JPH10232064A - Cooling operation control method of absorption cooling and heating device - Google Patents

Cooling operation control method of absorption cooling and heating device

Info

Publication number
JPH10232064A
JPH10232064A JP9035193A JP3519397A JPH10232064A JP H10232064 A JPH10232064 A JP H10232064A JP 9035193 A JP9035193 A JP 9035193A JP 3519397 A JP3519397 A JP 3519397A JP H10232064 A JPH10232064 A JP H10232064A
Authority
JP
Japan
Prior art keywords
liquid refrigerant
liquid
cooling
refrigerant
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9035193A
Other languages
Japanese (ja)
Other versions
JP3735745B2 (en
Inventor
Kiyoharu Sone
清春 曽根
Toru Yanagisawa
徹 柳澤
Noboru Kobayashi
昇 小林
Kazuya Imai
和哉 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP03519397A priority Critical patent/JP3735745B2/en
Publication of JPH10232064A publication Critical patent/JPH10232064A/en
Application granted granted Critical
Publication of JP3735745B2 publication Critical patent/JP3735745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To level the supplying amount of liquid refrigerant to the side of an indoor machine by a method wherein the liquid refrigerant is bypassed from the liquid side of an evaporator to the side of a liquid refrigerant pipe when the sending-out of the liquid refrigerant, sent from the liquid side of the evaporator to the side of the liquid refrigerant pipe, supplying the liquid refrigerant of secondary side refrigerant, is stopped. SOLUTION: A room heating valve 23, provided on the way of a flow passage 22, is opened when the amount of secondary side liquid refrigerant 30 is smaller than a predetermined staying amount and the sending-out of the liquid refrigerant 30, sent from the liquid side 5 of an evaporator to the side of a liquid refrigerant pipe 19, is stopped. According to this operation, the liquid refrigerant 30 can be sent by both of the liquid heads of the flow passage 22 and other flow passages (suction flow passage 11 and discharging flow passage 12), which have sent out the liquid refrigerant till now, and further, the width of the flow passage is increased whereby the supplying amount of the liquid refrigerant 30 is increased. However, the increased amount is not larger than the supplying amount of a booster 10 whereby the liquid refrigerant is reserved in a receiver tank 14 gradually and the supplying amount of liquid refrigerant 30 into the indoor machine is leveled thereby not reducing the supplying amount of liquid refrigerant remarkably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷暖房装置
の冷房運転制御方法に係り、特に室内機への2次側冷媒
の供給制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a cooling operation of an absorption type cooling and heating apparatus, and more particularly to a method for controlling a supply of a secondary refrigerant to an indoor unit.

【0002】[0002]

【従来の技術】図4は、吸収式冷暖房装置内に設けられ
た2次側循環回路を示す系統図である。2次側循環回路
2において、冷房運転時、室内機側より冷媒ガス管18
を介して冷媒ガス29が蒸発器の蒸発器コイル4に導入
され、冷却、凝縮して液冷媒30となり、吸込管路11
に導かれる。吸込管路11に接続されたレシーバタンク
14内にはフロートスイッチ15が設けられ、レシーバ
タンク14内に液が溜るとフロートスイッチ15が作動
し液レベル信号がコントローラ25に入力され、搬送補
助装置であるブースター10に起動信号を送りブースタ
ー10が起動(ON)され、吐出管路12より液冷媒が
液冷媒管19へ圧送される。この時、暖房弁23は閉と
なっており、、吸込管路11へバイパスすることはな
い。
2. Description of the Related Art FIG. 4 is a system diagram showing a secondary side circulation circuit provided in an absorption type air conditioner. In the secondary side circulation circuit 2, during the cooling operation, the refrigerant gas pipe 18
The refrigerant gas 29 is introduced into the evaporator coil 4 of the evaporator through cooling, and is cooled and condensed to become a liquid refrigerant 30,
It is led to. A float switch 15 is provided in the receiver tank 14 connected to the suction pipe 11, and when the liquid accumulates in the receiver tank 14, the float switch 15 is activated and a liquid level signal is input to the controller 25, and the liquid is supplied to the controller 25. A start signal is sent to a certain booster 10, and the booster 10 is started (ON), and the liquid refrigerant is pressure-fed from the discharge pipe 12 to the liquid refrigerant pipe 19. At this time, the heating valve 23 is closed and does not bypass to the suction line 11.

【0003】暖房運転時は、ブースター10は停止し、
暖房弁23は開となる。暖房運転時は2次側冷媒の流れ
方向が逆となり、液冷媒管19より液冷媒30が導かれ
暖房弁23を経て蒸発器コイル4で加温され、冷媒ガス
29となって冷媒ガス管18を通り室内機に供給され
る。尚、符号8は吸収式冷暖房装置、22は流路を示
す。
[0003] During the heating operation, the booster 10 stops,
The heating valve 23 opens. During the heating operation, the flow direction of the secondary-side refrigerant is reversed, the liquid refrigerant 30 is guided from the liquid refrigerant pipe 19, is heated by the evaporator coil 4 via the heating valve 23, and becomes the refrigerant gas 29, and becomes the refrigerant gas pipe 18. And is supplied to the indoor unit. Note that reference numeral 8 denotes an absorption-type cooling / heating device, and reference numeral 22 denotes a flow path.

【0004】図5は、従来技術に係る吸収式冷暖房装置
の冷房運転制御方法の系統図である。先ずスタート指令
100により冷房か暖房かの判断101を行なう。冷房
運転の場合は、暖房弁閉102で暖房弁の閉が行なわれ
る。冷房か暖房かの判断101で暖房運転の場合は、暖
房弁開106で暖房弁の開が行なわれブースターOFF
107でブースターの停止が行なわれる。
FIG. 5 is a system diagram of a cooling operation control method for an absorption type air conditioner according to the prior art. First, a judgment 101 of cooling or heating is made by a start command 100. In the case of the cooling operation, the heating valve is closed by the heating valve closing 102. In the heating operation in the judgment 101 of cooling or heating, the heating valve is opened by the heating valve opening 106 and the booster is turned off.
At 107, the booster is stopped.

【0005】次に、暖房弁の閉が行なわれると、フロー
トスィッチ液レベルの判定103で所定の滞留量m
0(又は所定の高さh0)以上の場合はブースターON1
04でブースターの起動が行なわれ、フロートスィッチ
液レベルの判定103の前に戻る。一方、フロートスィ
ッチ液レベルの判定103で所定の滞留量m0(又は所
定の高さh0)未満の場合はブースターOFF105で
ブースターの停止が行なわれ、同じくフロートスィッチ
液レベルの判定103の前に戻る。
Next, when the heating valve is closed, a predetermined retention amount m is determined in a determination 103 of the float switch liquid level.
0 (or a predetermined height h 0 ) or more, booster ON1
At 04, the booster is activated, and the process returns to before the determination 103 of the float switch liquid level. On the other hand, if it is determined in the float switch liquid level determination 103 that the amount is less than the predetermined retention amount m 0 (or the predetermined height h 0 ), the booster is stopped by the booster OFF 105, and before the float switch liquid level determination 103. Return.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ブース
ター10が起動(ON)し、吐出管路12より液冷媒を
液冷媒管19へ圧送すると、レシーバタンク14内の液
量が減少し、フロートスイッチ15が予め設定された液
冷媒の所定の滞留量m0を検知し、ブースター10は停
止する。しかし、この時、液冷媒供給量が急減し、2次
側室内機への供給量が減るため、室内機の大幅な出力低
下を起こし室内の不快感を生じる。
However, when the booster 10 is activated (ON) and the liquid refrigerant is pressure-fed from the discharge line 12 to the liquid refrigerant tube 19, the amount of liquid in the receiver tank 14 decreases, and the float switch 15 Detects a predetermined retention amount m 0 of the liquid refrigerant set in advance, and the booster 10 stops. However, at this time, the supply amount of the liquid refrigerant suddenly decreases, and the supply amount to the secondary-side indoor unit is reduced, so that the output of the indoor unit is drastically reduced to cause discomfort in the room.

【0007】図6は、図5の冷房運転制御方法による時
間と液冷媒供給量の関係の線図である。図6に示すよう
に、従来の制御ではブースター10が起動すると、区間
10 1〜t102、t103〜t104、t105〜t106の間は液冷
媒を安定的に供給するが、区間t100〜t101、t102
103、t104〜t105の間は液冷媒供給量V100が小さく
なり、急減し、室内機に十分な安定的した液冷媒を供給
することが困難である。
FIG. 6 is a diagram showing the relationship between the time and the supply amount of the liquid refrigerant according to the cooling operation control method shown in FIG. As shown in FIG. 6, when the conventional control the booster 10 is activated, during a period t 10 1 ~t 102, t 103 ~t 104, t 105 ~t 106 is stably supplying liquid refrigerant, section t 100 ~t 101, t 102 ~
Between t 103, t 104 ~t 105 decreases the liquid refrigerant supply amount V 100, decreases rapidly, it is difficult to supply a sufficient stable beneath liquid refrigerant to the indoor unit.

【0008】本発明の課題は、冷媒及び吸収溶液の1次
側循環回路を形成し、冷暖房のための2次側冷媒の加熱
又は冷却を行なう吸収式冷暖房装置の冷房運転制御方法
において、蒸発器の液側から液冷媒管側に送られる2次
側液冷媒の送り出しを停止した時に、室内機側への液冷
媒の供給量をコストアップなしに平準化し、室内の快適
環境を維持することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling operation control method for an absorption type air conditioner which forms a primary side circulation circuit of a refrigerant and an absorbing solution and heats or cools a secondary side refrigerant for cooling and heating. When the delivery of the secondary liquid refrigerant sent from the liquid side to the liquid refrigerant pipe side is stopped, the supply amount of the liquid refrigerant to the indoor unit is leveled without increasing the cost, and the indoor comfortable environment is maintained. is there.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
本発明は、高温再生器、低温再生器、凝縮器、蒸発器及
び吸収器等を接続して冷媒及び吸収溶液の1次側循環回
路を形成し、冷暖房のための2次側冷媒の加熱又は冷却
を行なう吸収式冷暖房装置の冷房運転制御方法におい
て、前記蒸発器の液側から前記2次側冷媒の液冷媒を供
給する液冷媒管側に送られる液冷媒の送り出しを停止し
た時に、前記液冷媒を前記蒸発器の液側から前記液冷媒
管側にバイパスさせることである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention connects a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber and the like to a primary circulation circuit of a refrigerant and an absorbing solution. In the cooling operation control method of the absorption type air conditioner for heating or cooling the secondary side refrigerant for cooling and heating, the liquid refrigerant pipe for supplying the liquid refrigerant of the secondary side refrigerant from the liquid side of the evaporator When the delivery of the liquid refrigerant sent to the side is stopped, the liquid refrigerant is bypassed from the liquid side of the evaporator to the liquid refrigerant pipe side.

【0010】液冷媒をバイパスさせることにより、蒸発
器の液側から液冷媒管側に送られる液冷媒の送り出しを
停止した時に、このバイパスの流れ及び今まで送り出し
をした流路の流れの両方によって液ヘッド圧によって送
ることが出来、室内機側への液冷媒の供給量を平準化
し、室内の快適環境を維持する。
[0010] By bypassing the liquid refrigerant, when the supply of the liquid refrigerant sent from the liquid side of the evaporator to the liquid refrigerant pipe side is stopped, both the flow of the bypass and the flow of the flow path that has been sent up are stopped. It can be sent by the liquid head pressure, leveling the supply of liquid refrigerant to the indoor unit, and maintaining a comfortable indoor environment.

【0011】更に、上記吸収式冷暖房装置の冷房運転制
御方法において、前記バイパスは、暖房運転時に前記液
冷媒管側から前記蒸発器の液側に通ずる流路であって、
該流路の途中に設けられた暖房弁を開くことによってな
される。暖房運転時に液冷媒管側から蒸発器の液側に通
ずる流路の途中に設けられた暖房弁を開くことによっ
て、上記吸収式冷暖房装置の冷房運転制御方法の作用に
加え、新たにバイパスさせることなく室内機側への液冷
媒の供給量を平準化することが出来る。、そして、上記
いずれかの吸収式冷暖房装置の冷房運転制御方法におい
て、前記2次側液冷媒が所定の滞留量より少ない時に、
上記いずれかの吸収式冷暖房装置の冷房運転制御方法を
行なうことである。2次側液冷媒が所定の滞留量より少
ない時に上記いずれかの吸収式冷暖房装置の冷房運転制
御方法を行なうことにより、上記いずれかの吸収式冷暖
房装置の冷房運転制御方法の作用に加え、液冷媒管への
供給量よりも蒸発器から流入する液冷媒の方が多いので
徐々に液冷媒が溜り、所定の滞留量に達した時に再び安
定した液冷媒の供給をすることが出来る。
Further, in the method for controlling the cooling operation of the absorption type cooling and heating apparatus, the bypass is a flow path from the liquid refrigerant pipe side to the liquid side of the evaporator during the heating operation,
This is done by opening a heating valve provided in the middle of the flow path. By opening the heating valve provided in the middle of the flow path from the liquid refrigerant pipe side to the liquid side of the evaporator during the heating operation, in addition to the operation of the cooling operation control method of the absorption type cooling and heating device, a new bypass is performed. And the supply amount of the liquid refrigerant to the indoor unit can be equalized. And, in any one of the above-described cooling operation control methods of the absorption-type cooling and heating device, when the secondary liquid refrigerant is smaller than a predetermined retention amount,
It is another object of the present invention to perform a cooling operation control method for any of the absorption-type cooling and heating devices. By performing the cooling operation control method of any one of the above-mentioned absorption cooling and heating devices when the secondary side liquid refrigerant is less than the predetermined retention amount, in addition to the operation of the cooling operation control method of any one of the above-mentioned absorption cooling and heating devices, Since the amount of the liquid refrigerant flowing from the evaporator is larger than the amount of the liquid refrigerant supplied to the refrigerant pipe, the liquid refrigerant gradually accumulates, and the stable supply of the liquid refrigerant can be performed again when the liquid refrigerant reaches a predetermined retention amount.

【0012】[0012]

【発明の実施の形態】以下に、本発明に係る吸収式冷暖
房装置の実施の形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an absorption type cooling and heating apparatus according to the present invention will be described below with reference to the drawings.

【0013】図3は、吸収式冷暖房装置の全体回路の系
統図である。この吸収式冷暖房装置1は、冷却水管80
a、80bで接続され冷却水を冷却しファン82を有す
るクーリングタワー81と、この吸収式冷暖房装置1に
冷媒ガス管18及び液冷媒管19で接続され空調対象空
間に配置されて該空間の空気との熱交換を行う図示され
ていない空調用室内機とが付設されている。又、冷却水
管80bには、冷却水をクーリングタワー81から吸収
式冷暖房装置1に循環させる冷却水循環ポンプ73が介
装され、更に、2次側液冷媒管19に介装され、冷媒ガ
ス管18及び液冷媒管19内の2次側冷媒を吸収式冷暖
房装置1と前記空調用室内機の間で循環させる図示して
いない2次側冷媒循環ポンプが付設されている。
FIG. 3 is a system diagram of the entire circuit of the absorption type air conditioner. The absorption-type cooling and heating device 1 includes a cooling water pipe 80.
a, a cooling tower 81 having a fan 82 that cools cooling water and is connected by 80b, and is connected to the absorption type cooling and heating apparatus 1 by a refrigerant gas pipe 18 and a liquid refrigerant pipe 19, is disposed in a space to be air-conditioned, and And an air-conditioning indoor unit (not shown) for exchanging heat. The cooling water pipe 80b is provided with a cooling water circulating pump 73 for circulating cooling water from the cooling tower 81 to the absorption type cooling and heating apparatus 1, and further provided with a secondary liquid refrigerant pipe 19, and a refrigerant gas pipe 18 and A secondary refrigerant circulation pump (not shown) for circulating the secondary refrigerant in the liquid refrigerant pipe 19 between the absorption cooling / heating device 1 and the indoor unit for air conditioning is provided.

【0014】前記空調用室内機に対して、クーリングタ
ワー81と併せて通常、室外機と呼ばれる吸収式冷暖房
装置1は、この場合燃料をバーナで燃焼させ、その燃焼
熱で希溶液を加熱する加熱源47を有する高温再生器4
6と、この高温再生器46で加熱された希溶液から冷媒
蒸気と中間濃溶液を分離する分離器49と、分離された
冷媒蒸気を熱源として前記中間濃溶液を加熱してさらに
冷媒蒸気を発生させる低温再生器50と、この低温再生
器50を通過した冷媒蒸気及び低温再生器50で発生し
た冷媒蒸気を冷却して凝縮し液化させ液冷媒を生成する
凝縮器51と、この凝縮器51で生成された液冷媒を内
装した冷媒分配器54から同じく内装した蒸発コイル4
上に滴下、蒸発させ、この蒸発コイル4中の2次側冷媒
を冷却する蒸発器53とを有する。
In contrast to the indoor unit for air conditioning, the absorption type cooling and heating apparatus 1 usually called an outdoor unit together with the cooling tower 81 is a heating source in which fuel is burned by a burner and a dilute solution is heated by the combustion heat. High-temperature regenerator 4 having 47
6, a separator 49 for separating the refrigerant vapor and the intermediate concentrated solution from the dilute solution heated by the high-temperature regenerator 46, and heating the intermediate concentrated solution using the separated refrigerant vapor as a heat source to generate further refrigerant vapor. A low-temperature regenerator 50 for cooling, a condenser 51 for cooling, condensing, and liquefying the refrigerant vapor generated by the low-temperature regenerator 50 and the refrigerant vapor passing through the low-temperature regenerator 50 to generate a liquid refrigerant. From the refrigerant distributor 54 containing the generated liquid refrigerant to the evaporating coil 4
An evaporator 53 is provided for dropping and evaporating the evaporator on the top and cooling the secondary refrigerant in the evaporating coil 4.

【0015】更に、吸収式冷暖房装置1は、上記蒸発器
53で蒸発した冷媒蒸気を濃溶液に吸収させ希溶液を生
成する吸収器52と、この希溶液を加圧し低温溶液熱交
換器57、高温溶液熱交換器56の被加熱流体側を経て
高温再生器46に送りこむ溶液循環ポンプ60と、分離
器49の底部と蒸発器53の底部を冷暖切換弁61を介
して連通する管路62と、低温溶液熱交換器57の加熱
流体出側を吸収器52の上部に接続する濃溶液管58
と、この濃溶液管58と吸収器52の下部を溶液バイパ
ス弁70を介して接続する管路71と、濃溶液管58と
蒸発器53に内装された冷媒分配器54を凍結防止弁6
7を介して連通する管路68と、凝縮器51から冷媒分
配器54に液冷媒を導く水冷媒管66と、この水冷媒管
66に並列に接続され水冷媒比例弁64を介装する管路
65とを含んで構成されている。
Further, the absorption type cooling and heating apparatus 1 comprises an absorber 52 for absorbing the refrigerant vapor evaporated in the evaporator 53 into a concentrated solution to generate a dilute solution, a pressurizing the dilute solution to a low-temperature solution heat exchanger 57, A solution circulating pump 60 that feeds the high-temperature solution heat exchanger 56 to the high-temperature regenerator 46 via the heated fluid side; and a pipe line 62 that connects the bottom of the separator 49 and the bottom of the evaporator 53 via a cooling / heating switching valve 61. , A concentrated solution pipe 58 connecting the heated fluid outlet side of the low temperature solution heat exchanger 57 to the upper part of the absorber 52.
A conduit 71 connecting the concentrated solution pipe 58 and the lower part of the absorber 52 via a solution bypass valve 70; and a refrigerant distributor 54 provided in the concentrated solution pipe 58 and the evaporator 53 by connecting the antifreeze valve 6
7, a water refrigerant pipe 66 for guiding the liquid refrigerant from the condenser 51 to the refrigerant distributor 54, and a pipe connected in parallel to the water refrigerant pipe 66 and having a water refrigerant proportional valve 64 interposed therebetween. And a path 65.

【0016】そして、上記分離器49で分離された中間
濃溶液が高温溶液熱交換器56の加熱流体側を経て低温
再生器50に導かれ、低温再生器50で冷媒を蒸発させ
て濃溶液となったのち、低温溶液熱交換器57の加熱流
体側を経て濃溶液管58に導かれるように管路が構成さ
れている。吸収器52及び凝縮器51にはそれぞれ冷却
水コイルが内装され、吸収器52の冷却水コイルの出口
は凝縮器51の冷却水コイルの入口に接続されていて、
吸収器52の冷却水コイルの入口は冷却水管80bに、
凝縮器51の冷却水コイルの出口は冷却水管80aに、
それぞれ接続されている。2次側冷媒の液冷媒管19は
蒸発コイル4の液側に、2次側冷媒の冷媒ガス管18は
蒸発コイル4のガス側にそれぞれ接続されている。
Then, the intermediate concentrated solution separated by the separator 49 is led to the low temperature regenerator 50 via the heated fluid side of the high temperature solution heat exchanger 56, and the low temperature regenerator 50 evaporates the refrigerant to form a concentrated solution. After that, the conduit is configured to be guided to the concentrated solution pipe 58 via the heated fluid side of the low temperature solution heat exchanger 57. Each of the absorber 52 and the condenser 51 is provided with a cooling water coil, and the outlet of the cooling water coil of the absorber 52 is connected to the inlet of the cooling water coil of the condenser 51.
The inlet of the cooling water coil of the absorber 52 is connected to the cooling water pipe 80b,
The outlet of the cooling water coil of the condenser 51 is connected to the cooling water pipe 80a,
Each is connected. The liquid refrigerant pipe 19 of the secondary refrigerant is connected to the liquid side of the evaporation coil 4, and the refrigerant gas pipe 18 of the secondary refrigerant is connected to the gas side of the evaporation coil 4.

【0017】上記構成の装置において、冷暖切換弁61
は、冷房と暖房の切り替えを行なうもので、冷房時は
閉、暖房時は開とされる。水冷媒比例弁64は、蒸発器
53の温度(蒸発器温度センサの出力)を入力として開
度制御され、溶液濃度の調整を行なう弁である。凍結防
止弁67は、蒸発温度が低下して1℃になれば開いて濃
溶液を冷媒分配器54に流入させ、冷媒(吸収式冷暖房
装置の冷媒には通常水が使用される。以下、水冷媒とも
いう)の凍結を防ぐ弁である。溶液バイパス弁70は、
冷房立上り時及び低負荷運転時に、蒸発器温度が低下し
たとき、凍結防止弁67が作動する前に濃溶液を吸収器
52の下部にバイパスして吸収器52の吸収能力を低下
させ、蒸発器53のそれ以上の温度低下を防ぐためのオ
ン−オフ制御弁である。
In the apparatus having the above structure, the cooling / heating switching valve 61
Switches between cooling and heating, and is closed during cooling and opened during heating. The water refrigerant proportional valve 64 is a valve whose opening degree is controlled with the temperature of the evaporator 53 (output of the evaporator temperature sensor) as input, and which adjusts the solution concentration. The anti-freezing valve 67 opens when the evaporation temperature decreases to 1 ° C. to allow the concentrated solution to flow into the refrigerant distributor 54, and the refrigerant (usually water is used as the refrigerant of the absorption type cooling and heating device. This is a valve that prevents freezing of the refrigerant. The solution bypass valve 70 is
When the evaporator temperature decreases at the start of cooling and during low-load operation, the concentrated solution is bypassed to the lower part of the absorber 52 before the anti-freeze valve 67 is operated, so that the absorption capacity of the absorber 52 is reduced. 53 is an on-off control valve for preventing the temperature from further dropping.

【0018】図3において、2次側循環回路2について
は先の図4において説明したが、この2次側循環回路2
は、図3の蒸発器53で凝縮した液冷媒30を液冷媒管
19に戻し室内機に再び供給する液冷媒搬送装置或いは
液冷媒戻し手段であるブースター10を有している。
In FIG. 3, the secondary circuit 2 has been described with reference to FIG.
Has a booster 10 which is a liquid refrigerant transport device or a liquid refrigerant return means for returning the liquid refrigerant 30 condensed by the evaporator 53 of FIG. 3 to the liquid refrigerant pipe 19 and supplying it again to the indoor unit.

【0019】上記構成を有する吸収式冷暖房装置1にお
いて、本実施の形態の冷房運転制御方法は、図4に示す
ように、蒸発器の液側5から2次側液冷媒30を供給す
る液冷媒管19側に送られる液冷媒30の送り出しをブ
ースター10を止めることによって停止し、2次側液冷
媒30が所定の滞留量(m0)より少ない時に、蒸発器
の液側5と液冷媒管19側との間に設けられ、暖房運転
時に液冷媒管19側から蒸発器の液側5に通ずるバイパ
ス流路である流路22の途中に設けられた暖房弁23を
開くことである。
In the cooling type air-conditioning apparatus 1 having the above configuration, the cooling operation control method according to the present embodiment employs a liquid refrigerant for supplying the secondary liquid refrigerant 30 from the liquid side 5 of the evaporator as shown in FIG. The delivery of the liquid refrigerant 30 sent to the pipe 19 side is stopped by stopping the booster 10, and when the secondary liquid refrigerant 30 is smaller than a predetermined retention amount (m 0 ), the liquid side 5 of the evaporator and the liquid refrigerant pipe are connected. This is to open a heating valve 23 provided between the liquid refrigerant pipe 19 and the liquid side 5 of the evaporator during the heating operation.

【0020】図1は、上記冷房運転制御方法を線図で示
した系統図である。先ずスタート指令33により冷房か
暖房かの判断34を行なう。冷房運転の場合は、暖房弁
閉35で暖房弁の閉が行なわれる。冷房か暖房かの判断
34で暖房運転の場合は、暖房弁開40で暖房弁の開が
行なわれブースターOFF41でブースターの停止が行
なわれる。
FIG. 1 is a system diagram showing the cooling operation control method in a diagram. First, a determination 34 of cooling or heating is made by a start command 33. In the case of the cooling operation, the heating valve is closed by the heating valve closing 35. In the case of the heating operation in the judgment 34 of the cooling or the heating, the heating valve is opened by opening the heating valve 40 and the booster is stopped by the booster OFF 41.

【0021】次に、暖房弁の閉が行なわれると、フロー
トスィッチ液レベルの判定36に移り、フロートスィッ
チ液レベルの判定36で所定の滞留量m0(又は所定の
高さh0)以上の場合はブースターON37でブースタ
ーの起動を行ない、暖房弁閉35の前に戻る。一方、フ
ロートスィッチ液レベルの判定36で所定の滞留量m0
(又は所定の高さh0)より少ない時にブースターOF
F38でブースターの停止を行ない、暖房弁開39で暖
房弁を開きフロートスィッチ液レベルの判定36の前に
戻る。
Next, when the heating valve is closed, the process proceeds to the determination 36 of the float switch liquid level, and the determination 36 of the float switch liquid level indicates that the amount of the retained liquid m 0 (or the predetermined height h 0 ) or more is exceeded. In this case, the booster is activated by the booster ON 37, and the process returns to before the heating valve closes 35. On the other hand, in the determination 36 of the float switch liquid level, the predetermined retention amount m 0
(Or less than the predetermined height h 0 )
The booster is stopped at F38, and the heating valve is opened at the heating valve opening 39 to return to before the determination 36 of the float switch liquid level.

【0022】上記冷房運転制御方法は、2次側液冷媒3
0が所定の滞留量(m0)より少なく、且つ蒸発器の液
側5から液冷媒管19側に送られる液冷媒30の送り出
しを停止した時に、流路22の途中に設けられた暖房弁
23を開くことにより、従来は流路が狭いブースター内
(ブースター自体は停止しているが内部を液冷媒30が
通るのは可能)を液ヘッド圧のみで液冷媒管19へ送っ
ていただけであったが、本実施の形態では、この流路2
2及び今まで送り出しをした流路(吸込管路11及び吐
出管路12)の両方によって液ヘッド圧によって送るこ
とが出来、しかも流路はより広くなるので液冷媒の供給
量も増加する。しかし、ブースター10の供給量ほど多
くないので、徐々にレシーバタンク14内に液がたま
り、室内機側への液冷媒30の供給量を平準化し、液冷
媒の供給量を大きく低下させないで室内の快適環境を維
持する。
The above-mentioned cooling operation control method comprises the steps of:
0 is less than a predetermined retention amount (m 0 ), and when the delivery of the liquid refrigerant 30 sent from the liquid side 5 of the evaporator to the liquid refrigerant pipe 19 is stopped, a heating valve provided in the middle of the flow path 22 By opening 23, the inside of the booster with the narrow flow path (the booster itself is stopped but the liquid refrigerant 30 can pass through the inside) can be conventionally sent to the liquid refrigerant pipe 19 only with the liquid head pressure. However, in the present embodiment, the flow path 2
2 and the flow path (the suction pipe 11 and the discharge pipe 12) which have been sent out so far can be sent by the liquid head pressure, and since the flow path becomes wider, the supply amount of the liquid refrigerant also increases. However, since the supply amount of the booster 10 is not as large as that of the booster 10, the liquid gradually accumulates in the receiver tank 14, and the supply amount of the liquid refrigerant 30 to the indoor unit is leveled, and the indoor supply amount is not reduced without greatly reducing the supply amount of the liquid refrigerant. Maintain a comfortable environment.

【0023】更に、新たにバイパス流路を設けてバイパ
スさせることなく、コストアップなしに室内機側への液
冷媒の供給量を平準化することが出来る。又、2次側液
冷媒30が所定の滞留量(m0)より少ない時には、液
冷媒管19への供給量よりも蒸発器コイル4から流入す
る液冷媒の方が多いので徐々に液冷媒が溜り、所定の滞
留量(m0)に達した時点で再び十分な安定した液冷媒
の供給をすることが出来る。この時、暖房弁23は再び
閉となり、吸込管路11への液冷媒のバイパスは防止さ
れる。
Further, the supply amount of the liquid refrigerant to the indoor unit can be equalized without increasing the cost without newly providing a bypass flow path and causing a bypass. When the secondary liquid refrigerant 30 is smaller than the predetermined amount (m 0 ), the amount of the liquid refrigerant flowing from the evaporator coil 4 is larger than the amount of the liquid refrigerant supplied to the liquid refrigerant pipe 19. When the pool reaches a predetermined retention amount (m 0 ), a sufficient and stable supply of the liquid refrigerant can be performed again. At this time, the heating valve 23 is closed again, and the bypass of the liquid refrigerant to the suction pipe line 11 is prevented.

【0024】図2は、図1の冷房運転制御方法による時
間と液冷媒供給量の関係の線図である。この図から分か
るように、時間当りの供給量自体は変らないが、区間t
0〜t1、t2〜t3、t4〜t5においては液冷媒供給量V
1(単位時間当り供給量)が図6に示した液冷媒供給量
100に比べ大きくなり、供給量の平準化が成され、2
次側室内機への冷媒供給量が安定し、室内の快適性を保
つ。
FIG. 2 is a diagram showing the relationship between the time and the supply amount of the liquid refrigerant according to the cooling operation control method shown in FIG. As can be seen from this figure, the supply amount per time itself does not change, but the interval t
0 to t 1 , t 2 to t 3 , and t 4 to t 5 , the liquid refrigerant supply amount V
1 (supply amount per unit time) is larger than the liquid refrigerant supply amount V 100 shown in FIG. 6, and the supply amount is leveled.
The amount of refrigerant supplied to the next indoor unit is stabilized, and indoor comfort is maintained.

【0025】尚、上記実施の形態の冷房運転制御方法
は、水冷の吸収式冷暖房装置に適用した場合について説
明したが、本発明はこれに限定されず、空冷の吸収式冷
暖房装置に対しても適用出来ることは勿論である。更
に、高温再生器の加熱源は、バーナによる燃焼加熱の他
に、排蒸気又は排温水による加熱、電気ヒータによる加
熱等が利用出来る。更に、2次側冷媒は、相変化するフ
ロン(HFC−134a)を使用しているが、この他に
アルコール、水と潜熱剤の混合物等が使用出来る。
Although the cooling operation control method according to the above embodiment has been described as applied to a water-cooled absorption-type cooling and heating device, the present invention is not limited to this, and may be applied to an air-cooled absorption-type cooling and heating device. Of course, it can be applied. Further, as a heating source of the high-temperature regenerator, in addition to combustion heating by a burner, heating by exhaust steam or waste water, heating by an electric heater, or the like can be used. Further, the refrigerant on the secondary side uses chlorofluorocarbon (HFC-134a) that changes phase, but other than this, alcohol, a mixture of water and a latent heat agent, and the like can be used.

【0026】[0026]

【発明の効果】本発明の吸収式冷暖房装置の冷房運転制
御方法によれば、蒸発器の液側から液冷媒管側に送られ
る2次側液冷媒の送り出しを停止した時に、室内機側へ
の液冷媒の供給量をコストアップなしに平準化すること
が出来、室内の快適環境を維持することが出来る。
According to the cooling operation control method of the absorption type air conditioner of the present invention, when the supply of the secondary side liquid refrigerant sent from the liquid side of the evaporator to the liquid refrigerant pipe side is stopped, the indoor unit side is stopped. Can be leveled without increasing the cost of the liquid refrigerant, and a comfortable indoor environment can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る吸収式冷暖房装置の冷房運転制御
方法の一実施の形態を線図で示した系統図である。
FIG. 1 is a system diagram showing, in a diagram, one embodiment of a cooling operation control method for an absorption type air conditioner according to the present invention.

【図2】図1の冷房運転制御方法による時間と液冷媒供
給量の関係の線図である。
FIG. 2 is a diagram illustrating a relationship between a time and a liquid refrigerant supply amount according to the cooling operation control method of FIG. 1;

【図3】吸収式冷暖房装置の全体回路の系統図である。FIG. 3 is a system diagram of an overall circuit of the absorption-type cooling and heating apparatus.

【図4】図3の吸収式冷暖房装置内に設けられた2次側
循環回路を示す系統図である。
FIG. 4 is a system diagram showing a secondary-side circulation circuit provided in the absorption-type cooling and heating apparatus of FIG. 3;

【図5】従来技術に係る吸収式冷暖房装置の冷房運転制
御方法の系統図である。
FIG. 5 is a system diagram of a cooling operation control method for an absorption type air conditioner according to the related art.

【図6】図5の冷房運転制御方法による時間と液冷媒供
給量の関係の線図である。
FIG. 6 is a diagram illustrating a relationship between time and a liquid refrigerant supply amount according to the cooling operation control method of FIG. 5;

【符号の説明】[Explanation of symbols]

1 吸収式冷暖房装置 5 液側 10 ブースター 19 液冷媒管 22 流路(バイパス流路) 23 暖房弁 28 2次側冷媒 30 2次側液冷媒 44 1次側循環回路 53 蒸発器 m0 所定の滞留量DESCRIPTION OF SYMBOLS 1 Absorption type air-conditioning apparatus 5 Liquid side 10 Booster 19 Liquid refrigerant pipe 22 Flow path (bypass flow path) 23 Heating valve 28 Secondary refrigerant 30 Secondary liquid refrigerant 44 Primary circulation circuit 53 Evaporator m 0 Predetermined residence amount

フロントページの続き (72)発明者 小林 昇 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 今井 和哉 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内Continued on the front page (72) Inventor Noboru Kobayashi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Inventor Kazuya Imai 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka No. Osaka Gas Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器、低温再生器、凝縮器、蒸発
器及び吸収器等を接続して冷媒及び吸収溶液の1次側循
環回路を形成し、冷暖房のための2次側冷媒の加熱又は
冷却を行なう吸収式冷暖房装置の冷房運転制御方法にお
いて、前記蒸発器の液側から前記2次側冷媒の液冷媒を
供給する液冷媒管側に送られる液冷媒の送り出しを停止
した時に、前記液冷媒を前記蒸発器の液側から前記液冷
媒管側にバイパスさせることを特徴とする吸収式冷暖房
装置の冷房運転制御方法。
1. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber and the like are connected to form a primary circulation circuit of a refrigerant and an absorbing solution, and heating of a secondary refrigerant for cooling and heating. Or in the cooling operation control method of the absorption type air conditioner that performs cooling, when stopping the delivery of the liquid refrigerant sent from the liquid side of the evaporator to the liquid refrigerant pipe side supplying the liquid refrigerant of the secondary side refrigerant, A cooling operation control method for an absorption type cooling / heating device, wherein a liquid refrigerant is bypassed from a liquid side of the evaporator to a side of the liquid refrigerant pipe.
【請求項2】 請求項1において、前記バイパスは、暖
房運転時に前記液冷媒管側から前記蒸発器の液側に通ず
る流路であって、該流路の途中に設けられた暖房弁を開
くことによってなされることを特徴とする吸収式冷暖房
装置の冷房運転制御方法。
2. The air conditioner according to claim 1, wherein the bypass is a flow path from the liquid refrigerant pipe side to the liquid side of the evaporator during a heating operation, and opens a heating valve provided in the middle of the flow path. A cooling operation control method for an absorption type air conditioner.
【請求項3】 請求項1又は2において、前記2次側液
冷媒が所定の滞留量より少ない時に、請求項1又は2に
記載の吸収式冷暖房装置の冷房運転制御方法を行なうこ
とを特徴とする吸収式冷暖房装置の冷房運転制御方法。
3. The method according to claim 1, wherein when the amount of the secondary liquid refrigerant is smaller than a predetermined amount, the cooling operation control method for the absorption type air conditioner according to claim 1 or 2 is performed. Method for controlling the cooling operation of an absorption-type cooling and heating apparatus.
JP03519397A 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner Expired - Fee Related JP3735745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03519397A JP3735745B2 (en) 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03519397A JP3735745B2 (en) 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH10232064A true JPH10232064A (en) 1998-09-02
JP3735745B2 JP3735745B2 (en) 2006-01-18

Family

ID=12435031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03519397A Expired - Fee Related JP3735745B2 (en) 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3735745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198625A (en) * 2006-01-24 2007-08-09 Japan Steel Works Ltd:The Double effect absorption-type cold generating/outputting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198625A (en) * 2006-01-24 2007-08-09 Japan Steel Works Ltd:The Double effect absorption-type cold generating/outputting device
JP4566919B2 (en) * 2006-01-24 2010-10-20 株式会社日本製鋼所 Double-effect absorption chill generation / output device

Also Published As

Publication number Publication date
JP3735745B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4827307B2 (en) Air conditioner
JPH10197088A (en) Absorption type cooling and heating apparatus
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JPH10232064A (en) Cooling operation control method of absorption cooling and heating device
JP3318505B2 (en) Control device for absorption air conditioner
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JP2002195628A (en) Controller for air conditioner
JP2003287314A (en) Absorption refrigerating machine
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP2821724B2 (en) Single double effect absorption refrigerator
JP3240343B2 (en) Steam-fired absorption chiller / heater and its control method
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP2005300069A (en) Absorption refrigerating machine
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP2000274861A (en) Method for operating exhaust heat utilizing absorption chilled and warm water generator
JP2895974B2 (en) Absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JPS6113884Y2 (en)
JPH11257782A (en) Absorption cold heat generator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2898202B2 (en) Absorption cooling system
JPH04313652A (en) Absorption refrigerating machine
JP2768629B2 (en) Absorption chiller / heater
JP2003287315A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees