JP4322997B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4322997B2
JP4322997B2 JP11494099A JP11494099A JP4322997B2 JP 4322997 B2 JP4322997 B2 JP 4322997B2 JP 11494099 A JP11494099 A JP 11494099A JP 11494099 A JP11494099 A JP 11494099A JP 4322997 B2 JP4322997 B2 JP 4322997B2
Authority
JP
Japan
Prior art keywords
heat exchanger
exhaust gas
supplied
absorbent
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11494099A
Other languages
Japanese (ja)
Other versions
JP2000304370A (en
Inventor
唯人 小林
仁志 鹿沼
雅裕 古川
和則 松前
明夫 近沢
敦也 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sanyo Electric Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11494099A priority Critical patent/JP4322997B2/en
Publication of JP2000304370A publication Critical patent/JP2000304370A/en
Application granted granted Critical
Publication of JP4322997B2 publication Critical patent/JP4322997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機に関するものである。
【0002】
【従来の技術】
に示したように、高温再生器1の稀吸収液を加熱沸騰させるガスバーナ2から排出される排ガスを、低温熱交換器9と高温熱交換器10との間に設けた排ガス/吸収液熱交換器24に送り、吸収器7から高温再生器1に送られている稀吸収液の温度を上げ、ガスバーナ2による必要加熱量を減らし、燃料の消費量を削減するように工夫した吸収式冷凍機が、例えば特公平6−63672号公報に提案されている。
【0003】
【発明が解決しようとする課題】
上記従来の吸収式冷凍機においては、低温再生器から送られている濃吸収液と低温熱交換器で熱交換して温度が70℃程度までしか上がっていない稀吸収液と排ガスが熱交換し、排ガスの温度は80℃程度まで低下し、排ガスに含まれる水蒸気が凝縮して溜まり、熱交換器や排気管を腐食することがあったので、これらの部品に耐食性に優れた高価な材料を使用する必要があった。
【0004】
また、放熱側は排ガスの熱伝達率が低いことから、所定の熱回収を行うためには大きな伝熱面積が必要になると云った問題点もあり、これらが解決すべき課題となっていた。
【0005】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、燃焼装置で加熱沸騰させて冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給されて冷媒液溜りに溜まった冷媒液が伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器から冷媒蒸気を分離して供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器と、この吸収器に出入する稀吸収液と濃吸収液とが熱交換する低温熱交換器と、高温再生器に出入する中間吸収液と稀吸収液とが熱交換する高温熱交換器とを備えた吸収式冷凍機において、
【0007】
燃焼装置から排出された排ガスの一部と高温熱交換器を通過した稀吸収液とが熱交換する第1の排ガス/吸収液熱交換器と、燃焼装置から排出された残余の排ガスと低温熱交換器を通過して高温熱交換器に供給されている稀吸収液とが熱交換する第2の排ガス/吸収液熱交換器と、これら第1および第2の排ガス/吸収液熱交換器を通過した排ガスと加熱装置に供給される燃焼用空気とが熱交する排ガス/燃焼用空気熱交換器とを設けるようにした第の構成の吸収式冷凍機と、
【0009】
燃焼装置から排出された排ガスの一部と高温熱交換器を通過した稀吸収液とが熱交換する第1の排ガス/吸収液熱交換器と、燃焼装置から排出された残余の排ガスの一部と低温熱交換器を通過して高温熱交換器に供給されている稀吸収液とが熱交換する第2の排ガス/吸収液熱交換器と、燃焼装置から排出された残余の排ガスと加熱装置に供給される燃焼用空気とが熱交換する排ガス/燃焼用空気熱交換器とを設けるようにした第2の吸収式冷凍機と、を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を、水を冷媒とし、臭化リチウム(LiBr)水溶液を吸収液とした吸収式冷凍機を例に挙げて説明する。
【0011】
[第1の実施形態]
第1の実施形態を、図1に基づいて説明する。図中1は、燃焼装置である例えばガスバーナ2の火力によって吸収液を加熱して冷媒を蒸発分離するように構成された高温再生器、3は低温再生器、4は凝縮器、5は低温再生器3と凝縮器4が収納されている高温胴、6は蒸発器、7は吸収器、8は蒸発器6と吸収器7が収納されている低温胴、9は低温熱交換器、10は高温熱交換器、11〜13は吸収液管、14は吸収液ポンプ、15〜18は冷媒管、19は冷媒ポンプ、20は冷水管、21は冷却水管、22はガスバーナ2に燃焼用空気を供給する給気管、23はガスバーナ2から出る排ガスが通る排気管、24は排ガス/吸収液熱交換器、25は排ガス/燃焼用空気交換器である。そして、排ガス/吸収液熱交換器24、排ガス/燃焼用空気熱交換器25に加えて、低温熱交換器9と高温熱交換器10との間の吸収液管11にも排ガス/吸収液熱交換器26が設けられ、ガスバーナ2から出た排ガスが、排ガス/吸収液熱交換器24と26とに例えば1/2ずつ供給され、それぞれを通過した排ガスがその後合流して排ガス/燃焼用空気熱交換器25に流れるように排気管23が設けられている。
【0012】
上記構成の吸収式冷凍機においては、ガスバーナ2に点火して高温再生器1で稀吸収液を加熱沸騰させると、稀吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが得られる。
【0013】
高温再生器1で生成された高温の冷媒蒸気は、冷媒管15を通って低温再生器3に入り、高温再生器1で生成され吸収液管12により高温熱交換器10を経由して低温再生器3に入った中間吸収液を加熱して放熱凝縮し、凝縮器4に入る。
【0014】
また、低温再生器3で加熱されて中間吸収液から蒸発分離した冷媒は凝縮器4へ入り、冷却水管21内を流れる水と熱交換して凝縮液化し、冷媒管16から凝縮して供給される冷媒と一緒になって冷媒管17を通って蒸発器6に入る。
【0015】
蒸発器6に入って冷媒液溜りに溜まった冷媒液は、冷水管20に接続された伝熱管20Aの上に冷媒ポンプ19によって散布され、冷水管20を介して供給される水と熱交換して蒸発し、伝熱管20Aの内部を流れる水を冷却する。
【0016】
そして、蒸発器6で蒸発した冷媒は吸収器7に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち吸収液管13により低温熱交換器9を経由して供給され、上方から散布される濃吸収液に吸収される。
【0017】
吸収器7で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ14の運転により、低温熱交換器9・排ガス/吸収液熱交換器26・高温熱交換器10・排ガス/吸収液熱交換器24それぞれで加熱され、高温再生器1へ吸収液管11から送られる。
【0018】
上記のように吸収式冷凍機の運転が行われると、蒸発器6の内部に配管された伝熱管20Aにおいて冷媒の気化熱によって冷却された冷水が、冷水管20を介して図示しない空調負荷に循環供給できるので、冷房などの冷却運転が行える。
【0019】
上記構成の吸収式冷凍機においては、吸収器7から出て吸収液ポンプ14によって高温再生器1に搬送される稀吸収液は、低温熱交換器9・排ガス/吸収液熱交換器26・高温熱交換器10・排ガス/吸収液熱交換器24それぞれにおいて加熱されるので、高温再生器1に流入するときの稀吸収液の温度は、前記図で説明した従来技術の吸収式冷凍機の場合と同程度まで上昇し、ガスバーナ2で消費する燃料を抑えることができる。
【0020】
また、排ガス/燃焼用空気熱交換器25によって、ガスバーナ2に供給される燃焼用空気がガスバーナ2から出た排ガスにより加熱され、ガスバーナ2の燃焼効率を改善するので、燃料消費を一層削減することができる。
【0021】
さらに、ガスバーナ2から排出された排ガスの温度は、排ガス/吸収液熱交換器24、26と排ガス/燃焼用空気熱交換器25とで放熱しても、排ガスに含まれる水蒸気が排気管23内で凝縮することは殆どない。
【0022】
このため、排ガス/吸収液熱交換器24、26、排ガス/燃焼用空気熱交換器25、排気管23などを耐食性に優れた高価な材料で作る必要はなく、したがって製造コストを削減することができる。
【0025】
なお、この実施形態の排ガス/吸収液熱交換器24、26それぞれには、ガスバーナ2の排ガスが1/2づつ供給されるので、それぞれに全量が供給される場合より排ガスの出入口温度差は大きく、したがって対数平均温度差も大きくなって伝熱面積を減らすことができるようになり、それぞれの小型化が可能となる。
【0026】
また、この実施形態の場合には、排ガス/吸収液熱交換器26の熱交換面積を大きく取り過ぎると、排ガスがこの熱交換器で放熱する量が増え過ぎ、温度が必要以上に低下して排ガスに含まれる水分が凝縮して溜まり、排ガス/吸収液熱交換器26を腐食させたり、排ガス/吸収液熱交換器24を通過してきた排ガスと合流した後もその温度が十分に上がらず、水が生成されて合流部以降の下流側排気管23で腐食し易くなるので、排ガス/吸収液熱交換器26の熱交換面積は排ガス/吸収液熱交換器24の2/3以下程度にすることが好ましい。
【0027】
[第の実施形態]
の実施形態を図に基づいて説明する。この第の実施形態の吸収式冷凍機においては、前記図1に示した排ガス/吸収液熱交換器24、排ガス/燃焼用空気熱交換器25を備え、ガスバーナ2から出た排ガスの、例えば3/4が排ガス/吸収液熱交換器24に供給され、残りの排ガスが排ガス/燃焼用空気熱交換器25に供給されるように排気管23が設けられている。
【0028】
この構成の吸収式冷凍機においては、吸収器7から高温再生器1に供給されている稀吸収液を加熱する作用は、前記図1の吸収式冷凍機に比較すると小さいが、ガスバーナ2に供給する燃焼用空気を加熱して燃焼効率を改善する作用は前記図1の吸収式冷凍機の場合よりも大きく、トータル的には前記図1の吸収式冷凍機と同程度の省エネ効果がある。
【0029】
また、排ガスに含まれている水蒸気が凝縮して溜まることもないので、耐食性に優れた高価な材料を用いて排ガス/吸収液熱交換器24、排ガス/燃焼用空気熱交換器25、排気管23などを作る必要もない。
【0030】
さらに、排ガス/吸収液熱交換器24、排ガス/燃焼用空気熱交換器25それぞれにはガスバーナ2の排ガスが分流して供給されるので、それぞれに全量が供給される場合より、この場合も排ガスの出入口温度差は大きく、したがって伝熱面積を減らしてそれぞれの小型化が可能となる。
【0031】
[第の実施形態]
の実施形態を、図に基づいて説明する。この第の実施形態の吸収式冷凍機においては、前記図に示した排ガス/吸収液熱交換器24、26と、排ガス/燃焼用空気熱交換器25とを備え、排ガス/吸収液熱交換器24、26にはそれぞれガスバーナ2の排ガスが、例えば3/8ずつ供給され、排ガス/燃焼用空気熱交換器25には残りの排ガス、すなわちガスバーナ2から出る排ガスの1/4が供給されるように排気管23が設けられている。
【0032】
この構成の吸収式冷凍機においても、吸収器7から高温再生器1に供給される稀吸収液の温度、排ガス/燃焼用空気熱交換器25で加熱されてガスバーナ2に供給される燃焼用空気の温度、および排ガス/燃焼用空気熱交換器25で燃焼用空気を加熱して排気される排ガスの温度は、前記図の吸収式冷凍機の場合と同程度になるため、前記図の吸収式冷凍機と同様の作用効果、すなわちガスバーナ2で消費する燃料の削減、および耐食性に優れた高価な材料を用いることなく、排ガス/吸収液熱交換器24、排ガス/燃焼用空気熱交換器25、排気管23などが製作できると云った利点がある。また、ガスバーナ2の排ガスが分流して供給される排ガス/吸収液熱交換器24、26、および排ガス/燃焼用空気熱交換器25の小型化が可能となる。
【0033】
ところで、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0034】
例えば、吸収式冷凍機は、上記のように冷房などの冷却運転を専用に行うものであっても良いし、高温再生器1で加熱生成した冷媒蒸気と、冷媒蒸気を蒸発分離した吸収液とが低温胴8に直接供給できるように配管接続し、冷却水管21に冷却水を流すことなくガスバーナ2による稀吸収液の加熱を行い、蒸発器6の伝熱管20Aで例えば55℃程度に加熱した水を冷水管(温水が循環する場合は温水管と呼ぶのが好ましい)20を介して負荷に循環供給して暖房などの加熱運転も行なえるようにしたものであってもよい。
【0035】
また、蒸発器6で冷却などして空調負荷などに供給する流体としては、水などを上記実施形態のように相変化させないで供給するほか、潜熱を利用した熱搬送が可能なようにフロンなどを相変化させて供給するようにしても良い。
【0036】
【発明の効果】
以上説明したように本発明によれば、排ガスが流れる熱交換器や排気管を耐食性に優れた高価な材料で作る必要がなくなったので、製造コストの低減を図ることができると共に、運転時の省エネも図れるようになった。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す説明図である。
【図2】本発明の第2の実施形態を示す説明図である。
【図3】本発明の第3の実施形態を示す説明図である。
【図】従来技術を示す説明図である。
【符号の説明】
1 高温再生器
2 ガスバーナ
3 低温再生器
4 凝縮器
5 高温胴
6 蒸発器
7 吸収器
8 高温胴
9 低温熱交換器
10 高温熱交換器
11〜13 吸収液管
14 吸収液ポンプ
15〜19 冷媒管
19 冷媒ポンプ
20 冷水管
21 冷却水管
22 給気管
23 排気管
24 排ガス/吸収液熱交換器
25 排ガス/燃焼用空気熱交換器
26 排ガス/吸収液熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator.
[0002]
[Prior art]
As shown in FIG. 4 , the exhaust gas / absorption liquid in which the exhaust gas discharged from the gas burner 2 for heating and boiling the rare absorption liquid of the high temperature regenerator 1 is provided between the low temperature heat exchanger 9 and the high temperature heat exchanger 10. Absorption type devised to increase the temperature of the rare absorbent sent to the heat exchanger 24 and sent from the absorber 7 to the high-temperature regenerator 1, reduce the required heating amount by the gas burner 2, and reduce fuel consumption A refrigerator is proposed in, for example, Japanese Patent Publication No. 6-63672.
[0003]
[Problems to be solved by the invention]
In the above conventional absorption refrigerator, heat is exchanged between the concentrated absorbent sent from the low temperature regenerator and the rare absorbent and the exhaust gas whose temperature has risen only to about 70 ° C. by exchanging heat with the low temperature heat exchanger. The temperature of the exhaust gas dropped to about 80 ° C, and the water vapor contained in the exhaust gas condensed and accumulated, corroding the heat exchanger and the exhaust pipe. Therefore, expensive materials with excellent corrosion resistance were used for these parts. Had to be used.
[0004]
Further, since the heat transfer rate of the exhaust gas is low on the heat radiating side, there is a problem that a large heat transfer area is required to perform predetermined heat recovery, which has been a problem to be solved.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the present invention generates a refrigerant vapor and an intermediate absorption liquid from a rare absorption liquid by evaporating and separating the refrigerant by heating and boiling with a combustion apparatus, and the high temperature regenerator. The intermediate absorption liquid supplied in this way is heated with the refrigerant vapor generated in the high-temperature regenerator to further evaporate and separate the refrigerant, and obtain a refrigerant vapor and concentrated absorption liquid from the intermediate absorption liquid, and the low-temperature regenerator A refrigerant liquid condensed by heating the absorption liquid is supplied, and a condenser that cools the refrigerant vapor generated and supplied by the low-temperature regenerator to obtain a refrigerant liquid, and a refrigerant liquid reservoir supplied from the condenser. The refrigerant liquid collected in the heat transfer pipe is sprayed on the heat transfer pipe, heat is taken from the fluid flowing in the heat transfer pipe and the refrigerant evaporates, and the refrigerant vapor generated and supplied by this evaporator is supplied from the low temperature regenerator The refrigerant vapor is absorbed by the concentrated absorbent supplied separately. An absorber that is supplied to the high-temperature regenerator, a low-temperature heat exchanger that exchanges heat between the rare-absorbed solution and the concentrated absorbent that enter and exit the absorber, and an intermediate absorbent that enters and exits the high-temperature regenerator. In an absorption chiller equipped with a high-temperature heat exchanger that exchanges heat with a rare absorbent,
[0007]
A first exhaust gas / absorbent heat exchanger in which a part of the exhaust gas discharged from the combustion apparatus exchanges heat with the rare absorbent that has passed through the high-temperature heat exchanger, and the remaining exhaust gas and low-temperature heat discharged from the combustion apparatus. A second exhaust gas / absorbent heat exchanger that exchanges heat with the rare absorbent supplied to the high temperature heat exchanger through the exchanger, and the first and second exhaust gas / absorbent heat exchangers. a first configuration of the absorption refrigerator of the combustion air is acceptable to provide a flue gas / combustion air heat exchanger for heat exchange conversion to be supplied to the exhaust gas and the heating device which has passed through,
[0009]
The first exhaust gas / absorbent heat exchanger in which a part of the exhaust gas discharged from the combustion apparatus and the rare absorbent that has passed through the high-temperature heat exchanger exchange heat, and a part of the remaining exhaust gas discharged from the combustion apparatus Exhaust gas / absorbent heat exchanger that exchanges heat with the rare absorbent that passes through the low temperature heat exchanger and is supplied to the high temperature heat exchanger, and the residual exhaust gas that is discharged from the combustion device and the heating device And a second absorption refrigeration machine provided with an exhaust gas / combustion air heat exchanger for exchanging heat with combustion air supplied to the vehicle.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described by taking an absorption refrigerator using water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an example.
[0011]
[First Embodiment]
A first embodiment will be described with reference to FIG. In the figure, reference numeral 1 denotes a combustion device, for example, a high temperature regenerator configured to heat the absorption liquid by the heating power of the gas burner 2 to evaporate and separate the refrigerant, 3 is a low temperature regenerator, 4 is a condenser, and 5 is low temperature regeneration. 6 is an evaporator, 7 is an absorber, 8 is a low-temperature cylinder containing the evaporator 6 and the absorber 7, 9 is a low-temperature heat exchanger, and 10 is a low-temperature heat exchanger. High-temperature heat exchanger, 11 to 13 are absorption liquid pipes, 14 is an absorption liquid pump, 15 to 18 are refrigerant pipes, 19 is a refrigerant pump, 20 is a cold water pipe, 21 is a cooling water pipe, 22 is a combustion air to the gas burner 2 An air supply pipe to be supplied, 23 is an exhaust pipe through which exhaust gas from the gas burner 2 passes, 24 is an exhaust gas / absorbed liquid heat exchanger, and 25 is an exhaust gas / combustion air exchanger. In addition to the exhaust gas / absorption liquid heat exchanger 24 and the exhaust gas / combustion air heat exchanger 25, the exhaust gas / absorption liquid heat is also applied to the absorption liquid pipe 11 between the low temperature heat exchanger 9 and the high temperature heat exchanger 10. An exchanger 26 is provided, and the exhaust gas discharged from the gas burner 2 is supplied to the exhaust gas / absorption liquid heat exchangers 24 and 26, for example, one by two, and the exhaust gas that has passed through each is then merged and the exhaust gas / combustion air An exhaust pipe 23 is provided to flow to the heat exchanger 25.
[0012]
In the absorption chiller having the above-described configuration, when the gas burner 2 is ignited and the high temperature regenerator 1 heats and boiles the rare absorbent, the refrigerant vapor evaporated and separated from the rare absorbent and the refrigerant vapor are separated and An intermediate absorbent having a high concentration is obtained.
[0013]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 3 through the refrigerant pipe 15, and is generated in the high-temperature regenerator 1 through the high-temperature heat exchanger 10 via the high-temperature heat exchanger 10. The intermediate absorption liquid that has entered the condenser 3 is heated and condensed by heat dissipation, and enters the condenser 4.
[0014]
Further, the refrigerant heated by the low-temperature regenerator 3 and evaporated and separated from the intermediate absorption liquid enters the condenser 4, exchanges heat with the water flowing in the cooling water pipe 21 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 16. The refrigerant enters the evaporator 6 through the refrigerant pipe 17 together with the refrigerant.
[0015]
The refrigerant liquid that has entered the evaporator 6 and accumulated in the refrigerant liquid reservoir is sprayed by the refrigerant pump 19 on the heat transfer pipe 20 </ b> A connected to the cold water pipe 20, and exchanges heat with water supplied through the cold water pipe 20. The water flowing through the heat transfer tube 20A is cooled.
[0016]
Then, the refrigerant evaporated by the evaporator 6 enters the absorber 7 and is heated by the low-temperature regenerator 3 to evaporate and separate the refrigerant, so that the absorption liquid having a further increased concentration of the absorption liquid, that is, the low-temperature heat exchange by the absorption liquid pipe 13. It is supplied via the vessel 9 and absorbed by the concentrated absorbent dispersed from above.
[0017]
Absorbing liquid whose concentration has been reduced by absorbing the refrigerant by the absorber 7, that is, the rare absorbing liquid, is operated by operating the absorbing liquid pump 14, the low temperature heat exchanger 9, the exhaust gas / absorbing liquid heat exchanger 26, and the high temperature heat exchanger 10. Heated by the exhaust gas / absorbing liquid heat exchanger 24 and sent from the absorbing liquid pipe 11 to the high temperature regenerator 1.
[0018]
When the absorption refrigerator is operated as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 20A piped inside the evaporator 6 becomes an air conditioning load (not shown) via the cold water pipe 20. Since it can be circulated, cooling operation such as cooling can be performed.
[0019]
In the absorption chiller having the above-described configuration, the rare absorbing liquid that comes out of the absorber 7 and is conveyed to the high temperature regenerator 1 by the absorbing liquid pump 14 is the low temperature heat exchanger 9, the exhaust gas / absorbing liquid heat exchanger 26, and the high since the heating in the respective heat exchangers 10, the exhaust gas / absorbent solution heat exchanger 24, the temperature of the diluted absorption liquid when flowing into the high temperature regenerator 1, the absorption chiller of the prior art described in FIG. 4 It rises to the same extent as the case and the fuel consumed by the gas burner 2 can be suppressed.
[0020]
Further, the exhaust gas / combustion air heat exchanger 25, the combustion air supplied to the gas burner 2 is heated pressurized Ri by the exhaust gas exiting the gas burner 2, so improving the combustion efficiency of the gas burner 2, further fuel consumption Can be reduced.
[0021]
Furthermore, the temperature of the exhaust gas discharged from the gas burner 2, the exhaust gas / absorbent solution heat exchanger 24, 26 and the exhaust gas / be releases heat in the combustion air heat exchanger 25, water vapor contained in the exhaust gas exhaust pipe 23 There is almost no condensation inside.
[0022]
For this reason, it is not necessary to make the exhaust gas / absorption liquid heat exchangers 24, 26, the exhaust gas / combustion air heat exchanger 25, the exhaust pipe 23, etc. with an expensive material excellent in corrosion resistance, and therefore, the manufacturing cost can be reduced. it can.
[0025]
In addition, since the exhaust gas of the gas burner 2 is supplied to each of the exhaust gas / absorbent liquid heat exchangers 24 and 26 of this embodiment by 1/2, the exhaust gas inlet / outlet temperature difference is larger than when the entire amount is supplied to each. Therefore, the logarithmic average temperature difference is also increased, the heat transfer area can be reduced, and the respective sizes can be reduced.
[0026]
Further, in the case of this embodiment, if the heat exchange area of the exhaust gas / absorbent liquid heat exchanger 26 is excessively large, the amount of exhaust gas that radiates heat in the heat exchanger increases excessively, and the temperature decreases more than necessary. Even after the moisture contained in the exhaust gas is condensed and accumulated, the exhaust gas / absorption liquid heat exchanger 26 is corroded, or the exhaust gas that has passed through the exhaust gas / absorption liquid heat exchanger 24 is joined, the temperature does not rise sufficiently. Since water is generated and corrodes easily in the downstream side exhaust pipe 23 after the merging portion, the heat exchange area of the exhaust gas / absorption liquid heat exchanger 26 is set to about 2/3 or less of the exhaust gas / absorption liquid heat exchanger 24. It is preferable.
[0027]
Second Embodiment
The second embodiment will be described with reference to FIG. The absorption refrigerator of the second embodiment includes the exhaust gas / absorbent heat exchanger 24 and the exhaust gas / combustion air heat exchanger 25 shown in FIG. An exhaust pipe 23 is provided so that 3/4 is supplied to the exhaust gas / absorbent liquid heat exchanger 24 and the remaining exhaust gas is supplied to the exhaust gas / combustion air heat exchanger 25.
[0028]
In the absorption refrigerator having this configuration, the action of heating the rare absorbent supplied from the absorber 7 to the high-temperature regenerator 1 is smaller than that of the absorption refrigerator shown in FIG. The effect of improving the combustion efficiency by heating the combustion air is larger than that of the absorption refrigerator shown in FIG. 1, and the energy saving effect is almost the same as that of the absorption refrigerator shown in FIG.
[0029]
Further, since the water vapor contained in the exhaust gas does not condense and accumulate, the exhaust gas / absorbent heat exchanger 24, the exhaust gas / combustion air heat exchanger 25, the exhaust pipe using an expensive material having excellent corrosion resistance. There is no need to make 23.
[0030]
Furthermore, since the exhaust gas from the gas burner 2 is supplied to the exhaust gas / absorbing liquid heat exchanger 24 and the exhaust gas / combustion air heat exchanger 25 in a divided manner, the exhaust gas is also supplied in this case as compared with the case where the entire amount is supplied to each. Therefore, it is possible to reduce the size of the heat transfer area.
[0031]
[ Third Embodiment]
The third embodiment will be described with reference to FIG. In the third embodiment of the absorption chiller, an exhaust gas / absorbent solution heat exchanger 24 and 26 shown in FIG. 1, a flue gas / combustion air heat exchanger 25, the exhaust gas / absorbent solution heat Exhaust gas from the gas burner 2 is supplied to each of the exchangers 24 and 26, for example, 3/8 at a time. The exhaust gas / combustion air heat exchanger 25 is supplied with the remaining exhaust gas, that is, 1/4 of the exhaust gas emitted from the gas burner 2. An exhaust pipe 23 is provided as shown.
[0032]
Also in the absorption refrigerator having this configuration, the temperature of the rare absorbent supplied from the absorber 7 to the high-temperature regenerator 1, the combustion air heated by the exhaust gas / combustion air heat exchanger 25 and supplied to the gas burner 2 temperature, and the exhaust gas / the temperature of the exhaust gas exhausted by heating the combustion air in the combustion air heat exchanger 25, to become the same level as in the case of the absorption refrigerator of FIG. 2, of the Figure 2 Exhaust gas / absorbent heat exchanger 24, exhaust gas / combustion air heat exchanger without using an expensive material having the same effect as the absorption refrigerator, that is, reduction of fuel consumed in the gas burner 2 and corrosion resistance There is an advantage that the exhaust pipe 23 and the like can be manufactured. Further, the exhaust gas / absorbent liquid heat exchangers 24 and 26 and the exhaust gas / combustion air heat exchanger 25 to which the exhaust gas from the gas burner 2 is supplied in a diverted manner can be reduced in size.
[0033]
By the way, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit described in the claims.
[0034]
For example, the absorption refrigerator may be a dedicated one that performs a cooling operation such as cooling as described above, or the refrigerant vapor generated by heating in the high-temperature regenerator 1, the absorption liquid obtained by evaporating and separating the refrigerant vapor, and Is connected to the low-temperature barrel 8 directly, and the diluted absorbent is heated by the gas burner 2 without flowing cooling water through the cooling water pipe 21, and is heated to, for example, about 55 ° C. by the heat transfer pipe 20 A of the evaporator 6. The water may be circulated and supplied to a load through a cold water pipe (preferably referred to as a hot water pipe when hot water circulates) 20 so that heating operation such as heating can be performed.
[0035]
In addition, as a fluid to be cooled by the evaporator 6 and supplied to an air conditioning load or the like, water or the like is supplied without changing the phase as in the above embodiment, and in addition, chlorofluorocarbon is used so that heat transfer using latent heat is possible. The phase may be supplied by changing the phase.
[0036]
【The invention's effect】
As described above, according to the present invention, it is no longer necessary to make a heat exchanger or an exhaust pipe through which exhaust gas flows with an expensive material having excellent corrosion resistance. Energy saving can now be planned.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a second embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a third embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Gas burner 3 Low temperature regenerator 4 Condenser 5 High temperature cylinder 6 Evaporator 7 Absorber 8 High temperature cylinder 9 Low temperature heat exchanger 10 High temperature heat exchanger 11-13 Absorption liquid pipe 14 Absorption liquid pump 15-19 Refrigerant pipe DESCRIPTION OF SYMBOLS 19 Refrigerant pump 20 Cold water pipe 21 Cooling water pipe 22 Supply pipe 23 Exhaust pipe 24 Exhaust gas / absorption liquid heat exchanger 25 Exhaust gas / combustion air heat exchanger 26 Exhaust gas / absorption liquid heat exchanger

Claims (2)

燃焼装置で加熱沸騰させて冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器から冷媒蒸気を分離して供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器と、この吸収器に出入する稀吸収液と濃吸収液とが熱交換する低温熱交換器と、高温再生器に出入する中間吸収液と稀吸収液とが熱交換する高温熱交換器とを備えた吸収式冷凍機において、燃焼装置から排出された排ガスの一部と高温熱交換器を通過した稀吸収液とが熱交換する第1の排ガス/吸収液熱交換器と、燃焼装置から排出された残余の排ガスと低温熱交換器を通過して高温熱交換器に供給されている稀吸収液とが熱交換する第2の排ガス/吸収液熱交換器と、これら第1および第2の排ガス/吸収液熱交換器を通過した排ガスと加熱装置に供給される燃焼用空気とが熱交換する排ガス/燃焼用空気熱交換器とを設けたことを特徴とする吸収式冷凍機。  A high-temperature regenerator that evaporates and separates refrigerant by heating and boiling with a combustion device to obtain refrigerant vapor and an intermediate absorption liquid from a rare absorbent, and an intermediate absorption liquid that is generated and supplied by this high-temperature regenerator is generated by a high-temperature regenerator The low-temperature regenerator obtains refrigerant vapor and concentrated absorption liquid from the intermediate absorption liquid by heating with the generated refrigerant vapor, and the refrigerant liquid condensed by heating the intermediate absorption liquid in this low-temperature regenerator is supplied. In addition, the condenser that cools the refrigerant vapor generated and supplied by the low-temperature regenerator and obtains the refrigerant liquid, and the refrigerant liquid that is supplied from the condenser and accumulated in the refrigerant liquid reservoir are scattered on the heat transfer tubes. An evaporator in which heat is taken from the fluid flowing in the heat transfer tube and the refrigerant evaporates, and the refrigerant vapor generated and supplied by this evaporator is separated into the concentrated absorption liquid supplied by separating the refrigerant vapor from the low-temperature regenerator Absorbed into a rare absorbent and supplied to the high temperature regenerator A low-temperature heat exchanger that exchanges heat between the rare absorbent and concentrated absorbent that enter and exit the absorber, and a high-temperature heat exchanger that exchanges heat between the intermediate absorbent and the rare absorbent that enter and exit the high-temperature regenerator. A first exhaust gas / absorbent heat exchanger that exchanges heat between a part of the exhaust gas discharged from the combustion device and the rare absorbent that has passed through the high-temperature heat exchanger, and the combustion device. A second exhaust gas / absorbent heat exchanger for exchanging heat between the exhaust gas remaining and the rare absorbent supplied to the high temperature heat exchanger through the low temperature heat exchanger, and the first and second An absorption refrigerator comprising an exhaust gas / combustion air heat exchanger that exchanges heat between the exhaust gas that has passed through the exhaust gas / absorption liquid heat exchanger and the combustion air supplied to the heating device. 燃焼装置で加熱沸騰させて冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器から冷媒蒸気を分離して供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器と、この吸収器に出入する稀吸収液と濃吸収液とが熱交換する低温熱交換器と、高温再生器に出入する中間吸収液と稀吸収液とが熱交換する高温熱交換器とを備えた吸収式冷凍機において、燃焼装置から排出された排ガスの一部と高温熱交換器を通過した稀吸収液とが熱交換する第1の排ガス/吸収液熱交換器と、燃焼装置から排出された残余の排ガスの一部と低温熱交換器を通過して高温熱交換器に供給されている稀吸収液とが熱交換する第2の排ガス/吸収液熱交換器と、燃焼装置から排出された残余の排ガスと加熱装置に供給される燃焼用空気とが熱交換する排ガス/燃焼用空気熱交換器とを設けたことを特徴とする吸収式冷凍機。A high-temperature regenerator that evaporates and separates refrigerant by heating and boiling with a combustion device to obtain refrigerant vapor and an intermediate absorption liquid from a rare absorbent, and an intermediate absorption liquid that is generated and supplied by this high-temperature regenerator is generated by a high-temperature regenerator The low-temperature regenerator obtains refrigerant vapor and concentrated absorption liquid from the intermediate absorption liquid by heating with the generated refrigerant vapor, and the refrigerant liquid condensed by heating the intermediate absorption liquid in this low-temperature regenerator is supplied. In addition, the condenser that cools the refrigerant vapor generated and supplied by the low-temperature regenerator and obtains the refrigerant liquid, and the refrigerant liquid that is supplied from the condenser and accumulated in the refrigerant liquid reservoir are scattered on the heat transfer tubes. An evaporator in which heat is taken from the fluid flowing in the heat transfer tube and the refrigerant evaporates, and the refrigerant vapor generated and supplied by this evaporator is separated into the concentrated absorption liquid supplied by separating the refrigerant vapor from the low-temperature regenerator Absorbed into a rare absorbent and supplied to the high temperature regenerator A low-temperature heat exchanger that exchanges heat between the rare absorbent and concentrated absorbent that enter and exit the absorber, and a high-temperature heat exchanger that exchanges heat between the intermediate absorbent and the rare absorbent that enter and exit the high-temperature regenerator. A first exhaust gas / absorbent heat exchanger that exchanges heat between a part of the exhaust gas discharged from the combustion device and the rare absorbent that has passed through the high-temperature heat exchanger, and the combustion device. A second exhaust gas / absorbent heat exchanger that exchanges heat between a part of the discharged exhaust gas and a rare absorbent that passes through the low-temperature heat exchanger and is supplied to the high-temperature heat exchanger; An absorption refrigerator comprising an exhaust gas / combustion air heat exchanger for exchanging heat between the discharged exhaust gas and the combustion air supplied to the heating device.
JP11494099A 1999-04-22 1999-04-22 Absorption refrigerator Expired - Fee Related JP4322997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11494099A JP4322997B2 (en) 1999-04-22 1999-04-22 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11494099A JP4322997B2 (en) 1999-04-22 1999-04-22 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2000304370A JP2000304370A (en) 2000-11-02
JP4322997B2 true JP4322997B2 (en) 2009-09-02

Family

ID=14650426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11494099A Expired - Fee Related JP4322997B2 (en) 1999-04-22 1999-04-22 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4322997B2 (en)

Also Published As

Publication number Publication date
JP2000304370A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2002147885A (en) Absorption refrigerating machine
JP2004324977A (en) Absorption type refrigerating machine
JP5384072B2 (en) Absorption type water heater
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JP3883894B2 (en) Absorption refrigerator
JP4322997B2 (en) Absorption refrigerator
JP3889655B2 (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
JP3401546B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JP3331363B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
CN217423663U (en) Smoke type lithium bromide absorption type second-class heat pump unit
JP2004257704A (en) Absorption heat pump device
JP4557468B2 (en) Absorption refrigerator
JPS6122225B2 (en)
JP3857955B2 (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP3469144B2 (en) Absorption refrigerator
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP2007120811A (en) Absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees