cooling water pipe Ua is split into the absorber A and the condenser C and flows in parallel. The cooling water after passing through the condenser C is further supplied to the absorber A.

【0072】即ち、この実施形態の吸収式冷凍装置Z2
においては、上記冷却水配管Uaに供給される冷却水W
aを、上記吸収器Aと凝縮器Cとに並列に接続された二
つの配管Ua1と配管Ua2に分流させて上記吸収器Aの
熱交換部Acと上記凝縮器Cの熱交換部Ccとにそれぞ
れ流す一方、上記凝縮器Cの熱交換部Cc側で冷却作用
を行った後の冷却水を配管Ua3を通して上記配管Ua2
を流れる冷却水に合流させ、この合流した冷却水を上記
吸収器Aの熱交換部Acに供給するようにしている。
尚、以下においては、導入冷却水の全量に対する上記凝
縮器C側への冷却水の供給量の率、即ち、分流率を50
%に設定した場合を例として説明する。
That is, the absorption refrigerating apparatus Z 2 of this embodiment
The cooling water W supplied to the cooling water pipe Ua
a is split into two pipes Ua 1 and Ua 2 which are connected in parallel to the absorber A and the condenser C, and the heat exchange section Ac of the absorber A and the heat exchange section Cc of the condenser C are divided. And the cooling water after performing the cooling action on the heat exchange section Cc side of the condenser C through the pipe Ua 3 and the pipe Ua 2
Is combined with the cooling water flowing therethrough, and the combined cooling water is supplied to the heat exchange section Ac of the absorber A.
In the following, the ratio of the amount of cooling water supplied to the condenser C side with respect to the total amount of introduced cooling water, that is, the diversion rate is 50.
The case where it is set to% will be described as an example.

【0073】このような冷却水の供給形態によれば、先
ず、上記冷却水配管Uaから導入される温度の低い冷却
水Waが、上記上記配管Ua1を通して上記吸収器Aの
熱交換部Ac側と、上記配管Ua2を通して上記凝縮器
Cの熱交換部Cc側とに、それぞれ略同量づつ分流供給
される。従って、上記凝縮器C側においては、全供給量
の略半量の低温冷却水によって上記熱交換部Ccにおけ
る冷却作用が実行され、該凝縮器Cにおける冷媒蒸気R
1の凝縮作用が行われる。従って、この凝縮器C側にお
いては、例えば従来のように、導入冷却水の全量が凝縮
器C側に供給される場合に比して、供給量が半減する分
だけ、冷却能力が低下するものの、供給される冷却水が
冷却水配管Ua側から導入されたままの低温であること
からその冷熱量は十分に大きく、このため冷却水の供給
量が半減するにもかかわらず、その凝縮能力が低下し、
これに伴ってシステム前提の機内圧力の低下を図ること
ができ、延いては吸収式冷凍装置Z2の作動上の信頼性
の確保、あるいは低コスト化の促進が可能となるもので
ある。
According to such a cooling water supply mode, first, the cooling water Wa having a low temperature introduced from the cooling water pipe Ua is passed through the pipe Ua 1 to the heat exchange section Ac side of the absorber A. And the heat exchange section Cc side of the condenser C through the pipe Ua 2 in a substantially equal amount. Therefore, on the side of the condenser C, the cooling action in the heat exchange section Cc is executed by approximately half the total amount of the low-temperature cooling water, and the refrigerant vapor R in the condenser C is executed.
A condensation action of 1 is performed. Therefore, on the side of the condenser C, as compared with the case where the entire amount of the introduced cooling water is supplied to the side of the condenser C as in the conventional case, for example, the cooling capacity is reduced by half the supply amount. Since the supplied cooling water is at a low temperature as it is introduced from the cooling water pipe Ua side, the amount of cooling heat is sufficiently large. Therefore, even though the amount of cooling water supplied is halved, its condensing capacity is Drop,
Along with this, it is possible to reduce the internal pressure of the system premise, which in turn makes it possible to ensure the operational reliability of the absorption refrigeration system Z 2 or to promote cost reduction.

【0074】一方、上記吸収器A側においては、全供給
量の略半量の低温冷却水と、同じく略半量で且つ上記凝
縮器C側での冷却作用を終えた後の冷却水とが合流して
供給され、この冷却水によって上記熱交換部Acでの冷
却作用がなされる。従って、上記吸収器A側において
は、導入冷却水の全量が供給され、しかもその供給量の
略半量は導入時の低水温を維持した冷却水であることか
ら、例えば従来のように導入冷却水の全量が低水温のま
ま直接供給されるものに比して、幾分吸収能力は低下す
るものの、依然として高い吸収能力を保持する。
On the other hand, on the absorber A side, about half the low-temperature cooling water of the total supply amount and the cooling water of about half the amount and after the cooling action on the condenser C side are joined together. Is supplied as a cooling water, and the cooling water serves to cool the heat exchange section Ac. Therefore, on the side of the absorber A, the entire amount of the introduced cooling water is supplied, and about half of the supplied amount is the cooling water that maintains the low water temperature at the time of introduction. Although the absorption capacity is somewhat lower than that in the case where all the water is directly supplied at a low water temperature, it still retains a high absorption capacity.

【0075】尚、この実施形態の吸収式冷凍装置Z2
おいては、上述のように、上記凝縮器C側の凝縮圧力の
低下に基づく機内圧力の低下というメリットと、上記吸
収器Aの吸収能力の低下というデメリットとを併有する
が、このデメリットは、凝縮器Cの凝縮圧力を下げて機
内圧力を低下させたことによる作動上の信頼性の向上と
いうメリットに比して各段に小さく、上記吸収式冷凍装
置Z2全体としてみた場合、ほとんど問題とはならな
い。
In the absorption refrigeration system Z 2 of this embodiment, as described above, the merit that the internal pressure decreases due to the decrease in the condensation pressure on the condenser C side and the absorption capacity of the absorber A. However, this demerit is smaller than the merit of improving the operational reliability by lowering the condensing pressure of the condenser C to lower the internal pressure. The absorption refrigeration system Z 2 as a whole causes almost no problem.

【0076】一方、上記実施形態においては、上記冷却
水Waの上記凝縮器C側への分流率を50%に設定した
場合を例にとって説明したが、この実施形態の吸収式冷
凍装置Z2では、上記第1の実施形態の吸収式冷凍装置
1の場合と同様に、上記配管Ua1と配管Ua2の分岐
部に、例えば可変分流弁等の分流率変更手段を設けるこ
とで、上記分流率を容易に変更することが可能であり、
特に本願請求項3においては、上記分流率を「50%よ
り大きく100%未満の値」に設定するようにしてい
る。
On the other hand, in the above-described embodiment, the case where the splitting ratio of the cooling water Wa to the condenser C side is set to 50% has been described as an example, but in the absorption refrigerating apparatus Z 2 of this embodiment. Similarly to the case of the absorption refrigeration system Z 1 of the first embodiment, by providing a flow dividing ratio changing means such as a variable flow dividing valve at the branch portion of the pipe Ua 1 and the pipe Ua 2 , It is possible to change the rate easily,
In particular, in claim 3 of the present application, the diversion rate is set to "a value greater than 50% and less than 100%".

【0077】ここで、上記分流率50%に設定した場合
が上記実施形態のものであるが、このように分流率を5
0%に設定しても、上述のように、上記凝縮器C側には
導入時の水温を維持した低温の冷却水が供給されること
から、該凝縮器Cの凝縮圧力を下げて機内圧力を低下さ
せるという本願発明に特有の効果を得ることができるも
のである。
Here, the case of setting the flow dividing ratio to 50% is the case of the above-mentioned embodiment, but the flow dividing ratio is set to 5 in this way.
Even if it is set to 0%, as described above, since the low-temperature cooling water that maintains the water temperature at the time of introduction is supplied to the condenser C side, the condensation pressure of the condenser C is lowered to reduce the internal pressure of the machine. It is possible to obtain the effect peculiar to the invention of the present application in that

【0078】一方、上記分流率を100%に設定した場
合、即ち、上記冷却水配管Uaから導入される冷却水W
aの全量を直接上記凝縮器C側に供給する場合である
が、この場合には、上記凝縮器C側においては冷却水W
aの全量が、しかもその全てが低水温であることから、
該冷却水による冷却能力がさらに向上し、これに対応し
てシステム全量としての機内圧力の更なる低下が可能と
なり、延いては吸収式冷凍装置Z2の作動上の信頼性が
より一層高められることになる。
On the other hand, when the diversion rate is set to 100%, that is, the cooling water W introduced from the cooling water pipe Ua.
This is a case where the entire amount of a is directly supplied to the condenser C side. In this case, the cooling water W is provided on the condenser C side.
Since the total amount of a is all low and the water temperature is low,
The cooling capacity by the cooling water is further improved, and correspondingly, the internal pressure of the entire system can be further reduced, and the operational reliability of the absorption refrigeration system Z 2 is further enhanced. It will be.

【0079】また、この場合、上記吸収器A側には、上
記凝縮器C側を通過した後の冷却水の全量がそのまま供
給されるので、例えば従来のように低水温の冷却水の全
量が直接吸収器Aに供給される場合に比して、該冷却水
の温度が高い分だけ吸収能力は落ちるものの、実用上、
何ら支障のない程度のものであり、吸収式冷凍装置Z 2
の性能上において何ら問題とはならない。
In this case, on the side of the absorber A,
The entire amount of cooling water after passing through the condenser C side is supplied as is.
Is supplied, the total cooling water of low water temperature as in the conventional
As compared with the case where the amount is directly supplied to the absorber A, the cooling water is
Although the absorption capacity is reduced due to the higher temperature,
Absorption-type refrigeration system Z that does not cause any problems 2
There is no problem in terms of performance.

【0080】従って、この実施形態の吸収式冷凍装置Z
2は、上記第1の実施形態の吸収式冷凍装置Z1よりもさ
らに作動上の信頼性等を重視した吸収式冷凍装置という
ことができる。
Therefore, the absorption refrigerating apparatus Z of this embodiment is
2 can be said to be an absorption type refrigeration system that places more importance on operational reliability and the like than the absorption type refrigeration system Z 1 of the first embodiment.

【0081】尚、上記以外の構成要素及びそれに基づく
作用効果は、上記第1の実施形態の吸収式冷凍装置Z1
の場合と同様であるので、図2の各構成部材に図1の各
構成部材に対応させて同一符号を付するとともに、第1
の実施形態における該当説明を援用することでここでの
説明を省略する。
The constituent elements other than the above and the effects thereof are the same as those of the absorption refrigerating apparatus Z 1 of the first embodiment.
2 is the same as that of the first embodiment, the same reference numerals are given to the respective constituent members of FIG. 2 corresponding to the respective constituent members of FIG.
The description here is omitted by applying the corresponding description in the embodiment.

【0082】III:第3の実施形態 図3には、本願発明の第3の実施形態にかかる吸収式冷
凍装置Z3のシステム構成を示している。この実施形態
の吸収式冷凍装置Z3は、上記第1の実施形態の吸収式
冷凍装置Z1と同一のシステム構成をもつものであっ
て、これが該第1の実施形態の吸収式冷凍装置Z1と異
なる点は、上記吸収器Aと上記蒸発器E、及び上記凝縮
器Cと上記低温再生器G1を、それぞれ高低二段分割構
造とした点である。
III: Third Embodiment FIG. 3 shows the system configuration of an absorption refrigerating apparatus Z 3 according to a third embodiment of the present invention. Absorption refrigerating apparatus Z 3 of this embodiment, the first be those having the same system configuration as the absorption refrigerating apparatus Z 1 embodiment, this absorption refrigerating apparatus Z of the first embodiment The difference from 1 is that the absorber A and the evaporator E, and the condenser C and the low temperature regenerator G 1 have a high-low two-stage split structure, respectively.

【0083】即ち、図3に示すように、上記吸収器Aに
おいては、これを低圧段Aaと高圧段Abに分割し、且
つこれら低圧段Aaと高圧段Abに跨がって配置される
上記熱交換部Acに対して冷却水を高圧段Ab側から低
圧段Aa側に向けて流すように構成している。また、上
記蒸発器Eにおいては、これを低圧段Eaと高圧段Eb
に分割し、これら低圧段Eaと高圧段Ebに跨がって配
置される上記熱交換部Ecに対して被冷却液Weを高圧
段Eb側から低圧段Ea側に向けて流すように構成して
いる。そして、上記蒸発器Eの低圧段Ea側から上記吸
収器Aの低圧段Aaに、また、上記蒸発器Eの高圧段E
b側から上記吸収器Aの高圧段Ab側へ、それぞれ気化
冷媒Raを移動させるように構成している。
That is, as shown in FIG. 3, in the absorber A, the absorber A is divided into a low pressure stage Aa and a high pressure stage Ab, and the absorber A is arranged so as to straddle the low pressure stage Aa and the high pressure stage Ab. The cooling water is configured to flow from the high pressure stage Ab side to the low pressure stage Aa side with respect to the heat exchange section Ac. Further, in the evaporator E, it is connected to the low pressure stage Ea and the high pressure stage Eb.
And is configured to allow the liquid We to be cooled to flow from the high pressure stage Eb side to the low pressure stage Ea side with respect to the heat exchange section Ec which is disposed over the low pressure stage Ea and the high pressure stage Eb. ing. Then, from the low pressure stage Ea side of the evaporator E to the low pressure stage Aa of the absorber A, and the high pressure stage E of the evaporator E.
The vaporized refrigerant Ra is moved from the b side to the high pressure stage Ab side of the absorber A, respectively.

【0084】一方、上記凝縮器Cにおいては、これを高
圧段Caと低圧段Cbに分割し、且つこれら高圧段Ca
と低圧段Cbに跨がって配置される上記熱交換部Ccに
対して冷却水を低圧段Cb側から高圧段Ca側に向けて
流すように構成している。また、上記低温再生器G1
おいては、これを高圧段G1aと低圧段G1bに分割し、
これら高圧段G1aと低圧段G1bに跨がって配置される
溶液加熱部K1に対して上記中温再生器G2からの冷媒蒸
気R2を上記と低圧段G1b側から高圧段G1a側へ流す
ように構成している。そして、上記低温再生器G1の高
圧段G1a側から上記凝縮器Cの高圧段Caに、また、
上記低温再生器G1の低圧段G1b側から上記凝縮器Cの
低圧段G1b側へ、それぞれ冷媒蒸気R1を移動させるよ
うに構成している。
On the other hand, in the condenser C, it is divided into a high pressure stage Ca and a low pressure stage Cb, and these high pressure stages Ca are
The cooling water is made to flow from the low pressure stage Cb side to the high pressure stage Ca side with respect to the heat exchange part Cc arranged across the low pressure stage Cb. In the low temperature regenerator G 1, it is divided into a high pressure stage G 1 a and a low pressure stage G 1 b,
The refrigerant vapor R 2 from the medium temperature regenerator G 2 is supplied to the solution heating unit K 1 arranged across the high pressure stage G 1 a and the low pressure stage G 1 b from the above and low pressure stage G 1 b side. It is configured to flow to the high pressure stage G 1 a side. Then, from the high pressure stage G 1 a side of the low temperature regenerator G 1 to the high pressure stage Ca of the condenser C,
From the low pressure stage G 1 b side of the low temperature regenerator G 1 to the lower pressure stage G 1 b side of the condenser C, and configured to move the refrigerant vapor R 1, respectively.

【0085】このように、この実施形態の吸収式冷凍装
置Z3においては、上記吸収器Aと蒸発器Eと凝縮器C
及び低温再生器G1の構成のみが上記第1の実施形態の
吸収式冷凍装置Z1と異なるのみで、上記吸収器Aと凝
縮器Cとに対する冷却水供給系の構成は上記第1の実施
形態の吸収式冷凍装置Z1の場合と同一である。従っ
て、この実施形態の吸収式冷凍装置Z3においても上記
第1の実施形態の吸収式冷凍装置Z1と同様の作用効果
が得られることは勿論である。
As described above, in the absorption refrigeration system Z 3 of this embodiment, the absorber A, the evaporator E and the condenser C are used.
And the configuration of the cooling water supply system for the absorber A and the condenser C is different from that of the absorption refrigerating device Z 1 of the first embodiment only in the configuration of the low temperature regenerator G 1. This is the same as the absorption refrigerating apparatus Z 1 of the embodiment. Therefore, it goes without saying that the absorption refrigerating apparatus Z 3 of this embodiment can also obtain the same effects as the absorption refrigerating apparatus Z 1 of the first embodiment.

【0086】ところで、この実施形態の吸収式冷凍装置
3では、高低二段分割構造をもつ上記吸収器Aと上記
凝縮器Cにおいて、冷却水をその高圧段Ab,低圧段C
b側から低圧段Aa,高圧段Ca側へ向けて流すように
構成したことで、以下のような特有の作用効果が得られ
る。
By the way, in the absorption refrigerating apparatus Z 3 of this embodiment, the cooling water is supplied to the high pressure stage Ab and the low pressure stage C in the absorber A and the condenser C having the high and low two-stage split structure.
Since the flow is made to flow from the b side toward the low pressure stage Aa and the high pressure stage Ca side, the following unique operational effects can be obtained.

【0087】即ち、高低二段に分割された構成をもつ上
記吸収器Aと凝縮器Cにおいて、それぞれその高圧段A
b,低圧段Cb側から低圧段Aa,高圧段Ca側に向け
て冷却水Waを流すことで、該各高圧段Ab,低圧段C
b側における吸収能力あるいは凝縮能力が上記各低圧段
Aa,高圧段Ca側のそれらよりも高くなる。
That is, in the absorber A and the condenser C having the structure of being divided into high and low stages, the high pressure stage A is respectively formed.
b, by flowing the cooling water Wa from the side of the low pressure stage Cb toward the side of the low pressure stage Aa and the high pressure stage Ca, the high pressure stage Ab and the low pressure stage C
The absorption capacity or the condensation capacity on the b side is higher than those on the low pressure stage Aa side and the high pressure stage Ca side.

【0088】従って、上記吸収器Aにおいては、これに
並設された上記蒸発器Eの低圧段Eaと高圧段Ebとに
おいてそれぞれ生成される気化冷媒の該低圧段Eaと高
圧段Ebの間における温度勾配と、上記吸収器Aにおけ
る気化冷媒の吸収液への吸収作用に伴う吸収熱の放熱能
力勾配とが対応し、該吸収器A全体としてより高い吸収
効率が得られる。
Therefore, in the absorber A, between the low pressure stage Ea and the high pressure stage Eb of the vaporized refrigerant produced in the low pressure stage Ea and the high pressure stage Eb of the evaporator E arranged in parallel with each other, respectively. The temperature gradient and the heat dissipation capacity gradient of the absorption heat accompanying the absorption action of the vaporized refrigerant in the absorber A in the absorber A correspond to each other, and the absorber A as a whole can obtain higher absorption efficiency.

【0089】また、上記凝縮器Cにおいても、これに並
設された上記再生器G1の高圧段G1aと低圧段G1bと
においてそれぞれ生成される冷媒蒸気R1の該高圧段G1
aと低圧段G1bの間における温度勾配と、上記凝縮器
Cにおける冷媒蒸気の凝縮熱の温度勾配とが対応し、該
凝縮器C全体としてより高い凝縮効率が得られる。
[0089] Further, the condenser also in C, which in juxtaposed the regenerator G 1 of the high-pressure stage G 1 a and the low-pressure stage G 1 b the high pressure stage of the refrigerant vapor R 1 respectively generated in the G 1
a temperature gradient between the a and the low pressure stage G 1 b, and the temperature gradient of the heat of condensation of the refrigerant vapor in the condenser C correspond, higher condensation efficiency than the whole the condenser C is obtained.

【0090】これらの相乗効果として、この吸収式冷凍
装置Z3においては、上記吸収器Aの吸収能力と上記凝
縮器Cの凝縮能力を共に高水準に維持することができ、
延いては装置全体として高い性能を確保することが可能
となる。
As a synergistic effect of these, in the absorption type refrigerating apparatus Z 3 , both the absorption capacity of the absorber A and the condensation capacity of the condenser C can be maintained at a high level,
As a result, it becomes possible to secure high performance as the entire device.

【0091】IV:第4の実施形態 図4には、本願発明の第4の実施形態にかかる吸収式冷
凍装置Z4のシステム構成を示している。この実施形態
の吸収式冷凍装置Z4は、上記第2の実施形態の吸収式
冷凍装置Z2と同一のシステム構成をもつものであっ
て、これが該第2の実施形態の吸収式冷凍装置Z2と異
なる点は、上記吸収器Aと上記蒸発器E、及び上記凝縮
器Cと上記低温再生器G1を、それぞれ高低二段分割構
造とした点である。
IV: Fourth Embodiment FIG. 4 shows the system configuration of an absorption refrigeration system Z 4 according to a fourth embodiment of the present invention. Absorption refrigerating apparatus Z 4 in this embodiment, the second embodiment absorption refrigerating apparatus comprising a Z 2 which have the same system configuration and, this absorption refrigerating apparatus Z embodiment the second The difference from 2 is that the absorber A and the evaporator E, and the condenser C and the low temperature regenerator G 1 have a high-low two-stage split structure, respectively.

【0092】即ち、図4に示すように、上記吸収器Aに
おいては、これを低圧段Aaと高圧段Abに分割し、且
つこれら低圧段Aaと高圧段Abに跨がって配置される
上記熱交換部Acに対して冷却水を高圧段Ab側から低
圧段Aa側に向けて流すように構成している。また、上
記蒸発器Eにおいては、これを低圧段Eaと高圧段Eb
に分割し、これら低圧段Eaと高圧段Ebに跨がって配
置される上記熱交換部Ecに対して被冷却液Weを高圧
段Eb側から低圧段Ea側に向けて流すように構成して
いる。そして、上記蒸発器Eの低圧段Ea側から上記吸
収器Aの低圧段Aaに、また、上記蒸発器Eの高圧段E
b側から上記吸収器Aの高圧段Ab側へ、それぞれ気化
冷媒Raを移動させるように構成している。
That is, as shown in FIG. 4, in the absorber A, the absorber A is divided into a low pressure stage Aa and a high pressure stage Ab, and the absorber A is arranged so as to straddle the low pressure stage Aa and the high pressure stage Ab. The cooling water is configured to flow from the high pressure stage Ab side to the low pressure stage Aa side with respect to the heat exchange section Ac. Further, in the evaporator E, it is connected to the low pressure stage Ea and the high pressure stage Eb.
And is configured to allow the liquid We to be cooled to flow from the high pressure stage Eb side to the low pressure stage Ea side with respect to the heat exchange section Ec which is disposed over the low pressure stage Ea and the high pressure stage Eb. ing. Then, from the low pressure stage Ea side of the evaporator E to the low pressure stage Aa of the absorber A, and the high pressure stage E of the evaporator E.
The vaporized refrigerant Ra is moved from the b side to the high pressure stage Ab side of the absorber A, respectively.

【0093】一方、上記凝縮器Cにおいては、これを高
圧段Caと低圧段Cbに分割し、且つこれら高圧段Ca
と低圧段Cbに跨がって配置される上記熱交換部Ccに
対して冷却水を低圧段Cb側から高圧段Ca側に向けて
流すように構成している。また、上記低温再生器G1
おいては、これを高圧段G1aと低圧段G1bに分割し、
これら高圧段G1aと低圧段G1bに跨がって配置される
溶液加熱部K1に対して上記中温再生器G2からの冷媒蒸
気R2を上記と低圧段G1b側から高圧段G1a側へ流す
ように構成している。そして、上記低温再生器G1の高
圧段G1a側から上記凝縮器Cの高圧段Caに、また、
上記低温再生器G1の低圧段G1b側から上記凝縮器Cの
低圧段G1b側へ、それぞれ冷媒蒸気R1を移動させるよ
うに構成している。
On the other hand, in the condenser C, it is divided into a high pressure stage Ca and a low pressure stage Cb, and these high pressure stages Ca are
The cooling water is made to flow from the low pressure stage Cb side to the high pressure stage Ca side with respect to the heat exchange part Cc arranged across the low pressure stage Cb. In the low temperature regenerator G 1, it is divided into a high pressure stage G 1 a and a low pressure stage G 1 b,
The refrigerant vapor R 2 from the medium temperature regenerator G 2 is supplied to the solution heating unit K 1 arranged across the high pressure stage G 1 a and the low pressure stage G 1 b from the above and low pressure stage G 1 b side. It is configured to flow to the high pressure stage G 1 a side. Then, from the high pressure stage G 1 a side of the low temperature regenerator G 1 to the high pressure stage Ca of the condenser C,
From the low pressure stage G 1 b side of the low temperature regenerator G 1 to the lower pressure stage G 1 b side of the condenser C, and configured to move the refrigerant vapor R 1, respectively.

【0094】このように、この実施形態の吸収式冷凍装
置Z4においては、上記吸収器Aと蒸発器Eと凝縮器C
及び低温再生器G1の構成のみが上記第2の実施形態の
吸収式冷凍装置Z2と異なるのみで、上記吸収器Aと凝
縮器Cとに対する冷却水供給系の構成は上記第2の実施
形態の吸収式冷凍装置Z2の場合と同一である。従っ
て、この実施形態の吸収式冷凍装置Z4においても上記
第2の実施形態の吸収式冷凍装置Z2と同様の作用効果
が得られることは勿論である。
As described above, in the absorption type refrigeration system Z 4 of this embodiment, the absorber A, the evaporator E and the condenser C are used.
And the configuration of the cooling water supply system for the absorber A and the condenser C is different from that of the absorption refrigerating apparatus Z 2 of the second embodiment only in the configuration of the low temperature regenerator G 1. This is the same as the case of the absorption refrigeration system Z 2 of the embodiment. Therefore, it goes without saying that the absorption refrigerating apparatus Z 4 of this embodiment can also obtain the same operational effects as the absorption refrigerating apparatus Z 2 of the second embodiment.

【0095】ところで、この実施形態の吸収式冷凍装置
4では、高低二段分割構造をもつ上記吸収器Aと上記
凝縮器Cにおいて、冷却水をその高圧段Ab,低圧段C
b側から低圧段Aa,高圧段Ca側へ向けて流すように
構成したことで、以下のような特有の作用効果が得られ
る。
By the way, in the absorption refrigerating apparatus Z 4 of this embodiment, in the absorber A and the condenser C having the high and low two-stage divided structure, the cooling water is supplied to the high pressure stage Ab and the low pressure stage C.
Since the flow is made to flow from the b side toward the low pressure stage Aa and the high pressure stage Ca side, the following unique operational effects can be obtained.

【0096】即ち、高低二段に分割された構成をもつ上
記吸収器Aと凝縮器Cにおいて、それぞれその高圧段A
b,低圧段Cb側から低圧段Aa,高圧段Ca側に向け
て冷却水Waを流すことで、該各高圧段Ab,低圧段C
b側における吸収能力あるいは凝縮能力が上記各低圧段
Aa,高圧段Ca側のそれらよりも高くなる。
That is, in the absorber A and the condenser C having the structure of being divided into high and low stages, the high pressure stage A
b, by flowing the cooling water Wa from the side of the low pressure stage Cb toward the side of the low pressure stage Aa and the high pressure stage Ca, the high pressure stage Ab and the low pressure stage C
The absorption capacity or the condensation capacity on the b side is higher than those on the low pressure stage Aa side and the high pressure stage Ca side.

【0097】従って、上記吸収器Aにおいては、これに
並設された上記蒸発器Eの低圧段Eaと高圧段Ebとに
おいてそれぞれ生成される気化冷媒の該低圧段Eaと高
圧段Ebの間における温度勾配と、上記吸収器Aにおけ
る気化冷媒の吸収液への吸収作用に伴う吸収熱の放熱能
力勾配とが対応し、該吸収器A全体としてより高い吸収
効率が得られる。
Therefore, in the absorber A, between the low pressure stage Ea and the high pressure stage Eb of the vaporized refrigerant produced in the low pressure stage Ea and the high pressure stage Eb of the evaporator E arranged in parallel, respectively, between the low pressure stage Ea and the high pressure stage Eb. The temperature gradient and the heat dissipation capacity gradient of the absorption heat accompanying the absorption action of the vaporized refrigerant in the absorber A in the absorber A correspond to each other, and the absorber A as a whole can obtain higher absorption efficiency.

【0098】また、上記凝縮器Cにおいても、これに並
設された上記再生器G1の高圧段G1aと低圧段G1bと
においてそれぞれ生成される冷媒蒸気R1の該高圧段G1
aと低圧段G1bの間における温度勾配と、上記凝縮器
Cにおける冷媒蒸気の凝縮熱の温度勾配とが対応し、該
凝縮器C全体としてより高い凝縮効率が得られる。
[0098] Further, the condenser also in C, which in juxtaposed the regenerator G 1 of the high-pressure stage G 1 a and the low-pressure stage G 1 b the high pressure stage of the refrigerant vapor R 1 respectively generated in the G 1
a temperature gradient between the a and the low pressure stage G 1 b, and the temperature gradient of the heat of condensation of the refrigerant vapor in the condenser C correspond, higher condensation efficiency than the whole the condenser C is obtained.

【0099】これらの相乗効果として、この吸収式冷凍
装置Z4においては、上記吸収器Aの吸収能力と上記凝
縮器Cの凝縮能力を共に高水準に維持することができ、
延いては装置全体として高い性能を確保することが可能
となる。
As a synergistic effect of these, in this absorption refrigerating apparatus Z 4 , both the absorption capacity of the absorber A and the condensation capacity of the condenser C can be maintained at a high level,
As a result, it becomes possible to secure high performance as the entire device.

【0100】その他 以上の各実施形態においては所謂「シリースフロー」と
呼ばれるサイクルに基づいて説明したが、本願発明はこ
れに限定されるものではなく、例えば「パラレルフロ
ー」とか「リバースフロー」、あるいはこれら両者の組
み合わせ等、如何なるサイクルでも同様に適用できるも
のである。
Others In each of the above-mentioned embodiments, the description has been made based on the so-called "serial flow". However, the present invention is not limited to this. For example, "parallel flow", "reverse flow", or The same applies to any cycle such as a combination of these two.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の第1の実施形態にかかる吸収式冷凍
装置におけるシステム構成及び作動サイクルの説明図で
ある。
FIG. 1 is an explanatory diagram of a system configuration and an operation cycle in an absorption type refrigeration system according to a first embodiment of the present invention.

【図2】本願発明の第2の実施形態にかかる吸収式冷凍
装置におけるシステム構成及び作動サイクルの説明図で
ある。
FIG. 2 is an explanatory diagram of a system configuration and an operation cycle in an absorption refrigerating device according to a second embodiment of the present invention.

【図3】本願発明の第3の実施形態にかかる吸収式冷凍
装置におけるシステム構成及び作動サイクルの説明図で
ある。
FIG. 3 is an explanatory diagram of a system configuration and an operation cycle in an absorption refrigerating apparatus according to a third embodiment of the present invention.

【図4】本願発明の第4の実施形態にかかる吸収式冷凍
装置におけるシステム構成及び作動サイクルの説明図で
ある。
FIG. 4 is an explanatory diagram of a system configuration and an operation cycle in an absorption refrigeration system according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11は希溶液配管、21は低温溶液配管、22は中温溶
液配管、23は高温溶液配管、31は冷媒配管、32は
中温蒸気配管、33は高温蒸気配管、40〜42は冷媒
ドレン配管、43は液冷媒配管、Aは吸収器、Cは凝縮
器、Eは蒸発器、G1〜G3は再生器、H1〜H3は溶液熱
交換器、Jは加熱器、K1〜K3は溶液加熱部、Laは希
溶液、Lgは濃溶液、LPは溶液ポンプ、L1は低温溶
液、L2は中温溶液、L3は高温溶液、Raは気化冷媒、
Rcは液冷媒、Reは冷媒、Rdは冷媒ドレン、RPは
冷媒ポンプ、R1〜R3は冷媒蒸気、Uaは冷却水配管、
Ua1〜Ua4は配管、Waは冷却水、Weは被冷却液、
1〜Z4は吸収式冷凍装置である。
11 is a dilute solution pipe, 21 is a low temperature solution pipe, 22 is a medium temperature solution pipe, 23 is a high temperature solution pipe, 31 is a refrigerant pipe, 32 is a medium temperature steam pipe, 33 is a high temperature steam pipe, 40 to 42 are refrigerant drain pipes, 43 liquid refrigerant pipe, A is the absorber, C is the condenser, E is the evaporator, G 1 ~G 3 is regenerator, H 1 to H 3 is solution heat exchanger, J is the heater, K 1 ~K 3 Is a solution heating part, La is a dilute solution, Lg is a concentrated solution, LP is a solution pump, L 1 is a low temperature solution, L 2 is a medium temperature solution, L 3 is a high temperature solution, Ra is a vaporized refrigerant,
Rc is a liquid refrigerant, Re is a refrigerant, Rd is a refrigerant drain, RP is a refrigerant pump, R 1 to R 3 are refrigerant vapors, Ua is a cooling water pipe,
Ua 1 to Ua 4 are piping, Wa is cooling water, We is a liquid to be cooled,
Z 1 to Z 4 are absorption type refrigerating apparatuses.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高瀬 達己 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 安田 賢二 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 Fターム(参考) 3L093 BB11 BB16 BB29 BB37 BB49 MM07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsumi Takase             1304 Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industries             Sakai Plant Kanaoka Factory (72) Inventor Kenji Yasuda             1304 Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industries             Sakai Plant Kanaoka Factory F term (reference) 3L093 BB11 BB16 BB29 BB37 BB49                       MM07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1個以上の凝縮器(C)、蒸
発器(E)、吸収器(A)と、冷媒を含む吸収溶液が供
給される作動温度の異なるn個(n≧2)の再生器(G
n〜G1)を溶液配管系と冷媒配管系とで作動的に接続
して循環サイクルを構成し、高温側の再生器(Gn)で
発生した冷媒蒸気を低温側の再生器(Gn-1)に順次導
入してこれを該低温側の再生器(Gn-1)の加熱源とし
て利用して該低温側の再生器(Gn-1)の吸収溶液を加
熱濃縮することを最も作動温度の低い再生器(G1)ま
で繰り返すようにしてなる吸収式冷凍装置であって、 同一の冷却水供給系から供給される冷却水(Wa)を、
上記吸収器(A)と凝縮器(C)とに並列に流すととも
に、上記吸収器(A)を冷却した後の冷却水を、上記凝
縮器(C)に供給される冷却水に合流させるように構成
したことを特徴とする吸収式冷凍装置。
1. At least one condenser (C), evaporator (E), absorber (A), and n (n ≧ 2) different operating temperatures to which an absorption solution containing a refrigerant is supplied. Regenerator (G
n to G 1 ) are operatively connected to the solution piping system and the refrigerant piping system to form a circulation cycle, and the refrigerant vapor generated in the high temperature side regenerator (Gn) is transferred to the low temperature side regenerator (Gn −1). ) which are sequentially introduced into the low temperature side of the regenerator (Gn -1 of the low temperature side by using as a heating source) regenerator (Gn -1) absorbent solution of most operating temperatures the heating concentrated in An absorption type refrigerating apparatus configured to repeat until a low regenerator (G 1 ), wherein cooling water (Wa) supplied from the same cooling water supply system is
Flowing in parallel to the absorber (A) and the condenser (C), the cooling water after cooling the absorber (A) is merged with the cooling water supplied to the condenser (C). An absorption type refrigerating apparatus having the above-mentioned constitution.
【請求項2】 請求項1において、 上記吸収器(A)と上記蒸発器(E)とが共に冷媒蒸発
温度が異なる低圧段(Aa),同(Ea)と高圧段(A
b),(Eb)に分割構成され、 又は上記凝縮器(C)と最も作動温度の低い再生器(G
1)とが共に冷媒凝縮温度が異なる高圧段(Ca),同
(G1a)と低圧段(Cb),(G1b)に分割構成さ
れ、 又は上記吸収器(A)と上記蒸発器(E)とが共に冷媒
蒸発温度が異なる低圧段(Aa),同(Ea)と高圧段
(Ab),(Eb)に分割構成されるとともに、上記凝
縮器(C)と最も作動温度の低い再生器(G1)とが共
に冷媒凝縮温度が異なる高圧段(Ca),同(G1a)
と低圧段(Cb),(G1b)に分割構成される一方、 上記吸収器(A)と上記凝縮器(C)においては上記冷
却水(Wa)が上記高圧段(Ab),上記低圧段(C
b)側から上記低圧段(Aa),上記高圧段(Ca)側
へ向けて流れるように構成されていることを特徴とする
吸収式冷凍装置。
2. The low pressure stage (Aa) according to claim 1, wherein the absorber (A) and the evaporator (E) have different refrigerant evaporation temperatures, and the high pressure stage (Aa) and the evaporator (Ea) have different refrigerant evaporation temperatures.
b), (Eb), or a condenser (C) and a regenerator (G) having the lowest operating temperature.
1 ) is divided into a high pressure stage (Ca), a high pressure stage (G 1 a) and a low pressure stage (Cb), (G 1 b), both of which have different refrigerant condensation temperatures, or the absorber (A) and the evaporator. (E) is divided into a low pressure stage (Aa), a high pressure stage (Aa), and a high pressure stage (Ab) (Eb), both of which have different refrigerant evaporation temperatures, and the operating temperature is the lowest with that of the condenser (C). High-pressure stage (Ca) and refrigerant (G 1 a ) with different refrigerant condensing temperatures with the regenerator (G 1 )
And the low pressure stages (Cb) and (G 1 b) are divided, while the cooling water (Wa) in the absorber (A) and the condenser (C) is in the high pressure stage (Ab) and the low pressure stage. Step (C
An absorption type refrigerating apparatus, which is configured to flow from the b) side toward the low pressure stage (Aa) and the high pressure stage (Ca) side.
【請求項3】 請求項1又は2において、 上記吸収器(A)と上記凝縮器(C)とに分流して供給
される上記冷却水(Wa)の上記吸収器(A)側への分
流率が50%より大きく100%未満の値に設定されて
いることを特徴とする吸収式冷凍装置。
3. The split flow of the cooling water (Wa), which is split and supplied to the absorber (A) and the condenser (C), to the absorber (A) side according to claim 1 or 2. An absorption type refrigerating apparatus, wherein the rate is set to a value greater than 50% and less than 100%.
【請求項4】 少なくとも1個以上の凝縮器(C)、蒸
発器(E)、吸収器(A)と、冷媒を含む吸収溶液が供
給される作動温度の異なるn個(n≧2)の再生器(G
n〜G1)を溶液配管系と冷媒配管系とで作動的に接続
して循環サイクルを構成し、高温側の再生器(Gn)で
発生した冷媒蒸気を低温側の再生器(Gn-1)に順次導
入してこれを該低温側の再生器(Gn-1)の加熱源とし
て利用して該低温側の再生器(Gn-1)の吸収溶液を加
熱濃縮することを最も作動温度の低い再生器(G1)ま
で繰り返すようにしてなる吸収式冷凍装置であって、 同一の冷却水供給系から供給される冷却水(Wa)を上
記吸収器(A)と凝縮器(C)とに並列に流すととも
に、上記凝縮器(C)を冷却した後の冷却水を、上記吸
収器(A)に供給される冷却水に合流させるように構成
したことを特徴とする吸収式冷凍装置。
4. At least one condenser (C), evaporator (E), absorber (A) and n (n ≧ 2) n (n ≧ 2) different operating temperatures to which an absorption solution containing a refrigerant is supplied. Regenerator (G
n to G 1 ) are operatively connected to the solution piping system and the refrigerant piping system to form a circulation cycle, and the refrigerant vapor generated in the high temperature side regenerator (Gn) is transferred to the low temperature side regenerator (Gn −1). ) which are sequentially introduced into the low temperature side of the regenerator (Gn -1 of the low temperature side by using as a heating source) regenerator (Gn -1) absorbent solution of most operating temperatures the heating concentrated in An absorption type refrigerating apparatus which is repeated up to a low regenerator (G 1 ), wherein cooling water (Wa) supplied from the same cooling water supply system is supplied to the absorber (A) and the condenser (C). And the cooling water after cooling the condenser (C) together with the cooling water supplied to the absorber (A).
【請求項5】 請求項4において、 上記吸収器(A)と上記蒸発器(E)とが共に冷媒蒸発
温度が異なる低圧段(Aa),同(Ea)と高圧段(A
b),(Eb)に分割構成され、 又は上記凝縮器(C)と最も作動温度の低い再生器(G
1)とが共に冷媒凝縮温度が異なる高圧段(Ca),同
(G1a)と低圧段(Cb),(G1b)に分割構成さ
れ、 又は上記吸収器(A)と上記蒸発器(E)とが共に冷媒
蒸発温度が異なる低圧段(Aa),同(Ea)と高圧段
(Ab),(Eb)に分割構成されるとともに、上記凝
縮器(C)と最も作動温度の低い再生器(G1)とが共
に冷媒凝縮温度が異なる高圧段(Ca),同(G1a)
と低圧段(Cb),(G1b)に分割構成される一方、 上記吸収器(A)と上記凝縮器(C)においては上記冷
却水(Wa)が上記高圧段(Ab),上記低圧段(C
b)側から上記低圧段(Aa),上記高圧段(Ca)側
へ向けて流れるように構成されていることを特徴とする
吸収式冷凍装置。
5. The low pressure stage (Aa) according to claim 4, wherein the absorber (A) and the evaporator (E) have different refrigerant vaporization temperatures, and the high pressure stage (Aa) and the vaporizer (Ea) have different refrigerant vaporization temperatures.
b), (Eb), or a condenser (C) and a regenerator (G) having the lowest operating temperature.
1 ) is divided into a high pressure stage (Ca), a high pressure stage (G 1 a) and a low pressure stage (Cb), (G 1 b), both of which have different refrigerant condensation temperatures, or the absorber (A) and the evaporator. (E) is divided into a low pressure stage (Aa), a high pressure stage (Aa), and a high pressure stage (Ab) (Eb), both of which have different refrigerant evaporation temperatures, and the operating temperature is the lowest with that of the condenser (C). High-pressure stage (Ca) and refrigerant (G 1 a ) with different refrigerant condensing temperatures with the regenerator (G 1 )
And the low pressure stages (Cb) and (G 1 b) are divided, while the cooling water (Wa) in the absorber (A) and the condenser (C) is in the high pressure stage (Ab) and the low pressure stage. Step (C
An absorption type refrigerating apparatus, which is configured to flow from the b) side toward the low pressure stage (Aa) and the high pressure stage (Ca) side.
【請求項6】 請求項4又は5において、 上記吸収器(A)と上記凝縮器(C)とに分流して供給
される上記冷却水(Wa)の上記凝縮器(C)側への分
流率が50%より大きく100%未満の値に設定されて
いることを特徴とする吸収式冷凍装置。
6. The split flow of the cooling water (Wa), which is split and supplied to the absorber (A) and the condenser (C), to the condenser (C) side according to claim 4 or 5. An absorption type refrigerating apparatus, wherein the rate is set to a value greater than 50% and less than 100%.
【請求項7】 請求項1,2,3,4,5又は6におい
て、 上記再生器の数nが2又は3であることを特徴とする吸
収式冷凍装置。
7. The absorption refrigerating device according to claim 1, 2, 3, 4, 5 or 6, wherein the number n of the regenerators is 2 or 3.
JP2001293693A 2001-09-26 2001-09-26 Absorption refrigerating machine Pending JP2003106702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293693A JP2003106702A (en) 2001-09-26 2001-09-26 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293693A JP2003106702A (en) 2001-09-26 2001-09-26 Absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2003106702A true JP2003106702A (en) 2003-04-09

Family

ID=19115433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293693A Pending JP2003106702A (en) 2001-09-26 2001-09-26 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2003106702A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309618A (en) * 2006-05-22 2007-11-29 Chugoku Electric Power Co Inc:The Gas cooling system
WO2009092287A1 (en) * 2008-01-14 2009-07-30 Qingquan Su An absorption refrigeration circulation system and an absorption refrigeration method
JP2010164282A (en) * 2009-01-19 2010-07-29 Sanyo Electric Co Ltd Single/double effect absorption water cooler/heater
JP2010164281A (en) * 2009-01-19 2010-07-29 Sanyo Electric Co Ltd Single/double effect absorption water cooler/heater
CN101493270B (en) * 2008-01-22 2011-05-18 苏庆泉 Absorption heat pump system and heat-production method
CN106500406A (en) * 2016-10-25 2017-03-15 中原工学院 A kind of driving heat source sensible heat direct circulation utilizes type multistage evaporation enrichment facility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201210A (en) * 1993-01-07 1994-07-19 Hitachi Ltd Absorptive refrigeration machine
JPH09329369A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Absorption refrigerating plant
JPH109705A (en) * 1996-06-20 1998-01-16 Hitachi Ltd Absorption freezer
JPH10197092A (en) * 1996-12-27 1998-07-31 Tokyo Gas Co Ltd Absorption refrigerator
WO2000022357A1 (en) * 1998-10-15 2000-04-20 Ebara Corporation Absorption refrigerating machine
JP2000249423A (en) * 1998-12-29 2000-09-14 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201210A (en) * 1993-01-07 1994-07-19 Hitachi Ltd Absorptive refrigeration machine
JPH09329369A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Absorption refrigerating plant
JPH109705A (en) * 1996-06-20 1998-01-16 Hitachi Ltd Absorption freezer
JPH10197092A (en) * 1996-12-27 1998-07-31 Tokyo Gas Co Ltd Absorption refrigerator
WO2000022357A1 (en) * 1998-10-15 2000-04-20 Ebara Corporation Absorption refrigerating machine
JP2000249423A (en) * 1998-12-29 2000-09-14 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309618A (en) * 2006-05-22 2007-11-29 Chugoku Electric Power Co Inc:The Gas cooling system
WO2009092287A1 (en) * 2008-01-14 2009-07-30 Qingquan Su An absorption refrigeration circulation system and an absorption refrigeration method
CN101487644B (en) * 2008-01-14 2011-05-18 苏庆泉 Absorption type refrigeration circulating system and refrigeration method
CN101493270B (en) * 2008-01-22 2011-05-18 苏庆泉 Absorption heat pump system and heat-production method
JP2010164282A (en) * 2009-01-19 2010-07-29 Sanyo Electric Co Ltd Single/double effect absorption water cooler/heater
JP2010164281A (en) * 2009-01-19 2010-07-29 Sanyo Electric Co Ltd Single/double effect absorption water cooler/heater
CN106500406A (en) * 2016-10-25 2017-03-15 中原工学院 A kind of driving heat source sensible heat direct circulation utilizes type multistage evaporation enrichment facility
CN106500406B (en) * 2016-10-25 2018-10-16 中原工学院 A kind of driving heat source sensible heat direct circulation utilizes type multistage evaporation enrichment facility

Similar Documents

Publication Publication Date Title
JP3193720B2 (en) Triple effect absorption heat exchanger combining a second cycle generator and a first cycle absorber
JP2003106702A (en) Absorption refrigerating machine
JP5261111B2 (en) Absorption refrigerator
JP2007248024A (en) Absorption-type refrigerating device
JP2881593B2 (en) Absorption heat pump
KR20080094985A (en) Hot-water using absorption chiller
JP5055071B2 (en) Absorption refrigerator
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP4572860B2 (en) Absorption refrigeration system
JP4266697B2 (en) Absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
WO2018150516A1 (en) Absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP4278609B2 (en) Absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JP2005300126A (en) Absorption type refrigerating machine
JP2002243309A (en) Absorptive freezer
JP2003121021A (en) Double effect absorption refrigerating machine
JP4682493B2 (en) Absorption refrigeration system
JP5168102B2 (en) Absorption refrigeration system
JPH11257776A (en) Multiple-effect absorption type refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
KR100402261B1 (en) Absorption refrigeration system utilizing multiple refrigeration cycle with multiple evaporator means.
JP5233716B2 (en) Absorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914