WO2003031882A1 - Absorption refrigeration device - Google Patents

Absorption refrigeration device Download PDF

Info

Publication number
WO2003031882A1
WO2003031882A1 PCT/JP2002/010371 JP0210371W WO03031882A1 WO 2003031882 A1 WO2003031882 A1 WO 2003031882A1 JP 0210371 W JP0210371 W JP 0210371W WO 03031882 A1 WO03031882 A1 WO 03031882A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerator
absorption refrigeration
temperature
portable
solution
Prior art date
Application number
PCT/JP2002/010371
Other languages
French (fr)
Japanese (ja)
Inventor
Shozo Saito
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Publication of WO2003031882A1 publication Critical patent/WO2003031882A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2333/00Details of boilers; Analysers; Rectifiers
    • F25B2333/007Details of boilers; Analysers; Rectifiers the generator or boiler heated by heat exchangers with steam or hot water as heating fluid or by a secondary boiling-condensing heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy

Definitions

  • the present invention relates to an absorption refrigeration apparatus, and more particularly, to an absorption refrigeration apparatus that can be operated using heat energy generated at a location distant from a customer and an operation method thereof.
  • thermal energy is transported as high-temperature water or steam, and this thermal energy is used directly or, in the case of high-temperature water, as direct or indirect heating energy for absorption refrigeration equipment.
  • a predetermined heat value that is, high-temperature water or steam at a predetermined temperature or pressure. Has characteristics.
  • the regenerator has the property that it cannot secure a predetermined calorific value, that is, high-temperature water or steam at a predetermined temperature or pressure, for a certain period of time, such as when heat radiation starts, before heat radiation ends, or when the amount of heat demand changes. . Even in the case of an absorption refrigeration unit that uses a portable regenerator as a direct regenerator, not only can the required performance and efficiency not be exhibited due to similar characteristics, but also a stable operation state cannot be ensured.
  • a predetermined calorific value that is, high-temperature water or steam at a predetermined temperature or pressure
  • the multiple-effect absorption refrigeration system using a cooling tower takes advantage of the feature that the inlet temperature of the cooling water drops during the night when the wet bulb temperature is relatively low, the day when the humidity is low, and the interim period. Should be available to the public. However, conventionally, low-temperature cooling water has not been used.
  • An object of the present invention is to provide an absorption refrigeration apparatus that can solve the above-mentioned problems of the prior art and that can operate stably with high efficiency by maximizing the heat energy of a portable regenerator and a method of operating the absorption refrigeration apparatus. This is the first purpose.
  • the present invention provides an absorption refrigeration apparatus that maximizes the use of the heat energy of a portable heat storage device, cleans the heat storage device without affecting the environment, and enables stable operation with high efficiency. This is the second purpose.
  • a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, an absorbing solution pump and a refrigerant pump are provided at least as main components, and these are provided.
  • heat energy stored in a portable regenerator is used as a heat source energy of the apparatus.
  • the thermal energy stored in the portable regenerator can be used via a medium such as high-temperature water or steam.
  • the portable regenerator is detachably connected to the absorption refrigeration apparatus, and is used as one component function or one component device of a regenerator of the apparatus, and is used as one heat source energy of an absorbing solution in the regenerator. Is also good.
  • the regenerator includes a heating source unit using a detachable portable heat storage unit, and a gas-liquid separator unit that separates the concentrated absorption solution and refrigerant vapor independently from the heat storage unit. be able to.
  • the absorption refrigeration apparatus of the present invention may be a single-effect or multiple-effect (dual-effect, triple-effect, or four-effect) drivable depending on the temperature and temperature or pressure of the heating energy that can be generated by the portable regenerator. It is possible to select an absorption refrigeration system that has the optimal effect that enables the most efficient operation from among the absorption refrigeration systems that have the highest efficiency.
  • the multi-effect absorption refrigeration apparatus can use the heat energy stored in the portable heat storage device in the regenerator having the highest temperature and pressure. Further, according to the present invention, in the operation of the multi-effect absorption refrigeration apparatus, the portable heat storage device is directly heated by the portable heat storage device at the start of heat release, at the completion of heat release, or at the time of a change in the amount of required heat.
  • the regenerator detects this phenomenon based on one or more of temperature, pressure and absorption liquid level and generates the regenerator.
  • the refrigerant vapor to be bypassed to the lower stage regenerator is introduced into the heating source side of the next lower stage regenerator by controlling the flow rate, and a highly efficient and stable operating state is automatically maintained. It is.
  • the above-mentioned multi-effect absorption refrigeration system if the temperature of the cooling water inlet passing through the absorber and the condenser, which are the components of the above-mentioned system, changes, the above-mentioned high-temperature and high-pressure regenerator causes this phenomenon to occur. Detects based on one or more of pressure and absorbing liquid level, and introduces refrigerant vapor generated in the regenerator by controlling the flow rate to the heating source side of the next lower regenerator, bypassing the lower regenerator Thus, a highly efficient and stable operation state can be automatically maintained.
  • the change is detected and the refrigerant vapor introduced into the regenerator is detected.
  • Flow control can be performed.
  • the change in the heating temperature of the heating source is detected by a temperature sensor provided in the outlet pipe for the dilute solution of the regenerator, and the change in the inlet temperature of the cooling water is determined by the temperature provided in the inlet pipe for the cooling water.
  • the sensor detects and detects and determines which control is given priority based on this detection signal, and the above-mentioned highest temperature and high pressure regenerator detects this phenomenon based on one or more of temperature, pressure and absorption liquid level.
  • the control mechanism that controls the flow rate of the refrigerant vapor generated in the regenerator to the heating source side of the next lower regenerator, bypassing the lower regenerator, and introduces a highly efficient and stable Operating conditions can be automatically maintained.
  • the present invention provides a regenerator, a condenser, an absorber, An evaporator, a heat exchanger, an absorption solution pump and a refrigerant pump are provided at least as main components, and in an absorption refrigerating apparatus having a solution pipe and a refrigerant pipe connecting these components, one of the functions of the regenerator or its function
  • a detachable portable heat storage device is provided, and after the portable heat storage device is used as a heat source energy in the regenerator, a function of cleaning the portable heat storage device is provided. Things.
  • the portable regenerator In the absorption refrigerating apparatus, the portable regenerator, or disconnect the movable transportable regenerator from absorption refrigerating apparatus, or c the portable heat accumulator which may comprise a function for cleaning without detaching the regenerator of the heating unit Only, or it can have a configuration function as a heating unit and a gas-liquid separator.
  • the cleaning of the portable heat storage device can be performed by using refrigerant vapor and / or refrigerant liquid inside the absorption refrigeration apparatus, or another cleaning liquid.
  • Cleaning of the portable regenerator is performed by injecting high-temperature and high-pressure refrigerant vapor from another regenerator or gas-liquid separator in the absorption refrigeration unit, and / or injecting refrigerant liquid from a refrigerant cycle. Can be done by
  • the absorption refrigeration apparatus of the present invention can be a single-effect absorption refrigeration apparatus, a multiple-effect absorption refrigeration apparatus, or a multiple-effect absorption refrigeration apparatus in which the number of multiple effects is selected according to the temperature of the heating source. '' Brief description of the drawings
  • FIG. 1 is a sectional view showing an example of a portable heat storage device used in the present invention.
  • FIG. 2 is a configuration diagram of a mouth of a triple effect absorption refrigeration apparatus showing an example of the absorption refrigeration apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view showing another example of the portable heat storage device used in the present invention.
  • FIG. 4 is a partial configuration diagram showing another example of the portable heat storage device and the gas-liquid separator used in the present invention.
  • FIG. 5 is a flow configuration diagram of a double-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
  • FIG. 6 is a flow diagram of a single-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
  • FIG. 7 is a flow configuration diagram of a triple effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
  • FIG. 8 is a flow configuration diagram of a triple effect absorption refrigeration apparatus showing an example of the absorption refrigeration apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a flow configuration diagram of a double-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
  • FIG. 10 is a flow configuration diagram of a double-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
  • FIG. 11 is a flow diagram of a single-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
  • FIG. 12 is a flow configuration diagram when the portable heat storage device used in the present invention is washed independently.
  • a portable heat storage device is used to transport heat energy from a place where heat energy is generated to a demand destination, instead of using a pipe. Also, since the heat storage is used, the amount of supply and demand is the same, and the supply and demand of thermal energy do not need to occur at the same time.
  • Portable regenerators shall be used with the equipment of the transportation means, or Any of those using the regenerator and the transportation means separately may be used.
  • the portable heat storage device that has stored heat is converted into high-temperature water, steam, etc. by heat exchange with a heat medium, and the high-temperature water, steam, etc. are used as a heat source energy source for the regenerator of the absorption refrigeration unit to manufacture a cold heat source.
  • the portable heat storage device that has stored the heat is directly used as a component of the regenerator of the absorption refrigeration unit, eliminating the need for equipment necessary for heat transfer through indirect media, and reducing the manufacturing cost of the absorption refrigeration unit.
  • the portable heat storage device directly as part of the function of the regenerator it is possible to eliminate the heat transfer temperature difference loss and heat dissipation loss generated by indirect heat exchange.
  • the present invention by directly flowing the absorption solution into the portable regenerator and heating it, a high solution temperature close to the heatable temperature of the portable regenerator can be obtained. Therefore, it is possible to realize a cycle with more multiple effects, and to operate with high efficiency.
  • the regenerator cannot secure a predetermined calorific value, that is, high-temperature water or steam at a predetermined temperature or pressure. This is the same in the case of an absorption refrigeration unit that uses a portable heat storage device as a direct regenerator.
  • this phenomenon is performed by using the highest temperature regenerator or the like so that the temperature, the pressure, and the absorption solution Detected based on one or more of the surface levels, the refrigerant vapor generated by the regenerator (or gas-liquid separator) is bypassed to the lower regenerator, and the heating side of the next lower regenerator
  • the multi-effect absorption refrigeration system that uses a cooling tower takes advantage of the fact that the inlet temperature of the cooling water drops during the night when the wet bulb temperature is relatively low, on days when the humidity is low, and in the interim period.
  • the model selected as the absorption refrigeration apparatus is determined by the temperature level of the heat energy stored in the portable regenerator.
  • a high-efficiency absorption refrigeration unit with multi-stage absorption that can operate at the highest efficiency It is advisable to select an absorption refrigeration system that has a higher efficiency, and the higher the temperature level at which the portable heat storage device radiates heat, the higher the efficiency of the absorption refrigeration system.
  • the temperature level at which the portable regenerator dissipates heat generally depends on the temperature level of the heating energy when storing heat in the portable regenerator and the type of heat storage material of the regenerator.
  • FIG. 1 is a diagram illustrating a basic structure of a heat storage unit 4A of a removable portable heat storage device. .
  • the heat storage unit 4A has a heat exchanger structure including a body 200, a tube sheet 2 -02, a number of heat transfer tubes 201, a header 204, and a partition plate 205. I have.
  • the space between the body 200 and the large number of heat transfer tubes 201 is filled with heat and heat storage material 203.
  • the relatively low-temperature dilute solution flows into the lower part of the header 204 from the dilute solution inlet pipe 20 of the regenerator, and flows through many heat transfer tubes 201.
  • Heat transfer tube 2 Inside 01 the dilute solution is heated by the high-temperature heat energy stored in the heat storage material 203 and collected at the upper part of the header 204.
  • the high-temperature dilute solution collected at the top of the header 204 exits from the high-temperature dilute solution outlet pipe 21 of the regenerator.
  • a quadruple effect absorption refrigeration system can be selected.However, here, as an example, the temperature level at which heat is dissipated considering the use of waste heat energy An example in which a portable heat storage device having a moderately high heat storage energy is used will be described below with reference to the flow diagram of FIG.
  • Fig. 2 shows the portable regenerator 4 that can be attached and detached by providing valves 15 and 16 as the heating part of the regenerator, and separates the concentrated absorption solution and refrigerant vapor from the portable regenerator 4.
  • 1 shows a triple effect absorption refrigerating apparatus provided with a gas-liquid separator 5 for separation.
  • the dilute solution diluted by absorbing the refrigerant vapor in the absorber 2 is supplied to the first solution heat exchanger 8, the second solution heat exchanger 9, and the third solution via the pipe 19 by the solution pump 12.
  • the valve 15 and the diluent inlet pipe of the regenerator It flows into the portable regenerator 4 via 20.
  • the dilute solution that has flowed into the portable regenerator 4 is heated by the heat of the heat energy stored in the portable regenerator 4 and is heated to a high temperature, passing through the high-temperature dilute solution outlet pipe 21 of the regenerator and the valve 16. Into the gas-liquid separator 5.
  • the portable regenerator 4 and high-temperature dilute solution outlet pipe 21 of the regenerator and the valve 16 In some cases, the dilute solution is heated to a high temperature, a part thereof becomes a refrigerant vapor, and is sent to the gas-liquid separator 5 in a state where the solution has started concentration.
  • Fig. 2 shows an example in which the portable heat storage device 4 and the gas-liquid separator 5 are divided. It is also possible to integrate the inside of the container 4.
  • FIG. 3 shows an example in which the gas-liquid separator 5 is integrated into the portable heat storage device 4. In FIG.
  • the gas-liquid separation function 5D is housed in the header 204 of the heat storage section 4A of the portable heat storage device.
  • the valve corresponding to the valve 16 in FIG. 2 is a valve 16 B in the concentrated solution outlet pipe 22 of the gas-liquid separator and a valve 16 B in the refrigerant vapor outlet pipe 28 of the gas-liquid separator. It is needed in two places like valve 16A.
  • the high-temperature concentrated solution concentrated by separating the refrigerant vapor in the gas-liquid separator 5 passes through the concentrated solution outlet pipe 22 of the gas-liquid separator, and the third solution heat exchanger 10 and the second solution In the heat exchanger 9 and the first solution heat exchanger 8, each is cooled by a low-temperature dilute solution, and enters the absorber 2 through the inlet pipe 27 of the absorber.
  • the concentrated solution from the gas-liquid separator 5 is circulated from the pipe 12 1 to the regenerator 4 via the circulation pump 120 to improve the heat transfer performance in the regenerator 4. You can also try to do it.
  • the high-temperature and high-pressure refrigerant vapor separated by the gas-liquid separator 5 enters the second regenerator 6 from the refrigerant vapor outlet pipe 28 of the gas-liquid separator.
  • the refrigerant vapor that has entered the second regenerator 6 is diverted at the outlet side of the second solution heat exchanger 9 and is dispersed into the second regenerator 6 via the diluted solution inlet pipe 23 of the second regenerator.
  • the diluted solution is heated, and the diluted solution is concentrated.
  • the concentrated concentrated solution is combined with the concentrated solution from the third solution heat exchanger 10 via the concentrated solution outlet D pipe 24 of the second regenerator to form the second solution heat exchanger 9,
  • each is cooled by a low-temperature dilute solution and enters the absorber 2 through the inlet pipe 27 of the absorber.
  • the medium-temperature and medium-pressure refrigerant vapor generated by being heated by the high-temperature and high-pressure refrigerant vapor in the second regenerator 6 enters the first regenerator 7 via the refrigerant vapor outlet pipe 30 of the second regenerator.
  • the refrigerant vapor entering the first regenerator 7 is diverted at the outlet side of the first solution heat exchanger 8 and enters the first regenerator 7 via the diluted solution inlet pipe 25 of the first regenerator.
  • the sprayed dilute solution is heated and the dilute solution is concentrated.
  • the concentrated concentrated solution joins with the concentrated solution from the second solution heat exchanger 9 through the concentrated solution outlet pipe 26 of the first regenerator, and is cooled by the first solution heat exchanger 8 at low temperature. After being cooled by the solution, it enters the absorber 2 via the inlet pipe 27 of the absorber.
  • the refrigerant vapor condensed in the second regenerator 6 passes through the refrigerant vapor outlet pipe 31 of the second regenerator to the medium-temperature and medium-pressure refrigerant vapor flowing through the refrigerant vapor outlet pipe 30 of the second regenerator. Join.
  • the refrigerant liquid condensed in the first regenerator 7 is sent to the condenser 3 via the refrigerant liquid outlet pipe 32 of the first regenerator.
  • the refrigerant vapor generated by being heated by the medium-temperature and medium-pressure refrigerant vapor in the first regenerator 7 enters the condenser 3, where it is cooled by the cooling water flowing through the cooling water pipe 18 to be a refrigerant liquid.
  • This refrigerant liquid enters the evaporator 1 via the refrigerant liquid outlet pipe 33 of the condenser together with the refrigerant liquid condensed in the first regenerator 7.
  • the refrigerant liquid is pumped and sprayed by the refrigerant pump 11 through the refrigerant liquid pipe 34 of the evaporator, and evaporates by removing heat from the cold water flowing through the chilled water pipe 17 to evaporate. And enter absorber 2.
  • the cold water deprived of heat has a low temperature and is supplied to the demand side as a cold heat source.
  • the refrigerant vapor from the evaporator 1 is absorbed by the concentrated solution sprayed in the absorber 2 to become a dilute solution, and the lower part of the absorber 2 is heated by the solution pump 12 via the pipe 19 through the first solution heat. It is sent to exchanger 8 and repeats the cycle described above.
  • the heat generated when the concentrated solution absorbs the refrigerant vapor in the absorber 2 is cooled by the cooling water flowing through the cooling water pipe 18.
  • the cooling water flows from the absorber 2 to the condenser 3 in series.However, even if the cooling water flows in parallel, or conversely, the water flows from the condenser 3 to the absorber 2, Good.
  • the portable regenerator 4 is directly heated by the heating medium or the portable regenerator 4 as a component of the regenerator at the start of heat release, at the completion of heat release, or when the amount of heat demand changes. If the absorbed solution does not reach the predetermined heating temperature, this phenomenon is detected by the temperature detection controller 13 in the regenerator, which constitutes the function of the regenerator, and the signal from the temperature detection controller 13 is output. Control the opening and closing of the control valve 14 to ensure a stable operating state and the most efficient multiple-effect absorption refrigeration cycle under these conditions.
  • the concentrated solution at the bottom of the gas-liquid separator 5 is relatively low in temperature, and the generated refrigerant pressure in the vessel is relatively low, so that a complete triple effect absorption refrigeration cycle is performed. Becomes impossible. Then, since the vapor pressure of the heating refrigerant in the second regenerator 6 and the first regenerator 7 decreases, sufficient concentration of the dilute solution is not performed, and the amount of generated vapor decreases. Since the internal pressures of the regenerators 6 and 7 decrease, the flow of the concentrated solution from the regenerators 6 and 7 to the absorber 2 becomes worse, and the operation may become unstable.
  • control valve 14 is controlled to open and close as described above, and the relatively high-temperature and high-pressure refrigerant vapor is supplied to the first regenerator 7 through the refrigerant vapor bypass pipe 29. Supply to one regenerator 7. As a result, it is possible to maintain a stable operation state and maintain an optimal multi-effect absorption refrigeration cycle in this state.
  • the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is detected. That is, it is possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state described above, the temperature of the concentrated solution becomes relatively low in the gas-liquid separator 5 and the pressure of the refrigerant vapor decreases, and the difference between the gas-liquid separator 5 and the absorber 2 The pressure decreases, the amount of gas flowing into the concentrated solution pipe 22 at the outlet of the gas-liquid separator decreases, and as a result, the level of the concentrated solution rises.
  • the pressure of the refrigerant vapor generated in each unit in this state cannot concentrate the dilute solution sufficiently, so that the pressure of each refrigerant vapor increases in a chain, and the normal triple effect absorption refrigeration is performed. Cycles become impossible, and there is a risk that stable and efficient operating conditions cannot be ensured.
  • the control valve 14 is controlled to open and close, and the relatively high-temperature and high-pressure refrigerant vapor is supplied to the first regenerator 7 through the refrigerant vapor bypass pipe 29. It is possible to maintain a stable operating state and maintain an optimal multi-effect absorption refrigeration cycle in this state.
  • the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is That is, it is also possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state, the temperature of the concentrated solution becomes relatively high in the gas-liquid separator 5, the pressure of the refrigerant vapor increases, and the gas-liquid separator 5 and the absorber 2 As the differential pressure rises, the flow of the concentrated solution becomes better, and the level of the concentrated solution drops.
  • the case where the absorbing solution directly heated by the heating medium or the portable regenerator 4 as one component of the regenerator does not reach the predetermined heating temperature, and the case where the cooling water inlet temperature rises above the predetermined temperature are as follows:
  • the phenomenon that occurs in the gas-liquid separator 5 described above is the reverse phenomenon.
  • a change in the heating temperature of the heating source was detected by a temperature sensor provided in the outlet pipe 21 for the dilute solution of the regenerator, and a change in the inlet temperature of the cooling water was provided in the cooling water inlet pipe 18.
  • the temperature sensor detects the temperature, pressure, and the level of the absorbing liquid using a regenerator with the highest temperature and pressure.
  • FIG. 5 is a flow configuration diagram of a double effect absorption refrigeration apparatus of the present invention in which a heat storage device is directly incorporated as in FIG.
  • the same reference numerals as those in FIG. 2 indicate the same elements and have the same functions, but in FIG. 5, since the second regenerator 6 is not provided, the heating temperature of the heating source is set to a predetermined value. When the temperature does not reach or when the inlet temperature of the cooling water rises, the refrigerant vapor generated by the gas-liquid separator 5 is introduced into the condenser 3 by bypassing the lower regenerator 7 and directly controlling the flow rate. I have to do that.
  • FIG. 6 is a flow configuration diagram of a single-effect absorption refrigerating apparatus of the present invention in which a regenerator is directly incorporated.
  • FIG. 6 the same reference numerals as in FIG. 2 is a by which c
  • This device shows the elements having the same functions, a single regenerator functions as a single-effect absorption refrigeration system with portable regenerator 4 Since the gas-liquid separator 5 A is used, it does not have a control function for the temperature change of the heating source and cooling water.
  • FIG. 7 is a configuration diagram of the mouth of the triple-effect absorption refrigeration system of the absorption refrigeration system of the present invention in which a heat storage device is indirectly incorporated.
  • the energy stored in the heat storage unit 4 is transported by the water supply pump 100 by the water introduced from the heat storage unit water supply pipe 102, and is heated through the heat transfer tube in the heat storage unit 4.
  • the high-temperature, high-pressure water is introduced into the steam-liquid separator 5C from the high-temperature water pipe 103, and the generated high-temperature, high-pressure steam is used as the heating source for the third regenerator 5B from the pipe 104.
  • the steam drain condensed in the third regenerator 5B passes through the steam drain pipe 105, is circulated from the pipe 106 via the drain trap 101 to the gas-liquid separator 5C.
  • the liquefied water is circulated from the pipe 107 to the regenerator 4 via the feedwater pump 100.
  • steam is used as the heating medium, but the heating medium may be high-temperature water, oil, or the like.
  • the function is the same as that of FIG. 2 except that the third regenerator 5B is used instead of the regenerator 4 and the gas-liquid separator 5 of FIG. be able to.
  • Heat energy generated at a location away from the customer can be supplied to the heat customer for district heating and cooling, cooling in the factory chemical process, etc., and the cooling source required for air conditioning and refrigeration can be provided. .
  • Portable heat storage can be used to transport thermal energy.
  • District cooling and heating facilities and consumers can operate the absorption refrigeration system using the supplied thermal energy of the portable regenerator to produce the required energy from the cooling source.
  • An inexpensive and highly efficient absorption refrigeration system can be selected and used as the absorption refrigeration system for the supplied thermal energy.
  • the absorption solution inside the portable heat storage device is used. (Including the added corrosion inhibitor and acid alkalinity adjuster in the absorption solution) Return the absorption refrigeration system to the interior of the absorption refrigeration unit, and clean the inside with the refrigerant in the absorption refrigeration cycle to remove the environment. There is no discharge of the absorbing solution into the refrigeration system, and a pollution-free absorption refrigeration system can be obtained.
  • the model selected as the absorption refrigerating apparatus is determined by the temperature level of the heat energy stored in the portable regenerator.
  • a high-efficiency absorption refrigeration cycle with a multi-stage effect that enables the most efficient operation. It is advisable to select an absorption refrigeration system with high efficiency, and the higher the temperature level at which the portable heat storage radiates heat, the higher the efficiency of the absorption refrigeration system.
  • the temperature level at which the portable heat storage device radiates heat generally depends on the temperature level of the heating energy used to store heat in the portable heat storage device and the type of heat storage material of the heat storage device.
  • the portable regenerator shown in FIG. 1 is used as a part of a regenerator of an absorption refrigerating apparatus of an absorption refrigerating apparatus as described later, and as a regenerator as shown in FIG.
  • the portable heat storage device can be cut off by returning the absorbed solution to the absorption refrigeration unit as much as possible. Inside, the absorbing solution that has flowed remains on the inner surface of the heat transfer tube.
  • the remaining absorption solution inside the portable regenerator will consume the absorption solution for the absorption refrigeration system, and will hinder the next operation.
  • the absorption solution as a residual solution also becomes an obstacle.
  • corrosion inhibitors, acids, alkalinity adjusters, etc., added to the absorbing solution may be substances whose emission to the environment is restricted, so that general portable heat storage devices Removal of the residual solution from the absorbing solution by the method and discharge to the environment causes pollution. Therefore, the recovery method of the present invention for the absorption solution or the like used in the absorption refrigeration apparatus is an important technique.
  • a heat transfer tube of a portable heat storage device is used for transferring the refrigerant vapor and the refrigerant liquid in the absorption refrigeration apparatus.
  • the refrigerant vapor and refrigerant liquid are injected into the portable regenerator using the pressure difference inside the absorption refrigeration system during operation. There are other methods, which will be described later.
  • a quadruple effect absorption refrigeration system can be selected.However, here, as an example, the temperature level at which heat is dissipated considering the use of waste heat energy An example in which a portable heat storage device having moderately high heat storage energy is used will be described below with reference to the flow configuration diagram of FIG.
  • Fig. 8 shows a portable regenerator 4 equipped with an automatic valve 15 and a valve 16 that is detachable and used as a heating part of the regenerator.
  • the concentrated absorption solution and refrigerant vapor are independent of the portable regenerator 4.
  • 1 shows a triple effect absorption refrigerating apparatus provided with a gas-liquid separator 5 for separation.
  • the dilute solution diluted by absorbing the refrigerant vapor by the absorber 2 is supplied to the first solution heat exchanger 8, the second solution heat exchanger 9 and the third solution 9 by the solution pump 12 via the pipe 19.
  • the valve 15 and the inlet pipe for the dilute solution of the regenerator 2 After being preheated by the high-temperature concentrated solution from the first regenerator 7, the second regenerator 6, and the gas-liquid separator 5 in the heat exchanger 10, respectively, the valve 15 and the inlet pipe for the dilute solution of the regenerator 2 After flowing through 0, it flows into the portable regenerator 4.
  • the dilute solution that has flowed into the portable regenerator 4 is heated by the heat of the heat energy stored in the portable regenerator 4 to a high temperature, and passes through the high-temperature dilute solution outlet pipe 21 of the regenerator and the valve 16. Into the gas-liquid separator 5.
  • FIG. 8 shows a portable heat storage device 4 Although the example in which the gas-liquid separator 5 and the gas-liquid separator 5 are divided is shown, the gas-liquid separator 5 can be integrated into the portable heat storage device 4.
  • FIG. 3 shows an example in which the gas-liquid separator 5 is integrated into the portable heat storage device 4.
  • the gas-liquid separation function 5D is housed in the header 204 of the heat storage section 4A of the portable heat storage device.
  • the valve corresponding to the valve 16 in FIG. 8 is the valve 16 B in the concentrated solution outlet pipe 22 of the gas-liquid separator and the refrigerant vapor outlet pipe 28 in the gas-liquid separator. It is needed in two places like valve 16A.
  • the high-temperature concentrated solution concentrated by separating the refrigerant vapor in the gas-liquid separator 5 passes through the concentrated solution outlet pipe 22 of the gas-liquid separator, and the third solution heat exchanger 10 and the second solution In the heat exchanger 9 and the first solution heat exchanger 8, each is cooled by a low-temperature dilute solution, and enters the absorber 2 through the inlet pipe 27 of the absorber.
  • the concentrated solution from the gas-liquid separator 5 is circulated from the pipe 12 1 to the regenerator 4 via the circulation pump 120 to improve the heat transfer performance in the regenerator 4. You can also try to do it.
  • the high-temperature and high-pressure refrigerant vapor separated by the gas-liquid separator 5 enters the second regenerator 6 from the refrigerant vapor outlet pipe 28 of the gas-liquid separator.
  • Refrigerant vapor entering the second regenerator 6 is diverted at the outlet side of the second solution heat exchanger 9, and is sprayed into the second regenerator 6 via the diluted solution inlet pipe 23 of the second regenerator. Heat the dilute solution and concentrate the dilute solution.
  • the concentrated concentrated solution merges with the concentrated solution from the third solution heat exchanger 10 via the concentrated solution outlet pipe 24 of the second regenerator, and the second solution heat exchanger 9, In the solution heat exchanger 8, each is cooled by a low-temperature dilute solution, and enters the absorber 2 via the inlet pipe 27 of the absorber.
  • the medium-temperature and medium-pressure refrigerant vapor generated by being heated by the high-temperature and high-pressure refrigerant vapor in the second regenerator 6 enters the first regenerator 7 via the refrigerant vapor outlet pipe 30 of the second regenerator.
  • Refrigerant vapor that has entered the first regenerator 7 exits the first solution heat exchanger 8
  • the diluted solution sprayed into the first regenerator 7 via the diluted solution inlet pipe 25 of the first regenerator is heated, and the diluted solution is concentrated.
  • the concentrated concentrated solution joins with the concentrated solution from the second solution heat exchanger 9 through the concentrated solution outlet pipe 26 of the first regenerator, and is cooled by the first solution heat exchanger 8 at low temperature. After being cooled by the solution, it enters the absorber 2 via the inlet pipe 27 of the absorber.
  • the refrigerant vapor condensed in the second regenerator 6 passes through the refrigerant vapor outlet pipe 31 of the second regenerator to the medium-temperature and medium-pressure refrigerant vapor flowing through the refrigerant vapor outlet pipe 30 of the second regenerator. Join.
  • the refrigerant liquid condensed in the first regenerator 7 is sent to the condenser 3 via the refrigerant liquid outlet pipe 32 of the first regenerator.
  • the refrigerant vapor generated by being heated by the medium-temperature and medium-pressure refrigerant vapor in the first regenerator 7 enters the condenser 3, where it is cooled by the cooling water flowing through the cooling water pipe 18 to be a refrigerant liquid.
  • This refrigerant liquid enters the evaporator 1 via the refrigerant liquid outlet pipe 33 of the condenser together with the refrigerant liquid condensed in the first regenerator 7.
  • the refrigerant liquid is pumped and dispersed by the refrigerant pump 11 through the refrigerant liquid pipe 34 of the evaporator, and evaporates by removing heat from the cold water flowing through the chilled water pipe 17 to evaporate. And enter absorber 2.
  • the cold water deprived of heat has a low temperature and is supplied to the demand side as a cold heat source.
  • the refrigerant vapor from the evaporator 1 is absorbed by the concentrated solution sprayed in the absorber 2 to become a dilute solution, and the first solution heat is supplied from the lower part of the absorber 2 via the pipe 19 by the solution pump 12 by the solution pump 12. It is sent to exchanger 8 and repeats the cycle described above.
  • the heat generated when the concentrated solution absorbs the refrigerant vapor in the absorber 2 is cooled by the cooling water flowing through the cooling water pipe 18.
  • the cooling water is passed in series from the absorber 2 to the condenser 3, but it can also be passed in parallel, or conversely, from the condenser 3 to the absorber 2.
  • the absorption solution directly heated by the portable regenerator 4 as a component of the regenerator does not reach the predetermined heating temperature, this phenomenon occurs in the parts that constitute the regenerator and in the regenerator.
  • the temperature is detected by the temperature detection controller 13 and the control valve 14 is controlled to open and close based on the signal from the temperature detection controller 13 to ensure a stable operating condition and the most efficient multi-effect absorption refrigeration under these conditions. Secure the cycle.
  • the concentrated solution at the bottom of the gas-liquid separator 5 is relatively low in temperature, and the generated refrigerant pressure in the vessel is relatively low, so that a complete triple effect absorption refrigeration cycle is performed. Becomes impossible. Then, since the vapor pressure of the heating refrigerant in the second regenerator 6 and the first regenerator 7 decreases, sufficient concentration of the dilute solution is not performed, and the amount of generated vapor decreases. Since the internal pressures of the regenerators 6 and 7 decrease, the flow of the concentrated solution from the respective regenerators 6 and 7 to the absorber 2 becomes worse, which may result in unstable operation.
  • control valve 14 is controlled to open and close as described above, and the relatively high-temperature and high-pressure refrigerant vapor is supplied to the first regenerator 7 via the refrigerant vapor bypass pipe 29. Supply to the first regenerator 7. As a result, it is possible to maintain a stable operation state and maintain an optimum multiple-effect absorption refrigeration cycle in this state.
  • the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is That is, it is possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state described above, the temperature of the concentrated solution becomes relatively low in the gas-liquid separator 5 and the pressure of the refrigerant vapor decreases, and the difference between the gas-liquid separator 5 and the absorber 2 The pressure decreases, the amount of gas flowing into the concentrated solution pipe 22 at the outlet of the gas-liquid separator decreases, and as a result, the level of the concentrated solution rises.
  • the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is detected. That is, it is also possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state, the temperature of the concentrated solution becomes relatively high in the gas-liquid separator 5, the pressure of the refrigerant vapor increases, and the gas-liquid separator 5 and the absorber 2 As the differential pressure rises, the flow of the concentrated solution becomes better, and the level of the concentrated solution drops.
  • a change in the heating temperature of the heating source is detected by a temperature sensor provided in the dilute solution outlet pipe 21 of the regenerator, and a change in the cooling water inlet temperature is detected by the temperature provided in the cooling water inlet pipe 18.
  • the sensor detects this and determines and determines which control is prioritized based on this detection signal.
  • the regenerator with the highest temperature and pressure is used to detect this phenomenon in terms of temperature, pressure, and the liquid level of the absorbing liquid.
  • One or more detectors, and a control mechanism that bypasses the refrigerant vapor generated by the regenerator or gas-liquid separator through the lower regenerator and controls the flow rate to the heating source side of the next lower regenerator is used. As a result, it is possible to selectively perform control for automatically maintaining a highly efficient and stable operation state.
  • the portable regenerator 4 which is a component of the regenerator, can be connected to the absorption refrigerating unit after the heat storage energy has been released, so that the absorption solution that has flowed as much as possible can be separated into the portable regenerator.
  • the flowing absorbing solution adheres to the inner surface including the inner surface of the heat transfer tube 201 and remains. If the portable regenerator 4 is disconnected as it is, the amount of the absorbing solution in the absorption refrigerating unit decreases by the amount of the remaining absorbing solution, and the desorbing of the portable regenerator 4 multiple times causes the absorption solution in the unit to run short and stable. Operation becomes impossible. For this reason, in the example shown in FIG.
  • the highest temperature and high pressure refrigerant vapor in the absorption refrigeration system exists using the pressure difference inside the absorption refrigeration system during operation.
  • High-temperature and high-pressure refrigerant vapor flows back to the portable heat storage device 4 from the liquid separator 5 through the valve 16 and the high-temperature dilute solution outlet pipe 21 of the heat storage device, and this refrigerant vapor is used as shown in Fig. 1 of the portable heat storage device 4.
  • the inside of the heat transfer tube 201 shown is cleaned, and the refrigerant containing the absorbing solution etc. is transferred to the low pressure absorber 2 by using the pressure difference through the automatic valve 36 and the piping 38. And collect.
  • the solution pump 12 is stopped to stop the supply of the dilute solution to the dilute solution inlet pipe 20 of the regenerator, and the automatic valve 35 is closed, and the second regenerator Blocking the flow of refrigerant vapor to 6.
  • the automatic valve 15 is closed, the refrigerant containing all the absorbing solution and the like is recovered to the absorber 2 from the pipe 38. If the automatic valve 15 is left open, the refrigerant containing the absorbing solution, etc., flows back together with the absorbing solution, and can be simultaneously recovered in the absorber 2, the first regenerator 7, and the second regenerator 6. .
  • the refrigerant containing the absorbing solution is returned to the absorber 2, but it is also possible to return the refrigerant from the pipe 39 to the condenser 3 via the automatic valve 36 as shown in FIG. It is also possible to implement both the method shown in FIG. 8 and the method shown in FIG. 9 together.
  • the evaporator 1, the second regenerator 6, the first regenerator Refrigerant containing the absorbing solution may be returned to the vessel 7 and related piping.
  • the refrigerant liquid of the refrigerant cycle may be injected into the portable heat storage device 4 as shown in FIGS. Since the pressure of the injected refrigerant liquid is higher than the internal pressure of the portable regenerator 4 and injected, as shown in Fig. 11, the auxiliary pump is used when the supply pressure of the refrigerant pump 11 is insufficient. May be provided. As shown in Fig. 10, an auxiliary pump 45 is provided depending on the place where the refrigerant liquid is sucked, and this auxiliary pump 45 is forcibly operated during washing to condense the refrigerant liquid at the bottom of the condenser 3 into the refrigerant of the condenser.
  • Liquid outlet piping 3 Piping bypassing from 3 A method is also possible in which the pressure is increased by an auxiliary pump 45 via 40 and the cleaning refrigerant is supplied to the portable regenerator 4 via a pipe 41 and an automatic valve 37.
  • the suction location of the refrigerant liquid is not limited to the bottom of the evaporator 1 in FIG. 11 and the bottom of the condenser 3 in FIG. 10 and is not shown as an example, but the refrigerant in the second regenerator 6 in FIG.
  • a liquid outlet pipe 31 may be used. Further, it is more preferable to provide a structure for storing the refrigerant liquid in these places.
  • the solution pump 12 is stopped, and the automatic valves 15 and 35 are closed.
  • the high-temperature and high-pressure refrigerant vapor in the gas-liquid separator 5 flows into the portable regenerator 4 through the valve 16 and the pipe 21 together with the refrigerant liquid injected from the pipe 41.
  • the inside of the portable regenerator 4 will be cleaned.
  • the automatic valve 35 is not provided and the valve 16 is an automatic valve, and the high-temperature and high-pressure refrigerant vapor in the gas-liquid separator 5 is shut off, cleaning with only the refrigerant liquid can be performed.
  • the automatic valve 35 is a valve in the vapor passage, and if the valve 16 is an automatic valve, this is a valve in the solution passage. Therefore, it is economical to use the automatic valve 16 instead of the valve 16, and it is possible to adopt the best method after examining which method is the best.
  • the absorption solution in the portable regenerator 4 is filled with the automatic valve 36 and
  • the refrigerant liquid injected into the portable heat storage device 4 contains the heat storage material 20 shown in FIG. 3 is sufficiently heated by the remaining thermal energy, and relatively high-pressure steam can be generated, so that sufficient cleaning ability can be exhibited.
  • Fig. 4 shows that the absorbing solution is circulated between the gas-liquid separator 5 and the portable regenerator 4 for the purpose of quickly transferring the heat source energy of the portable regenerator 4 or efficiently transferring heat to the absorbing solution.
  • An embodiment adopting the method will be described.
  • a circulation pump for regenerator solution 120 is required.
  • FIG. 12 shows another embodiment, in which the portable regenerator 4 is separated from the absorption refrigeration system, and the refrigerant liquid or other cleaning liquid extracted from the inside of the system is valved in the cleaning liquid tank 300.
  • Filled via 304 and piping 303, and the cleaning liquid pump 301 sends refrigerant liquid or other cleaning liquid via piping 302 to the inside of the portable regenerator 4.
  • the washing liquid contaminated with the absorbing solution or the like is collected in a recovery liquid tank 309 via a pipe 307.
  • the liquid containing the absorption solution and the like collected in the recovery liquid tank 309 is absorbed from the recovery tank 309 via the pipe 310 and the valve 311 in the case of the refrigerant liquid extracted from the absorption refrigeration system.
  • the absorption solution will be diluted, and this can be realized by extending the operation time to concentrate this amount of absorption solution at startup.
  • the other method is a method in which the refrigerant liquid is recovered to the refrigerant liquid side. In this case, the operation is performed while a part of the refrigerant liquid is injected into the absorption solution cycle side during operation. In either case, extra heating energy is consumed to clean the refrigerant liquid.
  • the cleaning solution is concentrated and regenerated to separate the dirt, or if the substance is not harmful to the environment even if it is discharged as it is, it will be diluted to below the regulated concentration and discarded .
  • the absorption refrigeration unit needs to replenish the absorption solution and other additives.
  • the time during cleaning and used for cleaning The operation time of the absorption refrigerating apparatus corresponding to the concentration time of the refrigerant liquid can be effectively used.
  • the various cleaning methods of the present invention for the portable regenerator 4 compare and compare the absorbing solution to be used and its additive substances, consideration for the environment, the amount of energy used for cleaning, the cost of the cleaning equipment, and the like.
  • the optimal method can be adopted from the various methods described above.
  • Portable heat storage can be used to transport thermal energy.
  • District cooling and heating facilities and consumers can operate the absorption refrigeration system using the supplied thermal energy of the portable regenerator to produce the required energy from the cooling source.
  • An inexpensive and highly efficient absorption refrigeration system can be selected and used as the absorption refrigeration system for the supplied thermal energy.
  • the portable regenerator is used directly as a part of the heating equipment (regenerator) of the absorption refrigeration unit, and there is no heat loss, and it is a compact and economical absorption refrigeration unit. be able to.
  • Portable regenerator absorbs a part of the equipment (regenerator) for heating refrigerating equipment Since it is used as a vessel, the absorbing solution etc. remains inside the portable heat storage after use, but the remaining absorbing solution can be removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

An absorption refrigeration device comprises, a regenerator, a condenser (3), an absorber (2), an evaporator (1), a heat exchanger, an absorption solution pump (12), and a refrigerant pump (11), the device having solution piping and refrigerant piping for connecting these components. As the heating source energy for the device, use is made of heat energy accumulated in a portable heat accumulator (4). The heat energy accumulated in the portable heat accumulator (4) can be used through a medium, such as high temperature water or steam. The portable heat accumulator (4) is removably connected to the absorption refrigeration device and can be used to provide the heating source energy for the absorption solution in the regenerator. Further, the regenerator may be composed of a removable heating source (4) using a portable heat accumulator, and a gas-liquid separator (5) for separation into an absorption solution (22) concentrated independently of the heat accumulator and a refrigerant vapor (28).

Description

明 細 書 吸収冷凍装置 技術分野  Description Absorption refrigeration equipment Technical field
本発明は、 吸収冷凍装置に係り、 特に、 需要家から離れた場所で発生した 熱エネルギーを用いて運転することができる吸収冷凍装置とその運転方法 に関する。 背景技術  The present invention relates to an absorption refrigeration apparatus, and more particularly, to an absorption refrigeration apparatus that can be operated using heat energy generated at a location distant from a customer and an operation method thereof. Background art
従来は、 建物の空気調和、 工場の化学プロセスにおける冷却などのために 冷熱源を必要とする需要家に、需要家とは離れた場所から大量の熱エネルギ 一を、 温水又は蒸気を配管を用いて熱エネルギーとして輸送し、 需要家側に 設置した温水又は蒸気駆動の吸収冷凍装置で冷熱源を発生させる利用方法 を採用してきた。  Conventionally, customers who need a cold heat source for air conditioning of buildings, cooling in factory chemical processes, etc., use piping with large amounts of heat energy and hot water or steam from locations away from the customers. It has been adopted a method of transporting heat energy as heat energy and using a hot water or steam driven absorption refrigeration system installed on the customer side to generate a cold heat source.
しかし、 この方法を過密な都市で利用するには、 該配管の敷設費が膨大で、 かつ、 敷設に要する工事期間も長期となり、 その上、 道路地下に配管を敷設 する場合は、 交通渋滞が発生するため、 社会的な迷惑源ともなつている。  However, if this method is used in an overcrowded city, the cost of laying the pipes is enormous, and the construction time required for the laying is long. In addition, when laying the pipes under the road, traffic congestion may occur. Because it occurs, it is also a source of social annoyance.
このため、 大量の余剰熱エネルギーの発生場所が、 比較的需要家から離れ た場所にある場合は、 この熱エネルギーを有効に利用できない場合が多い。 大量の余剰熱エネルギーの発生場所と需要場所が同一場所にあっても、熱 の発生と利用とが同一時刻に生じないため、余剰熱エネルギーを有効活用で きない場合も多い。 従来は、 この発生熱源を利用するためには、 冷熱源を製 造して低温蓄熱しておく必要があった。 高効率の低温吸収冷凍装置は存在し ないため、 この蓄熱は顕熱のみの蓄熱となり、 大きな蓄熱槽を必要とするの で、 これが障害となっている。 For this reason, if the place where a large amount of surplus heat energy is generated is relatively far away from consumers, this heat energy often cannot be used effectively. Even if the place where a large amount of surplus heat energy is generated and the place of demand are in the same place, the generation and use of heat do not occur at the same time, so the surplus heat energy often cannot be used effectively. Conventionally, in order to use this generated heat source, it was necessary to manufacture a cold heat source and store it at low temperature. Since there is no high-efficiency low-temperature absorption refrigeration system, this heat storage is only sensible heat and requires a large heat storage tank. This is an obstacle.
上記の配管を用いる方法では、高温水又は蒸気として熱エネルギーを輸送 し、 この熱エネルギーを直接、 又は高温水の場合は、 直接又は間接的な吸収 冷凍装置の加熱エネルギーとして利用している。  In the above-mentioned method using piping, thermal energy is transported as high-temperature water or steam, and this thermal energy is used directly or, in the case of high-temperature water, as direct or indirect heating energy for absorption refrigeration equipment.
高温の熱エネルギーが供給可能な場合は、二重効用吸収冷凍装置を使用し て高効率運転を確保し、 省エネルギーを実現しているが、 従来の二重効用吸 収冷凍装置では、所定の安定した高温高圧の熱エネルギーが熱源として供給 されなければ、 所定の高効率運転を確保できない。  When high-temperature heat energy can be supplied, a double-effect absorption refrigeration system is used to ensure high-efficiency operation and achieve energy savings. If the high-temperature, high-pressure thermal energy is not supplied as a heat source, the specified high-efficiency operation cannot be ensured.
蓄熱器は、 蓄熱エネルギーの発生開始、 蓄熱エネルギーが無くなる前、 需 要熱量の変化時などの一定時間は、 所定の発熱量、 即ち、 所定の温度又は圧 力の高温水や蒸気を確保できないという特性を有する。  For a certain period of time, such as when heat storage energy starts to be generated, before heat storage energy is depleted, or when the amount of heat demand changes, it is not possible to secure a predetermined heat value, that is, high-temperature water or steam at a predetermined temperature or pressure. Has characteristics.
このため、 吸収冷凍装置は、 可搬型蓄熱器を直接に再生器として利用した 場合も、 同様の特性から、 上記の一定時間は、 吸収冷凍装置が所要の性能- 効率を発揮できない。  For this reason, even when a portable regenerator is used directly as a regenerator, the absorption refrigeration system cannot exhibit the required performance-efficiency for the above-mentioned fixed time because of the same characteristics.
また、 従来の冷却塔を使用する多重効用吸収冷凍装置においては、 外気湿 球温度の低下につれて冷却水の入口温度が低下しても、多重効用吸収冷凍サ イタルが固定のため、 最適でかつ効率の良い運転とはならず、 省エネルギー の運転の機会を逃している。  In addition, conventional multi-effect absorption refrigeration systems that use cooling towers are optimal and efficient because the multi-effect absorption refrigeration unit is fixed even if the inlet temperature of the cooling water decreases as the outside-air wet-bulb temperature decreases. It is not a good driving and misses the opportunity of energy saving driving.
このような技術においては、 次のような問題点を有していた。  Such a technology had the following problems.
( 1 ) 比較的安価で、 かつ短期間のェ期で熱エネルギー輸送システムを実 現可能とする別の熱エネルギーの輸送システムが必要である。  (1) There is a need for another thermal energy transport system that is relatively inexpensive and that can realize the thermal energy transport system in a short period of time.
( 2 ) 可搬型蓄熱器を熱エネルギーの輸送システムとして利用可能とする ためには、需要家側に可搬型蓄熱器から吸収冷凍装置を駆動するための高温 水又は蒸気を発生するための装置を設ければ、配管を用いた場合と同様のシ ステムを実現することができる。 しかし、 この設備の費用は、 熱エネルギー の輸送システムを実現する上でマイナス効果となる。 (2) In order to make the portable regenerator usable as a thermal energy transport system, the customer needs a device to generate high-temperature water or steam for driving the absorption refrigeration unit from the portable regenerator. If provided, a system similar to the case using piping can be realized. However, the cost of this equipment is This has a negative effect on realizing a transportation system.
( 3 ) 従来の吸収冷凍装置を使用したのでは、 可搬型蓄熱器の発熱プロセ スにおいて一旦高温水又は蒸気を発生させ、 この蒸気により吸収冷凍装置の 再生器の吸収溶液を間接的に加熱することになるため、温度及び圧力がこの 伝熱作用のため低下するので、 多重効用吸収冷凍装置の使用を困難とし、 高 効率で運転することができなくなる。  (3) If a conventional absorption refrigeration unit is used, high-temperature water or steam is once generated in the heat generation process of the portable regenerator, and the steam indirectly heats the absorption solution in the regenerator of the absorption refrigeration unit. As a result, the temperature and pressure decrease due to this heat transfer effect, which makes it difficult to use the multiple effect absorption refrigeration system and makes it impossible to operate the device with high efficiency.
( 4 ) 蓄熱器は、 放熱開始、 放熱終了前、 需要熱量の変化時などの一定時 間は、 所定の発熱量、 即ち、 所定の温度又は圧力の高温水や蒸気を確保でき ない特性を有する。可搬型蓄熱器を直接再生器に利用した吸収冷凍装置の場 合でも、 同様の特性により所要の性能 ·効率を発揮できないだけでなく、 安 定な運転状態を確保できない。  (4) The regenerator has the property that it cannot secure a predetermined calorific value, that is, high-temperature water or steam at a predetermined temperature or pressure, for a certain period of time, such as when heat radiation starts, before heat radiation ends, or when the amount of heat demand changes. . Even in the case of an absorption refrigeration unit that uses a portable regenerator as a direct regenerator, not only can the required performance and efficiency not be exhibited due to similar characteristics, but also a stable operation state cannot be ensured.
( 5 ) 冷却塔を使用する多重効用吸収冷凍装置では、 比較的湿球温度の低 くなる夜間、 湿度の低い日、 中間期において、 冷却水の入口温度が低下する 特徴を活用し、 できるだけ多くの効用サイクルを利用できるようにすべきで ある。 しかしながら、 従来は低い温度の冷却水が活用されていない。  (5) The multiple-effect absorption refrigeration system using a cooling tower takes advantage of the feature that the inlet temperature of the cooling water drops during the night when the wet bulb temperature is relatively low, the day when the humidity is low, and the interim period. Should be available to the public. However, conventionally, low-temperature cooling water has not been used.
( 6 ) 着脱可能な可搬型蓄熱器を吸収冷凍装置の再生器の加熱部のみ、 又 は気液分離器を備えた再生器として使用した後に、切り離された当該可搬型 蓄熱器の内部には吸収溶液などが残り、吸収冷凍装置にとっては吸収溶液の 消耗となり、 次の運転の障害となる。 また、 次の蓄熱プロセスでは残液とし ての吸収溶液は運転の障害となる。 また、 吸収溶液中に添加されている腐蝕 抑制剤、 酸 ·アルカリ度調整剤などは、 環境への排出が制限される物質であ る場合があるので、 当該可搬型蓄熱器から一般的な方法で吸収溶液の残液を 除去して環境へ排出することは、 公害の原因となる。 発明の開示 (6) After using the removable portable heat storage unit only as the heating part of the regenerator of the absorption refrigeration unit or as a regenerator equipped with a gas-liquid separator, Absorbent solution remains, and the absorption refrigeration system consumes the absorbent solution, which hinders the next operation. Also, in the next heat storage process, the absorbent solution as residual liquid will hinder operation. In addition, corrosion inhibitors, acid and alkalinity adjusters, etc. added to the absorbing solution may be substances whose emission to the environment is restricted. Removing the residual solution from the absorbing solution and discharging it to the environment causes pollution. Disclosure of the invention
本発明は、 上記従来技術の問題点を解消し、 可搬型蓄熱器の熱エネルギー を最大限に利用して、 高効率で安定した運転ができる吸収冷凍装置とその運 転方法を提供することを第 1の目的とする。  An object of the present invention is to provide an absorption refrigeration apparatus that can solve the above-mentioned problems of the prior art and that can operate stably with high efficiency by maximizing the heat energy of a portable regenerator and a method of operating the absorption refrigeration apparatus. This is the first purpose.
また、 本発明は、 可搬型蓄熱器の熱エネルギーを最大限に利用すると共に、 該蓄熱器を環境への影響なしに洗浄して、 高効率で安定した運転ができる吸 収冷凍装置を提供することを第 2の目的とする。  In addition, the present invention provides an absorption refrigeration apparatus that maximizes the use of the heat energy of a portable heat storage device, cleans the heat storage device without affecting the environment, and enables stable operation with high efficiency. This is the second purpose.
上記第 1の目的を達成するために、 本発明では、 再生器、 凝縮器、 吸収器、 蒸発器、 熱交換器、 吸収溶液ポンプ及ぴ冷媒ポンプを少なく とも主要構成機 器として備え、 これらを結ぶ溶液配管、 冷媒配管を有する吸収冷凍装置にお いて、 該装置の加熱源エネルギーとして、 可搬型蓄熱器に蓄熱された熱エネ ルギーを用いることとしたものである。  In order to achieve the first object, in the present invention, a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, an absorbing solution pump and a refrigerant pump are provided at least as main components, and these are provided. In an absorption refrigerating apparatus having a solution pipe and a refrigerant pipe to be connected, heat energy stored in a portable regenerator is used as a heat source energy of the apparatus.
上記吸収冷凍装置において、 可搬型蓄熱器に蓄熱された熱エネルギーは、 高温水、 蒸気などの媒体を介して用いることができる。 上記可搬型蓄熱器は、 上記吸収冷凍装置に着脱可能に接続され、該装置の再生器の一つの構成機能 又はその一つの構成機器とし、該再生器における吸収溶液の加熱源エネルギ 一として用いてもよい。 また、 上記再生器は、 着脱可能な可搬型蓄熱器を用 いた加熱源部と、該蓄熱器から独立して濃縮された吸収溶液と冷媒蒸気とに 分離する気液分離器部とにより構成することができる。  In the above absorption refrigeration apparatus, the thermal energy stored in the portable regenerator can be used via a medium such as high-temperature water or steam. The portable regenerator is detachably connected to the absorption refrigeration apparatus, and is used as one component function or one component device of a regenerator of the apparatus, and is used as one heat source energy of an absorbing solution in the regenerator. Is also good. Further, the regenerator includes a heating source unit using a detachable portable heat storage unit, and a gas-liquid separator unit that separates the concentrated absorption solution and refrigerant vapor independently from the heat storage unit. be able to.
上記本発明の吸収冷凍装置は、 上記可搬型蓄熱器が発生可能な加熱エネル ギ一の温度及ぴノ又は圧力に応じて、 駆動可能な単効用あるいは多重効用 (二重効用、 三重効用、 四重効用など) の吸収冷凍装置の中から、 最も高効 率の運転を可能とする最適な効用の吸収冷凍装置を選択することができる。 多重効用吸収冷凍装置は、 最も高温高圧の再生器に、 上記可搬型蓄熱器に蓄 熱された熱エネルギーを用いることができる。 更に、 本発明では、 上記多重効用吸収冷凍装置の運転において、 上記可搬 型蓄熱器が放熱開始時、 放熱完了時、 需要熱量の変化時で、 該可搬型蓄熱器 で直接加熱される上記最も高温高圧の再生器の吸収溶液が、所定の加熱温度 に到達しない場合、.該再生器でこの現象を温度、 圧力及び吸収液面レベルの 一つ以上に基づいて検知し、 該再生器で発生する冷媒蒸気を、 下段の再生器 をバイパスしてその次の下段の再生器の加熱源側に流量制御して導入し、高 効率でかつ安定な運転状態を自動的に維持することとしたものである。 The absorption refrigeration apparatus of the present invention may be a single-effect or multiple-effect (dual-effect, triple-effect, or four-effect) drivable depending on the temperature and temperature or pressure of the heating energy that can be generated by the portable regenerator. It is possible to select an absorption refrigeration system that has the optimal effect that enables the most efficient operation from among the absorption refrigeration systems that have the highest efficiency. The multi-effect absorption refrigeration apparatus can use the heat energy stored in the portable heat storage device in the regenerator having the highest temperature and pressure. Further, according to the present invention, in the operation of the multi-effect absorption refrigeration apparatus, the portable heat storage device is directly heated by the portable heat storage device at the start of heat release, at the completion of heat release, or at the time of a change in the amount of required heat. If the absorption solution of the high-temperature and high-pressure regenerator does not reach the predetermined heating temperature, the regenerator detects this phenomenon based on one or more of temperature, pressure and absorption liquid level and generates the regenerator. The refrigerant vapor to be bypassed to the lower stage regenerator is introduced into the heating source side of the next lower stage regenerator by controlling the flow rate, and a highly efficient and stable operating state is automatically maintained. It is.
上記多重効用吸収冷凍装置の運転において、 上記装置の構成機器である吸 収器及び凝縮器に通水される冷却水入口温度が変化した場合、上記最も高温 高圧の再生器でこの現象を温度、圧力及び吸収液面レベルの一つ以上に基づ いて検知し、 再生器で発生する冷媒蒸気を、 下段の再生器をバイパスしその 次の下段の再生器の加熱源側に流量制御して導入し、 高効率でかつ安定な運 転状態を自動的に維持することができる。  In the operation of the above-mentioned multi-effect absorption refrigeration system, if the temperature of the cooling water inlet passing through the absorber and the condenser, which are the components of the above-mentioned system, changes, the above-mentioned high-temperature and high-pressure regenerator causes this phenomenon to occur. Detects based on one or more of pressure and absorbing liquid level, and introduces refrigerant vapor generated in the regenerator by controlling the flow rate to the heating source side of the next lower regenerator, bypassing the lower regenerator Thus, a highly efficient and stable operation state can be automatically maintained.
また、 これら上記の多重効用吸収冷凍装置の運転方法において、 加熱源の 加熱温度と冷却水入口温度が変化した場合に、 いずれが変化したかを検出し て、 上記再生器に導入する冷媒蒸気の流量制御を行うことができる。 また、 上記加熱源の加熱温度の変化は、蓄熱器の希溶液用出口配管中に設けた温度 センサーで検知し、 また、 冷却水の入口温度の変化は、 冷却水用入口配管に 設けた温度センサーで検知し、 この検出信号によりいずれの制御を優先する かを判断制御すると共に、 上記最も高温高圧の再生器でこの現象を温度、 圧 力及び吸収液面レベルの一つ以上に基づいて検知し、該再生器で発生する冷 媒蒸気を、 下段の再生器をバイパスしその次の下段の再生器の加熱源側に流 量制御して導入する制御機構を用いて、高効率でかつ安定な運転状態を自動 的に維持することができる。  Further, in the above-described method of operating the multiple effect absorption refrigeration apparatus, when the heating temperature of the heating source and the cooling water inlet temperature change, the change is detected and the refrigerant vapor introduced into the regenerator is detected. Flow control can be performed. The change in the heating temperature of the heating source is detected by a temperature sensor provided in the outlet pipe for the dilute solution of the regenerator, and the change in the inlet temperature of the cooling water is determined by the temperature provided in the inlet pipe for the cooling water. The sensor detects and detects and determines which control is given priority based on this detection signal, and the above-mentioned highest temperature and high pressure regenerator detects this phenomenon based on one or more of temperature, pressure and absorption liquid level. The control mechanism that controls the flow rate of the refrigerant vapor generated in the regenerator to the heating source side of the next lower regenerator, bypassing the lower regenerator, and introduces a highly efficient and stable Operating conditions can be automatically maintained.
上記第 2の目的を達成するために、 本発明では、 再生器、 凝縮器、 吸収器、 蒸発器、 熱交換器、 吸収溶液ポンプ及び冷媒ポンプを少なく とも主要構成機 器として備え、 これらを結ぶ溶液配管、 冷媒配管を有する吸収冷凍装置にお いて、 上記再生器の一つの構成機能又はその一つの構成機器として、 着脱可 能な可搬型蓄熱器を配備し、該再生器における加熱源エネルギーとして該可 搬型蓄熱器を使用した後に、該可搬型蓄熱器を洗浄する機能を備えることと したものである。 In order to achieve the second object, the present invention provides a regenerator, a condenser, an absorber, An evaporator, a heat exchanger, an absorption solution pump and a refrigerant pump are provided at least as main components, and in an absorption refrigerating apparatus having a solution pipe and a refrigerant pipe connecting these components, one of the functions of the regenerator or its function As one component, a detachable portable heat storage device is provided, and after the portable heat storage device is used as a heat source energy in the regenerator, a function of cleaning the portable heat storage device is provided. Things.
上記吸収冷凍装置において、 可搬型蓄熱器は、 該可搬型蓄熱器を吸収冷凍 装置から切り離すか、又は切り離さずに洗浄する機能を備えることができる c 上記可搬型蓄熱器は、 再生器の加熱部のみか、 又は加熱部と気液分離器とし ての構成機能を有することができる。 上記可搬型蓄熱器内の洗浄は、 該吸収 冷凍装置の内部の冷媒蒸気及ぴ Ζ又は冷媒液、 又は、 別の洗浄液により行う ことができる。 また、 上記可搬型蓄熱器内の洗浄は、 該吸収冷凍装置内の別 の再生器又は気液分離器からの高温高圧の冷媒蒸気の注入、 及び Ζ又は、 冷 媒サイクルからの冷媒液の注入によって行うことができる。 In the absorption refrigerating apparatus, the portable regenerator, or disconnect the movable transportable regenerator from absorption refrigerating apparatus, or c the portable heat accumulator which may comprise a function for cleaning without detaching the regenerator of the heating unit Only, or it can have a configuration function as a heating unit and a gas-liquid separator. The cleaning of the portable heat storage device can be performed by using refrigerant vapor and / or refrigerant liquid inside the absorption refrigeration apparatus, or another cleaning liquid. Cleaning of the portable regenerator is performed by injecting high-temperature and high-pressure refrigerant vapor from another regenerator or gas-liquid separator in the absorption refrigeration unit, and / or injecting refrigerant liquid from a refrigerant cycle. Can be done by
本発明の吸収冷凍装置は、 単効用吸収冷凍装置、 多重効用吸収冷凍装置、 又は加熱源の温度によって多重効用の効用数が選択された多重効用吸収冷 凍装置とすることができる。 ' 図面の簡単な説明  The absorption refrigeration apparatus of the present invention can be a single-effect absorption refrigeration apparatus, a multiple-effect absorption refrigeration apparatus, or a multiple-effect absorption refrigeration apparatus in which the number of multiple effects is selected according to the temperature of the heating source. '' Brief description of the drawings
図 1は本発明で用いる可搬型蓄熱器の一例を示す断面構成図である。  FIG. 1 is a sectional view showing an example of a portable heat storage device used in the present invention.
