JP4014520B2 - Absorption heat pump device and device using the same - Google Patents

Absorption heat pump device and device using the same Download PDF

Info

Publication number
JP4014520B2
JP4014520B2 JP2003060100A JP2003060100A JP4014520B2 JP 4014520 B2 JP4014520 B2 JP 4014520B2 JP 2003060100 A JP2003060100 A JP 2003060100A JP 2003060100 A JP2003060100 A JP 2003060100A JP 4014520 B2 JP4014520 B2 JP 4014520B2
Authority
JP
Japan
Prior art keywords
heat
refrigerant
supplied
absorption
concentrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003060100A
Other languages
Japanese (ja)
Other versions
JP2004270996A (en
Inventor
米造 井汲
一夫 高橋
貴雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003060100A priority Critical patent/JP4014520B2/en
Publication of JP2004270996A publication Critical patent/JP2004270996A/en
Application granted granted Critical
Publication of JP4014520B2 publication Critical patent/JP4014520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、再生器、凝縮器、蒸発器、吸収器などと共に、リソーバとデソーバとを備えて構成される吸収ヒートポンプ装置とその利用装置に関する。
【0002】
【従来の技術】
この種の吸収ヒートポンプ装置として、例えば図2に示したように再生器1、凝縮器2、蒸発器3、吸収器4、リソーバ5X、デソーバ6Xなどを配管接続して構成した吸収ヒートポンプ装置100Xが周知である(特許文献1参照)。
【0003】
図2に示した吸収ヒートポンプ装置100Xにおいては、▲1▼凝縮器2の伝熱管2Aの内部を流れる冷却水が、再生器1から供給される冷媒蒸気の熱を奪って凝縮させて冷却水自身の温度を上昇させる、▲2▼吸収器4の伝熱管4Aとリソーバ5Xの伝熱管5Aの内部を流れる冷却水が、伝熱管4Aにおいてはデソーバ6Xから吸収器4に供給される冷媒蒸気が再生器1から供給されて散布器4Bから散布される吸収液に吸収される際に生じる吸収熱を奪って自身の温度を上昇させ、伝熱管5Aにおいては蒸発器3からリソーバ5Xに供給される冷媒蒸気がデソーバ6Xから供給されて散布器5Bから散布される吸収液に吸収される際に生じる吸収熱を奪って冷却水自身の温度を上昇させるので、温度上昇したそれら冷却水を用いた暖房などの加熱作用が行える。
【0004】
そして、上記構成の吸収ヒートポンプ装置100Xは、蒸発器3とデソーバ6Xとで吸熱し、凝縮器2と第二種サイクルを構成するリソーバ5Xおよび第一種サイクルを構成する吸収器4で放熱するので、加熱利用時のCOPが2以上となると云った利点がある。
【0005】
【特許文献1】
特開2001−82825(図1)
【0006】
【発明が解決しようとする課題】
しかし、上記構成の吸収ヒートポンプにおいて、加熱が一層効率良く行えるようにするためには、吸収ヒートポンプ装置自体の構成に一層の工夫を加えると共に、熱負荷、すなわち加熱される側を含めた全体で熱がさらに効率良く利用されるようにする必要があり、それが解決すべき課題となっていた。
【0007】
【課題を解決するための手段】
上記課題を解決すべく本発明は、吸収液を加熱して吸収液から冷媒を蒸発分離する再生器と、再生器から供給される冷媒蒸気を冷却して凝縮させる凝縮器と、凝縮器から供給される冷媒液を加熱して蒸発させる蒸発器と、冷媒を蒸発分離して再生器から供給される冷媒の濃度が低下した吸収液に冷媒を吸収させ、再生器から供給される吸収液と熱交換させて再生器に戻す吸収器と、蒸発器から供給される冷媒蒸気を吸収液に吸収させる第1のリソーバと、冷媒を吸収して第1のリソーバから供給される冷媒の濃度が上昇した吸収液を加熱して冷媒を吸収液から蒸発分離し冷媒の濃度が低下した吸収液を、第1のリソーバから供給される吸収液と熱交換させて第1のリソーバに戻す第1のデソーバと、第1のデソーバから供給される冷媒蒸気を吸収液に吸収させる第2のリソーバと、冷媒を吸収して第2のリソーバから供給される冷媒の濃度が上昇した吸収液を加熱して冷媒を吸収液から蒸発分離し冷媒の濃度が低下した吸収液を、第2のリソーバから供給される吸収液と熱交換させて第2のリソーバに戻すと共に、吸収液から蒸発分離した冷媒蒸気を吸収器に供給する第2のデソーバとを備えるようにした吸収ヒートポンプ装置と、
【0008】
前記吸収ヒートポンプ装置の吸収器、第2のリソーバ、第1のリソーバ、および凝縮器を経由して加熱された熱流体によって溶液を加熱して濃縮すると共に、溶液から生成した蒸気を少なくとも蒸発器、第1のデソーバ、第2のデソーバの何れかに熱源として供給する濃縮器を備えるようにした第1の構成の吸収ヒートポンプ利用濃縮装置と、
【0009】
前記第1の構成の吸収ヒートポンプ利用濃縮装置において、吸収液から冷媒を蒸発分離するために再生器に供給された駆動熱源の廃熱を有する流体と、加熱・濃縮作用を終えて濃縮器から吐出し、吸収器、第1、第2リソーバ、および凝縮器を迂回して濃縮器に戻る熱流体とを熱交換して駆動熱源の廃熱を濃縮器に還流する熱流体に回収する熱回収器を備えるようにした第2の構成の吸収ヒートポンプ利用濃縮装置と、
【0010】
前記第1または第2の構成の吸収ヒートポンプ利用濃縮装置において、濃縮器に供給されて濃縮される溶液と濃縮器で生成された蒸気の一部とを熱交換して濃縮器に供給される溶液を予熱する予熱器を備えるようにした第3の構成の吸収ヒートポンプ利用濃縮装置と、
【0011】
前記第1〜第3何れかの構成の吸収ヒートポンプ利用濃縮装置において、濃縮器内部の圧力、または前記圧力に関連した物理量に基づいて再生器に供給する駆動熱源の熱量を制御する制御手段を備えるようにした第4の構成の吸収ヒートポンプ利用濃縮装置と、
【0012】
前記第1〜第4何れかの構成の吸収ヒートポンプ利用濃縮装置において、濃縮器で濃縮さる溶液が果汁などの食品である第5の構成の吸収ヒートポンプ利用濃縮装置と、
を提供するものである。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態を図1に基づいて詳細に説明する。なお、理解を容易にするため、図1においても前記図2において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0014】
図1に例示した吸収ヒートポンプ利用濃縮装置200は、冷媒に水、吸収液に臭化リチウム水溶液などを使用する吸収ヒートポンプ装置100で生成する熱を用いて、果汁、食塩水、ミルクなどを濃縮器10において濃縮する装置である。
【0015】
吸収ヒートポンプ装置100は、内部に伝熱管1Aが設けられ、その伝熱管1Aに熱源供給管18を介して供給される駆動熱源、例えば高温の水蒸気により吸収液を加熱して吸収液から冷媒を蒸発分離し、吸収液を冷媒の吸収が可能な状態に再生する再生器1と、この再生器1から供給される冷媒蒸気を冷却して凝縮させる凝縮器2と、この凝縮器2から冷媒液管21を介して供給される冷媒液を加熱して蒸発させる蒸発器3と、冷媒を蒸発分離して再生器1から吸収液管23を介して供給される冷媒の濃度が低下した吸収液に冷媒を吸収させ、再生器1から供給されている吸収液と熱交換器11で熱交換させて再生器1に吸収液管24を介して戻す吸収器4とを備えている。
【0016】
なお、吸収液管24には吸収液ポンプP1が設けられている。また、熱源供給管18を介して駆動熱源である高温の水蒸気が供給される伝熱管1Aの出口側に連結された廃熱管19には、スチームトラップ19Aと熱回収器14とが直列に設けられ、伝熱管1Aで再生器1内の吸収液を加熱・再生して放熱し、凝縮して廃熱管19に吐出した駆動熱源のドレンが、熱回収器14に気液混合状態で供給されて熱交換効率を低下させることがないように構成されている。
【0017】
また、吸収ヒートポンプ装置100は、蒸発器3から供給される冷媒蒸気を吸収液に吸収させる第1のリソーバ5と、冷媒を吸収して第1のリソーバ5から吸収液管25を介して供給される冷媒の濃度が上昇した吸収液を加熱して冷媒を吸収液から蒸発分離し冷媒の濃度が低下した吸収液を、第1のリソーバ5から供給される吸収液と熱交換器12で熱交換させて第1のリソーバ5に吸収液管26を介して戻す第1のデソーバ7と、第1のデソーバ7から供給される冷媒蒸気を吸収液に吸収させる第2のリソーバ6と、冷媒を吸収して第2のリソーバ6から吸収液管27を介して供給される冷媒の濃度が上昇した吸収液を加熱して冷媒を吸収液から蒸発分離し冷媒の濃度が低下した吸収液を、第2のリソーバ6から供給される吸収液と熱交換器13で熱交換させて第2のリソーバ6に吸収液管28を介して戻すと共に、吸収液から蒸発分離した冷媒蒸気を吸収器4に供給する第2のデソーバ8とを備えている。
【0018】
なお、吸収液管26には吸収液ポンプP2が設けられ、吸収液管28には吸収液ポンプP3が設けられている。また、第1のリソーバ5と第1のデソーバ7とは、開閉弁29Aが介在する抽気管29により連通可能に連結され、第2のリソーバ6と第2のデソーバ8とは、開閉弁30Aが介在する抽気管30により連通可能に連結されている。抽気管29、30に介在する開閉弁29A、30Aは、手動弁であっても良いし、自動弁であっても良い。
【0019】
また、吸収ヒートポンプ装置100には、温水ポンプP5が介在する温水管路20が図1に示したように設けられ、吸収器4の内部に設けられた伝熱管4Aと、第2のリソーバ6の内部に設けられた伝熱管6Aと、第1のリソーバ5の内部に設けられた伝熱管5Aと、凝縮器2の内部に設けられた伝熱管2Aとで順次加熱された温水が、濃縮器10の伝熱管10Aに循環供給可能となっている。
【0020】
なお、温水管路20は、温水ポンプP5が介在する温水管20Aと、伝熱管4A、6A、5A、2Aが介在する温水管20Bと、熱回収器14が介在する温水管20Cとからなり、温水管20Aは濃縮器10の温水出口より延設されて終端側が温水管20Bと20Cとに分岐し、温水管20Bは終端部が濃縮器10の温水入口まで延設され、温水管20Cは伝熱管4A、6A、5A、2Aを迂回して温水管20Bと並列に設けられ、温水管20Bの濃縮器10温水入口側に合流している。
【0021】
したがって、伝熱管1Aで再生器1内の吸収液を加熱・再生し、凝縮して廃熱管19に吐出した駆動熱源のドレンが保有する廃熱は、温水管20Cを流れる温水と熱交換し回収される。なお、伝熱管4A、6A、5A、2Aが介在する温水管20Bには温水管20Aを流れてきた温水の、例えば大凡97%が流れるように管径などが選択される(流量制御弁などにより流量比率を変更可能に構成しても良いし、装置毎に特定の比率が選択・固定されても良い)。
【0022】
また、吸収ヒートポンプ装置100には、蒸発器3内に設けられた伝熱管3Aが介在して蒸気の入口から出口まで延設された蒸気管36と、蒸発器3入口側で蒸気管36から分岐し、第1のデソーバ7内に設けられた伝熱管7Aが介在して終端側が蒸気管36の蒸気出口側に合流する蒸気管37と、第1のデソーバ7入口側で蒸気管37から分岐し、第2のデソーバ8内に設けられた伝熱管8Aが介在して終端側が蒸気管36の蒸気出口側に合流する蒸気管38とが設けられている。
【0023】
一方、濃縮器10には、予熱器15が介在する被濃縮液供給管31と、濃縮液排出管32と、蒸気管33とが連結されて、被濃縮液供給管31を介して濃縮器10に供給された果汁などの被濃縮液を、吸収ヒートポンプ装置100の温水管路20から伝熱管10Aに循環供給する温水により加熱して濃縮し、濃縮した液は濃縮液排出管32から排出し、生成した蒸気は蒸気管33から排出することが可能に構成されている。
【0024】
そして、蒸気管33の終端側は、予熱器15を経由する蒸気管34と、吸収ヒートポンプ装置100の蒸気管36に連結される蒸気管35とに分岐し、濃縮器10で加熱・生成され、蒸気管33に吐出した水蒸気の一部は被濃縮液供給管31に介在する予熱器15に蒸気管34を介して供給されるので、濃縮器10に供給されている果汁などの被濃縮液は予熱器15において予熱される。
【0025】
また、吸収ヒートポンプ利用濃縮装置200は、圧力センサ16が計測する濃縮器10内の圧力に基づいて、熱源供給管18に設置された流量制御弁18Aの開度を調整し、伝熱管1Aに導入する駆動熱源である高温蒸気の流量を調節して再生器1に供給する熱量を制御する制御器17とを備えている。
【0026】
上記構成の本発明の吸収ヒートポンプ利用濃縮装置200においては、再生器1の伝熱管1Aに例えばコージェネレーションシステムなどから廃熱として供給される130℃程度の飽和水蒸気が導入されると、吸収器4から吸収液ポンプP1により吸収液管24を介して供給され、散布器1Bから伝熱管1Aの上に散布される吸収液が加熱・再生され、凝縮器2に供給する冷媒蒸気が発生する。
【0027】
また、蒸発器3の内部に設けられた伝熱管3Aには、濃縮器10で果汁などの被濃縮液から生成された水蒸気が蒸気管33、35、36を介して供給されるため、凝縮器2から冷媒液管21を介して供給され、冷媒液管22の冷媒ポンプP4により散布器3Bから伝熱管3Aの上に散布される冷媒液が加熱され、第1のリソーバ5に供給する冷媒蒸気が発生する。
【0028】
第1のデソーバ7、第2のデソーバ8に設けられた伝熱管7A、8Aにも、濃縮器10で果汁などの被濃縮液から生成された水蒸気が蒸気管33、35、36、37、あるいは蒸気管33、35、36、37、38を介して供給されるため、第1のリソーバ5から吸収液管25を介して供給され、散布器7Bから伝熱管7Aの上に散布される吸収液も、第2のリソーバ6から吸収液管27を介して供給され、散布器8Bから伝熱管8Aの上に散布される吸収液も加熱・再生され、第2のリソーバ6、吸収器4それぞれに供給する冷媒蒸気が発生する。
【0029】
そして、吸収器4の伝熱管4A、第2のリソーバ6の伝熱管6A、第1のリソーバ5の伝熱管5A、凝縮器2の伝熱管2Aには、濃縮器10の伝熱管10Aで果汁などの被濃縮液を加熱して水蒸気を発生させ、温度を下げた水の多くが温水ポンプP5の運転により温水管20A、20Bを介して順次供給される。
【0030】
そのため、伝熱管4A、6A、5A、2Aの内部を流れる水は、先ず再生器1から吸収液管23を介して供給され、散布器4Bから伝熱管4Aの上に散布された吸収液が第2のデソーバ8から吸収器4に供給された冷媒蒸気を吸収する際に生成される吸収熱により加熱され、続いて第2のデソーバ8から吸収液ポンプP3により吸収液管28を介して供給され、散布器6Bから伝熱管6Aの上に散布された吸収液が第1のデソーバ7から第2のリソーバ6に供給された冷媒蒸気を吸収する際に生成される吸収熱により加熱され、第1のデソーバ7から吸収液ポンプP2により吸収液管26を介して供給され、散布器5Bから伝熱管5Aの上に散布された吸収液が蒸発器3から第1のリソーバ5に供給された冷媒蒸気を吸収する際に生成される吸収熱により加熱され、さらに再生器1から供給された冷媒蒸気が伝熱管2Aに触れて凝縮する際に出る凝縮熱により加熱される。
【0031】
また、濃縮器10の伝熱管10Aで果汁などの被濃縮液を加熱して濃縮し、温度を下げた水の残余のものは、温水管20A、20Cを経由して熱回収器14に流れ、廃熱管19を流れるドレンから駆動熱源の廃熱を温水に回収するため、温水管路20を介して濃縮器10に循環供給される温水の温度は上昇する。
【0032】
すなわち、上記構成の本発明の吸収ヒートポンプ利用濃縮装置200においては、再生器1内の伝熱管1Aに例えばコージェネレーションシステムなどから廃熱として供給される125℃程度の飽和水蒸気が熱源供給管18を介して導入することにより、被濃縮液供給管31を介して供給される果汁、食塩水、ミルクなどを加熱して濃縮し、濃縮した液を濃縮液排出管32に排出することができる。
【0033】
そして、廃熱管19を流れるドレンが保有する駆動熱源の廃熱は温水管20Cを流れている水に熱回収器14において回収され、濃縮器10で被濃縮液から分離生成した水蒸気は蒸発器3、第1のデソーバ7、第2のデソーバ8に熱源として供給されるため、駆動熱源として熱源供給管18を介して再生器1の伝熱管1Aに導入する熱量は少なくて済み、全体の熱効率が高いと云った特長がある。
【0034】
なお、駆動熱源として再生器1の伝熱管1Aに熱源供給管18を介して供給する高温蒸気の量は、圧力センサ16が計測する濃縮器10内が所定の圧力、例えば10kPa程度が維持されるように、流量制御弁18Aの開度が制御器17から出力する制御信号により容量制御されるように構成されている。
【0035】
例えば、被濃縮液供給管31を介して濃縮器10に供給する果汁などの被濃縮液の温度、流量、濃度などの変動により、濃縮器10で生成される水蒸気の量が少なく、圧力センサ16が計測する濃縮器10内の圧力が所定圧力より低いときには、流量制御弁18Aの開度を増やす制御信号を制御器17が出力して、熱源供給管18を介して伝熱管1Aに導入する駆動熱源の高温水蒸気の量を増やす。
【0036】
そのため、再生器1で吸収液から蒸発分離して凝縮器2に供給され、伝熱管2Aの内部を流れる水に放熱する冷媒蒸気の量は増加するので、温水管路20を介して濃縮器10の伝熱管10Aに循環供給される温水の温度は上昇し、濃縮器10内で伝熱管10Aの管壁を介して果汁などの被濃縮液を加熱・濃縮する作用は強まり、濃縮器10内で被濃縮液から生成される水蒸気の量は増加し、圧力センサ16は所定の圧力を示すようになる。
【0037】
逆に、濃縮器10で被濃縮液から生成される水蒸気の量が多く、圧力センサ16が計測する濃縮器10内の圧力が所定圧力より高いときには、流量制御弁18Aの開度を減らす制御信号を制御器17が出力して、熱源供給管18を介して濃縮器10の伝熱管1Aに導入する駆動熱源の高温水蒸気の量を減らす。
【0038】
そのため、再生器1で吸収液から蒸発分離して凝縮器2に供給され、伝熱管2Aの内部を流れる水に放熱する冷媒蒸気の量は減少するので、温水管路20を介して濃縮器10の伝熱管10Aに循環供給される温水の温度は低下し、濃縮器10内で伝熱管10Aの管壁を介して果汁などの被濃縮液を加熱・濃縮する作用は弱まり、濃縮器10内で被濃縮液から生成される水蒸気の量は減少し、圧力センサ16は所定の圧力を示すようになる。
【0039】
また、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0040】
例えば、再生器1内の吸収液を加熱して冷媒を蒸発分離し、吸収液を冷媒の吸収が可能な状態に再生するために熱源供給管18を介して伝熱管1Aに導入する駆動熱源としては、コージェネレーションシステムなどを冷却して高温になった冷却水であっても良い。また、燃焼バーナにより、再生器1内の吸収液を加熱・再生し、冷媒蒸気を発生させる構成とすることもできる。
【0041】
そして、燃焼バーナにより再生器1内の吸収液を加熱・再生し、冷媒蒸気を発生させる構成としたときには、廃熱管19には燃焼バーナから出る燃焼排ガスを流し、熱回収器14ではその排ガスと温水管20Cを流れる温水とを熱交換させて、排ガスが保有する廃熱を温水に回収する。
【0042】
また、圧力センサ16は温度センサに代替し、その温度センサが計測する濃縮器10内の温度に基づいて、制御器17が流量制御弁18Aの開度を調整し、伝熱管1Aに導入する熱源流体の量(熱量)を制御するようにしても良い。
【0043】
また、濃縮器10で加熱・生成した水蒸気は、蒸発器3の伝熱管3A、第1のデソーバ7の伝熱管7A、第2のデソーバ8の伝熱管8Aの少なくとも何れかに供給し、残余の伝熱管には他の熱源から供給される熱流体を供給するように構成することもできる。
【0044】
また、吸収器4に設けられた伝熱管4Aと、第2のリソーバ6に設けられた伝熱管6Aと、第1のリソーバ5に設けられた伝熱管5Aと、凝縮器2に設けられた伝熱管2Aとが並列に介在するように温水管20Bを構成し、温水管20Bを流れる温水が伝熱管4A、6A、5A、2Aにおいて同時に加熱され、濃縮器10の伝熱管10Aに循環供給可能に構成することなども可能である。
【0045】
【発明の効果】
上記したように、本発明の吸収ヒートポンプ装置においては、吸収器と、第2のリソーバと、第1のリソーバと、凝縮器において加熱した温水を利用した加熱作用が可能であるので、従来の吸収ヒートポンプ装置より熱効率が高い。
【0046】
また、本発明の吸収ヒートポンプ利用濃縮装置においては、加熱・濃縮時に生成した蒸気を吸収ヒートポンプの熱源に利用しているので、ヒートポンプ側だけで熱効率を改善した装置より、さらに熱効率を改善することができた。
【図面の簡単な説明】
【図1】本発明になる吸収ヒートポンプ利用濃縮装置の構成を示す説明図である。
【図2】従来技術を示す説明図である。
【符号の説明】
1 再生器
1A 伝熱管
1B 散布器
2 凝縮器
2A 伝熱管
3 蒸発器
3A 伝熱管
3B 散布器
4 吸収器
4A 伝熱管
4B 散布器
5 第1のリソーバ
5A 伝熱管
5B 散布器
6 第2のリソーバ
6A 伝熱管
6B 散布器
7 第1のデソーバ
7A 伝熱管
7B 散布器
8 第2のデソーバ
8A 伝熱管
8B 散布器
10 濃縮器
10A 伝熱管
11〜13 熱交換器
14 熱回収器
15 予熱器
16 圧力センサ
17 制御器
18 熱源供給管
18A 流量制御弁
19 廃熱管
19A スチームトラップ
20 温水管路
20A、20B、20C 温水管
21、22 冷媒液管
23〜28 吸収液管
29、30 抽気管
29A、30A 開閉弁
31 被濃縮液供給管
32 濃縮液排出管
33〜38 蒸気管
P1、P2、P3、 吸収液ポンプ
P4 冷媒ポンプ
P5 温水ポンプ
100、100X 吸収ヒートポンプ装置
200 吸収ヒートポンプ利用濃縮装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption heat pump apparatus including a regenerator, a condenser, an evaporator, an absorber, and the like, as well as a resolver and a desorber, and an apparatus for using the absorption heat pump apparatus.
[0002]
[Prior art]
As an absorption heat pump apparatus of this type, for example, as shown in FIG. 2, an absorption heat pump apparatus 100X configured by connecting a regenerator 1, a condenser 2, an evaporator 3, an absorber 4, a resolver 5X, a desorber 6X, and the like is provided. It is well known (see Patent Document 1).
[0003]
In the absorption heat pump apparatus 100X shown in FIG. 2, (1) the cooling water flowing inside the heat transfer tube 2A of the condenser 2 deprives the heat of the refrigerant vapor supplied from the regenerator 1 and condenses the cooling water itself. (2) The cooling water flowing inside the heat transfer tube 4A of the absorber 4 and the heat transfer tube 5A of the absorber 5X is regenerated, and the refrigerant vapor supplied from the desorber 6X to the absorber 4 is regenerated in the heat transfer tube 4A. Refrigerant supplied from the evaporator 3 to the reservoir 5X in the heat transfer tube 5A by taking away the heat of absorption generated when absorbed by the absorbing liquid supplied from the container 1 and sprayed from the sprayer 4B. Since the heat absorbed when the steam is supplied from the desorber 6X and absorbed by the absorbing liquid sprayed from the spreader 5B is taken up to raise the temperature of the cooling water itself, heating using the cooling water whose temperature has risen is not performed. Perform heating action of.
[0004]
And the absorption heat pump apparatus 100X of the said structure absorbs heat with the evaporator 3 and the desorber 6X, Since it heat-radiates with the condenser 2 and the absorber 5X which comprises a 2nd type cycle, and the absorber 4 which comprises a 1st type cycle. There is an advantage that the COP at the time of heating use is 2 or more.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-82825 (FIG. 1)
[0006]
[Problems to be solved by the invention]
However, in the absorption heat pump having the above-described configuration, in order to perform heating more efficiently, a further improvement is added to the configuration of the absorption heat pump device itself and the heat load, that is, the heat including the heated side as a whole is added. Needs to be used more efficiently, which has been a problem to be solved.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a regenerator that heats an absorption liquid to evaporate and separate the refrigerant from the absorption liquid, a condenser that cools and condenses the refrigerant vapor supplied from the regenerator, and a supply from the condenser An evaporator that heats and evaporates the refrigerant liquid to be evaporated, and an absorption liquid and heat supplied from the regenerator by absorbing the refrigerant in an absorbing liquid having a reduced concentration of refrigerant supplied from the regenerator by evaporating and separating the refrigerant The concentration of the refrigerant that is exchanged and returned to the regenerator, the first resolver that absorbs the refrigerant vapor supplied from the evaporator into the absorption liquid, and the refrigerant that is absorbed from the refrigerant and supplied from the first resolver has increased. A first desorber that heats the absorption liquid to evaporate and separate the refrigerant from the absorption liquid and exchanges heat with the absorption liquid supplied from the first remover to return the refrigerant to the first remover. The refrigerant vapor supplied from the first desorber The second resolver to be absorbed by the collected liquid and the absorption liquid that has absorbed the refrigerant and the concentration of the refrigerant supplied from the second resolver is heated to evaporate and separate the refrigerant from the absorption liquid, thereby reducing the refrigerant concentration. The absorption liquid is heat-exchanged with the absorption liquid supplied from the second resolver and returned to the second resolver, and a second desorber that supplies refrigerant vapor evaporated and separated from the absorption liquid to the absorber is provided. An absorption heat pump device,
[0008]
The solution is heated and concentrated by the hot fluid heated via the absorber, the second remover, the first remover, and the condenser of the absorption heat pump device, and at least the vapor generated from the solution is evaporated, An absorption heat pump concentrating device of the first configuration, comprising a concentrator for supplying either the first desorber or the second desorber as a heat source;
[0009]
In the absorption heat pump concentration apparatus of the first configuration, the fluid having the waste heat of the driving heat source supplied to the regenerator for evaporating and separating the refrigerant from the absorption liquid, and the heating and concentration action are finished and discharged from the concentrator The heat recovery unit recovers the waste heat of the driving heat source into a heat fluid that recirculates to the concentrator by exchanging heat with the absorber, the first and second resolvers, and the hot fluid that bypasses the condenser and returns to the concentrator An absorption heat pump-use concentrating device of the second configuration, comprising:
[0010]
In the concentration apparatus using the absorption heat pump according to the first or second configuration, the solution supplied to the concentrator and heat-exchanged with a part of the vapor generated by the concentrator and supplied to the concentrator An absorption heat pump concentration device of the third configuration, which is provided with a preheater for preheating,
[0011]
The absorption heat pump concentration apparatus of any one of the first to third configurations includes control means for controlling the amount of heat of the driving heat source supplied to the regenerator based on the pressure inside the concentrator or a physical quantity related to the pressure. An absorption heat pump concentration device of the fourth configuration as described above,
[0012]
In the absorption heat pump concentration apparatus of any one of the first to fourth configurations, the absorption heat pump concentration apparatus of the fifth configuration, in which the solution concentrated in the concentrator is food such as fruit juice,
Is to provide.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. In order to facilitate understanding, the same reference numerals are given to parts having the same functions as those described in FIG. 2 in FIG.
[0014]
The absorption heat pump concentration apparatus 200 illustrated in FIG. 1 uses a heat generated by an absorption heat pump apparatus 100 that uses water as a refrigerant and an aqueous lithium bromide solution as an absorption liquid, and concentrates fruit juice, saline, milk, and the like. 10 is an apparatus for concentrating.
[0015]
The absorption heat pump apparatus 100 includes a heat transfer tube 1A therein, and heats the absorption liquid with a driving heat source, for example, high-temperature steam, supplied to the heat transfer pipe 1A via the heat source supply pipe 18 to evaporate the refrigerant from the absorption liquid. A regenerator 1 that separates and regenerates the absorbing liquid into a state in which the refrigerant can be absorbed, a condenser 2 that cools and condenses the refrigerant vapor supplied from the regenerator 1, and a refrigerant liquid pipe from the condenser 2. The evaporator 3 that heats and evaporates the refrigerant liquid supplied through the refrigerant 21 and the absorption liquid in which the concentration of the refrigerant supplied from the regenerator 1 through the absorption liquid pipe 23 is reduced by evaporating and separating the refrigerant is reduced. Is absorbed, and the heat exchanger 11 exchanges heat with the absorption liquid supplied from the regenerator 1, and the absorber 4 is returned to the regenerator 1 through the absorption liquid pipe 24.
[0016]
The absorption liquid pipe 24 is provided with an absorption liquid pump P1. In addition, a steam trap 19A and a heat recovery device 14 are provided in series on a waste heat pipe 19 connected to an outlet side of the heat transfer pipe 1A to which high-temperature steam as a driving heat source is supplied via a heat source supply pipe 18. The heat transfer tube 1A heats and regenerates the absorption liquid in the regenerator 1 to dissipate heat, condenses and discharges the drain of the driving heat source discharged to the waste heat pipe 19 to the heat recovery unit 14 in a gas-liquid mixed state and heats it. The replacement efficiency is not reduced.
[0017]
Further, the absorption heat pump device 100 is supplied via the absorption liquid pipe 25 from the first resolver 5 that absorbs the refrigerant vapor supplied from the evaporator 3 into the absorption liquid and the first resolver 5 that absorbs the refrigerant. Heat is exchanged between the absorption liquid supplied from the first remover 5 and the heat exchanger 12 by heating the absorption liquid in which the concentration of the refrigerant increases to evaporate and separate the refrigerant from the absorption liquid and reducing the refrigerant concentration. The first remover 7 that is returned to the first remover 5 through the absorption liquid pipe 26, the second remover 6 that absorbs the refrigerant vapor supplied from the first remover 7 into the absorption liquid, and the refrigerant is absorbed. Then, the absorption liquid whose concentration of the refrigerant supplied from the second resolver 6 is supplied through the absorption liquid pipe 27 is heated to evaporate and separate the refrigerant from the absorption liquid, and the absorption liquid whose concentration of the refrigerant has decreased is second. Heat exchange with the absorption liquid supplied from the non-reservoir 6 With the second Risoba 6 by heat exchange back through the absorption liquid pipe 28 at 13, and a second Desoba 8 supplies a refrigerant vapor evaporated separated from the absorbing solution in the absorber 4.
[0018]
The absorption liquid pipe 26 is provided with an absorption liquid pump P2, and the absorption liquid pipe 28 is provided with an absorption liquid pump P3. The first remover 5 and the first remover 7 are connected so as to be able to communicate with each other by a bleed pipe 29 with an on-off valve 29A interposed therebetween. The second remover 6 and the second remover 8 are connected to an on-off valve 30A. The bleed pipes 30 are connected so as to communicate with each other. The on-off valves 29A and 30A interposed in the bleed pipes 29 and 30 may be manual valves or automatic valves.
[0019]
Further, the absorption heat pump apparatus 100 is provided with a hot water pipe 20 through which the hot water pump P5 is interposed as shown in FIG. 1, and the heat transfer pipe 4A provided inside the absorber 4 and the second resolver 6 are provided. The hot water sequentially heated by the heat transfer tube 6A provided inside, the heat transfer tube 5A provided inside the first resolver 5 and the heat transfer tube 2A provided inside the condenser 2 is added to the concentrator 10. It can be circulated and supplied to the heat transfer tube 10A.
[0020]
The hot water pipe 20 includes a hot water pipe 20A in which the hot water pump P5 is interposed, a hot water pipe 20B in which the heat transfer pipes 4A, 6A, 5A, and 2A are interposed, and a hot water pipe 20C in which the heat recovery device 14 is interposed. The hot water pipe 20A is extended from the hot water outlet of the concentrator 10, and the terminal side branches into the hot water pipes 20B and 20C. The hot water pipe 20B extends to the hot water inlet of the concentrator 10, and the hot water pipe 20C is transmitted. It bypasses the heat pipes 4A, 6A, 5A, and 2A, is provided in parallel with the hot water pipe 20B, and joins the concentrator 10 hot water inlet side of the hot water pipe 20B.
[0021]
Therefore, the waste heat stored in the drain of the driving heat source that is heated and regenerated by the heat transfer tube 1A, condensed and discharged to the waste heat tube 19 is heat-exchanged with the hot water flowing through the hot water tube 20C and recovered. Is done. The hot water pipe 20B in which the heat transfer pipes 4A, 6A, 5A, and 2A are interposed is selected so that, for example, approximately 97% of the hot water flowing through the hot water pipe 20A flows (for example, by a flow control valve). The flow rate ratio may be changeable, or a specific ratio may be selected and fixed for each device).
[0022]
Further, the absorption heat pump apparatus 100 includes a steam pipe 36 extending from the steam inlet to the outlet through a heat transfer pipe 3A provided in the evaporator 3, and a branch from the steam pipe 36 on the evaporator 3 inlet side. Then, a steam pipe 37 that is joined to the steam outlet side of the steam pipe 36 via the heat transfer pipe 7A provided in the first desorber 7 is branched from the steam pipe 37 on the inlet side of the first desorber 7. In addition, a steam pipe 38 is provided, the end side of which joins the steam outlet side of the steam pipe 36 through the heat transfer pipe 8A provided in the second desorber 8.
[0023]
On the other hand, to the concentrator 10, a concentrated liquid supply pipe 31, a concentrated liquid discharge pipe 32, and a steam pipe 33 in which the preheater 15 is interposed are connected, and the concentrator 10 is connected via the concentrated liquid supply pipe 31. The concentrated liquid such as fruit juice supplied to is heated and concentrated with hot water circulated from the hot water pipe 20 of the absorption heat pump device 100 to the heat transfer pipe 10A, and the concentrated liquid is discharged from the concentrated liquid discharge pipe 32. The generated steam is configured to be discharged from the steam pipe 33.
[0024]
The end side of the steam pipe 33 branches into a steam pipe 34 that passes through the preheater 15 and a steam pipe 35 that is connected to the steam pipe 36 of the absorption heat pump device 100, and is heated and generated by the concentrator 10. Since a part of the water vapor discharged to the steam pipe 33 is supplied to the preheater 15 interposed in the concentrated liquid supply pipe 31 via the steam pipe 34, the concentrated liquid such as fruit juice supplied to the concentrator 10 is Preheating is performed in the preheater 15.
[0025]
Further, the absorption heat pump concentration device 200 adjusts the opening degree of the flow control valve 18A installed in the heat source supply pipe 18 based on the pressure in the concentrator 10 measured by the pressure sensor 16, and introduces it into the heat transfer pipe 1A. And a controller 17 that controls the amount of heat supplied to the regenerator 1 by adjusting the flow rate of high-temperature steam that is a driving heat source.
[0026]
In the absorption heat pump concentration apparatus 200 of the present invention configured as described above, when saturated steam of about 130 ° C. supplied as waste heat from a cogeneration system or the like is introduced into the heat transfer tube 1A of the regenerator 1, the absorber 4 Then, the absorbing liquid supplied from the absorbing liquid pump P1 through the absorbing liquid pipe 24 and sprayed from the sprayer 1B onto the heat transfer pipe 1A is heated and regenerated, and refrigerant vapor to be supplied to the condenser 2 is generated.
[0027]
Moreover, since the water vapor | steam produced | generated from the to-be-concentrated liquids, such as fruit juice with the concentrator 10, is supplied to the heat exchanger tube 3A provided in the inside of the evaporator 3 through the vapor | steam pipe | tube 33,35,36, a condenser 2 is supplied via the refrigerant liquid pipe 21, and the refrigerant liquid sprayed onto the heat transfer pipe 3 </ b> A from the spreader 3 </ b> B by the refrigerant pump P <b> 4 of the refrigerant liquid pipe 22 is supplied to the first remover 5. Will occur.
[0028]
Also in the heat transfer tubes 7A and 8A provided in the first desorber 7 and the second desorber 8, water vapor generated from the concentrated liquid such as fruit juice by the concentrator 10 is supplied to the steam tubes 33, 35, 36, 37, or Since it is supplied through the steam pipes 33, 35, 36, 37, and 38, the absorbing liquid supplied from the first reservoir 5 through the absorbing liquid pipe 25 and sprayed from the sprayer 7B onto the heat transfer pipe 7A. In addition, the absorption liquid supplied from the second reservoir 6 via the absorption liquid pipe 27 and sprayed on the heat transfer pipe 8A from the spreader 8B is also heated and regenerated, and is supplied to the second resolver 6 and the absorber 4 respectively. The refrigerant vapor to be supplied is generated.
[0029]
And, the heat transfer tube 4A of the absorber 4, the heat transfer tube 6A of the second remover 6, the heat transfer tube 5A of the first remover 5, and the heat transfer tube 2A of the condenser 2 have fruit juice and the like in the heat transfer tube 10A of the concentrator 10. The concentrated liquid is heated to generate water vapor, and most of the water whose temperature is lowered is sequentially supplied through the hot water pipes 20A and 20B by the operation of the hot water pump P5.
[0030]
Therefore, the water flowing inside the heat transfer tubes 4A, 6A, 5A, 2A is first supplied from the regenerator 1 through the absorption liquid tube 23, and the absorption liquid sprayed on the heat transfer tube 4A from the spreader 4B is first. 2 is heated by absorption heat generated when the refrigerant vapor supplied from the second desorber 8 to the absorber 4 is absorbed, and then supplied from the second desorber 8 via the absorption liquid pipe 28 by the absorption liquid pump P3. The absorption liquid sprayed on the heat transfer tube 6A from the spreader 6B is heated by the absorbed heat generated when the refrigerant vapor supplied from the first desorber 7 to the second remover 6 is absorbed. The refrigerant vapor supplied from the desorber 7 through the absorption liquid pipe 26 by the absorption liquid pump P2 and sprayed from the spreader 5B onto the heat transfer pipe 5A is supplied from the evaporator 3 to the first remover 5. Produced when absorbing Is heated by heat absorption, the refrigerant vapor supplied is heated by the condensation heat emitted during the condensation touch the heat transfer tube 2A further from the regenerator 1.
[0031]
Further, the concentrated liquid such as fruit juice is heated and concentrated in the heat transfer tube 10A of the concentrator 10, and the remaining water whose temperature has been lowered flows to the heat recovery device 14 via the hot water tubes 20A and 20C. In order to recover the waste heat of the driving heat source from the drain flowing through the waste heat pipe 19 to the hot water, the temperature of the hot water circulated and supplied to the concentrator 10 through the hot water pipe line 20 rises.
[0032]
That is, in the absorption heat pump concentration apparatus 200 of the present invention having the above-described configuration, saturated steam at about 125 ° C. supplied as waste heat from, for example, a cogeneration system or the like to the heat transfer pipe 1A in the regenerator 1 is passed through the heat source supply pipe 18. Thus, the juice, salt solution, milk, etc. supplied via the concentrated liquid supply pipe 31 can be heated and concentrated, and the concentrated liquid can be discharged to the concentrated liquid discharge pipe 32.
[0033]
And the waste heat of the drive heat source which the drain which flows through the waste heat pipe 19 holds is collect | recovered in the water which is flowing through the hot water pipe 20C in the heat recovery device 14, and the water vapor | steam separated and produced | generated from the to-be-concentrated liquid in the concentrator 10 is the evaporator 3. Since the heat is supplied to the first desorber 7 and the second desorber 8 as a heat source, the amount of heat introduced into the heat transfer tube 1A of the regenerator 1 through the heat source supply tube 18 as a drive heat source can be reduced, and the overall heat efficiency is improved. It has a high feature.
[0034]
The amount of high-temperature steam supplied to the heat transfer tube 1A of the regenerator 1 through the heat source supply pipe 18 as a driving heat source is maintained at a predetermined pressure, for example, about 10 kPa, in the concentrator 10 measured by the pressure sensor 16. As described above, the opening degree of the flow control valve 18A is configured to be capacity-controlled by a control signal output from the controller 17.
[0035]
For example, the amount of water vapor generated in the concentrator 10 is small due to variations in the temperature, flow rate, concentration, etc. of the liquid to be concentrated such as fruit juice supplied to the concentrator 10 via the liquid to be concentrated liquid supply pipe 31, and the pressure sensor 16 When the pressure in the concentrator 10 measured by the controller is lower than a predetermined pressure, the controller 17 outputs a control signal for increasing the opening degree of the flow control valve 18A and introduces it into the heat transfer pipe 1A via the heat source supply pipe 18 Increase the amount of hot steam in the heat source.
[0036]
Therefore, the amount of the refrigerant vapor that is evaporated and separated from the absorption liquid in the regenerator 1 and supplied to the condenser 2 and dissipates heat to the water flowing inside the heat transfer pipe 2A increases. Therefore, the concentrator 10 is connected via the hot water pipe 20. The temperature of the hot water circulated and supplied to the heat transfer tube 10A rises, and the action of heating and concentrating the concentrated liquid such as fruit juice through the tube wall of the heat transfer tube 10A in the concentrator 10 is strengthened. The amount of water vapor generated from the liquid to be concentrated increases, and the pressure sensor 16 shows a predetermined pressure.
[0037]
Conversely, when the amount of water vapor generated from the liquid to be concentrated in the concentrator 10 is large and the pressure in the concentrator 10 measured by the pressure sensor 16 is higher than a predetermined pressure, a control signal for reducing the opening degree of the flow control valve 18A. Is output from the controller 17 to reduce the amount of high-temperature steam of the driving heat source introduced into the heat transfer tube 1A of the concentrator 10 via the heat source supply tube 18.
[0038]
Therefore, the amount of the refrigerant vapor that is evaporated and separated from the absorption liquid by the regenerator 1 and supplied to the condenser 2 and dissipates heat to the water flowing inside the heat transfer pipe 2A is reduced, so the concentrator 10 is connected via the hot water pipe 20. The temperature of the hot water circulated and supplied to the heat transfer tube 10A decreases, and the action of heating and concentrating the liquid to be concentrated such as fruit juice through the tube wall of the heat transfer tube 10A in the concentrator 10 is weakened. The amount of water vapor generated from the liquid to be concentrated decreases, and the pressure sensor 16 shows a predetermined pressure.
[0039]
Moreover, since the present invention is not limited to the above-described embodiment, various modifications can be made without departing from the gist of the claims.
[0040]
For example, as a drive heat source that is introduced into the heat transfer tube 1A via the heat source supply pipe 18 in order to heat the absorption liquid in the regenerator 1 to evaporate and separate the refrigerant and regenerate the absorption liquid into a state in which the refrigerant can be absorbed. May be cooling water that has cooled the cogeneration system or the like to a high temperature. Moreover, it can also be set as the structure which heats and regenerates the absorption liquid in the regenerator 1 by a combustion burner, and generates a refrigerant | coolant vapor | steam.
[0041]
When the absorption liquid in the regenerator 1 is heated and regenerated by the combustion burner to generate the refrigerant vapor, the combustion exhaust gas from the combustion burner is caused to flow through the waste heat pipe 19, and the exhaust gas and Heat exchange with the hot water flowing through the hot water pipe 20C is performed, and the waste heat retained by the exhaust gas is recovered into the hot water.
[0042]
Further, the pressure sensor 16 is replaced with a temperature sensor, and the controller 17 adjusts the opening degree of the flow control valve 18A based on the temperature in the concentrator 10 measured by the temperature sensor and introduces it into the heat transfer tube 1A. The amount of fluid (heat amount) may be controlled.
[0043]
Further, the steam heated / generated by the concentrator 10 is supplied to at least one of the heat transfer tube 3A of the evaporator 3, the heat transfer tube 7A of the first desorber 7, and the heat transfer tube 8A of the second desorber 8, and the rest The heat transfer tube may be configured to supply a thermal fluid supplied from another heat source.
[0044]
Further, the heat transfer tube 4 A provided in the absorber 4, the heat transfer tube 6 A provided in the second remover 6, the heat transfer tube 5 A provided in the first remover 5, and the heat transfer tube provided in the condenser 2. The hot water pipe 20B is configured so as to intervene in parallel with the heat pipe 2A, and the hot water flowing through the hot water pipe 20B is simultaneously heated in the heat transfer pipes 4A, 6A, 5A, and 2A, and can be circulated and supplied to the heat transfer pipe 10A of the concentrator 10. It can also be configured.
[0045]
【The invention's effect】
As described above, in the absorption heat pump device of the present invention, since the heating action using hot water heated in the absorber, the second remover, the first remover, and the condenser is possible, the conventional absorption Thermal efficiency is higher than heat pump device.
[0046]
Moreover, in the concentration device using the absorption heat pump of the present invention, since the steam generated during heating and concentration is used as the heat source of the absorption heat pump, the heat efficiency can be further improved compared to the device that improves the heat efficiency only on the heat pump side. did it.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of an absorption heat pump concentration apparatus according to the present invention.
FIG. 2 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Regenerator 1A Heat transfer tube 1B Spreader 2 Condenser 2A Heat transfer tube 3 Evaporator 3A Heat transfer tube 3B Spreader 4 Absorber 4A Heat transfer tube 4B Spreader 5 First remover 5A Heat transfer tube 5B Spreader 6 Second remover 6A Heat transfer tube 6B Spreader 7 First desorber 7A Heat transfer tube 7B Spreader 8 Second desorber 8A Heat transfer tube 8B Spreader 10 Concentrator 10A Heat transfer tubes 11-13 Heat exchanger 14 Heat recovery device 15 Preheater 16 Pressure sensor 17 Controller 18 Heat source supply pipe 18A Flow control valve 19 Waste heat pipe 19A Steam trap 20 Hot water pipes 20A, 20B, 20C Hot water pipes 21, 22 Refrigerant liquid pipes 23-28 Absorbing liquid pipes 29, 30 Extraction pipes 29A, 30A On-off valve 31 Concentrated liquid supply pipe 32 Concentrated liquid discharge pipes 33 to 38 Steam pipes P1, P2, P3, Absorption liquid pump P4 Refrigerant pump P5 Hot water pump 100, 100X Absorption Toponpu device 200 absorption heat pump use concentrator

Claims (6)

吸収液を加熱して吸収液から冷媒を蒸発分離する再生器と、再生器から供給される冷媒蒸気を冷却して凝縮させる凝縮器と、凝縮器から供給される冷媒液を加熱して蒸発させる蒸発器と、冷媒を蒸発分離して再生器から供給される冷媒の濃度が低下した吸収液に冷媒を吸収させ、再生器から供給される吸収液と熱交換させて再生器に戻す吸収器と、蒸発器から供給される冷媒蒸気を吸収液に吸収させる第1のリソーバと、冷媒を吸収して第1のリソーバから供給される冷媒の濃度が上昇した吸収液を加熱して冷媒を吸収液から蒸発分離し冷媒の濃度が低下した吸収液を、第1のリソーバから供給される吸収液と熱交換させて第1のリソーバに戻す第1のデソーバと、第1のデソーバから供給される冷媒蒸気を吸収液に吸収させる第2のリソーバと、冷媒を吸収して第2のリソーバから供給される冷媒の濃度が上昇した吸収液を加熱して冷媒を吸収液から蒸発分離し冷媒の濃度が低下した吸収液を、第2のリソーバから供給される吸収液と熱交換させて第2のリソーバに戻すと共に、吸収液から蒸発分離した冷媒蒸気を吸収器に供給する第2のデソーバとを備えたことを特徴とする吸収ヒートポンプ装置。A regenerator that heats the absorption liquid to evaporate and separate the refrigerant from the absorption liquid, a condenser that cools and condenses the refrigerant vapor supplied from the regenerator, and heats and evaporates the refrigerant liquid supplied from the condenser An evaporator, and an absorber that evaporates and separates the refrigerant and absorbs the refrigerant in an absorption liquid in which the concentration of the refrigerant supplied from the regenerator is reduced, and exchanges heat with the absorption liquid supplied from the regenerator and returns the refrigerant to the regenerator. The first absorber that absorbs the refrigerant vapor supplied from the evaporator into the absorption liquid and the absorption liquid that has absorbed the refrigerant and the concentration of the refrigerant supplied from the first reservoir is heated to absorb the refrigerant. A first desorber that exchanges heat with the absorbent supplied from the first remover and returns to the first remover, and a refrigerant supplied from the first remover. A second resource that absorbs vapor into the absorbent Then, the absorption liquid in which the concentration of the refrigerant supplied from the second resolver by absorbing the refrigerant is increased is heated to evaporate and separate the refrigerant from the absorption liquid, and the absorption liquid in which the concentration of the refrigerant is decreased is obtained from the second resolver. An absorption heat pump apparatus comprising: a second desorber that exchanges heat with the supplied absorbent and returns to the second remover, and supplies refrigerant vapor evaporated and separated from the absorbent to the absorber. 請求項1記載の吸収ヒートポンプ装置の吸収器、第2のリソーバ、第1のリソーバ、および凝縮器を経由して加熱された熱流体によって溶液を加熱して濃縮すると共に、溶液から生成した蒸気を少なくとも蒸発器、第1のデソーバ、第2のデソーバの何れかに熱源として供給する濃縮器を備えたことを特徴とする吸収ヒートポンプ利用濃縮装置。The solution of the absorption heat pump device according to claim 1 is concentrated by heating and concentrating the solution with a hot fluid heated via the absorber, the second remover, the first remover, and the condenser. An absorption heat pump concentration apparatus comprising a concentrator that supplies at least one of an evaporator, a first desorber, and a second desorber as a heat source. 吸収液から冷媒を蒸発分離するために再生器に供給された駆動熱源の廃熱を有する流体と、加熱・濃縮作用を終えて濃縮器から吐出し、吸収器、第1、第2リソーバ、および凝縮器を迂回して濃縮器に戻る熱流体とを熱交換して駆動熱源の廃熱を濃縮器に還流する熱流体に回収する熱回収器が設けられたことを特徴とする請求項2記載の吸収ヒートポンプ利用濃縮装置。A fluid having waste heat from the driving heat source supplied to the regenerator for evaporating and separating the refrigerant from the absorbent, and discharging from the concentrator after the heating and concentrating action, and the absorber, the first and second resolvers, and 3. A heat recovery device is provided for recovering the waste heat of the drive heat source into a heat fluid that recirculates to the concentrator by exchanging heat with the hot fluid that bypasses the condenser and returns to the concentrator. Absorption heat pump concentration device. 濃縮器に供給されて濃縮される溶液と濃縮器で生成された蒸気の一部とを熱交換して濃縮器に供給される溶液を予熱する予熱器が設けられたことを特徴とする請求項2または3記載の吸収ヒートポンプ利用濃縮装置。A preheater is provided for preheating the solution supplied to the concentrator by exchanging heat between the solution supplied to the concentrator and concentrated and a part of the steam generated by the concentrator. The absorption heat pump concentration apparatus according to 2 or 3. 濃縮器内部の圧力、または前記圧力に関連した物理量に基づいて再生器に供給する駆動熱源の熱量を制御する制御手段が設けられたことを特徴とする請求項2〜4何れかに記載の吸収ヒートポンプ利用濃縮装置。The absorption according to any one of claims 2 to 4, further comprising control means for controlling a heat amount of a driving heat source supplied to the regenerator based on a pressure inside the concentrator or a physical quantity related to the pressure. Concentrator using heat pump. 濃縮器で濃縮さる溶液が果汁などの食品であることを特徴とする請求項2〜5何れかに記載の吸収ヒートポンプ利用濃縮装置。6. The absorption heat pump concentration apparatus according to claim 2, wherein the solution concentrated by the concentrator is a food such as fruit juice.
JP2003060100A 2003-03-06 2003-03-06 Absorption heat pump device and device using the same Expired - Fee Related JP4014520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060100A JP4014520B2 (en) 2003-03-06 2003-03-06 Absorption heat pump device and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060100A JP4014520B2 (en) 2003-03-06 2003-03-06 Absorption heat pump device and device using the same

Publications (2)

Publication Number Publication Date
JP2004270996A JP2004270996A (en) 2004-09-30
JP4014520B2 true JP4014520B2 (en) 2007-11-28

Family

ID=33122741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060100A Expired - Fee Related JP4014520B2 (en) 2003-03-06 2003-03-06 Absorption heat pump device and device using the same

Country Status (1)

Country Link
JP (1) JP4014520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410575A (en) * 2011-10-18 2012-04-11 李华玉 Absorption type grading heat supply system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120809A (en) * 2005-10-26 2007-05-17 Tokyo Gas Co Ltd Absorption heat pump
CN117142742A (en) * 2023-10-24 2023-12-01 国能龙源环保有限公司 System and method for drying sludge by utilizing waste heat of coal-fired power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410575A (en) * 2011-10-18 2012-04-11 李华玉 Absorption type grading heat supply system
CN102410575B (en) * 2011-10-18 2014-06-25 李华玉 Absorption type grading heat supply system

Also Published As

Publication number Publication date
JP2004270996A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP2004257705A (en) Concentration device using absorption heat pump
JP3883838B2 (en) Absorption refrigerator
JP2011075180A (en) Absorption type refrigerating machine
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2004324977A (en) Absorption type refrigerating machine
JP4014520B2 (en) Absorption heat pump device and device using the same
JP5384072B2 (en) Absorption type water heater
JP4148830B2 (en) Single double effect absorption refrigerator
JP3897418B2 (en) Steam cycle system
JP4241089B2 (en) Absorption heat pump device
JP2000205691A (en) Absorption refrigerating machine
JP2008020094A (en) Absorption type heat pump device
JP4107981B2 (en) Control method of absorption heat pump device
JP4632633B2 (en) Absorption heat pump device
JP4260095B2 (en) Single double effect absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP2018096673A (en) Absorption type heat exchanging system
JP4326478B2 (en) Single double-effect absorption refrigerator
JP4107582B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP3857955B2 (en) Absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
JP4260099B2 (en) Absorption refrigerator
JP3858655B2 (en) Absorption refrigeration system
JP4322997B2 (en) Absorption refrigerator
JP3966746B2 (en) Absorption waste heat recovery equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees