JP2000055497A - Triple effect absorption type refrigerator - Google Patents

Triple effect absorption type refrigerator

Info

Publication number
JP2000055497A
JP2000055497A JP10221316A JP22131698A JP2000055497A JP 2000055497 A JP2000055497 A JP 2000055497A JP 10221316 A JP10221316 A JP 10221316A JP 22131698 A JP22131698 A JP 22131698A JP 2000055497 A JP2000055497 A JP 2000055497A
Authority
JP
Japan
Prior art keywords
temperature regenerator
effect absorption
temperature
regenerator
triple effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10221316A
Other languages
Japanese (ja)
Inventor
Michihiko Aizawa
道彦 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10221316A priority Critical patent/JP2000055497A/en
Publication of JP2000055497A publication Critical patent/JP2000055497A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a double effect absorption type refrigerator at the time of a maximum load in midsummer by constituting to extract a part or all of vapor generated in a high temperature regenerator to an intermediate temperature regenerator via a bypass passage in the case of a high temperature and a high load of cooling water in midsummer or the like. SOLUTION: In the triple effect absorption type refrigerator comprising an evaporator 1, an absorber 2, a condenser 15, low temperature, intermediate temperature and high temperature regenerators 7, 8 and 9, low temperature, intermediate temperature and high temperature heat exchangers 6, 20, and 19 provided on the way of the pipings communicating with each other, a bypass passage 21 for supplying vapor generated from the regenerator 9 to a shell side of the regenerator 8 is provided. In the case of a high cooling water temperature at one time in midsummer, a part or all of the vapor generated from the regenerator 9 is bypassed to the regenerator 8. Thus, a pressure, a temperature of the regenerator 9 during operating are suppressed to those of a double effect absorption type refrigerator. Meanwhile, in an intermediate season or the like, the passage 21 is closed, and a high efficiency operation of the triple effect is intended.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調および冷凍分
野に用いられる三重効用吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triple effect absorption refrigerator used in the fields of air conditioning and refrigeration.

【0002】[0002]

【従来の技術】従来の二重効用吸収式冷凍機に比較して
三重効用吸収式冷凍機は効率が約1.5倍程度に改善され
るが、一般空調用途に用いる場合に、真夏は高温再生器
の内部圧力が大気圧をはるかに超える高圧となり、かつ
溶液の温度も200℃をはるかに超える高温となるため
に、圧力容器および腐食信頼性の問題から実用化されて
おらず、効率の悪い二重効用吸収式冷凍機が専ら使われ
ていた。
2. Description of the Related Art The efficiency of a triple effect absorption refrigerator is improved to about 1.5 times as compared with a conventional double effect absorption refrigerator. Since the internal pressure of the gas becomes much higher than the atmospheric pressure and the temperature of the solution becomes much higher than 200 ° C., it has not been put into practical use due to the problem of the pressure vessel and the corrosion reliability, and the efficiency is low. Heavy duty absorption refrigerators were exclusively used.

【0003】[0003]

【発明が解決しようとする課題】上に述べたように、三
重効用吸収式冷凍機は真夏の運転状態における高温再生
器の圧力が大気圧をはるかに超える高圧となるために、
製造にあたっては高圧ガス容器として製造することが必
要であり、その結果として胴の肉厚が厚くなり製造コス
トが高くなる上に、使用にあたっては特別の資格をもっ
た運転員が必要とされるなど、使用に関する制約が大き
かった。また運転状態における高温再生器の温度が20
0℃をはるかに超える高温となるために、材料の腐食が
大きな問題となり、事実上信頼に足る材料を見つけるこ
とが困難であった。その結果として、三重効用は効率の
良いシステムであることは判っていたが、実用化されて
おらず省エネルギー効果を活用することができていなか
った。
As described above, in the triple effect absorption refrigerator, the pressure of the high-temperature regenerator in the midsummer operating state is much higher than the atmospheric pressure.
In manufacturing, it is necessary to manufacture it as a high-pressure gas container. As a result, the thickness of the body becomes thick and the manufacturing cost increases, and in addition, a specially qualified operator is required for use. , Restrictions on use were great. When the temperature of the high-temperature regenerator in the operating state is 20
Since the temperature is much higher than 0 ° C., corrosion of the material has become a serious problem, and it has been difficult to find a material that is practically reliable. As a result, the triple utility was known to be an efficient system, but was not put to practical use and could not utilize the energy saving effect.

【0004】本発明の目的は、この問題を解決して1年
の内で真夏の一時期を除いてほとんどの運転時間を占め
る中間期に三重効用吸収式冷凍機を運転することができ
る三重効用吸収式冷凍機を提供するようにしたものであ
る。
[0004] It is an object of the present invention to solve this problem and to make it possible to operate a triple effect absorption refrigerator in an interim period occupying most of the operation time except one time in the middle of summer within one year. It is intended to provide a type refrigerator.

【0005】[0005]

【課題を解決するための手段】下記発明の実施の形態に
述べるように、本発明によれば、真夏の一時期など冷却
水温度が高い場合に、高温再生器の発生蒸気の一部また
は全部を中温再生器にバイパスさせることによって、運
転中の高温再生器の圧力,温度を従来の二重効用吸収式
冷凍機並みに押さえるようにし、中間期など冷却水温度
が低い場合や、負荷の小さい場合に、上記バイパスを閉
じることによって三重効用の効率の良い運転を実現させ
たものである。
According to the present invention, when the cooling water temperature is high, such as during the middle of summer, part or all of the steam generated by the high-temperature regenerator is eliminated. By bypassing the medium-temperature regenerator, the pressure and temperature of the high-temperature regenerator during operation can be held down to the same level as conventional double-effect absorption refrigerators. Further, by closing the bypass, efficient operation with triple effect is realized.

【0006】[0006]

【発明の実施の形態】図1に本発明になる三重効用吸収
式冷凍機のサイクルフロー図を示す。冷媒である水は蒸
発器1において管内を流れる冷水2から熱を奪って蒸発
する。蒸発した冷媒蒸気は吸収器3に流入し、再生器か
ら戻る濃溶液に吸収され、濃溶液は希釈されて希溶液と
なる。吸収に伴って発生する吸収熱は、吸収器管内を流
れる冷却水4に放出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a cycle flow diagram of a triple effect absorption refrigerator according to the present invention. Water, which is a refrigerant, evaporates in the evaporator 1 by removing heat from the cold water 2 flowing in the pipe. The evaporated refrigerant vapor flows into the absorber 3 and is absorbed by the concentrated solution returned from the regenerator, and the concentrated solution is diluted to become a dilute solution. Absorption heat generated by the absorption is released to the cooling water 4 flowing in the absorber tube.

【0007】希溶液は溶液ポンプ5によって吸収器底部
から吸引され低温熱交換器6を出た所で3分割され、そ
れぞれ低温再生器7,中温再生器8,高温再生器9に供
給される。高温再生器9では加熱源10によって、供給
された希溶液は加熱濃縮され発生蒸気11と濃溶液に分
離される。発生蒸気11は通路12を経て中温再生器の
管内に供給され、管外を流れる希溶液を加熱濃縮し、新
たに希溶液を発生蒸気13と濃溶液に分離する。発生蒸
気13は通路14を経て低温再生器の管内に供給され、
管外を流れる希溶液を再び加熱濃縮し、再度希溶液は発
生蒸気と濃溶液に分離する。
The dilute solution is sucked by the solution pump 5 from the bottom of the absorber and exits the low-temperature heat exchanger 6, where it is divided into three parts and supplied to the low-temperature regenerator 7, medium-temperature regenerator 8, and high-temperature regenerator 9, respectively. In the high-temperature regenerator 9, the supplied dilute solution is heated and concentrated by the heating source 10 and separated into generated steam 11 and a concentrated solution. The generated steam 11 is supplied into the pipe of the intermediate temperature regenerator through the passage 12, heats and concentrates the dilute solution flowing outside the pipe, and newly separates the dilute solution into the generated steam 13 and a concentrated solution. The generated steam 13 is supplied into the pipe of the low-temperature regenerator through the passage 14,
The dilute solution flowing outside the tube is again heated and concentrated, and the dilute solution is again separated into a generated vapor and a concentrated solution.

【0008】発生蒸気は凝縮器15ヘ流入し、凝縮液化
する。中温再生器および低温再生器の管内で凝縮した冷
媒液はそれぞれ通路16と17を経て凝縮器に至る。凝
縮器で凝縮した冷媒液および通路16および17を経て
凝縮器に流入した液冷媒は合流して蒸発器1に戻る。蒸
発器1の下部には冷媒ポンプ18が設置されており、液
冷媒を蒸発器1の管群上に散布して蒸発を促進してい
る。
[0008] The generated steam flows into the condenser 15 and is condensed and liquefied. The refrigerant liquid condensed in the tubes of the medium-temperature regenerator and the low-temperature regenerator reaches the condenser via the passages 16 and 17, respectively. The refrigerant liquid condensed by the condenser and the liquid refrigerant flowing into the condenser via the passages 16 and 17 merge and return to the evaporator 1. A refrigerant pump 18 is provided at a lower portion of the evaporator 1, and sprays a liquid refrigerant onto a tube group of the evaporator 1 to promote evaporation.

【0009】一方、高温再生器9,中温再生器8,低温
再生器7において、それぞれ濃縮された溶液は合流して
一つにまとまり、低温熱交換器6を経て吸収器3に戻
る。高温再生器9への行き戻りの溶液を相互に熱交換し
てサイクル効率を高める高温熱交換器19および、中温
再生器8への行き戻りの溶液を相互に熱交換して、サイ
クル効率を高める中温熱交換器20を設置することが多
い。
On the other hand, in the high-temperature regenerator 9, the medium-temperature regenerator 8, and the low-temperature regenerator 7, the respective concentrated solutions are merged into one, and return to the absorber 3 via the low-temperature heat exchanger 6. The high-temperature heat exchanger 19 that exchanges heat with the solution returning to the high-temperature regenerator 9 to increase the cycle efficiency and the heat that exchanges the solution that returns to the intermediate-temperature regenerator 8 mutually increase the cycle efficiency. The medium temperature heat exchanger 20 is often installed.

【0010】本発明は上記サイクルからなる三重効用吸
収式冷凍機において、高温再生器9において発生する蒸
気の一部または全部を中温再生器8のシェル側に供給す
るバイパス通路21を設け、このバイパス通路に弁22
を設けたものである。このバイパス通路は直接中温再生
器8のシェル側に供給する代わりに図のように高温再生
器9と通路14とを連絡するように構成しても良い。高
温再生器には圧力検出部23を設け、この圧力を検知し
てバイパス弁の開度を決める制御装置24が設けられて
いる。
According to the present invention, in the triple effect absorption refrigerator having the above-described cycle, a bypass passage 21 for supplying a part or all of the steam generated in the high temperature regenerator 9 to the shell side of the intermediate temperature regenerator 8 is provided. Valve 22 in passage
Is provided. Instead of supplying the bypass passage directly to the shell side of the intermediate-temperature regenerator 8, the bypass passage may be configured to connect the high-temperature regenerator 9 and the passage 14 as shown in the figure. The high temperature regenerator is provided with a pressure detecting section 23, and a control device 24 which detects the pressure and determines the opening of the bypass valve is provided.

【0011】[0011]

【発明の効果】本発明によれば、真夏の一時期冷却水の
温度が高くかつ負荷の大きい場合に高温再生器で発生す
る蒸気の一部、または全部を上記バイパス通路を通じて
中温再生器に抜くように構成するので、真夏の最大負荷
時には従来の二重効用吸収式冷凍機として運転すること
ができ、中間期または負荷の少ない時にはバイパス通路
を閉じることによって、三重効用吸収式冷凍機としての
運転が可能であるから、効率の高い運転をすることがで
きる。
According to the present invention, part or all of the steam generated in the high-temperature regenerator when the temperature of the cooling water is high and the load is large in the middle of summer is discharged to the intermediate-temperature regenerator through the bypass passage. At the maximum load in midsummer, it can be operated as a conventional double-effect absorption refrigerator, and during the middle period or when the load is small, the bypass passage is closed to operate as a triple-effect absorption refrigerator. Since it is possible, highly efficient operation can be performed.

【0012】また、バイパス通路を完全に閉じた状態で
は高温再生器の圧力が大気圧を超えるような冷却水温度
の場合や、負荷の状態においては、バイパス通路を完全
に閉じてしまうのではなく、高温再生器の圧力に応じて
高温再生器の圧力が大気圧を超えない範囲で運転できる
ように、バイパス弁を開閉制御することによって効率の
高い運転をすることができる。
Further, when the temperature of the cooling water is such that the pressure of the high-temperature regenerator exceeds the atmospheric pressure when the bypass passage is completely closed, or when the load is in a load state, the bypass passage is not completely closed. In addition, by controlling the opening and closing of the bypass valve such that the pressure of the high-temperature regenerator can be operated within a range not exceeding the atmospheric pressure in accordance with the pressure of the high-temperature regenerator, highly efficient operation can be performed.

【0013】空調用途の機械においては、冷却水温度が
仕様の32℃になる時期は1年間の内で真夏の一時期の
みであり、他の大半の運転時間においては冷却水温度が
低くかつ負荷率が低いので、年間を通じての三重効用運
転時間は長くなり、従来の二重効用吸収式冷凍機に比較
してエネルギー消費量の少ない冷凍機を提供することが
できる。
In an air-conditioning machine, the time when the cooling water temperature reaches the specified temperature of 32 ° C. is only one time during the summer in one year, and in most other operating hours, the cooling water temperature is low and the load factor is low. , The triple-effect operation time throughout the year becomes longer, and a refrigerator with lower energy consumption than conventional double-effect absorption refrigerators can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である三重効用吸収式冷凍機の
構成図である。
FIG. 1 is a configuration diagram of a triple effect absorption refrigerator according to an embodiment of the present invention.

【図2】本発明の他の実施例である三重効用吸収式冷凍
機の構成図である。
FIG. 2 is a configuration diagram of a triple effect absorption refrigerator according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…蒸発器、2…冷水、3…吸収器、4…冷却水、5…
溶液ポンプ、6…低温熱交換器、7…低温再生器、8…
中温再生器、9…高温再生器、10…加熱源、11,1
3…発生蒸気、12,14,16,17…通路、15…
凝縮器、18…冷媒ポンプ、19…高温熱交換器、20
…中温熱交換器、21…バイパス通路、22…弁、23
…圧力検出部、24…制御装置。
DESCRIPTION OF SYMBOLS 1 ... Evaporator, 2 ... Cold water, 3 ... Absorber, 4 ... Cooling water, 5 ...
Solution pump, 6 ... Low temperature heat exchanger, 7 ... Low temperature regenerator, 8 ...
Medium-temperature regenerator, 9: high-temperature regenerator, 10: heating source, 11, 1
3 ... generated steam, 12, 14, 16, 17 ... passage, 15 ...
Condenser, 18 ... Refrigerant pump, 19 ... High temperature heat exchanger, 20
... Medium temperature heat exchanger, 21 ... Bypass passage, 22 ... Valve, 23
... pressure detector, 24 ... control device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】蒸発器,吸収器,凝縮器,低温再生器,中
温再生器,高温再生器,1個または複数の溶液熱交換
器、これらを連結する配管類,溶液および冷媒をサイク
ル内に循環させる液ポンプ類からなる三重効用吸収式冷
凍機において、高温再生器で発生する蒸気の一部または
全部を、中温再生器のシェル側または中温再生器で発生
する蒸気が低温再生器に流入する蒸気通路に連通させる
流路を設け、この流路に弁を設けたことを特徴とする三
重効用吸収式冷凍機。
An evaporator, an absorber, a condenser, a low-temperature regenerator, a medium-temperature regenerator, a high-temperature regenerator, one or a plurality of solution heat exchangers, piping connecting them, a solution and a refrigerant are put into a cycle. In a triple effect absorption refrigerator including liquid pumps to be circulated, part or all of the steam generated by the high-temperature regenerator is converted into the shell side of the medium-temperature regenerator or the steam generated by the medium-temperature regenerator flows into the low-temperature regenerator. A triple effect absorption refrigerator comprising: a flow passage communicating with a steam passage; and a valve provided in the flow passage.
【請求項2】蒸発器,吸収器,凝縮器,低温再生器,中
温再生器,高温再生器,1個または複数の溶液熱交換
器、これらを連結する配管類,溶液および冷媒をサイク
ル内に循環させる液ポンプ類からなる三重効用吸収式冷
凍機において、高温再生器で発生する蒸気の一部または
全部を、中温再生器のシェル側または中温再生器で発生
する蒸気が低温再生器に流入する蒸気通路に連通させる
流路を設け、この流路に設けた弁を運転中の高温再生器
の圧力が一定値を超えないように制御するように構成し
たことを特徴とする三重効用吸収式冷凍機。
2. An evaporator, an absorber, a condenser, a low-temperature regenerator, a medium-temperature regenerator, a high-temperature regenerator, one or a plurality of solution heat exchangers, piping connecting them, a solution and a refrigerant are placed in a cycle. In a triple effect absorption refrigerator including liquid pumps to be circulated, part or all of the steam generated by the high-temperature regenerator is converted into the shell side of the medium-temperature regenerator or the steam generated by the medium-temperature regenerator flows into the low-temperature regenerator. A triple effect absorption refrigeration characterized by providing a flow passage communicating with the steam passage and controlling a valve provided in the flow passage so that the pressure of the high-temperature regenerator during operation does not exceed a certain value. Machine.
【請求項3】請求項2に記載の三重効用吸収式冷凍機で
あって、吸収器から出た溶液は高温再生器,中温再生
器,低温再生器にそれぞれ並行的に分離供給されるよう
に構成したことを特徴とする三重効用吸収式冷凍機。
3. The triple effect absorption refrigerator according to claim 2, wherein the solution discharged from the absorber is separated and supplied in parallel to a high temperature regenerator, a medium temperature regenerator and a low temperature regenerator. A triple effect absorption chiller characterized by comprising.
【請求項4】請求項1に記載の三重効用吸収式冷凍機で
あって、設置する弁は一次側の圧力が設定値を超えた場
合に自動的に蒸気を下流側の中温再生器に放出する安全
弁としたことを特徴とする三重効用吸収式冷凍機。
4. The triple effect absorption refrigerator according to claim 1, wherein a valve installed automatically discharges steam to a downstream intermediate temperature regenerator when the pressure on the primary side exceeds a set value. A triple-effect absorption chiller characterized by a safety valve that operates.
JP10221316A 1998-08-05 1998-08-05 Triple effect absorption type refrigerator Pending JP2000055497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10221316A JP2000055497A (en) 1998-08-05 1998-08-05 Triple effect absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10221316A JP2000055497A (en) 1998-08-05 1998-08-05 Triple effect absorption type refrigerator

Publications (1)

Publication Number Publication Date
JP2000055497A true JP2000055497A (en) 2000-02-25

Family

ID=16764901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10221316A Pending JP2000055497A (en) 1998-08-05 1998-08-05 Triple effect absorption type refrigerator

Country Status (1)

Country Link
JP (1) JP2000055497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364940A (en) * 2001-06-05 2002-12-18 Sanyo Electric Co Ltd Absorption refrigeration unit
JP2003014327A (en) * 2001-07-02 2003-01-15 Sanyo Electric Co Ltd Absorption refrigeration machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364940A (en) * 2001-06-05 2002-12-18 Sanyo Electric Co Ltd Absorption refrigeration unit
JP4596683B2 (en) * 2001-06-05 2010-12-08 三洋電機株式会社 Absorption refrigerator
JP2003014327A (en) * 2001-07-02 2003-01-15 Sanyo Electric Co Ltd Absorption refrigeration machine
JP4562323B2 (en) * 2001-07-02 2010-10-13 三洋電機株式会社 Absorption refrigerator

Similar Documents

Publication Publication Date Title
CN108759142A (en) A kind of special overlapping air source high-temperature heat pump cooling/warming system
JPH0886530A (en) Absorption type water cooling and heating machine
JP4885467B2 (en) Absorption heat pump
CN106352586A (en) Double machine head heat source tower heat pump unit
JP3434281B2 (en) Absorption refrigerator
CN214501779U (en) Double-effect lithium bromide absorption type water chilling unit with two-stage refrigeration
JP2000055497A (en) Triple effect absorption type refrigerator
CN110500688B (en) Dilution type refrigeration heat pump system for air conditioning by utilizing dilution heat
CN210980197U (en) Dilution type refrigeration heat pump system for air conditioning by using dilution heat
CN206269414U (en) A kind of auxiliary hot enthalpy increasing heat pump system
JP3443100B2 (en) Absorption refrigerator and method of operating the same
CN206247693U (en) Superposition type solution series mono-potency lithium bromide absorption type refrigeration heat pump unit
CN206247686U (en) Superposition type solution parallel connection mono-potency lithium bromide absorption type refrigeration heat pump unit
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
CN112747494B (en) Two-stage and double-effect composite lithium bromide absorption type water chilling unit
CN112747495B (en) Double-effect and two-stage composite lithium bromide absorption type water chilling unit
CN219199541U (en) Heat-cold mutual coupling direct-fired lithium bromide absorption type cold and hot water unit
RU2784256C1 (en) Air-conditioning system based on an absorption refrigerator with connecting a heat pump unit and solar collectors
JP3429906B2 (en) Absorption refrigerator
JPH0471142B2 (en)
JP3429904B2 (en) Absorption refrigerator
JP3429905B2 (en) Absorption refrigerator
JP3434280B2 (en) Absorption refrigerator and its operation method
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JPS6113884Y2 (en)