JP2003021420A - Absorption refrigerating plant and its operating method - Google Patents

Absorption refrigerating plant and its operating method

Info

Publication number
JP2003021420A
JP2003021420A JP2001208965A JP2001208965A JP2003021420A JP 2003021420 A JP2003021420 A JP 2003021420A JP 2001208965 A JP2001208965 A JP 2001208965A JP 2001208965 A JP2001208965 A JP 2001208965A JP 2003021420 A JP2003021420 A JP 2003021420A
Authority
JP
Japan
Prior art keywords
regenerator
temperature
absorption refrigeration
refrigeration system
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001208965A
Other languages
Japanese (ja)
Inventor
Shozo Saito
昭三 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001208965A priority Critical patent/JP2003021420A/en
Publication of JP2003021420A publication Critical patent/JP2003021420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption refrigerating plant that can be operated stably with high efficiency by utilizing the heat energy of a portable heat accumulator, and to provide a method of operating the plant. SOLUTION: This absorption refrigerating plant has a regenerator, condenser 3, absorber 2, evaporator 1, heat exchangers, absorbing solution pump 12, and refrigerant pump 11 and is designed to use the heat energy stored in the portable heat accumulator 4 as its heating source energy. The heat energy stored in the accumulator 4 can be used through a medium, such as high-temperature water, steam, etc. Since the accumulator 4 is detachably connected to the refrigerating plant, heat energy can be used as the heating source energy of the absorbing solution in the regenerator. In addition, the regenerator can be constituted of a heating source section 4 using an attachable/detachable portable heat accumulator and a gas-liquid separator section 5 which divides the absorbing solution into a condensed absorbing solution 22 and refrigerant vapor 28 independently from the heat accumulator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷凍装置に係
り、特に、離れた場所で発生した熱エネルギーを用いて
運転することができる吸収冷凍装置とその運転方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system, and more particularly to an absorption refrigeration system and a method of operating the absorption refrigeration system which can be operated by using heat energy generated at a remote place.

【0002】[0002]

【従来の技術】従来は、建物の空気調和、工場化学プロ
セスの冷却などのために、冷熱源を必要とする需要家
に、需要家とは離れた場所から大量の熱エネルギーを、
温水又は蒸気の配管方式で熱エネルギーとして輸送し、
需要家側に設置した温水又は蒸気駆動の吸収冷凍装置で
冷熱源を発生する利用方法を採用してきた。しかし、こ
の方法は、過密な都市で利用するには、該配管の敷設費
が膨大で、かつ、敷設に要する工事期間も長期と な
り、その上、道路地下の敷設になる場合は、交通渋滞発
生で社会的な迷惑源ともなっている。このため、大量の
余剰熱エネルギーの発生場所が、比較的需要家から離れ
た場所にある場合は、この 熱エネルギーは有効利用で
きない場合が多い。大量の余剰熱エネルギーの発生場所
と需要場所が同一場所にあっても、熱の発生と利用とが
同一時刻でない ため、有効活用できない場合も多い。
従来は、この発生熱源を利用するためには、冷熱源を製
造して低温 蓄熱して置く必要があった。高効率の低温
吸収冷凍装置は存在しないため、この蓄熱は顕熱のみの
蓄熱となり、大きな蓄熱槽を必要とするので、障害とな
っている。
2. Description of the Related Art Conventionally, a large amount of thermal energy is supplied to a customer who needs a cold heat source for air conditioning of a building, cooling of a chemical process of a factory, etc. from a place remote from the customer.
Transported as heat energy by hot water or steam piping system,
The usage method of generating a cold heat source by a hot water or steam driven absorption refrigeration system installed on the customer side has been adopted. However, if this method is used in an overcrowded city, the cost of laying the piping will be enormous, and the construction period required for the laying will be long. The outbreak is also a source of social nuisance. Therefore, when a large amount of surplus heat energy is generated in a place relatively far from the consumer, this heat energy cannot be effectively used in many cases. Even if the place where a large amount of surplus heat energy is generated and the place where demand is the same, heat generation and use are not at the same time, so effective use is often impossible.
In the past, in order to use this generated heat source, it was necessary to manufacture a cold heat source and store it at a low temperature. Since there is no high-efficiency low-temperature absorption refrigeration system, this heat storage is only sensible heat and requires a large heat storage tank, which is an obstacle.

【0003】上記の配管方式では、高温水又は蒸気とし
て熱エネルギーを輸送し、この熱エネルギーを直接、又
は高温水の場合は、直接又は間接的な吸収冷凍装置の加
熱エネルギーとして利用している。高温の熱エネルギー
が供給可能な場合は、二重効用吸収冷凍装置を使用して
高効率運転を確保し、省エネルギーを実現しているが、
従来の二重効用吸収冷凍装置では、所定の安定した高温
高圧の熱エネルギ ーが熱源として供給されなければ、
所定の高効率運転を確保できない。蓄熱器は、蓄熱エネ
ルギーの発生開始、蓄熱エネルギーが無くなる前、需要
熱量の変化時などの一定時間は、所定の発熱量、即ち、
所定の温度又は圧力の高温水や蒸気を確保できいない特
性を有する。このため、吸収冷凍装置は、可搬型蓄熱器
を直接に再生器として利用した場合も、同様の特性か
ら、 前記の一定時間は、吸収冷凍装置が所要の性能・効
率を発揮できない。
In the above piping system, heat energy is transported as high-temperature water or steam, and this heat energy is used directly or in the case of high-temperature water, as direct or indirect heating energy for an absorption refrigeration system. When high-temperature heat energy can be supplied, a double-effect absorption refrigeration system is used to ensure high-efficiency operation and save energy.
In the conventional double-effect absorption refrigeration system, if the specified stable high-temperature and high-pressure heat energy is not supplied as the heat source,
It is not possible to secure the prescribed high efficiency operation. The heat accumulator has a predetermined amount of heat generated, that is, before the heat storage energy starts to be generated, before the heat storage energy runs out, or when the demand heat amount changes.
It has the property that it cannot secure high-temperature water or steam at a specified temperature or pressure. Therefore, in the absorption refrigeration system, even when the portable heat storage device is directly used as a regenerator, due to the same characteristics, the absorption refrigeration system cannot exhibit the required performance / efficiency during the above-mentioned fixed time.

【0004】また、従来の冷却塔使用の多重効用吸収冷
凍装置においては、外気湿球温度の低下につれて冷却水
入口温度が 低下しても、多重効用吸収冷凍サイクルが
固定のため、最適でかつ効率の良い運転とはならず、省
エネルギーの運転の機会を逃している。このような技術
においては、つぎのような問題点を有していた。 (1)比較的安価で、かつ短期間の工期で熱エネルギー
輸送システムを実現可能とする別の熱エネルギーの輸送
システムが必要である。 (2)可搬型蓄熱器を熱エネルギーの輸送システムとし
て利用可能とするためには、需要家側で可搬型蓄熱器か
ら吸収冷凍装置を駆動するための高温水又は蒸気の発生
するための装置を設ければ、配管方式と同様のシステム
が実現できる。しかし、この設備の費用はマイナス効果
となる。
Further, in the conventional multi-effect absorption refrigeration system using a cooling tower, even if the cooling water inlet temperature decreases as the outside-air wet-bulb temperature decreases, the multi-effect absorption refrigeration cycle is fixed, so that it is optimal and efficient. Is not driving well and misses the opportunity of energy saving driving. Such a technique has the following problems. (1) There is a need for another thermal energy transport system that is relatively inexpensive and that can realize a thermal energy transport system in a short construction period. (2) In order to make the portable heat storage device usable as a thermal energy transport system, a device for generating high-temperature water or steam for driving the absorption refrigeration device from the portable heat storage device on the customer side is required. If provided, a system similar to the piping system can be realized. However, the cost of this equipment has a negative effect.

【0005】(3)従来の吸収冷凍装置を使用したので
は、可搬型蓄熱器の発熱プロセスにおいて、一旦高温水
又は蒸気を発生し、この蒸気により吸収冷凍装置の再生
器の吸収溶液を間接的に加熱することになるため、温度
及び圧力がこの伝熱作用のため低下するので、多重効用
吸収冷凍装置の使用を困難とし、高効率で運転すること
ができなくなる。 (4)蓄熱器は、放熱開始、放熱終了前、需要熱量の変
化時などの一定時間は、所定の発熱量、即ち、所定の温
度又は圧力の高温水や蒸気を確保できいない特性を有す
る。この状態は可搬型蓄熱器を直接再生器に利用した吸
収冷凍装置の場合でも、同様の特性となり所要の性能・
効率を発揮できないだけてなく、安定な運転状態を確保
できない。 (5)冷却塔使用の多重効用吸収冷凍装置では、比較的
湿球温度の低くなる夜間、湿度の低い日、中間期におい
て、冷却水入口温度が低下する特徴を活用し、出来るだ
け多くの効用サイクルが利用出来る様にすべきである
が、従来は低い温度の冷却水が活用されていない。
(3) When the conventional absorption refrigeration system is used, high temperature water or steam is once generated in the heat generation process of the portable heat storage device, and this steam indirectly transfers the absorption solution of the regenerator of the absorption refrigeration system. Since the temperature and pressure are lowered due to this heat transfer effect, it becomes difficult to use the multi-effect absorption refrigeration system and it becomes impossible to operate it with high efficiency. (4) The heat accumulator has a characteristic that a predetermined amount of heat generation, that is, high-temperature water or steam having a predetermined temperature or pressure cannot be secured for a certain period of time such as the start of heat release, the end of heat release, and the change of the demanded heat amount. This state has the same characteristics even in the case of an absorption refrigeration system in which a portable heat storage device is directly used as a regenerator, and the required performance
Not only is it not possible to exert efficiency, but it is also not possible to ensure stable operating conditions. (5) In a multiple-effect absorption refrigeration system using a cooling tower, the cooling water inlet temperature is lowered at night when the wet-bulb temperature is relatively low, on days when the humidity is low, and in the intermediate period, and as many effects as possible are used. Cycles should be available, but low temperature cooling water has not been used in the past.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、可搬型蓄熱器の熱エネルギーを最
大限に利用して、高効率で安定した運転ができる吸収冷
凍装置とその運転方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and utilizes the heat energy of the portable heat storage device to the maximum extent, and an absorption refrigeration system capable of highly efficient and stable operation. It is an object to provide the driving method.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、再生器、凝縮器、吸収器、蒸発器、熱
交換器類、吸収溶液ポンプ及び冷媒ポンプを少なくとも
主要構成機器とし、これらを結ぶ溶液配管、冷媒配管を
有する吸収冷凍装置において、該装置の加熱源エネルギ
ーとして、可搬型蓄熱器に蓄熱された熱エネルギーを用
いることとしたものである。前記吸収冷凍装置におい
て、可搬型蓄熱器に蓄熱された熱エネルギーは、高温
水、蒸気などの媒体を介して用いることができ、前記可
搬型蓄熱器は、前記吸収冷凍装置に着脱可能に接続さ
れ、該装置の再生器の一つの構成機能又はその一つの構
成機器とし、該再生器おける吸収溶液の加熱源エネルギ
ーとして用いることができ、また、前記再生器は、着脱
可能な可搬型蓄熱器を用いた加熱源部と、該蓄熱器から
独立して濃縮された吸収溶液と冷媒蒸気とに分離する気
液分離器部とで構成することができる。
In order to solve the above-mentioned problems, in the present invention, a regenerator, a condenser, an absorber, an evaporator, heat exchangers, an absorbing solution pump and a refrigerant pump are at least main constituent devices. In the absorption refrigeration apparatus having a solution pipe and a refrigerant pipe that connect them, the heat energy stored in the portable heat storage device is used as the heat source energy of the device. In the absorption refrigeration system, the heat energy stored in the portable heat storage device can be used via a medium such as high-temperature water or steam, and the portable heat storage device is detachably connected to the absorption refrigeration device. , One constituent function of the regenerator of the device or one of its constituent devices, which can be used as the heat source energy of the absorption solution in the regenerator, and the regenerator is a removable portable heat storage device. It can be composed of the heating source part used and the gas-liquid separator part which separates the concentrated absorbing solution and the refrigerant vapor independently from the heat storage device.

【0008】前記本発明の吸収冷凍装置は、前記可搬型
蓄熱器が発生可能な加熱エネルギーの温度及び/又は圧
力に応じて、駆動可能な単効用あるいは多重効用(二重
効用、三重効用、四重効用など)の各種の吸収冷凍装置
の中から、最も高効率の運転を可能とする最適な効用の
吸収冷凍装置を選択することができ、多重効用吸収冷凍
装置は、最も高温高圧の再生器に、前記可搬型蓄熱器に
蓄熱された熱エネルギーを用いることができる。さら
に、本発明では、前記多重効用吸収冷凍装置の運転方法
において、前記可搬型蓄熱器が放熱開始時、放熱完了
時、需要熱量の変化時で、該可搬型蓄熱器で直接加熱さ
れる前記最も高温高圧の再生器の吸収溶液が、所定の加
熱温度に到達しな場合、該再生器でこの現象を温度、圧
力及び吸収液面レベルの一つ以上を検知し、該再生器で
発生する冷媒蒸気を、下段の再生器をバイパスしてその
次の下段の再生器の加熱源側に流量制御して導入し、高
効率でかつ安定な運転状態を自動的に維持することとし
たものである。
The absorption refrigerating apparatus of the present invention can be driven by a single-effect or multiple-effect (double-effect, triple-effect, four-effect, four-effect, depending on the temperature and / or pressure of the heating energy that can be generated by the portable heat storage device. It is possible to select the optimum effect absorption refrigeration system that enables the most efficient operation from among various types of absorption refrigeration systems (for heavy effects, etc.). In addition, the heat energy stored in the portable heat storage device can be used. Furthermore, in the present invention, in the operating method of the multiple-effect absorption refrigeration system, the portable heat storage device is directly heated by the portable heat storage device at the start of heat dissipation, at the time of completion of heat dissipation, and at the time of change in heat demand. When the absorbing solution of the high temperature and high pressure regenerator does not reach the predetermined heating temperature, the regenerator detects this phenomenon by one or more of temperature, pressure and absorption liquid level, and the refrigerant generated in the regenerator. The steam is bypassed by the lower-stage regenerator and introduced into the heating source side of the next lower-stage regenerator at a controlled flow rate to automatically maintain a highly efficient and stable operating state. .

【0009】前記多重効用吸収冷凍装置の運転方法にお
いて、前記装置の構成機器である吸収器及び凝縮器に通
水される冷却水入口温度が変化した場合、前記最も高温
高圧の再生器でこの現象を温度、圧力及び吸収液面レベ
ルの一つ以上で検知し、再生器で発生する冷媒蒸気を、
下段の再生器をバイパスしその次の下段の再生器の加熱
源側に流量制御して導入し、高効率でかつ安定な運転状
態を自動的に維持することができる。また、これら前記
の多重効用吸収冷凍装置の運転方法において、加熱源の
加熱温度と冷却水入口温度が変化した場合に、いずれが
変かしたかを検出して、前記再生器に導入する冷媒蒸気
の流量制御を行うことができ、また、前記加熱源の加熱
温度の変化は、蓄熱器出口希溶液配管中に設けた温度セ
ンサーで検知し、また、冷却水入口温度の変化は、冷却
水入口配管に設けた温度センサーで検知し、この検出信
号により何れの制御を優先するかを判断制御すると共
に、前記最も高温高圧の再生器でこの現象を温度、圧力
及び吸収液面レベルの一つ以上で検知し、該再生器で発
生する冷媒蒸気を、下段の再生器をバイパスしその次の
下段の再生器の加熱源側に流量制御して導入する制御機
構を用いて、高効率でかつ安定な運転状態を自動的に維
持することができる。
In the method for operating the multi-effect absorption refrigeration system, when the inlet temperature of the cooling water to be passed through the absorber and the condenser, which are the components of the system, changes, this phenomenon occurs in the regenerator of the highest temperature and high pressure. Is detected at one or more of temperature, pressure and absorption liquid level, and the refrigerant vapor generated in the regenerator is
By bypassing the lower-stage regenerator and introducing it to the heating source side of the next lower-stage regenerator by controlling the flow rate, a highly efficient and stable operating state can be automatically maintained. Further, in the operating method of these multi-effect absorption refrigeration apparatus, when the heating temperature of the heating source and the cooling water inlet temperature are changed, it is detected which one has changed, and the refrigerant vapor to be introduced into the regenerator. The flow rate of the heating source can be controlled, and a change in the heating temperature of the heating source can be detected by a temperature sensor provided in the dilute solution pipe at the outlet of the regenerator. The temperature sensor provided in the pipe detects and controls which of these control signals is prioritized, and the regenerator with the highest temperature and high pressure detects this phenomenon by one or more of temperature, pressure and absorption liquid level. The refrigerant vapor generated in the regenerator is detected with the control mechanism that bypasses the lower regenerator and controls the flow rate to the heating source side of the next lower regenerator and introduces it with high efficiency and stability. Automatic operating conditions Rukoto can.

【0010】[0010]

【発明の実施の形態】本発明では、配管方式に替えて可
搬型蓄熱器を使用して熱エネルギーの発生場所から需要
先まで輸送する。また、蓄熱器であるため、供給量と需
要量が同一量で同時刻である必要はない。可搬型蓄熱器
は、輸送手段の器材と一体のまま、又は可搬型蓄熱器に
分割して使用の何れかを問わない。蓄熱した可搬型蓄熱
器は、熱媒体と熱交換して高温水、蒸気などとし、高温
水、蒸気などを吸収冷凍装置の再生器の加熱源エネルギ
ー源として利用し冷熱源の製造を行う。蓄熱した可搬型
蓄熱器を、吸収冷凍装置の再生器構成機能機器として直
接利用し、間接的な媒体を通じた伝熱に必要な機器を不
要とし、吸収冷凍装置の製造費用の低減を図り、また、
可搬型蓄熱器を再生器の構成機能の一部として直接利用
することで、間接的な熱交換で発生する伝熱温度差損失
と放熱損失をなくすることができる。また、本発明で吸
収溶液を、直接可搬型蓄熱器に直接流入して加熱するこ
とにより、可搬型蓄熱器の発熱可能温度に近い高温の溶
液温度が得られ、この結果、吸収冷凍装置はより多重効
用なサイクルの実現が可能となり、高効率な運転が可能
となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a portable heat storage device is used instead of the piping system to transport the heat energy from the generation site to the demand destination. Further, since it is a heat storage device, it is not necessary that the supply amount and the demand amount are the same amount and at the same time. The portable heat storage device may be used either as it is integrated with the equipment of the transportation means or divided into the portable heat storage device. The portable heat accumulator that has stored heat exchanges heat with a heat medium to produce high-temperature water, steam, etc., and uses the high-temperature water, steam, etc. as a heat source energy source of a regenerator of an absorption refrigeration system to manufacture a cold heat source. The portable heat regenerator that has stored heat is directly used as a regenerator constituent functional device of the absorption refrigeration system, and the equipment necessary for heat transfer through an indirect medium is unnecessary, and the manufacturing cost of the absorption refrigeration system is reduced. ,
By directly using the portable heat storage device as a part of the constituent function of the regenerator, it is possible to eliminate the heat transfer temperature difference loss and the heat radiation loss that occur due to indirect heat exchange. Further, in the present invention, by directly flowing the absorbent solution to the portable heat storage device to heat it, a high solution temperature close to the heat-generating temperature of the portable heat storage device can be obtained. A multi-effect cycle can be realized and highly efficient operation becomes possible.

【0011】蓄熱器は、熱エネルギー発生(放熱)開始、
エネルギー放出完了前、需要熱量の変化などの一定時間
は、所定の発熱量、即ち、所定の温度又は圧力の高温水
や蒸気を確保できないが、 この状態は可搬型蓄熱器を
直接再生器に利用した吸収冷凍装置の場合でも、同様で
ある。そこで、本発明では、所要の性能・効率を発揮で
きず、かつ不安定な運転状態となるのを回避するため、
最も高温の再生器などでこの現象を温度、圧力及び吸収
溶液のレベルのうちの一つ以上で検知し、該再生器(又
は気液分離器)で発生した冷媒蒸気を、下段の再生器を
バイパスし、その次の下段の再生器の加熱側に流量制御
して導入することにより、所定の性能と安定な運転を確
保する。また、冷却塔使用の多重効用吸収冷凍装置で
は、比較的湿球温度の低くなる夜間、湿度の低い日、中
間期において、冷却水入口温度が低下する特徴を活用
し、出来るだけ多くの効用の吸収冷凍サイクルを利用す
べく、冷却水入口温度の上昇により最大の多効用吸収冷
凍サイクルが不可能となる状態を、最も高温の再生器な
どで温度、圧力及び吸収溶液のレベルのうちの一つ以上
で検知し、該再生器又は気液分離器で発生した冷媒蒸気
を下段の再生器をバイパスし、その次の下段の再生器の
加熱側に流量制御して導入することにより、所定の性能
と安定な運転を確保する。
The heat accumulator starts generation of heat energy (heat dissipation),
For a certain period of time, such as a change in the amount of heat demand, before the completion of energy release, it is not possible to secure a certain amount of heat generation, that is, high temperature water or steam of a certain temperature or pressure, but in this state, the portable heat storage device is used as a direct regenerator. The same applies to the absorption refrigeration system described above. Therefore, in the present invention, in order to avoid the required performance and efficiency, and to avoid an unstable operating state,
This phenomenon is detected by one or more of the temperature, pressure and absorption solution level in the hottest regenerator and the refrigerant vapor generated in the regenerator (or gas-liquid separator) is detected by the lower regenerator. Bypassing and controlling the flow rate to introduce it to the heating side of the next lower regenerator, ensure the specified performance and stable operation. In addition, the multi-effect absorption refrigeration system using a cooling tower utilizes the characteristic that the cooling water inlet temperature decreases at night when the wet bulb temperature is relatively low, on days when the humidity is low, and in the intermediate period, and as many effects as possible are obtained. In order to use the absorption refrigeration cycle, the state where the maximum multi-effect absorption refrigeration cycle becomes impossible due to the rise of the cooling water inlet temperature is one of the temperature, pressure and absorption solution level in the hottest regenerator. Detected by the above, by bypassing the refrigerant vapor generated in the regenerator or gas-liquid separator by the lower regenerator, and introducing the flow rate control to the heating side of the next lower regenerator, the predetermined performance is obtained. And ensure stable operation.

【0012】次に、本発明の構成を具体的に説明する。
本発明の吸収冷凍装置においては、可搬型蓄熱器に蓄熱
されている熱エネルギーの温度レベルにより、吸収冷凍
装置として選択される機種が定まる。即ち、可搬型蓄熱
器が蓄熱を放熱する温度レベルが高いほど、単効用、多
効用(二重効用、三重効用、四重効用など)の各種の吸
収冷凍装置の中から、最も高効率の運転を可能な多段の
効用の吸収冷凍サイクルを有する高効率の吸収冷凍装置
の選択が得策となる。しかし、可搬型蓄熱器が蓄熱を放
熱する温度レベルは、可搬型蓄熱器に蓄熱する際の加熱
エネルギーの温度レベルと、蓄熱器の蓄熱材の種類に一
般に左右される。可搬型蓄熱器は運搬手段により構造や
大きさは異なるが、ここでは、陸上を自動車輸送する場
合の可搬型蓄熱器の構造を、図5の断面構成図で説明す
る。 図5は可搬型蓄熱器の蓄熱部4Aの基本的な構造
を説明する図である。
Next, the structure of the present invention will be specifically described.
In the absorption refrigeration system of the present invention, the model selected as the absorption refrigeration system is determined by the temperature level of the heat energy stored in the portable heat storage device. That is, the higher the temperature level at which the portable heat accumulator radiates heat, the higher the efficiency of operation from the various types of absorption refrigeration equipment for single-effect and multiple-effect (double-effect, triple-effect, quadruple-effect, etc.). It is a good idea to select a high-efficiency absorption refrigeration system that has a multi-stage absorption refrigeration cycle that enables However, the temperature level at which the portable heat storage device radiates the stored heat generally depends on the temperature level of the heating energy when the heat is stored in the portable heat storage device and the type of the heat storage material of the heat storage device. Although the structure and size of the portable heat storage device differ depending on the transportation means, here, the structure of the portable heat storage device when the vehicle is transported by land will be described with reference to the sectional configuration diagram of FIG. FIG. 5: is a figure explaining the basic structure of the heat storage part 4A of a portable heat storage device.

【0013】蓄熱部4Aは、胴体200、管板202、
多数の伝熱管201、ヘッダー204から構成される熱
交換器の構造を有し、胴体200と多数の伝熱管201
の空間にぎっしりと蓄熱材203が充填されている。比
較的低温の希溶液は、蓄熱器入口希溶液配管20からヘ
ッダー204の下部に流入し、多数の伝熱管201内を
流れる。ここで蓄熱材203に蓄熱されている高温の熱
エネルギーで加熱されて、へッダー204の上部に集め
られた高温の希溶液は、蓄熱器出口高温希溶液配管21
から出る。熱源温度によっては、四重効用吸収冷凍装置
なども選択可能であるが、ここでは、一例として、排熱
エネルギーを利用する場合などを考慮し、放熱する温度
レベルが適度に高い蓄熱エネルギーを有する可搬型蓄熱
器を採用した例を、図1のフロー構成図を用いて以下に
説明する。
The heat storage section 4A includes a body 200, a tube plate 202,
It has a heat exchanger structure composed of a large number of heat transfer tubes 201 and a header 204, and has a body 200 and a large number of heat transfer tubes 201.
The space is filled with heat storage material 203. The relatively low temperature dilute solution flows into the lower portion of the header 204 from the regenerator inlet dilute solution pipe 20 and flows through the large number of heat transfer tubes 201. Here, the high temperature dilute solution heated by the high temperature heat energy stored in the heat storage material 203 and collected in the upper part of the header 204 is stored in the heat storage outlet high temperature dilute solution pipe 21.
Get out of. Depending on the heat source temperature, a quadruple-effect absorption refrigeration system or the like can be selected, but here, as an example, in consideration of the case of using exhaust heat energy, the temperature level for radiating heat may have a sufficiently high heat storage energy. An example of adopting a portable heat storage device will be described below with reference to the flow configuration diagram of FIG.

【0014】図1は、再生器が、弁15及び弁16を設
けて着脱可能な可搬型蓄熱器4を加熱部とし、当該可搬
型蓄熱器4から独立して、濃縮された吸収溶液と冷媒蒸
気に分離する気液分離器5とて構成した三重効用吸収冷
凍装置である。図1において、吸収器2で冷媒蒸気を吸
収し希釈された希溶液は、溶液ポンプ12により配管1
9を介して第一溶液熱交換器8、第二溶液熱交換器9、
第三溶液熱交換器10で、それぞれ第一再生器7、第二
再生器6、気液分離器5からの高温濃溶液によって予熱
された後、弁15、蓄熱器入口希溶液配管20を経て可
搬型蓄熱器4に流入する。希溶液は、可搬型蓄熱器4に
蓄熱された熱エネルギーの放熱により加熱され高温とな
り、蓄熱器出口高温希溶液配管21、弁16を経由して
気液分離器5に入る。
In FIG. 1, the regenerator is provided with a valve 15 and a valve 16 and uses a removable portable regenerator 4 as a heating part, and the regenerator independently of the portable regenerator 4 concentrates the absorbing solution and the refrigerant. It is a triple effect absorption refrigerating device configured as a gas-liquid separator 5 for separating into vapor. In FIG. 1, the diluted solution which is obtained by absorbing the refrigerant vapor in the absorber 2 and diluted is a pipe 1 by a solution pump 12.
Via the first solution heat exchanger 8, the second solution heat exchanger 9,
In the third solution heat exchanger 10, after being preheated by the high temperature concentrated solution from the first regenerator 7, the second regenerator 6, and the gas-liquid separator 5, respectively, through the valve 15 and the regenerator inlet dilute solution pipe 20. It flows into the portable heat storage device 4. The dilute solution is heated to a high temperature by radiating the heat energy stored in the portable heat storage device 4, and enters the gas-liquid separator 5 via the heat storage device outlet high temperature dilute solution pipe 21 and the valve 16.

【0015】蓄熱器出口高温希溶液配管21、弁16の
流路断面積が十分に大きな場合は、可搬型蓄熱器4、蓄
熱器出口高温希溶液配管21、弁16内などで希溶液が
加熱されて高温となり、一部が冷媒蒸気となり溶液が濃
縮を開始した状態で気液分離器5に送られ場合もある。
図1では、可搬型蓄熱器4と気液分離器は分割された例
で示されているが、気液分離器5を可搬型蓄熱器4の内
部に一体化することも可能である。図6では、可搬型蓄
熱器の蓄熱部4Aのヘッダー204内に気液分離機能5
Dとして収納されている。この場合は、図1の弁16に
相当する弁は、気液分離器出口濃溶液配管22中の弁1
6Bと気液分離器出口冷媒蒸気配管28中の弁16Aの
如く二個所に必要となる。気液分離器5で冷媒蒸気を分
離することにより濃縮された高温の濃溶液は気液分離器
出口濃溶液配管22を介して、第三溶液熱交換器10、
第二溶液熱交換器9、第一溶液熱交換器8で、それぞれ
低温の希溶液により冷却されて、吸収器入口配管27を
経て吸収器2に入る。ここで、図7に示すように、気液
分離器5からの濃溶液を配管121から循環ポンプ12
0を介して蓄熱器4に循環させ、蓄熱器4における伝熱
性能の向上を図るようにすることもできる。
When the flow cross-sectional area of the high temperature dilute solution pipe 21 for the heat storage outlet and the valve 16 is sufficiently large, the dilute solution is heated in the portable heat storage device 4, the high temperature dilute solution pipe 21 for the heat storage outlet, the valve 16, etc. There is also a case where the solution is heated to a high temperature, a part thereof becomes a refrigerant vapor, and the solution is sent to the gas-liquid separator 5 in a state where the solution starts to be concentrated.
In FIG. 1, the portable heat storage device 4 and the gas-liquid separator are shown as divided examples, but the gas-liquid separator 5 can be integrated inside the portable heat storage device 4. In FIG. 6, the gas-liquid separation function 5 is provided in the header 204 of the heat storage unit 4A of the portable heat storage unit.
It is stored as D. In this case, the valve corresponding to the valve 16 in FIG. 1 is the valve 1 in the gas-liquid separator outlet concentrated solution pipe 22.
6B and the valve 16A in the refrigerant vapor pipe 28 at the gas-liquid separator outlet are required at two places. The high-temperature concentrated solution concentrated by separating the refrigerant vapor in the gas-liquid separator 5 is passed through the gas-liquid separator outlet concentrated solution pipe 22 to the third solution heat exchanger 10,
In the second solution heat exchanger 9 and the first solution heat exchanger 8, they are cooled by a low temperature dilute solution and enter the absorber 2 via the absorber inlet pipe 27. Here, as shown in FIG. 7, the concentrated solution from the gas-liquid separator 5 is supplied from the pipe 121 to the circulation pump 12
It is also possible to circulate it to the heat storage unit 4 via 0 to improve the heat transfer performance in the heat storage unit 4.

【0016】一方、気液分離器5で分離された高温高圧
の冷媒蒸気は、気液分離器出口冷媒蒸気配管28から第
二再生器6に入り、第二溶液熱交換器9の出口側から分
流し、第二再生器入口希溶液配管23を経て、第二再生
器6に散布された希溶液を加熱し、この希溶液を濃縮す
る。濃縮された濃溶液は第二再生器出口濃溶液配管24
を介して、第三溶液熱交換器10からの濃溶液と合流し
て、第二溶液熱交換器9、第一溶液熱交換器8で、それ
ぞれ低温の希溶液により冷却されて、吸収器入口配管2
7を経て吸収器2に入る。第二再生器6で高温高圧の冷
媒蒸気により加熱され発生した中温中圧の冷媒蒸気は、
第二再生器出口冷媒蒸気配管30を介して、第一再生器
7に入り、第一溶液熱交換器8の出口側から分流し、第
一再生器入口希溶液配管25を経て、第一再生器7に散
布された希溶液を加熱し、この希溶液を濃縮する。濃縮
された濃溶液は、第一再生器出口濃溶液配管27を介し
て、第二溶液熱交換器9からの濃溶液と合流して、第一
溶液熱交換器8で低温の希溶液により冷却されて、吸収
器入口配管27を経て吸収器2に入る。
On the other hand, the high-temperature and high-pressure refrigerant vapor separated by the gas-liquid separator 5 enters the second regenerator 6 through the gas-liquid separator outlet refrigerant vapor pipe 28, and enters from the outlet side of the second solution heat exchanger 9. The dilute solution is split, heated through the second regenerator inlet dilute solution pipe 23, and heated to dilute the second regenerator 6 to concentrate the dilute solution. The concentrated concentrated solution is concentrated solution piping 24 at the outlet of the second regenerator.
Through the third solution heat exchanger 10 and the concentrated solution from the third solution heat exchanger 10, and is cooled in the second solution heat exchanger 9 and the first solution heat exchanger 8 by the low temperature dilute solution respectively, and the absorber inlet Piping 2
Enter the absorber 2 via 7. The medium-temperature and medium-pressure refrigerant vapor generated by being heated by the high-temperature and high-pressure refrigerant vapor in the second regenerator 6 is
First regeneration via the second regenerator outlet refrigerant vapor pipe 30 enters the first regenerator 7, is branched off from the outlet side of the first solution heat exchanger 8, and is passed through the first regenerator inlet dilute solution pipe 25 for first regeneration. The dilute solution sprinkled on the vessel 7 is heated to concentrate the dilute solution. The concentrated concentrated solution merges with the concentrated solution from the second solution heat exchanger 9 through the first regenerator outlet concentrated solution pipe 27, and is cooled by the low temperature dilute solution in the first solution heat exchanger 8. Then, it enters the absorber 2 through the absorber inlet pipe 27.

【0017】第二再生器6で凝縮した冷媒蒸気は、第二
再生器冷媒液配管31を介し第二再生器出口冷媒蒸気配
管30を流れる中温中圧の冷媒蒸気に合流する。第一再
生器で凝縮した冷媒液は、第一再生器冷媒液配管32を
介して凝縮器3に送られる。第一再生器で中温中圧の冷
媒蒸気で加熱され発生した冷媒蒸気は、凝縮器3に入
り、ここで冷却水により冷却され冷媒液となる。この冷
媒液は、第一再生器7で凝縮した冷媒液と共に凝縮器出
口冷媒液配管33を介して蒸発器1に入る。一方、蒸発
器1内では、冷媒液は、冷媒ポンプ11で蒸発器冷媒液
配管34を介して揚液・散布されて冷水から熱を奪って
蒸発し、冷媒蒸気となって吸収器2に入る。図示されて
いないが、熱を奪われた冷水は低温となり、冷熱源とし
て需要側に供給される。蒸発器1からの冷媒蒸気は、吸
収器2に散布されている濃溶液に吸収され希溶液とな
り、吸収器2下部から溶液ポンプ12により配管19を
介して第一溶液熱交換器8へと送られ、サイクルを繰り
返す。吸収器2で濃溶液が冷媒蒸気を吸収する際に発生
する熱は、冷却水により冷却される。図1の例では、冷
却水は吸収器2から凝縮器3にと直列に通水されている
が、並列通水、逆の通水方法も採用可能である。
The refrigerant vapor condensed in the second regenerator 6 merges with the medium-temperature intermediate-pressure refrigerant vapor flowing through the second regenerator outlet refrigerant vapor pipe 30 via the second regenerator refrigerant liquid pipe 31. The refrigerant liquid condensed in the first regenerator is sent to the condenser 3 via the first regenerator refrigerant liquid pipe 32. The refrigerant vapor generated by being heated by the medium-temperature medium-pressure refrigerant vapor in the first regenerator enters the condenser 3 and is cooled by the cooling water to become the refrigerant liquid. This refrigerant liquid enters the evaporator 1 via the condenser outlet refrigerant liquid pipe 33 together with the refrigerant liquid condensed in the first regenerator 7. On the other hand, in the evaporator 1, the refrigerant liquid is pumped / sprayed by the refrigerant pump 11 through the evaporator refrigerant liquid pipe 34 to remove heat from the cold water and evaporate to become the refrigerant vapor and enter the absorber 2. . Although not shown, the cold water that has been deprived of heat has a low temperature and is supplied to the demand side as a cold heat source. The refrigerant vapor from the evaporator 1 is absorbed by the concentrated solution sprayed on the absorber 2 to become a dilute solution, and is sent from the lower part of the absorber 2 to the first solution heat exchanger 8 via the pipe 19 by the solution pump 12. And repeat the cycle. The heat generated when the concentrated solution absorbs the refrigerant vapor in the absorber 2 is cooled by the cooling water. In the example of FIG. 1, the cooling water is flowed from the absorber 2 to the condenser 3 in series, but parallel water flow and a reverse water flow method can also be adopted.

【0018】可搬型蓄熱器4が放熱開始時、放熱完了
時、需要熱量の変化時などで、加熱媒体或いは再生器の
一構成部の可搬型蓄熱器4で直接加熱される吸収溶液
が、所定の加熱温度に到達しない場合、該再生器機能、
再生器などでこの現象を温度検出調節器13で検知し、
ここからの信号で調節弁14を開閉制御して、安定な運
転状態と、この条件で最も効率のよい多重効用の吸収冷
凍サイクルを確保する。即ち、加熱エネルギーの温度が
比較的低い状態では、気液分離器5底部の濃溶液が比較
的に低温で、かつ、器内の発生冷媒圧力が比較的に低
く、完全な三重効用吸収冷凍サイクルが不可能とり、第
二再生器6、第一再生器7における加熱冷媒蒸気圧の低
下から、十分な希溶液の濃縮が行われず、かつ、発生す
る蒸気量の減少からそれぞれの再生器6,7内圧が低下
するため、それぞれの再生器6,7からの濃溶液の吸収
器2への流れが悪くなり、不安定な運転状態となる恐れ
がある。このため、この状態を回避するため、上述の如
く、調節弁14を開閉制御し、冷媒蒸気バイパス配管2
9を介して、第一再生器7にとっては比較的高温高圧の
冷媒蒸気を供給して、安定な運転状態の維持とこの状態
での最適な多重効用吸収冷凍サイクルを維持することが
可能となる。
When the portable heat storage unit 4 starts to radiate heat, when the heat radiation is completed, or when the demanded heat amount changes, the heating medium or the absorption solution directly heated by the portable heat storage unit 4 of one component of the regenerator is set to a predetermined value. If the heating temperature of is not reached, the regenerator function,
The temperature detection controller 13 detects this phenomenon with a regenerator,
The control valve 14 is opened / closed by a signal from this to secure a stable operating state and the most efficient multiple-effect absorption refrigeration cycle under this condition. That is, when the temperature of the heating energy is relatively low, the concentrated solution at the bottom of the gas-liquid separator 5 has a relatively low temperature, and the refrigerant pressure generated in the vessel is relatively low. However, since the vapor pressure of the heating refrigerant in the second regenerator 6 and the first regenerator 7 is reduced, the dilute solution is not sufficiently concentrated, and the generated vapor amount is reduced. Since the internal pressure of 7 decreases, the flow of the concentrated solution from each of the regenerators 6 and 7 to the absorber 2 becomes poor, which may lead to an unstable operating state. Therefore, in order to avoid this state, as described above, the control valve 14 is controlled to open and close, and the refrigerant vapor bypass pipe 2
It is possible to supply a relatively high-temperature and high-pressure refrigerant vapor to the first regenerator 7 via 9 to maintain a stable operating state and an optimum multi-effect absorption refrigeration cycle in this state. .

【0019】図1では、気液分離器5底部における濃溶
液温度でこの状態を検知しているが、この気液分離器5
の場合に、ここで濃縮される溶液の蒸気圧力即ち発生冷
媒蒸気圧力、及び吸収液面レベルでもこの状態は検出可
能である。即ち、この状態では、気液分離器5内で、濃
溶液の温度が比較的低温となり、また、冷媒蒸気圧力が
低下し、気液分離器5と吸収器2の差圧が減少し、気液
分離器出口濃溶液配管22への流れる量が低下し、その
結果濃溶液の液面レベルが上昇するという現象が発生す
る。従って、温度、圧力、液面レベルの一つ又は複数を
検知し、該再生器又は気液分離器で発生する冷媒蒸気
を、下段の再生器をバイパスしてその次の下段の再生器
の加熱源側に流量制御して導入し、高効率でかつ安定な
運転状態を自動的に維持することが可能となる。本図に
は、説明されていないが、再生器又は気液分離器5内又
はその周辺で同等の検出が可能な個所があり、図4で説
明されている第三再生器5B、第二再生器6及びその周
辺においても同等の検出方法の採用が可能である。
In FIG. 1, this state is detected by the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but this gas-liquid separator 5
In this case, this state can also be detected by the vapor pressure of the solution concentrated here, that is, the generated refrigerant vapor pressure, and the absorption liquid level. That is, in this state, the temperature of the concentrated solution becomes relatively low in the gas-liquid separator 5, the pressure of the refrigerant vapor decreases, and the pressure difference between the gas-liquid separator 5 and the absorber 2 decreases. The amount of the concentrated solution flowing into the liquid separator outlet concentrated solution pipe 22 decreases, and as a result, the level of the concentrated solution rises. Therefore, by detecting one or more of temperature, pressure and liquid level, the refrigerant vapor generated in the regenerator or gas-liquid separator is bypassed to the lower regenerator and the next lower regenerator is heated. It is possible to automatically maintain a highly efficient and stable operating state by introducing the flow rate control on the source side. Although not shown in the figure, there are places where equivalent detection can be performed in or around the regenerator or the gas-liquid separator 5, and the third regenerator 5B and the second regenerator described in FIG. The same detection method can be adopted in the device 6 and its surroundings.

【0020】冷却水入口温度が所定の温度より上昇する
と、第一再生器7、第二再生器6、及び気液分離器底部
の濃溶液温度が上昇、即ち、この状態の各器内の発生冷
媒蒸気圧力では、希溶液を十分に濃縮できず、このため
それぞれの冷媒蒸気圧力が連鎖的に上昇して、正常な三
重効用の吸収冷凍サイクルが不可能となり、安定で高効
率な運転状態を確保できない恐れがある。このため、こ
の状態を回避するため、上述の如く、調節弁14を開閉
制御し、冷媒蒸気バイパス配管29を介して第一再生器
7にとっては比較的高温高圧の冷媒蒸気を供給して、安
定な運転状態の維持とこの状態での最適な多重効用吸収
冷凍サイクルを維持することが可能となる。
When the cooling water inlet temperature rises above a predetermined temperature, the temperature of the concentrated solution in the first regenerator 7, the second regenerator 6 and the bottom of the gas-liquid separator rises, that is, in each state, the concentration of the concentrated solution rises. With the refrigerant vapor pressure, the dilute solution cannot be sufficiently concentrated, so that the refrigerant vapor pressures of each of the refrigerants increase in a chain, and a normal triple effect absorption refrigeration cycle becomes impossible, resulting in stable and highly efficient operating conditions. There is a risk that it cannot be secured. Therefore, in order to avoid this state, as described above, the control valve 14 is controlled to be opened / closed, and the refrigerant vapor of relatively high temperature and high pressure is supplied to the first regenerator 7 via the refrigerant vapor bypass pipe 29 to stabilize the temperature. It is possible to maintain a stable operating state and to maintain an optimum multi-effect absorption refrigeration cycle in this state.

【0021】図1では、気液分離器5底部の濃溶液温度
でこの状態を検知しているが、この気液分離器5の場合
に、ここで濃縮される溶液の蒸気圧力即ち発生冷媒蒸気
圧力、及び吸収液面レベルでもこの状態は検出可能であ
る。即ち、この状態では、気液分離器5内で、濃溶液の
温度が比較的高温となり、また、冷媒蒸気圧力が上昇
し、かつ、気液分離器5と吸収器2の差圧の上昇で、濃
溶液の流れが良くなるので濃溶液の液面レベルが低下す
るという現象が発生する。従って、温度、圧力、液面レ
ベルの一つ又は複数を検知し、該再生器又は気液分離器
で発生する冷媒蒸気を下段の再生器をバイパスしてその
次の下段の再生器の加熱源側に流量制御して導入し、高
効率でかつ安定な運転状態を自動的に維持することが可
能となる。図1には、説明されていないが、再生器又は
気液分離器5内又はその周辺で同等の検出が可能な個所
であり、図4で説明されている第三再生器5B、第二再
生器6及びその周辺においても同等の検出方法の採用が
可能である。
In FIG. 1, this state is detected by the temperature of the concentrated solution at the bottom of the gas-liquid separator 5, but in the case of this gas-liquid separator 5, the vapor pressure of the solution concentrated here, that is, the generated refrigerant vapor. This state can also be detected by the pressure and the level of the absorbing liquid. That is, in this state, the temperature of the concentrated solution becomes relatively high in the gas-liquid separator 5, the refrigerant vapor pressure rises, and the differential pressure between the gas-liquid separator 5 and the absorber 2 rises. Since the flow of the concentrated solution is improved, the liquid level of the concentrated solution is lowered. Therefore, one or more of temperature, pressure, and liquid level are detected, and the refrigerant vapor generated in the regenerator or the gas-liquid separator bypasses the lower regenerator and the heating source of the next lower regenerator. It is possible to automatically maintain a highly efficient and stable operating state by introducing the flow rate control to the side. Although not illustrated in FIG. 1, it is a place where equivalent detection can be performed in or around the regenerator or the gas-liquid separator 5, and the third regenerator 5B and the second regenerator described in FIG. The same detection method can be adopted in the device 6 and its surroundings.

【0022】加熱媒体或いは再生器の一構成部の可搬型
蓄熱器4で直接加熱される吸収溶液が、所定の加熱温度
に到達しない場合と、冷却水入口温度が所定の温度より
上昇する場合とでは、上述の気液分離器5に発生する現
象は逆の現象であるが、これらの現象は、加熱源の加熱
温度の変化は、蓄熱器出口希溶液配管中に設けた温度セ
ンサーで検知し、また、冷却水入口温度の変化は、冷却
水入口配管に設けた温度センサーで検知し、この検出信
号により何れの制御を優先するかを判断制御すると共
に、前記最も高温高圧の再生器などでこの現象を温度、
圧力及び吸収液面レベルの一つ又は複数で検知し、該再
生器又は気液分離器で発生する冷媒蒸気を下段の再生器
をバイパスしその次の下段の再生器の加熱源側に流量制
御して導入する制御機構を用いて、高効率でかつ安定な
運転状態を自動的に維持する制御を選択的の行うことが
できる。
In the case where the heating medium or the absorption solution which is directly heated in the portable heat storage unit 4 which is one component of the regenerator does not reach the predetermined heating temperature, and when the cooling water inlet temperature rises above the predetermined temperature. Then, the above-mentioned phenomenon occurring in the gas-liquid separator 5 is the opposite phenomenon, but these phenomena are detected by a temperature sensor provided in the dilute solution pipe at the outlet of the heat accumulator when a change in the heating temperature of the heating source is detected. In addition, the change in the cooling water inlet temperature is detected by a temperature sensor provided in the cooling water inlet pipe, and the control signal is used to judge and control which control is prioritized. This phenomenon
Flow rate control to the heating source side of the next lower regenerator by bypassing the lower regenerator with the refrigerant vapor generated in the regenerator or gas-liquid separator by detecting one or more of pressure and absorption liquid level By using the control mechanism introduced after that, it is possible to selectively perform control that automatically maintains a highly efficient and stable operating state.

【0023】図2は、図1と同様に蓄熱器を直接組込ん
だ本発明の吸収冷凍装置で、二重効用吸収冷凍装置のフ
ロー構成図である。図2においても、図1と同じ符号は
同じものであり、同様の機能を有しているが、図2で
は、第二再生器6を有していないため、加熱源の過熱温
度が所定の温度に到達しない場合や冷却水入口温度が上
昇した場合に、気液分離器5が発生する冷媒蒸気を下段
の再生器7をバイパスして、直接凝縮器3に流量制御し
て導入することとしている。図3は、蓄熱器を直接組込
んだ本発明の吸収冷凍装置で、単効用吸収冷凍装置のフ
ロー構成図である。図3においても、図1と同じ符号は
同様の機能を有しているが、この装置では、単効用吸収
冷凍装置で一つの再生器機能を可搬型蓄熱器4と気液分
離器5Aで行っているので、加熱源や冷却水の温度変化
に対する制御機能は有していない。
FIG. 2 is a flow configuration diagram of an absorption refrigeration system of the present invention, which is the same as that of FIG. 2 also has the same reference numerals as those in FIG. 1 and has the same function, but in FIG. 2, since the second regenerator 6 is not provided, the overheat temperature of the heating source has a predetermined value. When the temperature is not reached or the cooling water inlet temperature rises, the refrigerant vapor generated by the gas-liquid separator 5 bypasses the lower regenerator 7 and is directly introduced into the condenser 3 while controlling the flow rate. There is. FIG. 3 is a flow configuration diagram of a single-effect absorption refrigeration system which is an absorption refrigeration system of the present invention in which a heat storage device is directly incorporated. Also in FIG. 3, the same reference numerals as those in FIG. 1 have the same functions, but in this device, one regenerator function is performed by the portable heat storage device 4 and the gas-liquid separator 5A in the single-effect absorption refrigeration device. Therefore, it does not have a control function for the temperature change of the heating source or the cooling water.

【0024】図4は、蓄熱器を間接的に組込んだ本発明
の吸収冷凍装置で、三重効用吸収冷凍装置のフロー構成
図である。図4においては、蓄熱器4に蓄熱されたエネ
ルギーは、給水ポンプ100によって、蓄熱器給水配管
102から導入される水によって輸送され、蓄熱器4内
の伝熱管を通って加熱され高温高圧となった水は、高温
水配管103から蒸気の気液分離器5Cに導入され、発
生した高温高圧蒸気が、配管104から第三再生器5B
の加熱源として利用されて、第三再生器5Bで凝縮した
蒸気ドレーンは蒸気ドレーン配管105を通り、ドレー
ントラップを経て配管106から気液分離器5Cに循環
される。液化した水は、配管107から給水ポンプ10
0を介して蓄熱器4に循環される。ここでは、蒸気を加
熱の媒体としているが、この加熱の媒体が、高温水、オ
イルなどとすることもできる。このように、図4では、
図1の蓄熱器4と気液分離器5に代えて、第三再生器5
Bを用いている以外は、図1と同様に機能し、同様に制
御することができる。
FIG. 4 is a flow configuration diagram of a triple effect absorption refrigeration system which is an absorption refrigeration system of the present invention in which a heat storage device is indirectly incorporated. In FIG. 4, the energy stored in the regenerator 4 is transported by the water supply pump 100 by the water introduced from the regenerator water supply pipe 102, and is heated through the heat transfer tube in the regenerator 4 to become high temperature and high pressure. The water is introduced into the vapor-liquid separator 5C of the steam from the high temperature water pipe 103, and the generated high temperature high pressure steam is discharged from the pipe 104 to the third regenerator 5B.
The steam drain, which is used as a heating source of the third regenerator 5B and is condensed in the third regenerator 5B, passes through the steam drain pipe 105 and is circulated from the pipe 106 to the gas-liquid separator 5C via the drain trap. The liquefied water is supplied from the pipe 107 to the water supply pump 10
It is circulated to the heat storage device 4 via 0. Although steam is used as a heating medium here, the heating medium may be high-temperature water, oil, or the like. Thus, in FIG.
Instead of the heat storage unit 4 and the gas-liquid separator 5 shown in FIG.
Except that B is used, it functions as in FIG. 1 and can be controlled in the same manner.

【0025】[0025]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 (1)地域冷暖房、工場化学プロセスの冷却などのため
に、需要家とは離れた場所で発生した熱エネルギーを熱
需要家に供給し、空調や冷凍に必要な冷熱源を得ること
ができる。 (2)熱エネルギーの発生場所で直接的に利用できない
発生エネルギーが、必要な時まで蓄熱され、発生場所や
離れた熱需要家に蓄熱器を輸送して、エネルギーの有効
活用を行い、国家的な省エネルギーを可能とすることが
できる。 (3)熱エネルギーの輸送に可搬型蓄熱器を使用する。 (4)地域冷暖房施設や需要家などが、この供給された
可搬型蓄熱器の熱エネルギーを利用して吸収冷凍装置を
運転して、必要とする冷熱源エネルギーを製造すること
ができる。
According to the present invention, the following effects can be obtained. (1) It is possible to supply the heat energy generated at a place distant from the consumer to the heat consumer for the purpose of district heating / cooling, cooling of the factory chemical process, etc., and obtain the cold heat source required for air conditioning and freezing. (2) Generated energy that cannot be used directly at the location where heat energy is generated is stored until needed, and the heat storage device is transported to heat consumers away from the location where it is generated to make effective use of energy and Energy saving can be achieved. (3) Use a portable heat storage device to transport thermal energy. (4) A district heating / cooling facility, a customer, or the like can operate the absorption refrigerating device by using the supplied thermal energy of the portable heat storage device to produce the required cold energy.

【0026】(5)この供給された熱エネルギーに対し
て、吸収冷凍装置は、安価で高効率な吸収冷凍装置を選
択して使用することができる。 (6)吸収冷凍装置の高効率による省エネルギーを実現
することによりエネルギー消費量を削減し、可搬型蓄熱
器のよる熱エネルギーの輸送量を低減し、輸送費用の低
減と、冷却塔などからの環境への放熱量を低減し、環境
への負荷の低減を可能とする。 (7)効率の良い運転を可能とすることで、冷却水など
への放熱のための水の使用量、電力消費量を低減する多
重効用吸収冷凍装置とすることができる。
(5) With respect to the supplied thermal energy, the absorption refrigeration apparatus can be selected and used at low cost and with high efficiency. (6) Energy consumption is reduced by realizing energy saving by high efficiency of the absorption refrigeration system, transport amount of thermal energy by the portable heat storage device is reduced, transport cost is reduced, and environment from the cooling tower is reduced. It reduces the amount of heat radiated to the environment and reduces the load on the environment. (7) By enabling efficient operation, a multi-effect absorption refrigeration system that reduces the amount of water used for heat dissipation to cooling water and the amount of power consumption can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸収冷凍装置の一例を示す三重効用吸
収冷凍装置のフロー構成図。
FIG. 1 is a flow configuration diagram of a triple effect absorption refrigeration system showing an example of an absorption refrigeration system of the present invention.

【図2】本発明の吸収冷凍装置の他の例を示す二重効用
吸収冷凍装置のフロー構成図。
FIG. 2 is a flow configuration diagram of a double-effect absorption refrigeration system showing another example of the absorption refrigeration system of the present invention.

【図3】本発明の吸収冷凍装置の他の例を示す単効用吸
収冷凍装置のフロー構成図。
FIG. 3 is a flow configuration diagram of a single-effect absorption refrigeration system showing another example of the absorption refrigeration system of the present invention.

【図4】本発明の吸収冷凍装置の別の例を示す三重効用
吸収冷凍装置のフロー構成図。
FIG. 4 is a flow configuration diagram of a triple effect absorption refrigeration system showing another example of the absorption refrigeration system of the present invention.

【図5】本発明で用いる蓄熱器の吸収冷凍装置の一例を
示す断面構成図。
FIG. 5 is a cross-sectional configuration diagram showing an example of an absorption refrigeration apparatus for a heat storage device used in the present invention.

【図6】本発明で用いる蓄熱器の吸収冷凍装置の他の例
を示す断面構成図。
FIG. 6 is a cross-sectional configuration diagram showing another example of the absorption refrigeration system for a heat storage device used in the present invention.

【図7】本発明で用いる蓄熱器と気液分離器の別の例を
示す部分構成図。
FIG. 7 is a partial configuration diagram showing another example of the heat storage device and the gas-liquid separator used in the present invention.

【符号の説明】[Explanation of symbols]

1:蒸発器、2:吸収器、3:凝縮器、4:可搬型蓄熱
器、5:気液分離器、5A:気液分離器、5B:第三再
生器、5C:蒸気の気液分離器、5D:可搬型蓄熱器の
気液分離機能、6:第二再生器、7:第一再生器、8:第
一溶液熱交換器、9:第二溶液熱交換器、10:第三溶
液熱交換器、11:冷媒ポンプ、12:溶液ポンプ、1
3:圧力検出調節器、14:調節弁、15:弁、16:
弁、17:冷水、18:冷却水、19:希溶液配管、2
0:蓄熱器入口希溶液配管、21:蓄熱器出口高温希溶液
配管、22:気液分離器出口濃溶液配管、22A:第三再
生器出口濃溶液配管、23:第二再生器入口希溶液配
管、24:第二再生器出口濃溶液配管、25:第一再生器
入口希溶液配管、26:第一再生器出口濃溶液配管、2
7:吸収器入口濃溶液配管、28:気液分離器出口冷媒蒸
気配管、28A:第三再生器出口冷媒蒸気配管、29:
冷媒蒸気バイパス配管、30:第二再生器出口冷媒蒸気
配管、31:第二再生器出口冷媒液配管、32:第一再生
器出口冷媒液配管、33:凝縮器出口冷媒液配管、34:
蒸発器冷媒液配管、100:給水ポンプ、101:ドレー
ントラップ、102:蓄熱器給水配管、103:蓄熱器高
温水配管、104:高温高圧蒸気配管、105:蒸気ドレ
ーン配管、106:蒸気ドレーン配管、107:給水ポ
ンプ入口配管
1: Evaporator, 2: Absorber, 3: Condenser, 4: Portable heat storage device, 5: Gas-liquid separator, 5A: Gas-liquid separator, 5B: Third regenerator, 5C: Gas-liquid separation of vapor Vessel, 5D: gas-liquid separation function of portable heat storage device, 6: second regenerator, 7: first regenerator, 8: first solution heat exchanger, 9: second solution heat exchanger, 10: third Solution heat exchanger, 11: Refrigerant pump, 12: Solution pump, 1
3: pressure detection controller, 14: control valve, 15: valve, 16:
Valve, 17: cold water, 18: cooling water, 19: dilute solution piping, 2
0: Regenerator inlet dilute solution pipe, 21: Regenerator outlet high temperature dilute solution pipe, 22: Gas-liquid separator outlet concentrated solution pipe, 22A: Third regenerator outlet concentrated solution pipe, 23: Second regenerator inlet diluted solution Piping, 24: Second regenerator outlet concentrated solution piping, 25: First regenerator inlet diluted solution piping, 26: First regenerator outlet concentrated solution piping, 2
7: Absorber inlet concentrated solution pipe, 28: Gas-liquid separator outlet refrigerant vapor pipe, 28A: Third regenerator outlet refrigerant vapor pipe, 29:
Refrigerant vapor bypass pipe, 30: Second regenerator outlet refrigerant vapor pipe, 31: Second regenerator outlet refrigerant liquid pipe, 32: First regenerator outlet refrigerant liquid pipe, 33: Condenser outlet refrigerant liquid pipe, 34:
Evaporator refrigerant liquid pipe, 100: Water supply pump, 101: Drain trap, 102: Heat storage water supply pipe, 103: Heat storage high temperature water pipe, 104: High temperature high pressure steam pipe, 105: Steam drain pipe, 106: Steam drain pipe, 107: Water supply pump inlet piping

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 27/02 F25B 27/02 K ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 27/02 F25B 27/02 K

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 再生器、凝縮器、吸収器、蒸発器、熱交
換器類、吸収溶液ポンプ及び冷媒ポンプを少なくとも主
要構成機器とし、これらを結ぶ溶液配管、冷媒配管を有
する吸収冷凍装置において、該装置の加熱源エネルギー
として可搬型蓄熱器に蓄熱された熱エネルギーを用いる
ことを特徴とする吸収冷凍装置。
1. An absorption refrigeration system having a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, an absorption solution pump and a refrigerant pump as at least main components, and a solution pipe and a refrigerant pipe connecting these components, An absorption refrigerating apparatus, wherein heat energy stored in a portable heat storage device is used as a heating source energy of the apparatus.
【請求項2】 前記可搬型蓄熱器に蓄熱された熱エネル
ギーは、媒体を介して用いることを特徴とする請求項1
記載の吸収冷凍装置。
2. The heat energy stored in the portable heat storage device is used via a medium.
The absorption refrigeration system described.
【請求項3】 前記可搬型蓄熱器は、前記吸収冷凍装置
に着脱可能に接続され、該装置の再生器の一つの構成機
能又はその一つの構成機器とし、該再生器おける吸収溶
液の加熱源エネルギーとして用いることを特徴とする請
求項1記載の吸収冷凍装置。
3. The portable heat accumulator is detachably connected to the absorption refrigeration system and serves as one constituent function of the regenerator of the apparatus or one constituent device thereof, and a heating source for an absorption solution in the regenerator. The absorption refrigeration apparatus according to claim 1, which is used as energy.
【請求項4】 前記再生器は、着脱可能な可搬型蓄熱器
を用いた加熱源部と、該蓄熱器から独立して濃縮された
吸収溶液と冷媒蒸気とに分離する気液分離器部とで構成
することを特徴とする請求項3記載の吸収冷凍装置。
4. The regenerator includes a heating source section that uses a removable portable heat storage unit, and a gas-liquid separator section that separates the concentrated absorption solution and the refrigerant vapor independently from the heat storage unit. 4. The absorption refrigeration system according to claim 3, wherein
【請求項5】 前記吸収冷凍装置は、前記可搬型蓄熱器
が発生可能な加熱エネルギーの温度及び/又は圧力に応
じて、駆動可能な単効用あるいは、多重効用の各種の吸
収冷凍装置の中から、最も高効率の運転を可能とする最
適な効用の吸収冷凍装置を選択することを特徴とする請
求項1〜4のいずれか1項記載の吸収冷凍装置。
5. The absorption refrigeration system may be selected from a variety of single-effect or multi-effect absorption refrigeration systems that can be driven according to the temperature and / or pressure of the heating energy that can be generated by the portable heat storage device. The absorption refrigeration system according to any one of claims 1 to 4, wherein an absorption refrigeration system having an optimum effect that enables the most efficient operation is selected.
【請求項6】 前記多重効用吸収冷凍装置は、最も高温
高圧の再生器に、前記可搬型蓄熱器に蓄熱された熱エネ
ルギーを用いることを特徴とする請求項5記載の吸収冷
凍装置。
6. The absorption refrigeration system of claim 5, wherein the multi-effect absorption refrigeration system uses the thermal energy stored in the portable heat storage device for a regenerator having the highest temperature and high pressure.
【請求項7】 請求項6記載の多重効用吸収冷凍装置の
運転方法において、前記可搬型蓄熱器が放熱開始時、放
熱完了時、需要熱量の変化時で、該可搬型蓄熱器で直接
加熱される前記最も高温高圧の再生器の吸収溶液が、所
定の加熱温度に到達しない場合、該再生器でこの現象を
温度、圧力及び吸収液面レベルの一つ以上を検知し、該
再生器で発生する冷媒蒸気を、下段の再生器をバイパス
してその次の下段の再生器の加熱源側に流量制御して導
入し、高効率でかつ安定な運転状態を自動的に維持する
ことを特徴とする多重効用吸収冷凍装置の運転方法。
7. The method of operating a multi-effect absorption refrigeration system according to claim 6, wherein the portable heat storage device is directly heated by the portable heat storage device at the start of heat release, the completion of heat release, and the change in the required heat quantity. When the absorption solution of the highest temperature and high pressure regenerator does not reach the predetermined heating temperature, this phenomenon is generated by the regenerator by detecting one or more of temperature, pressure and absorption liquid level. The refrigerant vapor that bypasses the lower-stage regenerator and is introduced into the next-stage lower-stage regenerator by controlling the flow rate, and automatically maintains a highly efficient and stable operating state. Method of operating a multi-effect absorption refrigeration system.
【請求項8】 請求項6又は7記載の多重効用吸収冷凍
装置の運転方法において、前記装置の構成機器である吸
収器及び凝縮器に通水される冷却水入口温度が変化した
場合、前記最も高温高圧の再生器でこの現象を温度、圧
力及び吸収液面レベルの一つ以上で検知し、該再生器で
発生する冷媒蒸気を、下段の再生器をバイパスしその次
の下段の再生器の加熱源側に流量制御して導入し、高効
率でかつ安定な運転状態を自動的に維持することを特徴
とする多重効用吸収冷凍装置の運転方法。
8. The method for operating a multi-effect absorption refrigeration system according to claim 6 or 7, wherein when the cooling water inlet temperature passed to the absorber and the condenser, which are the constituent components of the device, changes, This phenomenon is detected by a high-temperature high-pressure regenerator at one or more of temperature, pressure, and absorption liquid level, and the refrigerant vapor generated in the regenerator is bypassed to the lower regenerator and the next lower regenerator. A method for operating a multi-effect absorption refrigeration system, which is characterized in that the flow rate is controlled and introduced to the heating source side, and a highly efficient and stable operation state is automatically maintained.
【請求項9】 請求項7又は8記載の多重効用吸収冷凍
装置の運転方法において、加熱源の加熱温度と冷却水入
口温度が変化した場合に、いずれが変化したかを検出し
て、前記再生器に導入する冷媒蒸気の流量制御を行うこ
とを特徴とする多重効用吸収冷凍装置の運転方法。
9. The method for operating a multi-effect absorption refrigerating apparatus according to claim 7, wherein when the heating temperature of the heating source and the cooling water inlet temperature change, which is changed, the regeneration is performed. A method for operating a multi-effect absorption refrigeration system, characterized in that the flow rate of refrigerant vapor introduced into the reactor is controlled.
【請求項10】 請求項9記載の多重効用吸収冷凍装置
の運転方法において、前記加熱源の加熱温度の変化は、
蓄熱器出口希溶液配管中に設けた温度センサーで検知
し、また、冷却水入口温度の変化は、冷却水入口配管に
設けた温度センサーで検知し、この検出信号により何れ
の制御を優先するかを判断制御すると共に、前記最も高
温高圧の再生器でこの現象を温度、圧力及び吸収液面レ
ベルの一つ以上で検知し、該再生器で発生する冷媒蒸気
を、下段の再生器をバイパスしその次の下段の再生器の
加熱源側に流量制御して導入する制御機構を用いて、高
効率でかつ安定な運転状態を自動的に維持することを特
徴とする多重効用吸収冷凍装置の運転方法。
10. The method for operating a multiple-effect absorption refrigeration system according to claim 9, wherein the change in the heating temperature of the heating source is:
The temperature sensor provided in the dilute solution pipe at the outlet of the heat storage unit detects it, and the change in the cooling water inlet temperature is detected by the temperature sensor provided in the cooling water inlet pipe. Which control should be prioritized by this detection signal? This phenomenon is detected by the regenerator of the highest temperature and high pressure at one or more of temperature, pressure and absorption liquid level, and the refrigerant vapor generated in the regenerator is bypassed to the lower regenerator. Operation of a multiple-effect absorption refrigeration system characterized by automatically maintaining a highly efficient and stable operating state by using a control mechanism that controls and introduces the flow rate to the heating source side of the next lower regenerator Method.
JP2001208965A 2001-07-10 2001-07-10 Absorption refrigerating plant and its operating method Pending JP2003021420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001208965A JP2003021420A (en) 2001-07-10 2001-07-10 Absorption refrigerating plant and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001208965A JP2003021420A (en) 2001-07-10 2001-07-10 Absorption refrigerating plant and its operating method

Publications (1)

Publication Number Publication Date
JP2003021420A true JP2003021420A (en) 2003-01-24

Family

ID=19044694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208965A Pending JP2003021420A (en) 2001-07-10 2001-07-10 Absorption refrigerating plant and its operating method

Country Status (1)

Country Link
JP (1) JP2003021420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128558A (en) * 2006-11-21 2008-06-05 Kawasaki Thermal Engineering Co Ltd Method and device for energy saving control operation of absorption water cooler/heater
CN113531943A (en) * 2017-02-27 2021-10-22 博塔驻车株式会社 Heat exchange device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128558A (en) * 2006-11-21 2008-06-05 Kawasaki Thermal Engineering Co Ltd Method and device for energy saving control operation of absorption water cooler/heater
CN113531943A (en) * 2017-02-27 2021-10-22 博塔驻车株式会社 Heat exchange device

Similar Documents

Publication Publication Date Title
CA2222735C (en) Liquid/vapor absorption system
JPS61110852A (en) Absorption heat pump/refrigeration system
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP5390426B2 (en) Absorption heat pump device
JP2782555B2 (en) Absorption heat pump
JP2011237138A (en) Absorption air conditioning hot water supply system
EP0897516B1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JP3905986B2 (en) Waste heat utilization air conditioning system
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
JP2012202589A (en) Absorption heat pump apparatus
US5570584A (en) Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor
JP2009236368A (en) Absorption chiller/heater
CN101603747B (en) Absorption refrigeration cycle method
JP2003021420A (en) Absorption refrigerating plant and its operating method
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
KR200144045Y1 (en) Absorption type cooler
CN100412466C (en) Absorption refrigerating machine
JPH11211262A (en) Absorption type refrigerating machine system
JP3429905B2 (en) Absorption refrigerator
JP2000283598A (en) Method for controlling engine heat pump
WO2003031882A1 (en) Absorption refrigeration device
JPH11281185A (en) Single and double effect absorption refrigerating machine
JP2000055497A (en) Triple effect absorption type refrigerator
JPH05272831A (en) Absorption refrigerator
JP2003176961A (en) Excess hot heat utilizing method in multiple-effect absorption refrigerator and water cooler/heater