図 2は本発明の第 1の実施形態における吸収冷凍装置の一例を示す三重 効用吸収冷凍装置のフ口一構成図である。  FIG. 2 is a configuration diagram of a mouth of a triple effect absorption refrigeration apparatus showing an example of the absorption refrigeration apparatus according to the first embodiment of the present invention.
図 3は本発明で用いる可搬型蓄熱器の他の例を示す断面構成図である。 図 4は本発明で用いる可搬型蓄熱器と気液分離器の別の例を示す部分構 成図である。 図 5は本発明の吸収冷凍装置の他の例を示す二重効用吸収冷凍装置のフ ロー構成図である。 FIG. 3 is a sectional view showing another example of the portable heat storage device used in the present invention. FIG. 4 is a partial configuration diagram showing another example of the portable heat storage device and the gas-liquid separator used in the present invention. FIG. 5 is a flow configuration diagram of a double-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
図 6は本発明の吸収冷凍装置の他の例を示す単効用吸収冷凍装置のフロ 一構成図である。  FIG. 6 is a flow diagram of a single-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
図 7は本発明の吸収冷凍装置の別の例を示す三重効用吸収冷凍装置のフ ロー構成図である。  FIG. 7 is a flow configuration diagram of a triple effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
図 8は本発明の第 2の実施形態における吸収冷凍装置の一例を示す三重 効用吸収冷凍装置のフロー構成図である。  FIG. 8 is a flow configuration diagram of a triple effect absorption refrigeration apparatus showing an example of the absorption refrigeration apparatus according to the second embodiment of the present invention.
図 9は本発明の吸収冷凍装置の他の例を示す二重効用吸収冷凍装置のフ ロー構成図である。  FIG. 9 is a flow configuration diagram of a double-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
図 1 0は本発明の吸収冷凍装置の他の例を示す二重効用吸収冷凍装置の フロー構成図である。  FIG. 10 is a flow configuration diagram of a double-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
図 1 1は本発明の吸収冷凍装置の別の例を示す単効用吸収冷凍装置のフ ロー構成図である。  FIG. 11 is a flow diagram of a single-effect absorption refrigeration apparatus showing another example of the absorption refrigeration apparatus of the present invention.
図 1 2は本発明で用いる可搬型蓄熱器を単独に洗浄する場合のフロー構 成図である。 発明を実施するための最良の形態  FIG. 12 is a flow configuration diagram when the portable heat storage device used in the present invention is washed independently. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の第 1の実施形態における吸収冷凍装置について図面を参照 して詳細に説明する。  Hereinafter, an absorption refrigeration apparatus according to a first embodiment of the present invention will be described in detail with reference to the drawings.
本発明では、 配管を用いる方法に代えて、 可搬型蓄熱器を使用して熱エネ ルギ一の発生場所から需要先まで熱エネルギーを輸送する。 また、 蓄熱器を 使用するため、 供給量と需要量が同一量であって、 熱エネルギーの供給と需 要が同時刻に生じる必要はない。  In the present invention, a portable heat storage device is used to transport heat energy from a place where heat energy is generated to a demand destination, instead of using a pipe. Also, since the heat storage is used, the amount of supply and demand is the same, and the supply and demand of thermal energy do not need to occur at the same time.
可搬型蓄熱器は、 輸送手段の器材と一体のまま使用するもの、 又は可搬型 蓄熱器と輸送手段とを分割して使用するもののいずれであってもよい。 蓄熱 した可搬型蓄熱器は、 熱媒体との熱交換により高温水、 蒸気などとし、 高温 水、蒸気などを吸収冷凍装置の再生器の加熱源エネルギー源として利用し冷 熱源の製造を行う。 Portable regenerators shall be used with the equipment of the transportation means, or Any of those using the regenerator and the transportation means separately may be used. The portable heat storage device that has stored heat is converted into high-temperature water, steam, etc. by heat exchange with a heat medium, and the high-temperature water, steam, etc. are used as a heat source energy source for the regenerator of the absorption refrigeration unit to manufacture a cold heat source.
蓄熱した可搬型蓄熱器を、 吸収冷凍装置の再生器を構成する機器として直 接利用し、 間接的な媒体を通じた伝熱に必要な機器を不要とし、 吸収冷凍装 置の製造費用の低減を図り、 また、 可搬型蓄熱器を再生器を構成する機能の 一部として直接利用することで、 間接的な熱交換で発生する伝熱温度差損失 と放熱損失をなくすことができる。  The portable heat storage device that has stored the heat is directly used as a component of the regenerator of the absorption refrigeration unit, eliminating the need for equipment necessary for heat transfer through indirect media, and reducing the manufacturing cost of the absorption refrigeration unit. In addition, by using the portable heat storage device directly as part of the function of the regenerator, it is possible to eliminate the heat transfer temperature difference loss and heat dissipation loss generated by indirect heat exchange.
また、 本発明では、 吸収溶液を直接可搬型蓄熱器に直接流入して加熱する ことにより、可搬型蓄熱器の発熱可能温度に近い高温の溶液温度が得られ、 この結果、 吸収冷凍装 Sは、 より多重効用なサイクルの実現が可能となり、 高効率な運転が可能となる。  Further, in the present invention, by directly flowing the absorption solution into the portable regenerator and heating it, a high solution temperature close to the heatable temperature of the portable regenerator can be obtained. Therefore, it is possible to realize a cycle with more multiple effects, and to operate with high efficiency.
蓄熱器は、 熱エネルギー発生 (放熱) 開始、 エネルギー放出完了前、 需要 熱量の変化時などの一定時間は、 所定の発熱量、 即ち、 所定の温度又は圧力 の高温水や蒸気を確保できないが、 これは、 可搬型蓄熱器を直接再生器に利 用した吸収冷凍装置の場合でも同様である。 そこで、 本発明では、 所要の性 能'効率を発揮できず、 かつ不安定な運転状態となるのを回避するため、 最 も高温の再生器などでこの現象を温度、圧力及び吸収溶液の液面レベルのう ちの一つ以上に基づいて検知し、 該再生器 (又は気液分離器) で発生した冷 媒蒸気を、 下段の再生器をパイパスし、 その次の下段の再生器の加熱側に流 量制御して導入することにより、 所定の性能と安定な運転を確保する。 また、 冷却塔を使用する多重効用吸収冷凍装置では、 比較的湿球温度の低 くなる夜間、 湿度の低い日、 中間期において、 冷却水の入口温度が低下する 特徴を活用し、 できるだけ多くの効用の吸収冷凍サイクルを利用すべく、 冷 却水の入口温度の上昇により最大の多効用吸収冷凍サイクルが不可能とな る状態を、 最も高温の再生器などで温度、 圧力及び吸収溶液の液面レベルの うちの一つ以上に基づいて検知し、該再生器又は気液分離器で発生した冷媒 蒸気を下段の再生器をパイパスし、 その次の下段の再生器の加熱側に流量制 御して導入することにより、 所定の性能と安定な運転を確保する。 For a certain period of time, such as the start of heat energy generation (radiation), the completion of energy release, and the change in the amount of demand heat, the regenerator cannot secure a predetermined calorific value, that is, high-temperature water or steam at a predetermined temperature or pressure. This is the same in the case of an absorption refrigeration unit that uses a portable heat storage device as a direct regenerator. Therefore, in the present invention, in order to prevent the required performance and efficiency from being exhibited, and to avoid an unstable operation state, this phenomenon is performed by using the highest temperature regenerator or the like so that the temperature, the pressure, and the absorption solution Detected based on one or more of the surface levels, the refrigerant vapor generated by the regenerator (or gas-liquid separator) is bypassed to the lower regenerator, and the heating side of the next lower regenerator The required performance and stable operation are ensured by introducing the flow rate into the system. In addition, the multi-effect absorption refrigeration system that uses a cooling tower takes advantage of the fact that the inlet temperature of the cooling water drops during the night when the wet bulb temperature is relatively low, on days when the humidity is low, and in the interim period. In order to use a utility absorption refrigeration cycle, The condition in which the maximum multi-effect absorption refrigeration cycle is not possible due to the rise in the inlet temperature of the drainage water, based on one or more of the temperature, pressure, and liquid level of the absorbing solution in the highest temperature regenerator etc. Detects the refrigerant vapor generated in the regenerator or gas-liquid separator, bypasses the lower regenerator, and introduces the refrigerant vapor into the heating side of the next lower regenerator by controlling the flow rate. Ensure stable operation.
次に、本発明の第 1の実施形態における吸収冷凍装置の構成を具体的に説 明する。  Next, the configuration of the absorption refrigeration apparatus according to the first embodiment of the present invention will be specifically described.
本発明に係る吸収冷凍装置においては、可搬型蓄熱器に蓄熱されている熱 エネルギーの温度レベルにより、吸収冷凍装置として選択される機種が定ま る。 即ち、 単効用、 多効用 (二重効用、 三重効用、 四重効用など) の各種の 吸収冷凍装置の中から、最も高効率の運転を可能な多段の効用の吸収冷凍サ イタルを有する高効率の吸収冷凍装置の選択が得策となり、 可搬型蓄熱器が 蓄熱を放熱する温度レベルが高いほど、 より高効率の吸収冷凍装置を選択す ることができる。 しかし、 可搬型蓄熱器が蓄熱を放熱する温度レベルは、 可 搬型蓄熱器に蓄熱する際の加熱エネルギーの温度レベルと、 蓄熱器の蓄熱材 の種類に一般に左右される。  In the absorption refrigeration apparatus according to the present invention, the model selected as the absorption refrigeration apparatus is determined by the temperature level of the heat energy stored in the portable regenerator. In other words, from among various types of absorption refrigeration systems, single-effect and multi-effect (double-effect, triple-effect, quadruple-effect, etc.), a high-efficiency absorption refrigeration unit with multi-stage absorption that can operate at the highest efficiency It is advisable to select an absorption refrigeration system that has a higher efficiency, and the higher the temperature level at which the portable heat storage device radiates heat, the higher the efficiency of the absorption refrigeration system. However, the temperature level at which the portable regenerator dissipates heat generally depends on the temperature level of the heating energy when storing heat in the portable regenerator and the type of heat storage material of the regenerator.
可搬型蓄熱器は運搬手段により構造や大きさは異なるが、 ここでは、 陸上 を自動車で輸送する場合の可搬型蓄熱器の構造を、図 1の断面構成図を参照 して説明する。 図 1は着脱可能な可搬型蓄熱器の蓄熱部 4 Aの基本的な構造 を説明する図である。 .  Although the structure and size of the portable heat storage device differ depending on the means of transportation, here, the structure of the portable heat storage device when transported on land by car will be described with reference to the cross-sectional configuration diagram of FIG. FIG. 1 is a diagram illustrating a basic structure of a heat storage unit 4A of a removable portable heat storage device. .
蓄熱部 4 Aは、 胴体 2 0 0、 管板 2 -0 2、 多数の伝熱管 2 0 1、 へッダー 2 0 4、 仕切板 2 0 5から構成される熱交換器の構造を有している。 胴体 2 0 0と多数の伝熱管 2 0 1との間の空間には、 ぎつしりと蓄熱材 2 0 3が充 填されている。 比較的低温の希溶液は、 蓄熱器の希溶液用入口配管 2 0から ヘッダー 2 0 4の下部に流入し、 多数の伝熱管 2 0 1内を流れる。 伝熱管 2 0 1の内部では、 蓄熱材 2 0 3に蓄熱されている高温の熱エネルギーによつ て希溶液が加熱されて、 ヘッダー 2 0 4の上部に集められる。 ヘッダー 2 0 4の上部に集められた高温の希溶液は、蓄熱器の高温希溶液用出口配管 2 1 から出る。 The heat storage unit 4A has a heat exchanger structure including a body 200, a tube sheet 2 -02, a number of heat transfer tubes 201, a header 204, and a partition plate 205. I have. The space between the body 200 and the large number of heat transfer tubes 201 is filled with heat and heat storage material 203. The relatively low-temperature dilute solution flows into the lower part of the header 204 from the dilute solution inlet pipe 20 of the regenerator, and flows through many heat transfer tubes 201. Heat transfer tube 2 Inside 01, the dilute solution is heated by the high-temperature heat energy stored in the heat storage material 203 and collected at the upper part of the header 204. The high-temperature dilute solution collected at the top of the header 204 exits from the high-temperature dilute solution outlet pipe 21 of the regenerator.
可搬型蓄熱器の蓄熱エネルギーの熱源温度によっては、 四重効用吸収冷凍 装置なども選択可能であるが、 ここでは、 一例として、 排熱エネルギーを利 用する場合などを考慮し、放熱する温度レベルが適度に高い蓄熱エネルギー を有する可搬型蓄熱器を採用した例を、 図 2のフロー構成図を用いて以下に 説明する。  Depending on the heat source temperature of the heat storage energy of the portable heat storage, a quadruple effect absorption refrigeration system can be selected.However, here, as an example, the temperature level at which heat is dissipated considering the use of waste heat energy An example in which a portable heat storage device having a moderately high heat storage energy is used will be described below with reference to the flow diagram of FIG.
図 2は、弁 1 5及び弁 1 6を設けて着脱可能な可搬型蓄熱器 4を再生器の 加熱部とし、 当該可搬型蓄熱器 4から独立して、 濃縮された吸収溶液と冷媒 蒸気に分離する気液分離器 5を設けた三重効用吸収冷凍装置を示す。  Fig. 2 shows the portable regenerator 4 that can be attached and detached by providing valves 15 and 16 as the heating part of the regenerator, and separates the concentrated absorption solution and refrigerant vapor from the portable regenerator 4. 1 shows a triple effect absorption refrigerating apparatus provided with a gas-liquid separator 5 for separation.
図 2において、 吸収器 2で冷媒蒸気を吸収し希釈された希溶液は、 溶液ポ ンプ 1 2により配管 1 9を介して第一溶液熱交換器 8、第二溶液熱交換器 9 、 第三溶液熱交換器 1 0で、 それぞれ第一再生器 7、 第二再生器 6、 気液分離 器 5からの高温濃溶液によって予熱された後、 弁 1 5、 蓄熱器の希溶液用入 口配管 2 0を経て可搬型蓄熱器 4に流入する。  In FIG. 2, the dilute solution diluted by absorbing the refrigerant vapor in the absorber 2 is supplied to the first solution heat exchanger 8, the second solution heat exchanger 9, and the third solution via the pipe 19 by the solution pump 12. After being preheated by the high-temperature concentrated solution from the first regenerator 7, the second regenerator 6, and the gas-liquid separator 5 in the solution heat exchanger 10, respectively, the valve 15 and the diluent inlet pipe of the regenerator It flows into the portable regenerator 4 via 20.
可搬型蓄熱器 4に流入した希溶液は、可搬型蓄熱器 4に蓄熱された熱エネ ルギ一の放熱により加熱され高温となり、蓄熱器の高温希溶液用出口配管 2 1、 弁 1 6を経由して気液分離器 5に入る。  The dilute solution that has flowed into the portable regenerator 4 is heated by the heat of the heat energy stored in the portable regenerator 4 and is heated to a high temperature, passing through the high-temperature dilute solution outlet pipe 21 of the regenerator and the valve 16. Into the gas-liquid separator 5.
蓄熱器の高温希溶液用出口配管 2 1、弁 1 6の流路断面積が十分に大きな 場合は、 可搬型蓄熱器 4、 蓄熱器の高温希溶液用出口配管 2 1、 弁 1 6内な どで希溶液が加熱されて高温となり、一部が冷媒蒸気となり溶液が濃縮を開 始した状態で気液分離器 5に送られる場合もある。 図 2は、 可搬型蓄熱器 4 と気液分離器 5とを分割した例を示しているが、気液分離器 5を可搬型蓄熱 器 4の内部に一体化することも可能である。 図 3は、 気液分離器 5を可搬型 蓄熱器 4の内部に一体化した例を示す。 図 3では、 可搬型蓄熱器の蓄熱部 4 Aのヘッダー 2 0 4内に気液分離機能 5 Dが収納されている。 この場合には、 図 2の弁 1 6に相当する弁は、気液分離器の濃溶液用出口配管 2 2中の弁 1 6 Bと気液分離器の冷媒蒸気用出口配管 2 8中の弁 1 6 Aの如く二個所に 必要となる。 If the cross-sectional area of the high-temperature dilute solution outlet pipe 21 and valve 16 of the regenerator is sufficiently large, the portable regenerator 4 and high-temperature dilute solution outlet pipe 21 of the regenerator and the valve 16 In some cases, the dilute solution is heated to a high temperature, a part thereof becomes a refrigerant vapor, and is sent to the gas-liquid separator 5 in a state where the solution has started concentration. Fig. 2 shows an example in which the portable heat storage device 4 and the gas-liquid separator 5 are divided. It is also possible to integrate the inside of the container 4. FIG. 3 shows an example in which the gas-liquid separator 5 is integrated into the portable heat storage device 4. In FIG. 3, the gas-liquid separation function 5D is housed in the header 204 of the heat storage section 4A of the portable heat storage device. In this case, the valve corresponding to the valve 16 in FIG. 2 is a valve 16 B in the concentrated solution outlet pipe 22 of the gas-liquid separator and a valve 16 B in the refrigerant vapor outlet pipe 28 of the gas-liquid separator. It is needed in two places like valve 16A.
気液分離器 5で冷媒蒸気を分離することにより濃縮された高温の濃溶液 は、 気液分離器の濃溶液用出口配管 2 2を介して、 第三溶液熱交換器 1 0、 第二溶液熱交換器 9、 第一溶液熱交換器 8で、 それぞれ低温の希溶液により 冷却されて、 吸収器の入口配管 2 7を経て吸収器 2に入る。 ここで、 図 4に 示すように、 気液分離器 5からの濃溶液を、 配管 1 2 1から循環ポンプ 1 2 0を介して蓄熱器 4に循環させ、蓄熱器 4における伝熱性能の向上を図るよ うにすることもできる。  The high-temperature concentrated solution concentrated by separating the refrigerant vapor in the gas-liquid separator 5 passes through the concentrated solution outlet pipe 22 of the gas-liquid separator, and the third solution heat exchanger 10 and the second solution In the heat exchanger 9 and the first solution heat exchanger 8, each is cooled by a low-temperature dilute solution, and enters the absorber 2 through the inlet pipe 27 of the absorber. Here, as shown in FIG. 4, the concentrated solution from the gas-liquid separator 5 is circulated from the pipe 12 1 to the regenerator 4 via the circulation pump 120 to improve the heat transfer performance in the regenerator 4. You can also try to do it.
一方、 気液分離器 5で分離された高温高圧の冷媒蒸気は、 気液分離器の冷 媒蒸気用出口配管 2 8から第二再生器 6に入る。 第二再生器 6に入った冷媒 蒸気は、 第二溶液熱交換器 9の出口側において分流し、 第二再生器の希溶液 用入口配管 2 3を経て第二再生器 6·内に散布された希溶液を加熱し、 この希 溶液を濃縮する。 濃縮された濃溶液は、 第二再生器の濃溶液用出 D配管 2 4 を介して、 第三溶液熱交換器 1 0からの濃溶液と合流して、 第二溶液熱交換 器 9、 第一溶液熱交換器 8で、 それぞれ低温の希溶液により冷却されて、 吸 収器の入口配管 2 7を経て吸収器 2に入る。  On the other hand, the high-temperature and high-pressure refrigerant vapor separated by the gas-liquid separator 5 enters the second regenerator 6 from the refrigerant vapor outlet pipe 28 of the gas-liquid separator. The refrigerant vapor that has entered the second regenerator 6 is diverted at the outlet side of the second solution heat exchanger 9 and is dispersed into the second regenerator 6 via the diluted solution inlet pipe 23 of the second regenerator. The diluted solution is heated, and the diluted solution is concentrated. The concentrated concentrated solution is combined with the concentrated solution from the third solution heat exchanger 10 via the concentrated solution outlet D pipe 24 of the second regenerator to form the second solution heat exchanger 9, In the one-solution heat exchanger 8, each is cooled by a low-temperature dilute solution and enters the absorber 2 through the inlet pipe 27 of the absorber.
第二再生器 6で高温高圧の冷媒蒸気により加熱され発生した中温中圧の 冷媒蒸気は、 第二再生器の冷媒蒸気用出口配管 3 0を介して、 第一再生器 7 に入る。 第一再生器 7に入った冷媒蒸気は、 第一溶液熱交換器 8の出口側に おいて分流し、第一再生器の希溶液用入口配管 2 5を経て第一再生器 7内に 散布された希溶液を加熱し、 この希溶液を濃縮する。 濃縮された濃溶液は、 第一再生器の濃溶液用出口配管 2 6を介して、第二溶液熱交換器 9からの濃 溶液と合流して、 第一溶液熱交換器 8で低温の希溶液により冷却されて、 吸 収器の入口配管 2 7を経て吸収器 2に入る。 The medium-temperature and medium-pressure refrigerant vapor generated by being heated by the high-temperature and high-pressure refrigerant vapor in the second regenerator 6 enters the first regenerator 7 via the refrigerant vapor outlet pipe 30 of the second regenerator. The refrigerant vapor entering the first regenerator 7 is diverted at the outlet side of the first solution heat exchanger 8 and enters the first regenerator 7 via the diluted solution inlet pipe 25 of the first regenerator. The sprayed dilute solution is heated and the dilute solution is concentrated. The concentrated concentrated solution joins with the concentrated solution from the second solution heat exchanger 9 through the concentrated solution outlet pipe 26 of the first regenerator, and is cooled by the first solution heat exchanger 8 at low temperature. After being cooled by the solution, it enters the absorber 2 via the inlet pipe 27 of the absorber.
第二再生器 6で凝縮した冷媒蒸気は、第二再生器の冷媒液用出口配管 3 1 を介して、第二再生器の冷媒蒸気用出口配管 3 0を流れる中温中圧の冷媒蒸 気に合流する。 第一再生器 7で凝縮した冷媒液は、 第一再生器の冷媒液用出 口配管 3 2を介して凝縮器 3に送られる。第一再生器 7で中温中圧の冷媒蒸 気で加熱され発生した冷媒蒸気は、 凝縮器 3に入り、 ここで冷却水配管 1 8 を流れる冷却水により冷却され冷媒液となる。 この冷媒液は、 第一再生器 7 で凝縮した冷媒液と共に凝縮器の冷媒液用出口配管 3 3を介して蒸発器 1 に入る。  The refrigerant vapor condensed in the second regenerator 6 passes through the refrigerant vapor outlet pipe 31 of the second regenerator to the medium-temperature and medium-pressure refrigerant vapor flowing through the refrigerant vapor outlet pipe 30 of the second regenerator. Join. The refrigerant liquid condensed in the first regenerator 7 is sent to the condenser 3 via the refrigerant liquid outlet pipe 32 of the first regenerator. The refrigerant vapor generated by being heated by the medium-temperature and medium-pressure refrigerant vapor in the first regenerator 7 enters the condenser 3, where it is cooled by the cooling water flowing through the cooling water pipe 18 to be a refrigerant liquid. This refrigerant liquid enters the evaporator 1 via the refrigerant liquid outlet pipe 33 of the condenser together with the refrigerant liquid condensed in the first regenerator 7.
蒸発器 1内では、 冷媒液は、 冷媒ポンプ 1 1で蒸発器の冷媒液配管 3 4を 介して揚液 ·散布され、 冷水配管 1 7を流れる冷水から熱を奪って蒸発し、 冷媒蒸気となって吸収器 2に入る。 図 2には示されていないが、 熱を奪われ た冷水は低温となり、 冷熱源として需要側に供給される。 蒸発器 1からの冷 媒蒸気は、吸収器 2内に散布されている濃溶液に吸収されて希溶液となり、 吸収器 2の下部から溶液ポンプ 1 2により配管 1 9を介して第一溶液熱交 換器 8へと送られ、 上述したサイクルを繰り返す。 吸収器 2で濃溶液が冷媒 蒸気を吸収する際に発生する熱は、冷却水配管 1 8を流れる冷却水により冷 却される。  In the evaporator 1, the refrigerant liquid is pumped and sprayed by the refrigerant pump 11 through the refrigerant liquid pipe 34 of the evaporator, and evaporates by removing heat from the cold water flowing through the chilled water pipe 17 to evaporate. And enter absorber 2. Although not shown in Fig. 2, the cold water deprived of heat has a low temperature and is supplied to the demand side as a cold heat source. The refrigerant vapor from the evaporator 1 is absorbed by the concentrated solution sprayed in the absorber 2 to become a dilute solution, and the lower part of the absorber 2 is heated by the solution pump 12 via the pipe 19 through the first solution heat. It is sent to exchanger 8 and repeats the cycle described above. The heat generated when the concentrated solution absorbs the refrigerant vapor in the absorber 2 is cooled by the cooling water flowing through the cooling water pipe 18.
図 2の例では、冷却水は吸収器 2から凝縮器 3に直列に通水されているが、 並列に通水したり、 逆に凝縮器 3かち吸収器 2に通水したり してもよい。 可搬型蓄熱器 4が放熱開始時、 放熱完了時、 需要熱量の変化時などにおい て、加熱媒体あるいは再生器の一構成部としての可搬型蓄熱器 4で直接加熱 される吸収溶液が、 所定の加熱温度に到達しない場合、 再生器の機能を構成 する部分、 再生器などでこの現象を温度検出調節器 1 3により検知し、 温度 検出調節器 1 3からの信号で調節弁 1 4を開閉制御して、安定な運転状態と、 この条件で最も効率のよい多重効用の吸収冷凍サイクルを確保する。 In the example of Fig. 2, the cooling water flows from the absorber 2 to the condenser 3 in series.However, even if the cooling water flows in parallel, or conversely, the water flows from the condenser 3 to the absorber 2, Good. The portable regenerator 4 is directly heated by the heating medium or the portable regenerator 4 as a component of the regenerator at the start of heat release, at the completion of heat release, or when the amount of heat demand changes. If the absorbed solution does not reach the predetermined heating temperature, this phenomenon is detected by the temperature detection controller 13 in the regenerator, which constitutes the function of the regenerator, and the signal from the temperature detection controller 13 is output. Control the opening and closing of the control valve 14 to ensure a stable operating state and the most efficient multiple-effect absorption refrigeration cycle under these conditions.
即ち、 加熱エネルギーの温度が比較的低い状態では、 気液分離器 5底部の 濃溶液が比較的に低温で、 かつ、 器内の発生冷媒圧力が比較的に低く、 完全 な三重効用吸収冷凍サイクルが不可能となる。 そして、 第二再生器 6、 第一 再生器 7における加熱冷媒の蒸気圧が低下するため、 十分な希溶液の濃縮が 行われず、 また、 発生する蒸気量が減少するので、 それぞれの再生器 6, 7 の内圧が低下するため、 それぞれの再生器 6 , 7からの濃溶液の吸収器 2へ の流れが悪くなり、 不安定な運転状態となる恐れがある。 この状態を回避す るため、 上述の如く、 調節弁 1 4を開閉制御し、 冷媒蒸気バイパス配管 2 9 を介して、第一再生器 7にとつては比較的高温で高圧の冷媒蒸気を第一再生 器 7に供給する。 これにより、 安定な運転状態の維持と、 この状態での最適 な多重効用吸収冷凍サイクルを維持することが可能となる。  That is, when the temperature of the heating energy is relatively low, the concentrated solution at the bottom of the gas-liquid separator 5 is relatively low in temperature, and the generated refrigerant pressure in the vessel is relatively low, so that a complete triple effect absorption refrigeration cycle is performed. Becomes impossible. Then, since the vapor pressure of the heating refrigerant in the second regenerator 6 and the first regenerator 7 decreases, sufficient concentration of the dilute solution is not performed, and the amount of generated vapor decreases. Since the internal pressures of the regenerators 6 and 7 decrease, the flow of the concentrated solution from the regenerators 6 and 7 to the absorber 2 becomes worse, and the operation may become unstable. In order to avoid this state, the control valve 14 is controlled to open and close as described above, and the relatively high-temperature and high-pressure refrigerant vapor is supplied to the first regenerator 7 through the refrigerant vapor bypass pipe 29. Supply to one regenerator 7. As a result, it is possible to maintain a stable operation state and maintain an optimal multi-effect absorption refrigeration cycle in this state.
図 2では、気液分離器 5底部における濃溶液の温度に基づいて上記不安定 な運転状態を検知しているが、 この気液分離器 5の場合に、 ここで濃縮され る溶液の蒸気圧力、 即ち発生冷媒蒸気の圧力、 及び吸収液の液面レベルに基 づいてもこの状態を検出することが可能である。 即ち、 上記不安定な運転状 態では、 気液分離器 5内で、 濃溶液の温度が比較的低温となり、 また、 冷媒 蒸気の圧力が低下し、 気液分離器 5と吸収器 2の差圧が減少し、 気液分離器 出口濃溶液配管 2 2へ流れる量が低下し、 その結果濃溶液の液面レベルが上 昇するという現象が発生する。 したがって、 温度、 圧力、 液面レベルの一つ 又は複数を検知し、 該再生器又は気液分離器で発生する冷媒蒸気を、 下段の 再生器をバイパスしてその次の下段の再生器の加熱源側に流量制御して導 入し、 高効率でかつ安定な運転状態を自動的に維持することが可能となる。 図 2には示されていないが、再生器又は気液分離器 5内又はその周辺で同等 の検出が可能な個所があり、後述する図 7で説明されている第三再生器 5 B 第二再生器 6及びその周辺においても同等の検出方法の採用が可能である。 冷却水の入口温度が所定の温度より上昇すると、 第一再生器 7、 第二再生 器 6、 及び気液分雕器 5底部の濃溶液温度が上昇する。 即ち、 この状態の各 器内の発生冷媒蒸気の圧力では、 希溶液を十分に濃縮できず、 このためそれ ぞれの冷媒蒸気の圧力が連鎖的に上昇して、正常な三重効用の吸収冷凍サイ クルが不可能となり、安定で高効率な運転状態を確保できない恐れがある。 この状態を回避するため、 上述の如く、 調節弁 1 4を開閉制御し、 冷媒蒸気 用バイパス配管 2 9を介して第一再生器 7にとっては比較的高温高圧の冷 媒蒸気を供給して、安定な運転状態の維持とこの状態での最適な多重効用吸 収冷凍サイクルを維持することが可能となる。 In FIG. 2, the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is detected. That is, it is possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state described above, the temperature of the concentrated solution becomes relatively low in the gas-liquid separator 5 and the pressure of the refrigerant vapor decreases, and the difference between the gas-liquid separator 5 and the absorber 2 The pressure decreases, the amount of gas flowing into the concentrated solution pipe 22 at the outlet of the gas-liquid separator decreases, and as a result, the level of the concentrated solution rises. Therefore, one or more of the temperature, pressure, and liquid level are detected, and the refrigerant vapor generated in the regenerator or gas-liquid separator is bypassed to the lower regenerator to heat the next lower regenerator. Controlled flow to the source side And automatically maintain a highly efficient and stable operating condition. Although not shown in FIG. 2, there is a place in the regenerator or gas-liquid separator 5 where equivalent detection is possible or in the vicinity thereof, and the third regenerator 5 B described in FIG. The same detection method can be adopted in the regenerator 6 and its periphery. When the inlet temperature of the cooling water rises above a predetermined temperature, the temperature of the concentrated solution at the bottom of the first regenerator 7, the second regenerator 6, and the gas-liquid separator 5 increases. In other words, the pressure of the refrigerant vapor generated in each unit in this state cannot concentrate the dilute solution sufficiently, so that the pressure of each refrigerant vapor increases in a chain, and the normal triple effect absorption refrigeration is performed. Cycles become impossible, and there is a risk that stable and efficient operating conditions cannot be ensured. To avoid this state, as described above, the control valve 14 is controlled to open and close, and the relatively high-temperature and high-pressure refrigerant vapor is supplied to the first regenerator 7 through the refrigerant vapor bypass pipe 29. It is possible to maintain a stable operating state and maintain an optimal multi-effect absorption refrigeration cycle in this state.
図 2では、気液分離器 5底部の濃溶液の温度に基づいて上記不安定な運転 状態を検知しているが、 この気液分離器 5の場合に、 ここで濃縮される溶液 の蒸気圧力、 即ち発生冷媒蒸気の圧力、 及ぴ吸収液の液面レベルに基づいて もこの状態を検出することが可能である。 即ち、 上記不安定な運転状態では、 気液分離器 5内で、 濃溶液の温度が比較的高温となり、 また、 冷媒蒸気の圧 力が上昇し、 かつ、 気液分離器 5と吸収器 2の差圧の上昇で、 濃溶液の流れ が良くなるので濃溶液の液面レベルが低下するという現象が発生する。 した がって、 温度、 圧力、 液面レベルの一つ又は複数を検知し、 該再生器又は気 液分離器で発生する冷媒蒸気を下段の再生器をバイパスしてその次の下段 の再生器の加熱源側に流量制御して導入し、高効率でかつ安定な運転状態を 自動的に維持することが可能となる。 図 2には示されていないが、 再生器又 は気液分離器 5内又はその周辺で同等の検出が可能な個所があり、 図 7で説 明されている第三再生器 5 B、 第二再生器 6及ぴその周辺においても同等の 検出方法の採用が可能である。 In FIG. 2, the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is That is, it is also possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state, the temperature of the concentrated solution becomes relatively high in the gas-liquid separator 5, the pressure of the refrigerant vapor increases, and the gas-liquid separator 5 and the absorber 2 As the differential pressure rises, the flow of the concentrated solution becomes better, and the level of the concentrated solution drops. Accordingly, one or more of the temperature, pressure, and liquid level are detected, and the refrigerant vapor generated in the regenerator or the gas-liquid separator is bypassed to the lower regenerator and the next lower regenerator It is possible to automatically maintain a high-efficiency and stable operation state by introducing a flow rate control to the heating source side. Although not shown in FIG. 2, there are places where the same detection is possible in or around the regenerator or gas-liquid separator 5 and explained in FIG. 7. The same detection method can be adopted in the third regenerator 5B, the second regenerator 6, and the periphery thereof which are specified.
加熱媒体あるいは再生器の一構成部としての可搬型蓄熱器 4で直接加熱 される吸収溶液が所定の加熱温度に到達しない場合と、冷却水の入口温度が 所定の温度より上昇する場合とでは、上述の気液分離器 5に発生する現象は 逆の現象となる。 加熱源の加熱温度の変化を、 蓄熱器の希溶液用出口配管 2 1中に設けた温度センサーで検知し、 また、 冷却水の入口温度の変化を、 冷 却水入口配管 1 8に設けた温度センサーで検知し、 この検出信号によりいず れの制御を優先するかを判断制御すると共に、上記最も高温高圧の再生器な どでこの現象を温度、圧力及ぴ吸収液の液面レベルの一つ又は複数で検知し、 該再生器又は気液分離器で発生する冷媒蒸気を下段の再生器をバイパスし その次の下段の再生器の加熱源側に流量制御して導入する制御機構を用い て、高効率でかつ安定な運転状態を自動的に維持する制御を選択的に行うこ とができる。  The case where the absorbing solution directly heated by the heating medium or the portable regenerator 4 as one component of the regenerator does not reach the predetermined heating temperature, and the case where the cooling water inlet temperature rises above the predetermined temperature are as follows: The phenomenon that occurs in the gas-liquid separator 5 described above is the reverse phenomenon. A change in the heating temperature of the heating source was detected by a temperature sensor provided in the outlet pipe 21 for the dilute solution of the regenerator, and a change in the inlet temperature of the cooling water was provided in the cooling water inlet pipe 18. The temperature sensor detects the temperature, pressure, and the level of the absorbing liquid using a regenerator with the highest temperature and pressure. A control mechanism for detecting by one or a plurality of the refrigerant vapors generated in the regenerator or the gas-liquid separator, bypassing the lower regenerator and controlling the flow rate to the heating source side of the next lower regenerator to introduce the refrigerant vapor. By using this, it is possible to selectively perform control for automatically maintaining a highly efficient and stable operation state.
図 5は、 図 2と同様に蓄熱器を直接組込んだ本発明の吸収冷凍装置で、 二 重効用吸収冷凍装置のフロー構成図である。  FIG. 5 is a flow configuration diagram of a double effect absorption refrigeration apparatus of the present invention in which a heat storage device is directly incorporated as in FIG.
図 5においても、 図 2と同じ符号は同じ要素を示し、 同様の機能を有して いるが、 図 5では、 第二再生器 6を有していないため、 加熱源の加熱温度が 所定の温度に到達しない場合や冷却水の入口温度が上昇した場合に、気液分 離器 5が発生する冷媒蒸気を下段の再生器 7をバイパスして、直接凝縮器 3 に流量制御して導入することとしている。  In FIG. 5, the same reference numerals as those in FIG. 2 indicate the same elements and have the same functions, but in FIG. 5, since the second regenerator 6 is not provided, the heating temperature of the heating source is set to a predetermined value. When the temperature does not reach or when the inlet temperature of the cooling water rises, the refrigerant vapor generated by the gas-liquid separator 5 is introduced into the condenser 3 by bypassing the lower regenerator 7 and directly controlling the flow rate. I have to do that.
図 6は、 蓄熱器を直接組込んだ本発明の吸収冷凍装置で、 単効用吸収冷凍 装置のフロー構成図である。  FIG. 6 is a flow configuration diagram of a single-effect absorption refrigerating apparatus of the present invention in which a regenerator is directly incorporated.
図 6においても、 図 2と同じ符号は同様の機能を有する要素を示している c この装置では、単効用吸収冷凍装置で一つの再生器機能を可搬型蓄熱器 4と 気液分離器 5 Aで行っているので、加熱源や冷却水の温度変化に対する制御 機能は有していない。 Also in FIG. 6, the same reference numerals as in FIG. 2 is a by which c This device shows the elements having the same functions, a single regenerator functions as a single-effect absorption refrigeration system with portable regenerator 4 Since the gas-liquid separator 5 A is used, it does not have a control function for the temperature change of the heating source and cooling water.
図 7は、 蓄熱器を間接的に組込んだ本発明の吸収冷凍装置で、 三重効用吸 収冷凍装置のフ口一構成図である。  FIG. 7 is a configuration diagram of the mouth of the triple-effect absorption refrigeration system of the absorption refrigeration system of the present invention in which a heat storage device is indirectly incorporated.
図 7においては、 蓄熱器 4に蓄熱されたエネルギーは、 給水ポンプ 1 0 0 によって、 蓄熱器給水配管 1 0 2から導入される水によって輸送され、 蓄熱 器 4内の伝熱管を通って加熱され高温高圧となった水は、 高温水配管 1 0 3 から蒸気の気液分離器 5 Cに導入され、 発生した高温高圧蒸気が、 配管 1 0 4から第三再生器 5 Bの加熱源として利用されて、第三再生器 5 Bで凝縮し た蒸気ドレーンは蒸気ドレーン配管 1 0 5を通り、 ドレーントラップ 1 0 1 を経て配管 1 0 6から気液分離器 5 Cに循環される。 液化した水は、 配管 1 0 7から給水ポンプ 1 0 0を介して蓄熱器 4に循環される。 ここでは、 蒸気 を加熱の媒体としているが、 この加熱の媒体が、 高温水、 オイルなどとする こともできる。  In FIG. 7, the energy stored in the heat storage unit 4 is transported by the water supply pump 100 by the water introduced from the heat storage unit water supply pipe 102, and is heated through the heat transfer tube in the heat storage unit 4. The high-temperature, high-pressure water is introduced into the steam-liquid separator 5C from the high-temperature water pipe 103, and the generated high-temperature, high-pressure steam is used as the heating source for the third regenerator 5B from the pipe 104. Then, the steam drain condensed in the third regenerator 5B passes through the steam drain pipe 105, is circulated from the pipe 106 via the drain trap 101 to the gas-liquid separator 5C. The liquefied water is circulated from the pipe 107 to the regenerator 4 via the feedwater pump 100. Here, steam is used as the heating medium, but the heating medium may be high-temperature water, oil, or the like.
このように、 図 7では、 図 2の蓄熱器 4と気液分離器 5に代えて、 第三再 生器 5 Bを用いている以外は、 図 2と同様に機能し、 同様に制御することが できる。  As described above, in FIG. 7, the function is the same as that of FIG. 2 except that the third regenerator 5B is used instead of the regenerator 4 and the gas-liquid separator 5 of FIG. be able to.
上述した本発明の第 1の実施形態によれば、次のような効果を奏すること ができる。  According to the above-described first embodiment of the present invention, the following effects can be obtained.
( 1 ) 地域冷暖房、 工場化学プロセスにおける冷却などのために、 需要家 とは離れた場所で発生した熱エネルギーを熱需要家に供給し、空調や冷凍に 必要な冷熱源を提供することができる。  (1) Heat energy generated at a location away from the customer can be supplied to the heat customer for district heating and cooling, cooling in the factory chemical process, etc., and the cooling source required for air conditioning and refrigeration can be provided. .
( 2 ) 熱エネルギーの発生場所で直接的に利用できない発生エネルギーが 必要な時まで蓄熱器に蓄熱され、発生場所や発生場所から離れた場所の熱需 要家に蓄熱器を輸送して、 エネルギーの有効活用を行うことができ、 国家的 な省エネルギーを可能とすることができる。 (2) Generated energy that cannot be used directly at the place where heat energy is generated is stored in the heat storage unit until it is needed, and the heat storage unit is transported to the heat generator at the place where the heat energy is generated or at a location away from the place where the heat energy is generated. Can be used effectively and nationally Energy saving can be achieved.
( 3 ) 熱エネルギーの輸送に可搬型蓄熱器を使用することができる。  (3) Portable heat storage can be used to transport thermal energy.
( 4 ) 地域冷暖房施設や需要家などが、 この供給された可搬型蓄熱器の熱 エネルギーを利用して吸収冷凍装置を運転して、必要とする冷熱源エネルギ 一を製造することができる。  (4) District cooling and heating facilities and consumers can operate the absorption refrigeration system using the supplied thermal energy of the portable regenerator to produce the required energy from the cooling source.
( 5 ) この供給された熱エネルギーに対して、 吸収冷凍装置として、 安価 で高効率な吸収冷凍装置を選択して使用することができる。  (5) An inexpensive and highly efficient absorption refrigeration system can be selected and used as the absorption refrigeration system for the supplied thermal energy.
( 6 ) 吸収冷凍装置の高効率による省エネルギーを実現することによりェ ネルギー消費量を削減し、可搬型蓄熱器による熱エネルギーの輸送量を低減 し、 輸送費用の低減と、 冷却塔などからの環境への放熱量を低減し、 環境へ の負荷の低減を可能とする。  (6) Reduce energy consumption by realizing energy savings with high efficiency of absorption refrigeration systems, reduce the amount of heat energy transported by portable regenerators, reduce transportation costs, and reduce environmental impact from cooling towers and other facilities. The amount of heat dissipated to the environment is reduced, and the load on the environment can be reduced.
( 7 ) 効率の良い運転を可能とすることで、 冷却水などへの放熱のための 水の使用量、電力消費量を低減する多重効用吸収冷凍装置とすることができ る。  (7) By enabling efficient operation, a multi-effect absorption refrigeration system that reduces the amount of water used for heat dissipation to cooling water and the like and the power consumption can be achieved.
次に、 本発明の第 2の実施形態について説明する。 なお、 上述の第 1の実 施形態における部材又は要素と同一の作用又は機能を有する部材又は要素 には同一の符号を付し、特に説明しない部分については第 1の実施形態と同 様である。  Next, a second embodiment of the present invention will be described. Note that members or elements having the same functions or functions as the members or elements in the above-described first embodiment are denoted by the same reference numerals, and parts that are not particularly described are the same as those in the first embodiment. .
本実施形態では、着脱可能な可搬型蓄熱器を吸収冷凍装置の再生器の加熱 部のみ、 又は気液分離器を備えた再生器として使用した後に、 当該可搬型蓄 熱器の内部の吸収溶液 (吸収溶液には、 添加されている腐蝕抑制剤、 酸 'ァ ルカリ度調整剤なども含む) を吸収冷凍装置の機内に戻し、 かつ、 内部を吸 収冷凍サイクル中の冷媒により洗浄し、環境への吸収溶液の排出を皆無とし、 無公害の吸収冷凍装置とすることができる。  In the present embodiment, after the detachable portable heat storage device is used only as a heating part of the regenerator of the absorption refrigeration device or as a regenerator provided with a gas-liquid separator, the absorption solution inside the portable heat storage device is used. (Including the added corrosion inhibitor and acid alkalinity adjuster in the absorption solution) Return the absorption refrigeration system to the interior of the absorption refrigeration unit, and clean the inside with the refrigerant in the absorption refrigeration cycle to remove the environment. There is no discharge of the absorbing solution into the refrigeration system, and a pollution-free absorption refrigeration system can be obtained.
次に、本発明の第 2の実施形態における吸収冷凍装置の構成を具体的に説 明する。 Next, the configuration of the absorption refrigeration apparatus according to the second embodiment of the present invention will be specifically described. I will tell.
本発明に係る吸収冷凍装置においては、可搬型蓄熱器に蓄熱されている熱 エネルギーの温度レベルにより、 吸収冷凍装置として選択される機種が定ま る。 即ち、 単効用、 多効用 (二重効用、 三重効用、 四重効用など) の各種の 吸収冷凍装置の中から、最も高効率の運転を可能とする多段の効用の吸収冷 凍サイクルを有する高効率の吸収冷凍装置の選択が得策となり、 可搬型蓄熱 器が蓄熱を放熱する温度レベルが高いほど、 より高効率の吸収冷凍装置を選 択することができる。 しかし、 可搬型蓄熱器が蓄熱を放熱する温度レベルは、 可搬型蓄熱器に蓄熱する際の加熱エネルギーの温度レベルと、蓄熱器の蓄熱 材の種類に一般に左右される。  In the absorption refrigerating apparatus according to the present invention, the model selected as the absorption refrigerating apparatus is determined by the temperature level of the heat energy stored in the portable regenerator. In other words, from various absorption refrigeration systems of single-effect and multi-effect (double-effect, triple-effect, quadruple-effect, etc.), a high-efficiency absorption refrigeration cycle with a multi-stage effect that enables the most efficient operation. It is advisable to select an absorption refrigeration system with high efficiency, and the higher the temperature level at which the portable heat storage radiates heat, the higher the efficiency of the absorption refrigeration system. However, the temperature level at which the portable heat storage device radiates heat generally depends on the temperature level of the heating energy used to store heat in the portable heat storage device and the type of heat storage material of the heat storage device.
本実施形態では、 図 1に示す可搬型蓄熱器が後述の如く、 吸収冷凍装置の 吸収冷凍装置の再生器の一部として、 また、 図 3の如く再生器として使用さ れる。 この可搬型蓄熱器の蓄熱エネルギーが放出された後に、 できるだけ吸 収溶液を吸収冷凍装置内に戻すようにして可搬型蓄熱器を切り離しても、 こ の可搬型蓄熱器の伝熱管 2 0 1などの内部には、流れていた吸収溶液などが 伝熱管内面に付着などして残存する。  In the present embodiment, the portable regenerator shown in FIG. 1 is used as a part of a regenerator of an absorption refrigerating apparatus of an absorption refrigerating apparatus as described later, and as a regenerator as shown in FIG. After the heat storage energy of the portable heat storage device is released, the portable heat storage device can be cut off by returning the absorbed solution to the absorption refrigeration unit as much as possible. Inside, the absorbing solution that has flowed remains on the inner surface of the heat transfer tube.
加熱源エネルギーを使用した後に、切り離された当該可搬型蓄熱器内部の 吸収溶液などの残存は、 吸収冷凍装置にとっては吸収溶液の消耗となり、 次 の運転の障害となる。 また、 次の蓄熱プロセスでも、 残液としての吸収溶液 は障害となる。  After the energy of the heating source is used, the remaining absorption solution inside the portable regenerator will consume the absorption solution for the absorption refrigeration system, and will hinder the next operation. In the next heat storage process, the absorption solution as a residual solution also becomes an obstacle.
また、 吸収溶液中に添加されている腐蝕抑制剤、 酸,アルカリ度調整剤な どは、 環境への排出が制限される物質である場合があるので、 当該可搬型蓄 熱器から一般的な方法で吸収溶液の残液を除去して環境へ排出することは、 公害の原因となる。 このため、 吸収冷凍装置に用いる当該吸収溶液などの本 発明の回収方法は、 重要な技術である。 本発明では、 吸収冷凍装置内の冷媒蒸気、 冷媒液を可搬型蓄熱器の伝熱管In addition, corrosion inhibitors, acids, alkalinity adjusters, etc., added to the absorbing solution may be substances whose emission to the environment is restricted, so that general portable heat storage devices Removal of the residual solution from the absorbing solution by the method and discharge to the environment causes pollution. Therefore, the recovery method of the present invention for the absorption solution or the like used in the absorption refrigeration apparatus is an important technique. In the present invention, a heat transfer tube of a portable heat storage device is used for transferring the refrigerant vapor and the refrigerant liquid in the absorption refrigeration apparatus.
2 0 1などの内部の吸収溶液の洗浄に用いて、 この吸収溶液を含む冷媒が、 吸収冷凍装置内に戻るようにする。 この冷媒蒸気、 冷媒液の可搬型蓄熱器へ の注入には、 吸収冷凍装置の運転中の機内の圧力差を利用する。 その他の方 法もあるが、 これについては後述する。 It is used for washing the absorption solution inside such as 201 so that the refrigerant containing the absorption solution returns to the absorption refrigeration apparatus. The refrigerant vapor and refrigerant liquid are injected into the portable regenerator using the pressure difference inside the absorption refrigeration system during operation. There are other methods, which will be described later.
可搬型蓄熱器の蓄熱エネルギーの熱源温度によっては、 四重効用吸収冷凍 装置なども選択可能であるが、 ここでは、 一例として、 排熱エネルギーを利 用する場合などを考慮し、放熱する温度レベルが適度に高い蓄熱エネルギー を有する可搬型蓄熱器を採用した例を、 図 8のフロー構成図を用いて以下に 説明する。  Depending on the heat source temperature of the heat storage energy of the portable heat storage, a quadruple effect absorption refrigeration system can be selected.However, here, as an example, the temperature level at which heat is dissipated considering the use of waste heat energy An example in which a portable heat storage device having moderately high heat storage energy is used will be described below with reference to the flow configuration diagram of FIG.
図 8は、 自動弁 1 5及び弁 1 6を設けて着脱可能な可搬型蓄熱器 4を再生 器の加熱部とし、 当該可搬型蓄熱器 4から独立して、 濃縮された吸収溶液と 冷媒蒸気に分離する気液分離器 5を設けた三重効用吸収冷凍装置を示す。 図 8において、 吸収器 2で冷媒蒸気を吸収し希釈された希溶液は、 溶液ポ ンプ 1 2により配管 1 9を介して第一溶液熱交換器 8、第二溶液熱交換器 9 第三溶液熱交換器 1 0で、 それぞれ第一再生器 7、 第二再生器 6、 気液分離 器 5からの高温濃溶液によって予熱された後、 弁 1 5、 蓄熱器の希溶液用入 口配管 2 0を経て可搬型蓄熱器 4に流入する。  Fig. 8 shows a portable regenerator 4 equipped with an automatic valve 15 and a valve 16 that is detachable and used as a heating part of the regenerator.The concentrated absorption solution and refrigerant vapor are independent of the portable regenerator 4. 1 shows a triple effect absorption refrigerating apparatus provided with a gas-liquid separator 5 for separation. In FIG. 8, the dilute solution diluted by absorbing the refrigerant vapor by the absorber 2 is supplied to the first solution heat exchanger 8, the second solution heat exchanger 9 and the third solution 9 by the solution pump 12 via the pipe 19. After being preheated by the high-temperature concentrated solution from the first regenerator 7, the second regenerator 6, and the gas-liquid separator 5 in the heat exchanger 10, respectively, the valve 15 and the inlet pipe for the dilute solution of the regenerator 2 After flowing through 0, it flows into the portable regenerator 4.
可搬型蓄熱器 4に流入した希溶液は、 可搬型蓄熱器 4に蓄熱された熱エネ ルギ一の放熱により加熱され高温となり、蓄熱器の高温希溶液用出口配管 2 1、 弁 1 6を経由して気液分離器 5に入る。  The dilute solution that has flowed into the portable regenerator 4 is heated by the heat of the heat energy stored in the portable regenerator 4 to a high temperature, and passes through the high-temperature dilute solution outlet pipe 21 of the regenerator and the valve 16. Into the gas-liquid separator 5.
蓄熱器の高温希溶液用出口配管 2 1、弁 1 6の流路断面積が十分に大きな 場合は、 可搬型蓄熱器 4、 蓄熱器の高温希溶液用出口配管 2 1、 弁 1 6内な どで希溶液が加熱されて高温となり、一部が冷媒蒸気となり溶液が濃縮を開 始した状態で気液分離器 5に送られる場合もある。 図 8は、 可搬型蓄熱器 4 と気液分離器 5とを分割した例を示しているが、気液分離器 5を可搬型蓄熱 器 4の内部に一体化することも可能である。 図 3は、 気液分離器 5を可搬型 蓄熱器 4の内部に一体化した例を示す。 図 3では、 可搬型蓄熱器の蓄熱部 4 Aのヘッダー 2 0 4内に気液分離機能 5 Dが収納されている。 この場合には、 図 8の弁 1 6に相当する弁は、気液分離器の濃溶液用出口配管 2 2中の弁 1 6 Bと気液分離器の冷媒蒸気用出口配管 2 8中の弁 1 6 Aの如く二個所に 必要となる。 If the cross-sectional area of the high-temperature dilute solution outlet pipe 21 and valve 16 of the regenerator is sufficiently large, the portable regenerator 4 and high-temperature dilute solution outlet pipe 21 of the regenerator and the valve 16 In some cases, the dilute solution is heated to a high temperature, a part thereof becomes a refrigerant vapor, and is sent to the gas-liquid separator 5 in a state where the solution has started concentration. Figure 8 shows a portable heat storage device 4 Although the example in which the gas-liquid separator 5 and the gas-liquid separator 5 are divided is shown, the gas-liquid separator 5 can be integrated into the portable heat storage device 4. FIG. 3 shows an example in which the gas-liquid separator 5 is integrated into the portable heat storage device 4. In FIG. 3, the gas-liquid separation function 5D is housed in the header 204 of the heat storage section 4A of the portable heat storage device. In this case, the valve corresponding to the valve 16 in FIG. 8 is the valve 16 B in the concentrated solution outlet pipe 22 of the gas-liquid separator and the refrigerant vapor outlet pipe 28 in the gas-liquid separator. It is needed in two places like valve 16A.
気液分離器 5で冷媒蒸気を分離することにより濃縮された高温の濃溶液 は、 気液分離器の濃溶液用出口配管 2 2を介して、 第三溶液熱交換器 1 0、 第二溶液熱交換器 9、 第一溶液熱交換器 8で、 それぞれ低温の希溶液により 冷却されて、 吸収器の入口配管 2 7を経て吸収器 2に入る。 ここで、 図 4に 示すように、 気液分離器 5からの濃溶液を、 配管 1 2 1から循環ポンプ 1 2 0を介して蓄熱器 4に循環させ、蓄熱器 4における伝熱性能の向上を図るよ うにすることもできる。  The high-temperature concentrated solution concentrated by separating the refrigerant vapor in the gas-liquid separator 5 passes through the concentrated solution outlet pipe 22 of the gas-liquid separator, and the third solution heat exchanger 10 and the second solution In the heat exchanger 9 and the first solution heat exchanger 8, each is cooled by a low-temperature dilute solution, and enters the absorber 2 through the inlet pipe 27 of the absorber. Here, as shown in FIG. 4, the concentrated solution from the gas-liquid separator 5 is circulated from the pipe 12 1 to the regenerator 4 via the circulation pump 120 to improve the heat transfer performance in the regenerator 4. You can also try to do it.
一方、 気液分離器 5で分離された高温高圧の冷媒蒸気は、 気液分離器の冷 媒蒸気用出口配管 2 8から第二再生器 6に入る。第二再生器 6に入った冷媒 蒸気は、 第二溶液熱交換器 9の出口側において分流し、 第二再生器の希溶液 用入口配管 2 3を経て第二再生器 6内に散布された希溶液を加熱し、 この希 溶液を濃縮する。 濃縮された濃溶液は、 第二再生器の濃溶液用出口配管 2 4 を介して、 第三溶液熱交換器 1 0からの濃溶液と合流して、 第二溶液熱交換 器 9、 第一溶液熱交換器 8で、 それぞれ低温の希溶液により冷却されて、 吸 収器の入口配管 2 7を経て吸収器 2に入る。  On the other hand, the high-temperature and high-pressure refrigerant vapor separated by the gas-liquid separator 5 enters the second regenerator 6 from the refrigerant vapor outlet pipe 28 of the gas-liquid separator. Refrigerant vapor entering the second regenerator 6 is diverted at the outlet side of the second solution heat exchanger 9, and is sprayed into the second regenerator 6 via the diluted solution inlet pipe 23 of the second regenerator. Heat the dilute solution and concentrate the dilute solution. The concentrated concentrated solution merges with the concentrated solution from the third solution heat exchanger 10 via the concentrated solution outlet pipe 24 of the second regenerator, and the second solution heat exchanger 9, In the solution heat exchanger 8, each is cooled by a low-temperature dilute solution, and enters the absorber 2 via the inlet pipe 27 of the absorber.
第二再生器 6で高温高圧の冷媒蒸気により加熱され発生した中温中圧の 冷媒蒸気は、 第二再生器の冷媒蒸気用出口配管 3 0を介して、 第一再生器 7 に入る。 第一再生器 7に入った冷媒蒸気は、 第一溶液熱交換器 8の出口側に おいて分流し、第一再生器の希溶液用入口配管 2 5を経て第一再生器 7内に 散布された希溶液を加熱し、 この希溶液を濃縮する。 濃縮された濃溶液は、 第一再生器の濃溶液用出口配管 2 6を介して、第二溶液熱交換器 9からの濃 溶液と合流して、 第一溶液熱交換器 8で低温の希溶液により冷却されて、 吸 収器の入口配管 2 7を経て吸収器 2に入る。 The medium-temperature and medium-pressure refrigerant vapor generated by being heated by the high-temperature and high-pressure refrigerant vapor in the second regenerator 6 enters the first regenerator 7 via the refrigerant vapor outlet pipe 30 of the second regenerator. Refrigerant vapor that has entered the first regenerator 7 exits the first solution heat exchanger 8 Then, the diluted solution sprayed into the first regenerator 7 via the diluted solution inlet pipe 25 of the first regenerator is heated, and the diluted solution is concentrated. The concentrated concentrated solution joins with the concentrated solution from the second solution heat exchanger 9 through the concentrated solution outlet pipe 26 of the first regenerator, and is cooled by the first solution heat exchanger 8 at low temperature. After being cooled by the solution, it enters the absorber 2 via the inlet pipe 27 of the absorber.
第二再生器 6で凝縮した冷媒蒸気は、第二再生器の冷媒液用出口配管 3 1 を介して、第二再生器の冷媒蒸気用出口配管 3 0を流れる中温中圧の冷媒蒸 気に合流する。 第一再生器 7で凝縮した冷媒液は、 第一再生器の冷媒液用出 口配管 3 2を介して凝縮器 3に送られる。第一再生器 7で中温中圧の冷媒蒸 気で加熱され発生した冷媒蒸気は、 凝縮器 3に入り、 ここで冷却水配管 1 8 を流れる冷却水により冷却され冷媒液となる。 この冷媒液は、 第一再生器 7 で凝縮した冷媒液と共に凝縮器の冷媒液用出口配管 3 3を介して蒸発器 1 に入る。  The refrigerant vapor condensed in the second regenerator 6 passes through the refrigerant vapor outlet pipe 31 of the second regenerator to the medium-temperature and medium-pressure refrigerant vapor flowing through the refrigerant vapor outlet pipe 30 of the second regenerator. Join. The refrigerant liquid condensed in the first regenerator 7 is sent to the condenser 3 via the refrigerant liquid outlet pipe 32 of the first regenerator. The refrigerant vapor generated by being heated by the medium-temperature and medium-pressure refrigerant vapor in the first regenerator 7 enters the condenser 3, where it is cooled by the cooling water flowing through the cooling water pipe 18 to be a refrigerant liquid. This refrigerant liquid enters the evaporator 1 via the refrigerant liquid outlet pipe 33 of the condenser together with the refrigerant liquid condensed in the first regenerator 7.
蒸発器 1内では、 冷媒液は、 冷媒ポンプ 1 1で蒸発器の冷媒液配管 3 4を 介して揚液,散布され、 冷水配管 1 7を流れる冷水から熱を奪って蒸発し、 冷媒蒸気となって吸収器 2に入る。 図 8には示されていないが、 熱を奪われ た冷水は低温となり、 冷熱源として需要側に供給される。 蒸発器 1からの冷 媒蒸気は、 吸収器 2内に散布されている濃溶液に吸収されて希溶液となり、 吸収器 2の下部から溶液ポンプ 1 2により配管 1 9を介して第一溶液熱交 換器 8へと送られ、 上述したサイクルを繰り返す。 吸収器 2で濃溶液が冷媒 蒸気を吸収する際に発生する熱は、冷却水配管 1 8を流れる冷却水により冷 却される。  In the evaporator 1, the refrigerant liquid is pumped and dispersed by the refrigerant pump 11 through the refrigerant liquid pipe 34 of the evaporator, and evaporates by removing heat from the cold water flowing through the chilled water pipe 17 to evaporate. And enter absorber 2. Although not shown in Fig. 8, the cold water deprived of heat has a low temperature and is supplied to the demand side as a cold heat source. The refrigerant vapor from the evaporator 1 is absorbed by the concentrated solution sprayed in the absorber 2 to become a dilute solution, and the first solution heat is supplied from the lower part of the absorber 2 via the pipe 19 by the solution pump 12 by the solution pump 12. It is sent to exchanger 8 and repeats the cycle described above. The heat generated when the concentrated solution absorbs the refrigerant vapor in the absorber 2 is cooled by the cooling water flowing through the cooling water pipe 18.
図 8の例では、冷却水は吸収器 2から凝縮器 3に直列に通水されているが、 並列に通水したり、 逆に凝縮器 3から吸収器 2に通水したり してもよい。 可搬型蓄熱器 4の放熱開始時、 放熱完了時、 需要熱量の変化時などにおい て、再生器の一構成部としての可搬型蓄熱器 4で直接加熱される吸収溶液が、 所定の加熱温度に到達しない場合、 再生器の機能を構成する部分、 再生器な どでこの現象を温度検出調節器 1 3により検知し、温度検出調節器 1 3から の信号に基づいて調節弁 1 4を開閉制御して、 安定な運転状態と、 この条件 で最も効率のよい多重効用の吸収冷凍サイクルを確保する。 In the example of Fig. 8, the cooling water is passed in series from the absorber 2 to the condenser 3, but it can also be passed in parallel, or conversely, from the condenser 3 to the absorber 2. Good. At the start of heat release from portable heat storage unit 4, at the end of heat release, at the time of change in heat demand, etc. Therefore, if the absorption solution directly heated by the portable regenerator 4 as a component of the regenerator does not reach the predetermined heating temperature, this phenomenon occurs in the parts that constitute the regenerator and in the regenerator. The temperature is detected by the temperature detection controller 13 and the control valve 14 is controlled to open and close based on the signal from the temperature detection controller 13 to ensure a stable operating condition and the most efficient multi-effect absorption refrigeration under these conditions. Secure the cycle.
即ち、 加熱エネルギーの温度が比較的低い状態では、 気液分離器 5底部の 濃溶液が比較的に低温で、 かつ、 器内の発生冷媒圧力が比較的に低く、 完全 な三重効用吸収冷凍サイクルが不可能となる。 そして、 第二再生器 6、 第一 再生器 7における加熱冷媒の蒸気圧が低下するため、十分な希溶液の濃縮が 行われず、 また、 発生する蒸気量が減少するので、 それぞれの再生器 6, 7 の内圧が低下するため、 それぞれの再生器 6, 7からの濃溶液の吸収器 2へ の流れが悪くなり、 不安定な運転状態となる恐れがある。 この状態を回避す るため、 上述の如く、 調節弁 1 4を開閉制御し、 冷媒蒸気用バイパス配管 2 9を介して、 第一再生器 7にとつては比較的高温で高圧の冷媒蒸気を第一再 生器 7に供給する。 これにより、 安定な運転状態の維持と、 この状態での最 適な多重効用吸収冷凍サイクルを維持することが可能となる。  That is, when the temperature of the heating energy is relatively low, the concentrated solution at the bottom of the gas-liquid separator 5 is relatively low in temperature, and the generated refrigerant pressure in the vessel is relatively low, so that a complete triple effect absorption refrigeration cycle is performed. Becomes impossible. Then, since the vapor pressure of the heating refrigerant in the second regenerator 6 and the first regenerator 7 decreases, sufficient concentration of the dilute solution is not performed, and the amount of generated vapor decreases. Since the internal pressures of the regenerators 6 and 7 decrease, the flow of the concentrated solution from the respective regenerators 6 and 7 to the absorber 2 becomes worse, which may result in unstable operation. In order to avoid this state, the control valve 14 is controlled to open and close as described above, and the relatively high-temperature and high-pressure refrigerant vapor is supplied to the first regenerator 7 via the refrigerant vapor bypass pipe 29. Supply to the first regenerator 7. As a result, it is possible to maintain a stable operation state and maintain an optimum multiple-effect absorption refrigeration cycle in this state.
図 8では、気液分離器 5底部における濃溶液の温度に基づいて上記不安定 な運転状態を検知しているが、 この気液分離器 5の場合に、 ここで濃縮され る溶液の蒸気圧力、 即ち発生冷媒蒸気の圧力、 及び吸収液の液面レベルに基 づいてもこの状態を検出することが可能である。 即ち、 上記不安定な運転状 態では、 気液分離器 5内で、 濃溶液の温度が比較的低温となり、 また、 冷媒 蒸気の圧力が低下し、 気液分離器 5と吸収器 2の差圧が減少し、 気液分離器 出口濃溶液配管 2 2へ流れる量が低下し、 その結果濃溶液の液面レベルが上 昇するという現象が発生する。 したがって、 温度、 圧力、 液面レベルの一つ 又は複数を検知し、 該再生器又は気液分離器で発生する冷媒蒸気を、 下段の 再生器をバイパスしてその次の下段の再生器の加熱源側に流量制御して導 入し、 高効率でかつ安定な運転状態を自動的に維持することが可能となる。 図 8には示されていないが、再生器又は気液分離器 5内又はその周辺で同等 の検出が可能な個所がある。 In FIG. 8, the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is That is, it is possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state described above, the temperature of the concentrated solution becomes relatively low in the gas-liquid separator 5 and the pressure of the refrigerant vapor decreases, and the difference between the gas-liquid separator 5 and the absorber 2 The pressure decreases, the amount of gas flowing into the concentrated solution pipe 22 at the outlet of the gas-liquid separator decreases, and as a result, the level of the concentrated solution rises. Therefore, one or more of temperature, pressure, and liquid level are detected, and the refrigerant vapor generated in the regenerator or gas-liquid separator is sent to the lower stage. By bypassing the regenerator and introducing it to the heating source side of the next lower regenerator by controlling the flow rate, it is possible to automatically maintain a highly efficient and stable operation state. Although not shown in FIG. 8, there are places where the same detection can be made in or around the regenerator or gas-liquid separator 5.
冷却水の入口温度が所定の温度より上昇すると、 第一再生器 7、 第二再生 器 6、 及び気液分離器 5底部の濃溶液温度が上昇する。 即ち、 この状態の各 器内の発生冷媒蒸気の圧力では、 希溶液を十分に濃縮できず、 このためそれ ぞれの冷媒蒸気の圧力が連鎖的に上昇して、正常な三重効用の吸収冷凍サイ クルが不可能となり、安定で高効率な運転状態を確保できない恐れがある。 この状態を回避するため、 上述の如く、 調節弁 1 4を開閉制御し、 冷媒蒸気 用バイパス配管 2 9を介して第一再生器 7にとつては比較的高温高圧の冷 媒蒸気を供給して、安定な運転状態の維持とこの状態での最適な多重効用吸 収冷凍サイクルを維持することが可能となる。  When the inlet temperature of the cooling water rises above a predetermined temperature, the temperature of the concentrated solution at the bottom of the first regenerator 7, the second regenerator 6, and the gas-liquid separator 5 rises. In other words, the pressure of the refrigerant vapor generated in each unit in this state cannot concentrate the dilute solution sufficiently, so that the pressure of each refrigerant vapor increases in a chain, and the normal triple effect absorption refrigeration is performed. Cycles become impossible, and there is a risk that stable and efficient operating conditions cannot be ensured. In order to avoid this state, as described above, the control valve 14 is controlled to open and close, and the relatively high-temperature and high-pressure refrigerant vapor is supplied to the first regenerator 7 via the refrigerant vapor bypass pipe 29. As a result, it is possible to maintain a stable operation state and maintain an optimal multiple-effect absorption refrigeration cycle in this state.
図 8では、気液分離器 5底部の濃溶液の温度に基づいて上記不安定な運転 状態を検知しているが、 この気液分離器 5の場合に、 ここで濃縮される溶液 の蒸気圧力、 即ち発生冷媒蒸気の圧力、 及ぴ吸収液の液面レベルに基づいて もこの状態を検出することが可能である。 即ち、 上記不安定な運転状態では、 気液分離器 5内で、 濃溶液の温度が比較的高温となり、 また、 冷媒蒸気の圧 力が上昇し、 かつ、 気液分離器 5と吸収器 2の差圧の上昇で、 濃溶液の流れ が良くなるので濃溶液の液面レベルが低下するという現象が発生する。 した がって、 温度、 圧力、 液面レベルの一つ又は複数を検知し、 該再生器又は気 液分離器で発生する冷媒蒸気を下段の再生器をバイパスしてその次の下段 の再生器の加熱源側に流量制御して導入し、高効率でかつ安定な運転状態を 自動的に維持することが可能となる。 図 8には示されていないが、 再生器又 は気液分離器 5内又はその周辺で同等の検出が可能な個所がある。 加熱媒体あるいは再生器の一構成部としての可搬型蓄熱器 4で直接加熱 される吸収溶液が所定の加熱温度に到達しない場合と、冷却水の入口温度が 所定の温度より上昇する場合とでは、 上述の気液分離器 5に発生する現象は 逆の現象となる。 加熱源の加熱温度の変化を、 蓄熱器の希溶液用出口配管 2 1中に設けた温度センサーで検知し、 また、 冷却水入口温度の変化を、 冷却 水用入口配管 1 8に設けた温度センサーで検知し、 この検出信号によりいず れの制御を優先するかを判断制御すると共に、上記最も高温高圧の再生器な どでこの現象を温度、圧力及ぴ吸収液の液面レベルの一つ又は複数で検知し、 該再生器又は気液分離器で発生する冷媒蒸気を下段の再生器をパイパスし その次の下段の再生器の加熱源側に流量制御して導入する制御機構を用い て、 高効率でかつ安定な運転状態を自動的に維持する制御を選択的に行うこ とができる。 In FIG. 8, the unstable operation state is detected based on the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of the gas-liquid separator 5, the vapor pressure of the solution concentrated here is detected. That is, it is also possible to detect this state based on the pressure of the generated refrigerant vapor and the liquid level of the absorbing liquid. That is, in the unstable operation state, the temperature of the concentrated solution becomes relatively high in the gas-liquid separator 5, the pressure of the refrigerant vapor increases, and the gas-liquid separator 5 and the absorber 2 As the differential pressure rises, the flow of the concentrated solution becomes better, and the level of the concentrated solution drops. Accordingly, one or more of the temperature, pressure, and liquid level are detected, and the refrigerant vapor generated in the regenerator or the gas-liquid separator is bypassed to the lower regenerator and the next lower regenerator It is possible to automatically maintain a high-efficiency and stable operation state by introducing a flow rate control to the heating source side. Although not shown in FIG. 8, there is a portion where the same detection can be performed in or around the regenerator or the gas-liquid separator 5. The case where the absorbing solution directly heated by the heating medium or the portable regenerator 4 as one component of the regenerator does not reach the predetermined heating temperature, and the case where the cooling water inlet temperature rises above the predetermined temperature are as follows: The phenomenon that occurs in the gas-liquid separator 5 described above is the reverse phenomenon. A change in the heating temperature of the heating source is detected by a temperature sensor provided in the dilute solution outlet pipe 21 of the regenerator, and a change in the cooling water inlet temperature is detected by the temperature provided in the cooling water inlet pipe 18. The sensor detects this and determines and determines which control is prioritized based on this detection signal. At the same time, the regenerator with the highest temperature and pressure is used to detect this phenomenon in terms of temperature, pressure, and the liquid level of the absorbing liquid. One or more detectors, and a control mechanism that bypasses the refrigerant vapor generated by the regenerator or gas-liquid separator through the lower regenerator and controls the flow rate to the heating source side of the next lower regenerator is used. As a result, it is possible to selectively perform control for automatically maintaining a highly efficient and stable operation state.
再生器の一構成部としての可搬型蓄熱器 4は、蓄熱エネルギーが放出され た後に、 できるだけ内部を流れていた吸収溶液を吸収冷凍装置内に戻すよう にして切り離しても、 この可搬型蓄熱器 4の図 1に示す伝熱管 2 0 1などの 内部に、流れていた吸収溶液などが伝熱管 2 0 1内面を含む内面に付着して 残存する。 このまま、 可搬型蓄熱器 4を切り離すと、 残存した吸収溶液の量 だけ吸収冷凍装置内の吸収溶液が減少し、可搬型蓄熱器 4の複数回の脱着で、 装置内の吸収溶液が不足し安定な運転が不可能となる。 このため、 図 8に示 す例では、 可搬型蓄熱器 4を切り離す直前に、 吸収冷凍装置運転中の機内の 圧力差を利用し、吸収冷凍装置内の最も高温高圧の冷媒蒸気が存在する気液 分離器 5から弁 1 6、蓄熱器の高温希溶液用出口配管 2 1を通じて可搬型蓄 熱器 4に高温高圧の冷媒蒸気を逆流させ、 この冷媒蒸気で可搬型蓄熱器 4の 図 1に示されている伝熱管 2 0 1などの内部を洗浄し、吸収溶液などを含む 冷媒を、 圧力の低い吸収器 2に圧力差を利用して自動弁 3 6、 配管 3 8を介 して回収する。 この洗浄運転の開始直前には、 溶液ポンプ 1 2を停止して蓄 熱器の希溶液用入口配管 2 0への希溶液の供給を止め、 かつ、 自動弁 3 5を 閉じ、 第二再生器 6への冷媒蒸気の流れを阻止している。 この際に、 自動弁 1 5を閉じれば、 すべての吸収溶液などを含む冷媒は、 配管 3 8から吸収器 2に回収される。 自動弁 1 5を開いたままにした場合は、 吸収溶液などを含 む冷媒を吸収溶液と共に逆流させ、 吸収器 2、 第一再生器 7、 第二再生器 6 にも同時に回収することもできる。 The portable regenerator 4, which is a component of the regenerator, can be connected to the absorption refrigerating unit after the heat storage energy has been released, so that the absorption solution that has flowed as much as possible can be separated into the portable regenerator. In the inside of the heat transfer tube 201 shown in FIG. 1 of FIG. 4, for example, the flowing absorbing solution adheres to the inner surface including the inner surface of the heat transfer tube 201 and remains. If the portable regenerator 4 is disconnected as it is, the amount of the absorbing solution in the absorption refrigerating unit decreases by the amount of the remaining absorbing solution, and the desorbing of the portable regenerator 4 multiple times causes the absorption solution in the unit to run short and stable. Operation becomes impossible. For this reason, in the example shown in FIG. 8, immediately before disconnecting the portable regenerator 4, the highest temperature and high pressure refrigerant vapor in the absorption refrigeration system exists using the pressure difference inside the absorption refrigeration system during operation. High-temperature and high-pressure refrigerant vapor flows back to the portable heat storage device 4 from the liquid separator 5 through the valve 16 and the high-temperature dilute solution outlet pipe 21 of the heat storage device, and this refrigerant vapor is used as shown in Fig. 1 of the portable heat storage device 4. The inside of the heat transfer tube 201 shown is cleaned, and the refrigerant containing the absorbing solution etc. is transferred to the low pressure absorber 2 by using the pressure difference through the automatic valve 36 and the piping 38. And collect. Immediately before the start of this washing operation, the solution pump 12 is stopped to stop the supply of the dilute solution to the dilute solution inlet pipe 20 of the regenerator, and the automatic valve 35 is closed, and the second regenerator Blocking the flow of refrigerant vapor to 6. At this time, if the automatic valve 15 is closed, the refrigerant containing all the absorbing solution and the like is recovered to the absorber 2 from the pipe 38. If the automatic valve 15 is left open, the refrigerant containing the absorbing solution, etc., flows back together with the absorbing solution, and can be simultaneously recovered in the absorber 2, the first regenerator 7, and the second regenerator 6. .
図 8では、 この吸収溶液を含む冷媒を吸収器 2に戻しているが、 図 9の如 く、 自動弁 3 6を介して、 配管 3 9から凝縮器 3に戻すことも可能である。 また、 図 8に示す方法と図 9に示す方法の両方を一緒に実施することも可能 である。 実施例として図示していないが、 可搬型蓄熱器 4内部より低圧であ り、 この吸収溶液を含む冷媒を戻すことができる場所であれば、 蒸発器 1、 第二再生器 6、 第一再生器 7、 関連する配管中などに吸収溶液を含む冷媒を 戻しても良い。 但し、 冷媒サイクル側に戻した時は、 冷媒の吸収溶液による 汚れとなり、 次の運転時にこの汚れを再生しながら運転することとなり、 ま た、 吸収器 2などの溶液サイクルに戻した場合は、 運転開始後、 回収された 冷媒液の分量に相当する吸収溶液を濃縮しながら運転することとなり、相当 量の運転エネルギーの損失を伴う。  In FIG. 8, the refrigerant containing the absorbing solution is returned to the absorber 2, but it is also possible to return the refrigerant from the pipe 39 to the condenser 3 via the automatic valve 36 as shown in FIG. It is also possible to implement both the method shown in FIG. 8 and the method shown in FIG. 9 together. Although not shown as an embodiment, as long as the pressure is lower than the inside of the portable regenerator 4 and the refrigerant containing the absorbing solution can be returned, the evaporator 1, the second regenerator 6, the first regenerator Refrigerant containing the absorbing solution may be returned to the vessel 7 and related piping. However, when returned to the refrigerant cycle side, it becomes contaminated by the absorbing solution of the refrigerant, and during the next operation, it will be operated while regenerating this dirt.When returned to the solution cycle of the absorber 2, etc., After the start of the operation, the operation will be performed while concentrating the absorption solution corresponding to the amount of the recovered refrigerant liquid, and a considerable amount of operating energy will be lost.
気液分離器 5からの冷媒蒸気に替えて、 図 1 0及び図 1 1の如く、 冷媒サ ィクルの冷媒液を可搬型蓄熱器 4に注入しても良い。 この注入冷媒液の圧力 を可搬型蓄熱器 4の内部圧より高圧にして注入するため、 図 1 1の如く、 冷 媒ポンプ 1 1の吐出圧力を利用するカ 供給圧力が不足の場合は補助ポンプ を備えてもよい。 図 1 0の如く、 冷媒液を吸込む場所によっては、 補助ボン プ 4 5を設け、洗浄時に強制的にこの補助ポンプ 4 5を運転して凝縮器 3の 底部の凝縮冷媒液を凝縮器の冷媒液用出口配管 3 3からバイパスして配管 4 0を介して補助ポンプ 4 5で昇圧して、 配管 4 1、 自動弁 3 7を介して洗 浄用冷媒を可搬型蓄熱器 4に供給する方法も可能である。冷媒液の吸込み場 所は、 図 1 1の蒸発器 1の底部、 図 1 0の凝縮器 3の底部に限られず、 実施 例として図示されていないが、図 8の第二再生器 6の冷媒液用出口配管 3 1 などでもよい。 また、 特別にこれらの場所に冷媒液の溜まる構造を設けると 更に良い。 Instead of the refrigerant vapor from the gas-liquid separator 5, the refrigerant liquid of the refrigerant cycle may be injected into the portable heat storage device 4 as shown in FIGS. Since the pressure of the injected refrigerant liquid is higher than the internal pressure of the portable regenerator 4 and injected, as shown in Fig. 11, the auxiliary pump is used when the supply pressure of the refrigerant pump 11 is insufficient. May be provided. As shown in Fig. 10, an auxiliary pump 45 is provided depending on the place where the refrigerant liquid is sucked, and this auxiliary pump 45 is forcibly operated during washing to condense the refrigerant liquid at the bottom of the condenser 3 into the refrigerant of the condenser. Liquid outlet piping 3 Piping bypassing from 3 A method is also possible in which the pressure is increased by an auxiliary pump 45 via 40 and the cleaning refrigerant is supplied to the portable regenerator 4 via a pipe 41 and an automatic valve 37. The suction location of the refrigerant liquid is not limited to the bottom of the evaporator 1 in FIG. 11 and the bottom of the condenser 3 in FIG. 10 and is not shown as an example, but the refrigerant in the second regenerator 6 in FIG. A liquid outlet pipe 31 may be used. Further, it is more preferable to provide a structure for storing the refrigerant liquid in these places.
冷媒液を注入する場合、 図 1 0では、 洗浄開始直前に、 溶液ポンプ 1 2を 停止し、 自動弁 1 5、 自動弁 3 5を閉止する。 この実施方法では、 気液分離 器 5内の高温高圧の冷媒蒸気が、 弁 1 6と配管 2 1を介して、 配管 4 1から 注入される冷媒液と共に、 可搬型蓄熱器 4内に流入され、 可搬型蓄熱器 4内 の洗浄を行うことになる。 この場合、 自動弁 3 5を設けずに、 弁 1 6を自動 弁とし、 気液分離器 5内の高温高圧の冷媒蒸気を遮断すれば、 冷媒液のみで の洗浄とすることもできる。 また、 自動弁 3 5は蒸気通路の弁であり、 弁 1 6を自動弁とするとこれは溶液通路の弁となる。 したがって、 弁 1 6を自動 弁とした方が小さな弁となり、 経済的であるので、 いずれの方法が最良か検 討の上、 最良の方法を採用することが可能である。  In the case of injecting the refrigerant liquid, in FIG. 10, just before the cleaning is started, the solution pump 12 is stopped, and the automatic valves 15 and 35 are closed. In this implementation method, the high-temperature and high-pressure refrigerant vapor in the gas-liquid separator 5 flows into the portable regenerator 4 through the valve 16 and the pipe 21 together with the refrigerant liquid injected from the pipe 41. However, the inside of the portable regenerator 4 will be cleaned. In this case, if the automatic valve 35 is not provided and the valve 16 is an automatic valve, and the high-temperature and high-pressure refrigerant vapor in the gas-liquid separator 5 is shut off, cleaning with only the refrigerant liquid can be performed. Further, the automatic valve 35 is a valve in the vapor passage, and if the valve 16 is an automatic valve, this is a valve in the solution passage. Therefore, it is economical to use the automatic valve 16 instead of the valve 16, and it is possible to adopt the best method after examining which method is the best.
また、 自動弁 1 5を開いたままの場合は、 上述の図 8の例で説明したのと 同様の効果がある。  When the automatic valve 15 is kept open, the same effect as that described in the example of FIG. 8 is obtained.
図 1 1においては、 自動弁 1 5及ぴ自動弁 1 6は、 洗浄開始直前に閉止し、 かつ、 溶液ポンプ 1 2は停止する。 上述の図 8、 図 1 0の場合と同様に、 自 動弁 1 5は開いたままの場合も実施することが可能である。  In FIG. 11, the automatic valves 15 and 16 are closed immediately before the start of washing, and the solution pump 12 is stopped. As in the case of FIGS. 8 and 10 described above, it is possible to carry out the case where the automatic valve 15 is kept open.
図 8における冷媒蒸気での洗浄方法に替えて、 図 1 0、 図 1 1の如く、 冷 媒液を注入する方法では、 特に、 可搬型蓄熱器 4内の吸収溶液が自動弁 3 6 及ぴ配管 3 8から吸収器 2に速やかに回収される場合においては、 可搬型蓄 熱器 4内に注入された冷媒液は、 この蓄熱器 4の図 1に示される蓄熱材 2 0 3が保有する残存の熱エネルギーで十分に加熱され、比較的に高圧の蒸気が 発生可能となり、 十分な洗浄能力を発揮することができる。 In the method of injecting the refrigerant liquid as shown in FIGS. 10 and 11 instead of the cleaning method using the refrigerant vapor in FIG. 8, in particular, the absorption solution in the portable regenerator 4 is filled with the automatic valve 36 and In the case where the liquid is quickly recovered from the pipe 38 to the absorber 2, the refrigerant liquid injected into the portable heat storage device 4 contains the heat storage material 20 shown in FIG. 3 is sufficiently heated by the remaining thermal energy, and relatively high-pressure steam can be generated, so that sufficient cleaning ability can be exhibited.
図 4は、可搬型蓄熱器 4の加熱源エネルギーを迅速に及ぴ Z又は効率良く 吸収溶液に伝熱する目的で、気液分離器 5と可搬型蓄熱器 4の間で吸収溶液 を循環させる方法を採用した実施例を示す。 吸収溶液を強制的に循環させる ために、 再生器溶液用循環ポンプ 1 2 0が必要となる。  Fig. 4 shows that the absorbing solution is circulated between the gas-liquid separator 5 and the portable regenerator 4 for the purpose of quickly transferring the heat source energy of the portable regenerator 4 or efficiently transferring heat to the absorbing solution. An embodiment adopting the method will be described. In order to forcibly circulate the absorption solution, a circulation pump for regenerator solution 120 is required.
図 1 2は他の実施例を示すもので、可搬型蓄熱器 4を吸収冷凍装置から切 り離して、装置内から抽出した冷媒液又は他の洗浄用の液体を洗浄液タンク 3 0 0に弁 3 0 4と配管 3 0 3を介して充填し、 洗浄液ポンプ 3 0 1で、 配 管 3 0 2を介して冷媒液又は他の洗浄用の液体を送液して、可搬型蓄熱器 4 内を洗浄し、 吸収溶液などで汚れた洗浄液は、 配管 3 0 7を介して、 回収液 タンク 3 0 9に集める。 回収液タンク 3 0 9に集められた吸収溶液などを含 む液は、 吸収冷凍装置から抽出した冷媒液の場合は、 回収タンク 3 0 9から 配管 3 1 0及び弁 3 1 1を介して吸収冷凍装置に戻し、冷媒の清浄化のため の運転を実施することで、 環境への排出は回避される。 この場合の冷媒清浄 化方法には、 二つの方法がある。 吸収溶液側に回収すれば、 吸収溶液の希釈 となり、起動時にこの分量の吸収溶液を濃縮するために運転時間を延長する ことで実現可能である。 もう一方の方法は、 冷媒液側に回収する方法であり、 この場合は、 冷媒液の一部を運転中に、 吸収溶液サイクル側に注入しながら 運転する方法である。 いずれの場合も冷媒液の清浄化のために、 運転のため の加熱エネルギーが余分に消費される。  FIG. 12 shows another embodiment, in which the portable regenerator 4 is separated from the absorption refrigeration system, and the refrigerant liquid or other cleaning liquid extracted from the inside of the system is valved in the cleaning liquid tank 300. Filled via 304 and piping 303, and the cleaning liquid pump 301 sends refrigerant liquid or other cleaning liquid via piping 302 to the inside of the portable regenerator 4. The washing liquid contaminated with the absorbing solution or the like is collected in a recovery liquid tank 309 via a pipe 307. The liquid containing the absorption solution and the like collected in the recovery liquid tank 309 is absorbed from the recovery tank 309 via the pipe 310 and the valve 311 in the case of the refrigerant liquid extracted from the absorption refrigeration system. By returning to the refrigeration system and performing operation for purifying the refrigerant, discharge to the environment is avoided. In this case, there are two methods for purifying the refrigerant. If it is collected on the absorption solution side, the absorption solution will be diluted, and this can be realized by extending the operation time to concentrate this amount of absorption solution at startup. The other method is a method in which the refrigerant liquid is recovered to the refrigerant liquid side. In this case, the operation is performed while a part of the refrigerant liquid is injected into the absorption solution cycle side during operation. In either case, extra heating energy is consumed to clean the refrigerant liquid.
他の洗浄液が使用された場合は、洗浄液を濃縮再生して汚れを分離するか、 そのまま排出しても環境に支障がない物質の場合は、規制濃度以下まで希釈 して廃却することになる。 この場合、 吸収冷凍装置側は、 吸収溶液及びその 他の添加薬剤の補充が必要となる。 しかし、 洗浄中の時間と洗浄に使用した 冷媒液量の濃縮時間に相当する吸収冷凍装置の運転時間を有効に利用する ことが可能となる。 If another cleaning solution is used, the cleaning solution is concentrated and regenerated to separate the dirt, or if the substance is not harmful to the environment even if it is discharged as it is, it will be diluted to below the regulated concentration and discarded . In this case, the absorption refrigeration unit needs to replenish the absorption solution and other additives. However, the time during cleaning and used for cleaning The operation time of the absorption refrigerating apparatus corresponding to the concentration time of the refrigerant liquid can be effectively used.
可搬型蓄熱器 4の本発明の各種の洗浄方法は、使用する吸収溶液とその添 加物質、 環境への配慮、 洗浄のための使用エネルギー量、 洗浄のための装置 の費用等々を比較検討し、 上述の各種の方法の中から、 最適の方法が採用可 能である。  The various cleaning methods of the present invention for the portable regenerator 4 compare and compare the absorbing solution to be used and its additive substances, consideration for the environment, the amount of energy used for cleaning, the cost of the cleaning equipment, and the like. The optimal method can be adopted from the various methods described above.
上述した本発明の第 2の実施形態によれば、 次のような効果を奏すること ができる。  According to the above-described second embodiment of the present invention, the following effects can be obtained.
( 1 ) 地域冷暖房、 工場の化学プロセスにおける冷却などのために、 需要 家とは離れた場所で発生した熱エネルギーを熱需要家に供給し、空調や冷凍 に必要な冷熱源を提供することができる。  (1) It is possible to supply heat energy generated from a place away from the customer to the heat customer for district heating and cooling, cooling in the chemical process of the factory, etc., and to provide the cooling source necessary for air conditioning and refrigeration. it can.
( 2 ) 熱エネルギーの発生場所で直接的に利用できない発生エネルギーが 必要な時まで蓄熱器に蓄熱され、発生場所や発生場所から離れた場所の熱需 要家に蓄熱器を輸送して、 エネルギーの有効活用を行うことができ、 '国家的 な省エネルギーを可能とすることができる。  (2) Generated energy that cannot be used directly at the place where heat energy is generated is stored in the heat storage unit until it is needed, and the heat storage unit is transported to the heat generator at the place where the heat energy is generated or at a location away from the place where the heat energy is generated. Can be used effectively, and 'national energy savings can be made possible.
( 3 ) 熱エネルギーの輸送に可搬型蓄熱器を使用することができる。 (3) Portable heat storage can be used to transport thermal energy.
( 4 ) 地域冷暖房施設や需要家などが、 この供給された可搬型蓄熱器の熱 エネルギーを利用して吸収冷凍装置を運転して、必要とする冷熱源エネルギ 一を製造することができる。 (4) District cooling and heating facilities and consumers can operate the absorption refrigeration system using the supplied thermal energy of the portable regenerator to produce the required energy from the cooling source.
( 5 ) この供給された熱エネルギーに対して、 吸収冷凍装置として、 安価 で高効率な吸収冷凍装置を選択して使用することができる。  (5) An inexpensive and highly efficient absorption refrigeration system can be selected and used as the absorption refrigeration system for the supplied thermal energy.
( 6 ) 可搬型蓄熱器を直接に吸収冷凍装置の加熱用機器 (再生器) の一部 構成機器として使用し、 熱損失を皆無とし、 かつ、 コンパク トで経済的な吸 収冷凍装置とすることができる。  (6) The portable regenerator is used directly as a part of the heating equipment (regenerator) of the absorption refrigeration unit, and there is no heat loss, and it is a compact and economical absorption refrigeration unit. be able to.
( 7 ) 可搬型蓄熱器を吸収冷凍装置の加熱用機器 (再生器) の一部構成機 器として使用するので、使用後に可搬型蓄熱器の内部に吸収溶液などが残留 'するが、 その残留した吸収溶液を除去することができる。 (7) Portable regenerator absorbs a part of the equipment (regenerator) for heating refrigerating equipment Since it is used as a vessel, the absorbing solution etc. remains inside the portable heat storage after use, but the remaining absorbing solution can be removed.
( 8 ) 吸収冷凍装置の使用済みの蓄熱器を、 洗浄液の排出などで環境に害 を与えず、 効率良く洗浄することができる。 産業上の利用の可能性  (8) The used regenerator of the absorption refrigeration system can be washed efficiently without harming the environment due to the discharge of the washing liquid. Industrial applicability
本発明は、需要家から離れた場所で発生した熱エネルギーを用いて運転す ることができる吸収冷凍装置に好適に用いられる。  INDUSTRIAL APPLICATION This invention is used suitably for the absorption refrigeration apparatus which can be operated using the thermal energy produced | generated in the place away from the consumer.

Claims

請求の範囲 The scope of the claims
1 . 再生器、 凝縮器、 吸収器、 蒸発器、 熱交換器、 吸収溶液ポンプ及ぴ冷媒 ポンプを少なく とも主要構成機器として備え、 これらを結ぶ溶液配管、 冷媒 配管を有する吸収冷凍装置において、 1. An absorption refrigeration unit that has at least main components including a regenerator, condenser, absorber, evaporator, heat exchanger, absorption solution pump and refrigerant pump, and has a solution pipe and a refrigerant pipe connecting these
該装置の加熱源エネルギーとして可搬型蓄熱器に蓄熱された熱エネルギ 一を用いることを特徴とする吸収冷凍装置。  An absorption refrigeration apparatus, wherein heat energy stored in a portable heat storage device is used as a heat source energy of the apparatus.
2 . 前記可搬型蓄熱器に蓄熱された熱エネルギーは、 媒体を介して用いるこ とを特徴とする請求項 1記載の吸収冷凍装置。 2. The absorption refrigerating apparatus according to claim 1, wherein the thermal energy stored in the portable regenerator is used via a medium.
3 . 前記可搬型蓄熱器は、 前記吸収冷凍装置に着脱可能に接続され、 該装置 の再生器の一つの構成機能又はその一つの構成機器とし、該再生器における 吸収溶液の加熱源エネルギーとして用いられることを特徴とする請求項 1 記載の吸収冷凍装置。 3. The portable regenerator is detachably connected to the absorption refrigeration unit, and is used as one component function or one component device of a regenerator of the device, and is used as a heating source energy of the absorbing solution in the regenerator. The absorption refrigeration apparatus according to claim 1, wherein the absorption refrigeration apparatus is used.
4 . 前記再生器は、 着脱可能な可搬型蓄熱器を用いた加熱源部と、 該蓄熱器 から独立して濃縮された吸収溶液と冷媒蒸気とに分離する気液分離器部と を備えたことを特徴とする請求項 3記載の吸収冷凍装置。 4. The regenerator includes a heating source unit using a detachable portable heat storage unit, and a gas-liquid separator unit that separates the concentrated absorption solution and refrigerant vapor independently from the heat storage unit. 4. The absorption refrigeration apparatus according to claim 3, wherein:
5 . 前記吸収冷凍装置は、 前記可搬型蓄熱器が発生可能な加熱エネルギーの 温度及び Z又は圧力に応じて、 駆動可能な単効用あるいは、 多重効用の吸収 冷凍装置の中から、最も高効率の運転を可能とする最適な効用の吸収冷凍装 置を選択することを特徴とする請求項 1乃至 4のいずれか一項に記載の吸 収冷凍装置。 5. The absorption refrigeration unit has the highest efficiency among the single-effect or multiple-effect absorption refrigeration units that can be driven according to the temperature and Z or pressure of the heating energy that can be generated by the portable regenerator. The absorption refrigeration apparatus according to any one of claims 1 to 4, wherein an absorption refrigeration apparatus having an optimal effect that enables operation is selected.
6 . 前記多重効用吸収冷凍装置は、 最も高温高圧の再生器に、 前記可搬型蓄 熱器に蓄熱された熱エネルギーを用いることを特徴とする請求項 5記載の 吸収冷凍装置。 6. The absorption refrigerating apparatus according to claim 5, wherein the multi-effect absorption refrigerating apparatus uses heat energy stored in the portable regenerator for a regenerator having the highest temperature and pressure.
7 . 請求項 6記載の多重効用吸収冷凍装置の運転において、 前記可搬型蓄熱 器が放熱開始時、 放熱完了時、 需要熱量の変化時で、 該可搬型蓄熱器で直接 加熱される前記最も高温高圧の再生器の吸収溶液が、所定の加熱温度に到達 しない場合、 該再生器でこの現象を温度、 圧力及び吸収液面レベルの一つ以 上に基づいて検知し、 該再生器で発生する冷媒蒸気を、 下段の再生器をバイ パスしてその次の下段の再生器の加熱源側に流量制御して導入し、 高効率で かつ安定な運転状態を自動的に維持することを特徴とする多重効用吸収冷 凍装置の運転方法。 7. The operation of the multi-effect absorption refrigeration apparatus according to claim 6, wherein the portable heat accumulator is directly heated by the portable heat accumulator at the start of heat release, at the completion of heat dissipation, or at the time of a change in the amount of required heat. If the absorption solution of the high-pressure regenerator does not reach the predetermined heating temperature, the regenerator detects this phenomenon based on at least one of the temperature, pressure, and absorption liquid level, and occurs in the regenerator. The feature is that refrigerant vapor is bypassed through the lower regenerator and introduced into the heating source side of the next lower regenerator by controlling the flow rate to automatically maintain a highly efficient and stable operating state. To operate a multiple effect absorption refrigeration system.
8 . 請求項 6記載の多重効用吸収冷凍装置の運転において、 前記装置の構成 機器である吸収器及び凝縮器に通水される冷却水入口温度が変化した場合、 前記最も高温高圧の再生器でこの現象を温度、圧力及ぴ吸収液面レベルの一 つ以上に基づいて検知し、 該再生器で発生する冷媒蒸気を、 下段の再生器を バイパスしその次の下段の再生器の加熱源側に流量制御して導入し、高効率 でかつ安定な運転状態を自動的に維持することを特徴とする多重効用吸収 冷凍装置の運転方法。 8. The operation of the multi-effect absorption refrigeration apparatus according to claim 6, wherein, when the temperature of the cooling water inlet that is passed through the absorber and the condenser, which are constituent components of the apparatus, changes, the regenerator having the highest temperature and pressure is used. This phenomenon is detected based on one or more of the temperature, pressure, and absorption liquid level, and the refrigerant vapor generated in the regenerator is bypassed to the lower regenerator and the heating source side of the next lower regenerator. A method for operating a multiple-effect absorption refrigeration system, characterized by automatically controlling a high-efficiency and stable operating state by introducing a controlled flow rate into the system.
9 . 加熱源の加熱温度と冷却水の入口温度が変化した場合に、 いずれが変化 したかを検出して、前記再生器に導入する冷媒蒸気の流量制御を行うことを 特徴とする請求項 7又は 8記載の多重効用吸収冷凍装置の運転方法。 9. When the heating temperature of the heating source and the inlet temperature of the cooling water change, which one has changed is detected, and the flow rate of the refrigerant vapor introduced into the regenerator is controlled. Or the operation method of the multiple-effect absorption refrigeration apparatus according to 8.
1 0 . 前記加熱源の加熱温度の変化は、 蓄熱器の希溶液用出口配管中に設け た温度センサーで検知し、 また、 冷却水の入口温度の変化は、 冷却水用入口 配管に設けた温度センサーで検知し、 この検出信号によりいずれの制御を優 先するかを判断制御すると共に、前記最も高温高圧の再生器でこの現象を温 度、 圧力及ぴ吸収液面レベルの一つ以上に基づいて検知し、 該再生器で発生 する冷媒蒸気を、下段の再生器をバイパスしその次の下段の再生器の加熱源 側に流量制御して導入する制御機構を用いて、 高効率でかつ安定な運転状態 を自動的に維持することを特徴とする請求項 9記載の多重効用吸収冷凍装 置の運転方法。 10. A change in the heating temperature of the heating source was detected by a temperature sensor provided in a dilute solution outlet pipe of the regenerator, and a change in the cooling water inlet temperature was provided in the cooling water inlet pipe. The temperature sensor detects the temperature and the control signal is used to determine which control is given priority. At the same time, the regenerator with the highest temperature and high pressure reduces this phenomenon to one or more of temperature, pressure and the level of the absorbing liquid level. High efficiency and high efficiency by using a control mechanism that detects refrigerant vapor generated in the regenerator based on the flow rate and introduces the refrigerant vapor generated in the regenerator to the heating source side of the next lower regenerator by bypassing the lower regenerator. 10. The method for operating a multiple effect absorption refrigeration system according to claim 9, wherein a stable operation state is automatically maintained.
1 1 . 再生器、 凝縮器、 吸収器、 蒸発器、 熱交換器、 吸収溶液ポンプ及び冷 媒ポンプを少なくとも主要構成機器として備え、 これらを結ぶ溶液配管、 冷 媒配管を有する吸収冷凍装置において、 11 1. An absorption refrigeration unit that has at least main components including a regenerator, condenser, absorber, evaporator, heat exchanger, absorption solution pump, and coolant pump, and has a solution pipe and a coolant pipe that connect these components.
前記再生器の一つの構成機能又はその一つの構成機器として、着脱可能な 可搬型蓄熱器を配備し、該再生器における吸収溶液の加熱源エネルギーとし て該可搬型蓄熱器を使用した後に、該可搬型蓄熱器を洗浄する機能を備える ことを特徴とする吸収冷凍装置。  A removable portable heat storage device is provided as one component function of the regenerator or one component device thereof, and after using the portable heat storage device as a heat source energy of the absorbing solution in the regenerator, the portable regenerator is used. An absorption refrigeration apparatus having a function of washing a portable heat storage device.
1 2 . 前記可搬型蓄熱器は、 該可搬型蓄熱器を吸収冷凍装置から切り離すか, 又は切り離さずに洗浄する機能を備えることを特徴とする請求項 1 1記載 の吸収冷凍装置。 12. The absorption refrigerating apparatus according to claim 11, wherein the portable regenerator has a function of separating the portable regenerator from the absorption refrigerating apparatus or washing without separating the regenerator.
1 3 . 前記可搬型蓄熱器は、 再生器の加熱部のみか、 又は加熱部と気液分離 器としての構成機能を有することを特徴とする請求項 1 1又は 1 2記載の 吸収冷凍装置。 13. The absorption refrigerating apparatus according to claim 11, wherein the portable regenerator has only a heating section of a regenerator, or has a configuration function as a heating section and a gas-liquid separator.
1 4 . 前記可搬型蓄熱器内の洗浄は、 該吸収冷凍装置の内部の冷媒蒸気及び14. Cleaning of the portable regenerator is performed by removing the refrigerant vapor inside the absorption refrigeration system.
Z又は冷媒液、 又は、 別の洗浄液により行われることを特徴とする請求項 12. The method according to claim 1, wherein the cleaning is performed with Z or a refrigerant liquid or another cleaning liquid.
1乃至 1 3のいずれか一項に記載の吸収冷凍装置。 14. The absorption refrigeration apparatus according to any one of 1 to 13.
1 5 . 前記可搬型蓄熱器内の洗浄は、 該吸収冷凍装置内の別の再生器又は気 液分離器からの高温高圧の冷媒蒸気の注入、 及び/又は、 冷媒サイクルから の冷媒液の注入によって、 内部の吸収溶液を該吸収冷凍装置の低圧側に導き 除去することによって行われることを特徴とする請求項 1 1乃至 1 3のい ずれか一項に記載の吸収冷凍装置。 15. Cleaning of the portable regenerator is performed by injecting high-temperature and high-pressure refrigerant vapor from another regenerator or gas-liquid separator in the absorption refrigeration unit and / or injecting refrigerant liquid from the refrigerant cycle. The absorption refrigeration apparatus according to any one of claims 11 to 13, wherein the absorption refrigeration is carried out by introducing and removing the absorption solution inside to the low pressure side of the absorption refrigeration apparatus.
1 6 . 前記吸収冷凍装置は、 単効用吸収冷凍装置、 多重効用吸収冷凍装置、 又は加熱源の温度によって多重効用の効用数が選択された多重効用吸収冷 凍装置であることを特徴とする請求項 1 1乃至 1 5のいずれか一項に記載 の吸収冷凍装置。 16. The absorption refrigeration unit is a single-effect absorption refrigeration unit, a multiple-effect absorption refrigeration unit, or a multiple-effect absorption refrigeration unit in which the number of multiple effects is selected according to the temperature of the heating source. Item 16. The absorption refrigeration apparatus according to any one of Items 11 to 15.
PCT/JP2002/010371 2001-10-04 2002-10-04 Absorption refrigeration device WO2003031882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-308492 2001-10-04
JP2001308492A JP2003114066A (en) 2001-10-04 2001-10-04 Absorption type refrigerating device

Publications (1)

Publication Number Publication Date
WO2003031882A1 true WO2003031882A1 (en) 2003-04-17

Family

ID=19127794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010371 WO2003031882A1 (en) 2001-10-04 2002-10-04 Absorption refrigeration device

Country Status (2)

Country Link
JP (1) JP2003114066A (en)
WO (1) WO2003031882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909829A (en) * 2022-05-24 2022-08-16 香港城市大学深圳研究院 Two-stage absorption type energy storage device and using method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034083A (en) * 2014-06-23 2014-09-10 周永奎 Self-driven thermocompression heat pump cooling method and device
CN104613669A (en) * 2015-01-04 2015-05-13 新奥科技发展有限公司 Absorption type thermal converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146964A (en) * 1980-04-15 1981-11-14 Hitachi Ltd Suction type refrigerating plant
JPH03152362A (en) * 1989-11-10 1991-06-28 Ebara Corp Absorption refrigerator
JP2530221B2 (en) * 1989-03-13 1996-09-04 株式会社日立製作所 Waste heat recovery type heat storage cooling system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146964A (en) * 1980-04-15 1981-11-14 Hitachi Ltd Suction type refrigerating plant
JP2530221B2 (en) * 1989-03-13 1996-09-04 株式会社日立製作所 Waste heat recovery type heat storage cooling system
JPH03152362A (en) * 1989-11-10 1991-06-28 Ebara Corp Absorption refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909829A (en) * 2022-05-24 2022-08-16 香港城市大学深圳研究院 Two-stage absorption type energy storage device and using method thereof
CN114909829B (en) * 2022-05-24 2024-01-26 香港城市大学深圳研究院 Double-stage absorption type energy storage device and application method thereof

Also Published As

Publication number Publication date
JP2003114066A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
JP2011075180A (en) Absorption type refrigerating machine
JP2003130487A (en) Absorption refrigerating machine
CN103209928A (en) Water treatment system and water treatment method
WO2003031882A1 (en) Absorption refrigeration device
JP3905986B2 (en) Waste heat utilization air conditioning system
JP5384072B2 (en) Absorption type water heater
JP2002071239A (en) Multiple effect absorption refrigerating machine and its operating method
WO2004102085A1 (en) Absorption chiller
JP2012202589A (en) Absorption heat pump apparatus
JPS61500506A (en) Method and device for utilizing freezing heat of water as a heat source for heat pumps
JP3481530B2 (en) Absorption chiller / heater
CN206514448U (en) A kind of air-conditioning
JP2004333061A (en) Absorption refrigerating machine for single/double effect
JP3401546B2 (en) Absorption refrigerator
CN114867300B (en) Adsorption type water treatment system
JP4014520B2 (en) Absorption heat pump device and device using the same
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP2787182B2 (en) Single / double absorption chiller / heater
JP2003021420A (en) Absorption refrigerating plant and its operating method
JP4134579B2 (en) Absorption heat type absorption refrigeration system
JP3350650B2 (en) Liquid concentration device and liquid concentration method
JPH0666454A (en) Absorption type refrigerating machine
JP3857955B2 (en) Absorption refrigerator
JP2005300126A (en) Absorption type refrigerating machine
KR100858777B1 (en) Apparatus for supplying warm water during cooling mode or operation stop in absorption water cooler and heater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase