JP2003287315A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JP2003287315A
JP2003287315A JP2002092104A JP2002092104A JP2003287315A JP 2003287315 A JP2003287315 A JP 2003287315A JP 2002092104 A JP2002092104 A JP 2002092104A JP 2002092104 A JP2002092104 A JP 2002092104A JP 2003287315 A JP2003287315 A JP 2003287315A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
temperature
absorption liquid
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002092104A
Other languages
Japanese (ja)
Other versions
JP3851204B2 (en
Inventor
Masahiro Furukawa
雅裕 古川
Kazutaka Irakai
数恭 伊良皆
Yukioku Yamazaki
志奥 山崎
Taiji Kamata
泰司 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002092104A priority Critical patent/JP3851204B2/en
Priority to KR10-2003-0019046A priority patent/KR100493598B1/en
Priority to CN03108520A priority patent/CN1448670A/en
Publication of JP2003287315A publication Critical patent/JP2003287315A/en
Application granted granted Critical
Publication of JP3851204B2 publication Critical patent/JP3851204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To improve the thermal efficiency of an absorption refrigerating machine. <P>SOLUTION: The absorption refrigerating machine has a refrigerant heat collector 11 in which intermediate absorbent is heated and subjected to the heat radiation condensation by a low-temperature regenerator 3, and heat exchange is performed between the refrigerant introduced in a condenser 4 via a refrigerant pipe 19 and a part of dilute absorbent transmitted to a high- temperature regenerator 1, and a flow rate control valve 29 to give the flow passage resistance to a refrigerant pipe 19. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱効率に優れた吸
収式冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator having excellent thermal efficiency.

【0002】[0002]

【従来の技術】図3に示したように、高温再生器1の稀
吸収液を加熱沸騰させるガスバーナ2から排出される排
ガスを、吸収液管12の高温熱交換器10と高温再生器
1との間に設けた第1の排ガス熱回収器26と、低温熱
交換器9と高温熱交換器10との間に設けた第2の排ガ
ス熱回収器27とに順次送り、吸収器7から高温再生器
に1に搬送する稀吸収液の温度を上げ、ガスバーナ2に
よる必要加熱量を減らし、燃料消費量を削減するように
工夫した吸収式冷凍機が周知である。
2. Description of the Related Art As shown in FIG. 3, exhaust gas discharged from a gas burner 2 for heating and boiling a rare absorbent of a high temperature regenerator 1 is fed to a high temperature heat exchanger 10 of a liquid absorbent pipe 12 and a high temperature regenerator 1. To the first exhaust gas heat recovery unit 26 provided between the low temperature heat exchanger 9 and the high temperature heat exchanger 10, and sequentially sent from the absorber 7 to the high temperature. Absorption refrigerators are known in which the temperature of the rare absorbent conveyed to the regenerator 1 is raised, the heating amount required by the gas burner 2 is reduced, and the fuel consumption is reduced.

【0003】すなわち、上記構成の吸収式冷凍機におい
ては、吸収器7から吐出した約40℃(定格運転時、以
下同じ)の稀吸収液は低温熱交換器9・第2の排ガス熱
回収器27・高温熱交換器10・第1の排ガス熱交換器
26それぞれで加熱され、135℃前後に上昇して高温
再生器1に流入するので、ガスバーナ2で消費する燃料
が節約できる。
That is, in the absorption refrigerating machine having the above-mentioned structure, the rare absorption liquid discharged from the absorber 7 at about 40 ° C. (during rated operation, the same applies hereinafter) is used for the low temperature heat exchanger 9 and the second exhaust gas heat recovery device. 27, the high temperature heat exchanger 10 and the first exhaust gas heat exchanger 26 are respectively heated, and the temperature rises around 135 ° C. and flows into the high temperature regenerator 1, so that the fuel consumed by the gas burner 2 can be saved.

【0004】なお、ガスバーナ2から出る排ガスの温度
と吸収器7から供給される稀吸収液の温度が共に低くい
ときには、流量制御弁28の開度を大きくして吸収液管
14に流れる稀吸収液の量を増加し、第2の排ガス熱回
収器27における排ガスからの熱回収を減少させて排ガ
ス温度の著しい低下を防止し、排ガスに含まれる水蒸気
の凝縮・結露を防止する構成となっている。
When the temperature of the exhaust gas from the gas burner 2 and the temperature of the rare absorbent supplied from the absorber 7 are both low, the opening of the flow control valve 28 is increased and the rare absorbent flowing into the absorbent pipe 14 is opened. The amount of liquid is increased, the heat recovery from the exhaust gas in the second exhaust gas heat recovery device 27 is reduced to prevent the exhaust gas temperature from remarkably lowering, and to prevent condensation and dew condensation of water vapor contained in the exhaust gas. There is.

【0005】しかし、上記従来の吸収式冷凍機において
は、流量制御弁28が第2の排ガス熱回収器27を迂回
する吸収液管14に設けられていたため、流量制御弁2
8を全開にしても吸収液管14を通って第2の排ガス熱
回収器27に流れる稀吸収液の量は少なからずあった。
However, in the conventional absorption refrigerator, the flow control valve 28 is provided in the absorption liquid pipe 14 that bypasses the second exhaust gas heat recovery device 27, so the flow control valve 2
Even when 8 was fully opened, the amount of the rare absorption liquid flowing through the absorption liquid pipe 14 to the second exhaust gas heat recovery device 27 was not small.

【0006】そのため、運転開始時など排ガス、稀吸収
液の温度が共に低くいときには、流量制御弁を全開にし
ても排ガスの温度が低下し過ぎ、排ガスに含まれる水蒸
気が凝縮・結露し、熱交換器や排気管を腐食することが
あった。
Therefore, when the temperature of the exhaust gas and the rare absorption liquid are both low at the start of operation, the temperature of the exhaust gas is too low even if the flow control valve is fully opened, and the water vapor contained in the exhaust gas is condensed and condensed to generate heat. The exchanger and the exhaust pipe were sometimes corroded.

【0007】[0007]

【発明が解決しようとする課題】また、ガスバーナから
出る排ガスが保有する熱の大半は回収し尽くしており、
排ガスから今以上の熱回収を図ると、運転開始時でなく
ても排ガスに含まれる水蒸気の露天以下に排ガスの温度
が低下し、結露して熱回収器や配管部を腐食することが
あったので、他の方法によりさらに熱効率の改善を図る
必要があり、それが解決すべき課題となっていた。
Further, most of the heat retained in the exhaust gas from the gas burner is completely recovered,
Even if the heat recovery from the exhaust gas is further attempted, the temperature of the exhaust gas may drop below the temperature of the water vapor contained in the exhaust gas even when the operation is not started, and dew condensation may corrode the heat recovery device and the piping. Therefore, it is necessary to further improve the thermal efficiency by another method, which has been a problem to be solved.

【0008】[0008]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するため、燃焼装置で加熱沸騰させて冷媒を
蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る
高温再生器と、この高温再生器で生成して供給される中
間吸収液を高温再生器で生成した冷媒蒸気で加熱してさ
らに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸
収液を得る低温再生器と、この低温再生器で中間吸収液
を加熱して凝縮した冷媒液が供給されると共に、低温再
生器で生成して供給される冷媒蒸気を冷却して冷媒液を
得る凝縮器と、この凝縮器から供給された冷媒液が伝熱
管の上に散布され、伝熱管内を流れる流体から熱を奪っ
て冷媒が蒸発する蒸発器と、この蒸発器で生成して供給
される冷媒蒸気を低温再生器から冷媒蒸気を分離して供
給される濃吸収液に吸収させて稀吸収液にし、高温再生
器に供給する吸収器と、この吸収器に出入する稀吸収液
と濃吸収液とが熱交換する低温熱交換器と、高温再生器
に出入する中間吸収液と稀吸収液とが熱交換する高温熱
交換器とを備えた吸収式冷凍機において、吸収器から吐
出した稀吸収液の一部が低温再生器から放熱して吐出し
た冷媒と低温熱交換器を迂回して熱交換する冷媒熱回収
器と、冷媒熱回収器で稀吸収液に放熱した冷媒を凝縮器
に導入する冷媒管に流路抵抗を付与する手段とを設ける
ようにした第1の構成の吸収式冷凍機と、
In order to solve the above-mentioned problems of the prior art, the present invention is a high-temperature regenerator for obtaining a refrigerant vapor and an intermediate absorption liquid from a rare absorption liquid by heating and boiling in a combustion device to evaporate and separate the refrigerant. And the intermediate absorption liquid generated and supplied by this high temperature regenerator is heated by the refrigerant vapor generated by the high temperature regenerator to further evaporate and separate the refrigerant, and low temperature regeneration to obtain the refrigerant vapor and the concentrated absorption liquid from the intermediate absorption liquid. And a condenser for heating the intermediate absorption liquid in this low temperature regenerator and supplying the condensed refrigerant liquid, and for cooling the refrigerant vapor generated and supplied in the low temperature regenerator to obtain the refrigerant liquid, and The refrigerant liquid supplied from the condenser is scattered on the heat transfer tubes, and the evaporator that takes heat from the fluid flowing in the heat transfer tubes to evaporate the refrigerant and the refrigerant vapor that is generated and supplied by this evaporator are cooled to a low temperature. Concentrated absorption liquid supplied by separating the refrigerant vapor from the regenerator Absorber that absorbs it into a rare absorbent and supplies it to the high temperature regenerator, a low temperature heat exchanger that exchanges heat between the rare absorbent and concentrated absorbent that flow in and out of this absorber, and an intermediate absorption that flows in and out of the high temperature regenerator. In an absorption chiller equipped with a high-temperature heat exchanger that exchanges heat between the liquid and the rare absorption liquid, a part of the rare absorption liquid discharged from the absorber radiates heat from the low-temperature regenerator, and the low-temperature heat exchange with the refrigerant is discharged. First, a refrigerant heat recovery device that bypasses the condenser and exchanges heat, and a means that applies flow path resistance to a refrigerant pipe that introduces the refrigerant that radiates heat to the rare absorption liquid in the refrigerant heat recovery device into the condenser are provided. An absorption chiller of the configuration

【0009】前記第1の構成の吸収式冷凍機において、
冷媒熱回収器から吐出した冷媒が凝縮器ではなく蒸発器
に導入可能に冷媒管を配管するようにした第2の構成の
吸収式冷凍機と、
In the absorption refrigerator having the first structure,
An absorption refrigerator having a second configuration in which a refrigerant pipe is arranged so that the refrigerant discharged from the refrigerant heat recovery device can be introduced into the evaporator instead of the condenser,

【0010】前記第1または第2の構成の吸収式冷凍機
において、冷媒管に設けた流路抵抗を付与する手段が可
変抵抗部材であり、冷媒熱回収器を吐出した冷媒の温度
が、稀吸収液の熱交換前温度+所定温度α(但し、α>
0)となるように流路抵抗可変部材の流路抵抗を制御す
るようにした第3の構成の吸収式冷凍機と、を提供する
ものである。
In the absorption refrigerating machine of the first or second construction, the means for providing the flow path resistance provided in the refrigerant pipe is a variable resistance member, and the temperature of the refrigerant discharged from the refrigerant heat recovery device is rare. Pre-heat exchange temperature of absorbing liquid + predetermined temperature α (where α>
And an absorption refrigerator having a third structure in which the flow path resistance of the flow path resistance variable member is controlled so as to be 0).

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を、水を
冷媒とし、臭化リチウム(LiBr)水溶液を吸収液と
した吸収式冷凍機を例に挙げて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to an absorption refrigerator having water as a refrigerant and an aqueous lithium bromide (LiBr) solution as an absorbing liquid.

【0012】本発明の一実施形態を、図1に基づいて説
明する。図中1は、例えば都市ガスを燃料とするガスバ
ーナ2の火力によって吸収液を加熱して冷媒を蒸発分離
するように構成された高温再生器、3は低温再生器、4
は凝縮器、5は低温再生器3と凝縮器4が収納されてい
る高温胴、6は蒸発器、7は吸収器、8は蒸発器6と吸
収器7が収納されている低温胴、9は低温熱交換器、1
0は高温熱交換器、11は冷媒熱回収器、12〜16は
吸収液管、17、18は吸収液ポンプ、19〜21は冷
媒管、22は冷媒ポンプ、23は冷水管、24は冷却水
管、25はガスバーナ2から出る排ガスが通る排気管、
26は第1の排ガス熱回収器、27は第2の排ガス熱回
収器、28は吸収液管14との分岐部より下流側で第2
の排ガス熱回収器27より上流側の吸収液管12に設け
られた流量制御弁、29は冷媒管19の冷媒熱回収器1
1より下流側に設けられた流量制御弁、30は排気管2
5の下流部分に設けられて排ガスの温度を検出する温度
センサ、31は吸収液管12の上流部分に設けられて熱
交換する前の稀吸収液の温度を検出する温度センサ、3
2は冷媒管19の下流部分に設けられて冷媒熱回収器1
1で稀吸収液と熱交換して放熱した冷媒の温度を検出す
る温度センサ、33は温度センサ30が所定の温度、例
えば100℃を検出し続けるように流量制御弁28の開
度を制御すると共に、温度センサ32が検出する温度
が、温度センサ31が検出する温度+所定温度α(但
し、α>0)となるように流量制御弁29の開度を調節
して冷媒管19の流路抵抗を制御するための制御器であ
る。
An embodiment of the present invention will be described with reference to FIG. In the figure, 1 is a high temperature regenerator configured to heat the absorbing liquid by heating power of a gas burner 2 that uses city gas as fuel to evaporate and separate the refrigerant, 3 is a low temperature regenerator, 4
Is a condenser, 5 is a high temperature cylinder housing the low temperature regenerator 3 and the condenser 4, 6 is an evaporator, 7 is an absorber, 8 is a low temperature cylinder containing the evaporator 6 and the absorber 7, 9 Is a low temperature heat exchanger, 1
0 is a high temperature heat exchanger, 11 is a refrigerant heat recovery device, 12 to 16 are absorption liquid pipes, 17 and 18 are absorption liquid pumps, 19 to 21 are refrigerant pipes, 22 is a refrigerant pump, 23 is a cold water pipe, and 24 is a cooling pipe. A water pipe, 25 is an exhaust pipe through which exhaust gas from the gas burner 2 passes,
Reference numeral 26 is a first exhaust gas heat recovery device, 27 is a second exhaust gas heat recovery device, and 28 is a second exhaust gas downstream from the branch portion with the absorption liquid pipe 14.
Of the exhaust gas heat recovery device 27, the flow control valve provided in the absorption liquid pipe 12 on the upstream side, and 29 is the refrigerant heat recovery device 1 of the refrigerant pipe 19.
1, a flow control valve provided on the downstream side of 1, and 30 is an exhaust pipe 2
5, a temperature sensor for detecting the temperature of the exhaust gas, which is provided in the downstream portion of 5, and a temperature sensor 31, which is provided in the upstream portion of the absorption liquid pipe 12, for detecting the temperature of the rare absorption liquid before heat exchange, 3
2 is provided in the downstream portion of the refrigerant pipe 19 and is provided in the refrigerant heat recovery unit 1.
A temperature sensor for detecting the temperature of the refrigerant that has exchanged heat with the rare absorption liquid in 1 and radiates heat, and 33 controls the opening degree of the flow control valve 28 so that the temperature sensor 30 continues to detect a predetermined temperature, for example, 100 ° C. At the same time, the opening of the flow control valve 29 is adjusted so that the temperature detected by the temperature sensor 32 becomes the temperature detected by the temperature sensor 31 + the predetermined temperature α (where α> 0), and the flow path of the refrigerant pipe 19 is adjusted. It is a controller for controlling the resistance.

【0013】上記構成の吸収式冷凍機においては、ガス
バーナ2で都市ガスを燃焼して高温再生器1で稀吸収液
を加熱沸騰させると、稀吸収液から蒸発分離した冷媒蒸
気と、冷媒蒸気を分離して吸収液の濃度が高くなった中
間吸収液とが得られる。
In the absorption refrigerator having the above-mentioned structure, when the city gas is burned in the gas burner 2 and the rare absorbent is heated and boiled in the high temperature regenerator 1, the refrigerant vapor evaporated and separated from the rare absorbent and the refrigerant vapor are separated. An intermediate absorbent having a high concentration of the absorbent is obtained by separation.

【0014】高温再生器1で生成された高温の冷媒蒸気
は、冷媒管19の上流部分を通って低温再生器3に入
り、高温再生器1で生成され吸収液管15により高温熱
交換器10を経由して低温再生器3に入った中間吸収液
を加熱して放熱凝縮し、冷媒熱回収器11が介在する冷
媒管19の下流部分を通って凝縮器4に入る。
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 3 through the upstream portion of the refrigerant pipe 19, and is generated in the high-temperature regenerator 1 and absorbed by the absorption liquid pipe 15 to the high-temperature heat exchanger 10. The intermediate absorption liquid that has entered the low-temperature regenerator 3 via is heated and condensed by heat radiation, and enters the condenser 4 through the downstream portion of the refrigerant pipe 19 in which the refrigerant heat recovery device 11 is interposed.

【0015】また、低温再生器3で加熱されて中間吸収
液から蒸発分離した冷媒は凝縮器4へ入り、冷却水管2
4内を流れる水と熱交換して凝縮液化し、冷媒管19か
ら凝縮して供給される冷媒と一緒になって冷媒管20を
通って蒸発器6に入る。
The refrigerant heated by the low temperature regenerator 3 and evaporated and separated from the intermediate absorption liquid enters the condenser 4, and the cooling water pipe 2
4 heat-exchanges with the water flowing in the condenser 4, liquefies and condenses, and together with the refrigerant condensed and supplied from the refrigerant pipe 19, passes through the refrigerant pipe 20 and enters the evaporator 6.

【0016】蒸発器6の底に溜まった冷媒液は、冷水管
23に接続された伝熱管23Aの上に冷媒管21に介在
する冷媒ポンプ22によって散布され、冷水管23を介
して供給される水と熱交換して蒸発し、伝熱管23Aの
内部を流れる水を冷却する。
The refrigerant liquid accumulated at the bottom of the evaporator 6 is sprayed on the heat transfer pipe 23A connected to the cold water pipe 23 by the refrigerant pump 22 interposed in the refrigerant pipe 21 and supplied through the cold water pipe 23. It exchanges heat with water to evaporate and cools the water flowing inside the heat transfer tube 23A.

【0017】蒸発器6で蒸発した冷媒は吸収器7に入
り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収
液の濃度が一層高まった吸収液、すなわち吸収液管16
により低温熱交換器9を経由して吸収液ポンプ18によ
り供給され、上方から散布される濃吸収液に吸収され
る。
The refrigerant evaporated in the evaporator 6 enters the absorber 7, is heated in the low temperature regenerator 3 to evaporate and separate the refrigerant, and the absorption liquid having a higher concentration of the absorption liquid, that is, the absorption liquid pipe 16
Is supplied by the absorption liquid pump 18 via the low temperature heat exchanger 9 and absorbed by the concentrated absorption liquid sprayed from above.

【0018】そして、吸収器7で冷媒を吸収して濃度の
薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ1
7の運転により高温再生器1に戻される。
Then, the absorbing liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 7, that is, the rare absorbing liquid is absorbed by the absorbing liquid pump 1.
It is returned to the high temperature regenerator 1 by the operation of 7.

【0019】上記のように吸収式冷凍機の運転が行われ
ると、蒸発器6の内部に配管された伝熱管23Aにおい
て冷媒の気化熱によって冷却された冷水が、冷水管23
を介して図示しない空調負荷に循環供給できるので、冷
房などの冷却運転が行える。
When the absorption refrigerator is operated as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer tube 23A arranged inside the evaporator 6 is cooled by the cold water tube 23.
Since it can be circulated and supplied to an air-conditioning load (not shown) via, the cooling operation such as cooling can be performed.

【0020】上記構成の吸収式冷凍機においては、吸収
液ポンプ17の運転により吸収器7から高温再生器1に
戻される稀吸収液の一部は吸収液管12に介在する低温
熱交換器9を経由し、残部は吸収液管13に介在する冷
媒熱回収器11を経由し、それぞれの熱交換器において
加熱される。
In the absorption refrigerator having the above-mentioned structure, a part of the rare absorption liquid returned from the absorber 7 to the high-temperature regenerator 1 by the operation of the absorption liquid pump 17 is interposed in the absorption liquid pipe 12 to the low temperature heat exchanger 9 Through the refrigerant heat recovery device 11 interposed in the absorption liquid pipe 13 and is heated in each heat exchanger.

【0021】また、第2の排ガス熱回収器27を経由し
てガスバーナ2から出る排ガスにより加熱される稀吸収
液の量は、吸収液管12に介在する流量制御弁28によ
り制御され、高温熱交換器10と第1の排ガス熱回収器
26には吸収器7から高温再生器1に戻す稀吸収液の全
量が流れてそれぞれで加熱される。
The amount of the rare absorption liquid heated by the exhaust gas from the gas burner 2 via the second exhaust gas heat recovery unit 27 is controlled by the flow rate control valve 28 interposed in the absorption liquid pipe 12, and the high temperature heat The entire amount of the rare absorption liquid returned from the absorber 7 to the high temperature regenerator 1 flows through the exchanger 10 and the first exhaust gas heat recovery device 26 and is heated by each.

【0022】すなわち、吸収器7から吸収液管12に吐
出した約40℃の稀吸収液の一部は、低温再生器3から
吸収液管16に吐出して吸収器7に流れている約90℃
の濃吸収液と低温熱交換器9で熱交換し、残部は低温再
生器3で凝縮して凝縮器4に流れている冷媒管19の約
95℃の冷媒液と熱交換する。
That is, a part of the dilute absorption liquid of about 40 ° C. discharged from the absorber 7 to the absorption liquid pipe 12 is discharged from the low temperature regenerator 3 to the absorption liquid pipe 16 and flows to the absorber 7 about 90 ° C. ℃
The heat is exchanged with the concentrated absorbing liquid in the low temperature heat exchanger 9, and the rest is condensed in the low temperature regenerator 3 and exchanges heat with the refrigerant liquid of about 95 ° C. in the refrigerant pipe 19 flowing into the condenser 4.

【0023】冷媒管19の下流部分には流路抵抗となる
流量制御弁29が設置されて冷媒の流速を下げているの
で、低温再生器3内で中間吸収液に放熱して凝縮し、冷
媒管19に吐出した気液2相流の冷媒は冷媒熱回収器1
1に至るまでに液相のみになり、冷媒熱回収器11にお
ける冷媒と稀吸収液との熱交換効率が改善される。
Since a flow rate control valve 29, which serves as a flow path resistance, is installed in the downstream portion of the refrigerant pipe 19 to reduce the flow velocity of the refrigerant, heat is radiated and condensed in the intermediate absorption liquid in the low temperature regenerator 3 to condense the refrigerant. The gas-liquid two-phase refrigerant discharged into the pipe 19 is the refrigerant heat recovery device 1
By the time the temperature reaches 1, only the liquid phase remains, and the heat exchange efficiency between the refrigerant and the rare absorption liquid in the refrigerant heat recovery device 11 is improved.

【0024】しかも、温度センサ32が検出する冷媒熱
交換器11で熱交換した後の冷媒の温度が、例えば温度
センサ31が検出する冷媒熱交換器11で熱交換する前
の稀吸収液の温度+所定温度、例えば5℃だけ高い温度
となるように、流量制御弁29の開度が制御器33によ
り制御され、吸収器7から高温再生器1に送る稀吸収液
は加熱され、低温再生器3から凝縮器4に送る冷媒は冷
却される。
Moreover, the temperature of the refrigerant after heat exchange in the refrigerant heat exchanger 11 detected by the temperature sensor 32 is, for example, the temperature of the rare absorption liquid before heat exchange in the refrigerant heat exchanger 11 detected by the temperature sensor 31. + The opening degree of the flow control valve 29 is controlled by the controller 33 so that the temperature becomes higher by a predetermined temperature, for example, 5 ° C., the rare absorbent sent from the absorber 7 to the high temperature regenerator 1 is heated, and the low temperature regenerator is generated. The refrigerant sent from 3 to the condenser 4 is cooled.

【0025】そして、低温熱交換器9、冷媒熱回収器1
1それぞれで熱交換して加熱された稀吸収液は合流し、
例えば80℃前後の稀吸収液となって第2の排ガス熱回
収器27に流入する。
The low temperature heat exchanger 9 and the refrigerant heat recovery unit 1
1. The rare absorbents that have been heat-exchanged and heated are joined together,
For example, it becomes a rare absorption liquid at around 80 ° C. and flows into the second exhaust gas heat recovery unit 27.

【0026】さらに、第2の排ガス熱回収器27に流入
する稀吸収液の流量は、吸収液管12に介在する流量制
御弁28の開度が制御器33により調節制御される。例
えば、制御器33は温度センサ30が所定の100℃よ
り高い温度を検出しているときには流量制御弁28の開
度を大きくし、吸収器7から高温再生器1に戻している
稀吸収液のより多くを第2の熱回収器27に供給して排
ガスが保有する熱の回収を促進するので、熱効率は改善
されガスバーナ2の燃料消費が抑えられる。
Further, the flow rate of the rare absorption liquid flowing into the second exhaust gas heat recovery device 27 is controlled by the controller 33 by adjusting the opening degree of the flow control valve 28 interposed in the absorption liquid pipe 12. For example, the controller 33 increases the opening degree of the flow rate control valve 28 when the temperature sensor 30 detects a temperature higher than a predetermined temperature of 100 ° C. to reduce the amount of the rare absorption liquid returned from the absorber 7 to the high temperature regenerator 1. Since more is supplied to the second heat recovery unit 27 to promote recovery of heat contained in the exhaust gas, thermal efficiency is improved and fuel consumption of the gas burner 2 is suppressed.

【0027】しかも、温度センサ30が100℃より低
い温度を検出しているときには、稀吸収液の全量が第2
の排ガス熱回収器27を迂回して吸収液管14に流れる
まで、流量制御弁28を最大全閉まで絞って排ガスから
回収する熱量を最大ゼロまで抑えることが可能であるの
で、排気管25を介して排気される排ガスの温度は露点
温度(都市ガス、すなわち天然ガスを燃料としたときの
燃焼排ガスの露点温度は60〜70℃)より高い100
℃に維持され、これにより排ガス温度が低い起動時や部
分負荷運転時においても、排ガスに含まれる水蒸気が凝
縮してドレン水が発生することがないし、ドレン水によ
る腐食問題を引き起こすこともない。
Moreover, when the temperature sensor 30 detects a temperature lower than 100 ° C., the total amount of the dilute absorption liquid becomes the second amount.
Since it is possible to suppress the amount of heat recovered from the exhaust gas to a maximum of zero by squeezing the flow rate control valve 28 to the maximum fully closed until it bypasses the exhaust gas heat recovery device 27 and flows to the absorption liquid pipe 14, The temperature of the exhaust gas exhausted through the exhaust gas is higher than the dew point temperature (the dew point temperature of the combustion exhaust gas when city gas, that is, natural gas is used as fuel is 60 to 70 ° C.), which is 100.
Therefore, even when the exhaust gas temperature is low and the exhaust gas temperature is low, the steam contained in the exhaust gas does not condense to generate drain water and the corrosion problem caused by drain water does not occur.

【0028】第2の排ガス熱回収器27を経由して加熱
された稀吸収液と、第2の排ガス熱回収器27を経由せ
ず、したがって加熱されなかった稀吸収液とは合流して
高温熱交換器10と第1の排ガス熱回収器26とを経由
し、高温再生器1から低温再生器3に吸収液管15を介
して流れている中間吸収液と、ガスバーナ2から排出さ
れた約200℃の排ガスと熱交換して135℃程度の稀
吸収液となって高温再生器1に流入するので、ガスバー
ナ2で消費する燃料が節約できる。
The rare absorbent which has been heated via the second exhaust gas heat recovery device 27 and the rare absorbent which has not passed through the second exhaust gas heat recovery device 27 and therefore has not been heated join together to form a high temperature. The intermediate absorption liquid flowing from the high temperature regenerator 1 to the low temperature regenerator 3 via the absorption liquid pipe 15 via the heat exchanger 10 and the first exhaust gas heat recovery device 26, and about the amount discharged from the gas burner 2 Since it exchanges heat with the exhaust gas of 200 ° C. and becomes a rare absorption liquid of about 135 ° C. and flows into the high temperature regenerator 1, the fuel consumed by the gas burner 2 can be saved.

【0029】また、低温再生器3で凝縮して凝縮器4に
冷媒管19の下流部分を通って流入する冷媒液は、前記
したように冷媒熱回収器11で約40℃の稀吸収液と熱
交換してこれを加熱し、冷媒自身は約45℃に冷却さ
れ、冷却水管24の内部を流れる冷却水に放熱する熱量
が減少するので、高温再生器1における所用入熱量が削
減でき、この点でも吸収式冷凍機の熱効率が顕著に改善
される。
Further, the refrigerant liquid condensed in the low temperature regenerator 3 and flowing into the condenser 4 through the downstream portion of the refrigerant pipe 19 is, as described above, a rare absorption liquid of about 40 ° C. in the refrigerant heat recovery device 11. The heat is exchanged to heat it, the refrigerant itself is cooled to about 45 ° C., and the amount of heat radiated to the cooling water flowing through the inside of the cooling water pipe 24 decreases, so that the required heat input in the high temperature regenerator 1 can be reduced. Also in this respect, the thermal efficiency of the absorption refrigerator is significantly improved.

【0030】なお、低温再生器3で中間吸収液を加熱し
て放熱し、さらに冷媒熱回収器11でも稀吸収液を加熱
して放熱する冷媒の温度は、前記したように45℃程度
まで低下しているので、凝縮器4に送って冷却水管24
内を流れる冷却水で冷却する必要はない。
The temperature of the refrigerant that heats the intermediate absorption liquid by the low-temperature regenerator 3 to radiate the heat and further heats the rare absorption liquid by the refrigerant heat recovery device 11 to radiate the heat is lowered to about 45 ° C. as described above. Therefore, the cooling water pipe 24 is sent to the condenser 4.
It is not necessary to cool with the cooling water flowing inside.

【0031】そのため、冷媒管19の下流側は凝縮器4
ではなく、仮想線で示すように凝縮冷媒が蒸発器6に流
入可能に連結し、管長の短縮と配管構成の簡素化とを図
ることも可能である(図1では冷媒管19、20の図面
上の最短部分を仮想線で連結しているが、実際の装置で
は高温胴5は上方に位置し、低温胴8と冷媒熱回収器1
1とは下方に位置するので、低温胴8の蒸発器6と冷媒
熱回収器11とを近接させ、その間を短い冷媒管により
連結することが可能。)。
Therefore, the downstream side of the refrigerant pipe 19 is the condenser 4
Instead, it is possible to connect the condensed refrigerant so that it can flow into the evaporator 6 as indicated by a phantom line, thereby shortening the pipe length and simplifying the piping configuration (in FIG. 1, a drawing of the refrigerant pipes 19 and 20 is shown. Although the uppermost shortest part is connected by an imaginary line, in the actual device, the high temperature cylinder 5 is located above, and the low temperature cylinder 8 and the refrigerant heat recovery device 1 are connected.
Since it is located below 1, the evaporator 6 of the low temperature cylinder 8 and the refrigerant heat recovery device 11 can be brought close to each other and can be connected by a short refrigerant pipe. ).

【0032】また、本発明は上記実施形態に限定される
ものではないので、特許請求の範囲に記載の趣旨から逸
脱しない範囲でさらに各種の変形実施が可能である。
Further, since the present invention is not limited to the above embodiment, various modifications can be made without departing from the scope of the claims.

【0033】例えば、冷媒管19の流量制御弁29は、
冷媒管19の流路抵抗を調節する手段として設けてある
ので、高価な流量制御弁29に代えて廉価なオリフィス
を設置することも可能である。
For example, the flow rate control valve 29 of the refrigerant pipe 19 is
Since it is provided as a means for adjusting the flow path resistance of the refrigerant pipe 19, it is possible to install an inexpensive orifice in place of the expensive flow control valve 29.

【0034】また、高価な流量制御弁28に代えて、廉
価な開閉弁を第2の熱回収器27上流側の吸収液管14
に設置する、あるいは廉価な切替弁を吸収液管12、1
4の分岐部(または合流部)に設置するなどし、温度セ
ンサ30が検出する排ガス温度が所定の温度、例えば1
00℃を下回らないように、制御器33により弁の開
閉、切替を制御する構成とすることもできる。
Further, instead of the expensive flow control valve 28, an inexpensive opening / closing valve is used as the absorbing liquid pipe 14 on the upstream side of the second heat recovery device 27.
Installed at the same location, or an inexpensive switching valve is installed in the absorption liquid pipes 12, 1
The exhaust gas temperature detected by the temperature sensor 30 is set to a predetermined temperature, for example, 1
The controller 33 may be configured to control opening / closing and switching of the valve so that the temperature does not fall below 00 ° C.

【0035】また、第2の熱回収器27を迂回する吸収
液管14に代えて、図2に示したように、第2の熱回収
器27を迂回する排気管25Aを設けると共に、その排
気管25Aとの分岐部(あるいは合流部)に流路切換弁
28Aを設ける。あるいは、第2の熱回収器27を経由
する排気管25に開閉弁を設けるなどして、第2の熱回
収器27に流れて稀吸収液と熱交換した排ガスの温度が
所定の100℃より低下しないように制御器33により
その弁の開閉、切替を制御をしてもよい。
Further, instead of the absorbing liquid pipe 14 bypassing the second heat recovery device 27, as shown in FIG. 2, an exhaust pipe 25A bypassing the second heat recovery device 27 is provided and its exhaust gas is exhausted. A flow path switching valve 28A is provided at a branching portion (or a joining portion) with the pipe 25A. Alternatively, by providing an opening / closing valve in the exhaust pipe 25 passing through the second heat recovery device 27, the temperature of the exhaust gas that has flowed into the second heat recovery device 27 and exchanged heat with the rare absorption liquid is higher than a predetermined temperature of 100 ° C. The controller 33 may control opening / closing and switching of the valve so as not to decrease.

【0036】また、吸収式冷凍機は、上記のように冷房
などの冷却運転を専用に行うものであっても良いし、高
温再生器1で加熱生成した冷媒蒸気と、冷媒蒸気を蒸発
分離した吸収液とが低温胴8に直接供給できるように配
管接続し、冷却水管24に冷却水を流すことなくガスバ
ーナ2による稀吸収液の加熱を行い、蒸発器6の伝熱管
23Aで例えば55℃程度に加熱した水を冷水管(温水
が循環する場合は温水管と呼ぶのが好ましい)23を介
して負荷に循環供給して暖房などの加熱運転も行えるよ
うにしたものであってもよい。
Further, the absorption refrigerator may be one exclusively for cooling operation such as cooling as described above, or the refrigerant vapor generated by heating in the high temperature regenerator 1 and the refrigerant vapor are separated by evaporation. A pipe connection is provided so that the absorbing liquid can be directly supplied to the low temperature cylinder 8, the rare absorbing liquid is heated by the gas burner 2 without flowing the cooling water into the cooling water pipe 24, and the heat transfer pipe 23A of the evaporator 6 is heated to, for example, about 55 ° C. Alternatively, the heating water may be circulated and supplied to the load through a cold water pipe (preferably referred to as a hot water pipe when hot water circulates) 23 so that heating operation such as heating can be performed.

【0037】また、蒸発器6で冷却などして空調負荷な
どに供給する流体としては、水などを上記実施形態のよ
うに相変化させないで供給するほか、潜熱を利用した熱
搬送が可能なようにフロンなどを相変化させて供給する
ようにしても良い。
As the fluid to be supplied to the air-conditioning load after being cooled by the evaporator 6, water or the like is supplied without phase change as in the above-described embodiment, and heat transfer using latent heat is possible. Alternatively, CFCs may be phase-changed and supplied.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、冷
媒熱回収器で稀吸収液に放熱した冷媒を凝縮器に導入す
る冷媒管に流路抵抗を付与する手段が設置されているの
で、冷媒管を流れる冷媒の流速が低下し、低温再生器内
で中間吸収液に放熱して凝縮し、冷媒管に吐出した気液
2相流の冷媒は冷媒熱回収器に至るまでに液相のみにな
り、冷媒熱回収器における冷媒と稀吸収液との熱交換効
率が改善される。
As described above, according to the present invention, the means for imparting flow path resistance to the refrigerant pipe for introducing the refrigerant that has radiated heat to the rare absorption liquid in the refrigerant heat recovery device into the condenser is provided. , The flow velocity of the refrigerant flowing through the refrigerant pipe decreases, the heat is dissipated to the intermediate absorption liquid in the low temperature regenerator and condensed, and the gas-liquid two-phase refrigerant discharged to the refrigerant pipe reaches the refrigerant heat recovery device in the liquid phase. Therefore, the efficiency of heat exchange between the refrigerant and the rare absorption liquid in the refrigerant heat recovery device is improved.

【0039】また、冷媒熱回収器から吐出した冷媒が凝
縮器ではなく蒸発器に導入可能に冷媒管が配管された吸
収式冷凍機においては、冷媒管の管長の短縮と配管構成
の簡素化とを図ることが可能である。
Further, in an absorption refrigerator having a refrigerant pipe arranged so that the refrigerant discharged from the refrigerant heat recovery device can be introduced into the evaporator instead of the condenser, the length of the refrigerant pipe can be shortened and the piping structure can be simplified. Is possible.

【0040】また、冷媒管に設けた流路抵抗を付与する
手段が可変抵抗部材であり、冷媒熱回収器を吐出した冷
媒の温度が、稀吸収液の熱交換前温度+所定温度α(但
し、α>0)となるように流路抵抗可変部材の流路抵抗
が制御される吸収式冷凍機においては、冷媒が保有する
熱を吸収器から高温再生器に送っている稀吸収液により
確実に回収して、凝縮器で放熱する冷媒の保有熱を下げ
ることが可能である。
Further, the means for providing the flow path resistance provided in the refrigerant pipe is the variable resistance member, and the temperature of the refrigerant discharged from the refrigerant heat recovery device is equal to the temperature before heat exchange of the rare absorption liquid + the predetermined temperature α (however, , Α> 0), the flow path resistance of the flow path resistance variable member is controlled so that the heat of the refrigerant is ensured by the rare absorption liquid that is sent from the absorber to the high temperature regenerator. It is possible to reduce the retained heat of the refrigerant which is recovered by the condenser and radiates heat in the condenser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の変形実施形態を示す説明図である。FIG. 2 is an explanatory diagram showing a modified embodiment of the present invention.

【図3】従来技術を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 ガスバーナ 3 低温再生器 4 凝縮器 5 高温胴 6 蒸発器 7 吸収器 8 低温胴 9 低温熱交換器 10 高温熱交換器 11 冷媒熱回収器 12〜16 吸収液管 17、18 吸収液ポンプ 19〜21 冷媒管 22 冷媒ポンプ 23 冷水管 24 冷却水管 25 排気管 26 第1の排ガス熱回収器 27 第2の排ガス熱回収器 28 流量制御弁 28A 切替弁 29 流量制御弁 30〜32 温度センサ 33 制御器 1 High temperature regenerator 2 gas burners 3 low temperature regenerator 4 condenser 5 hot body 6 evaporator 7 absorber 8 low temperature body 9 Low temperature heat exchanger 10 High temperature heat exchanger 11 Refrigerant heat recovery unit 12-16 Absorption liquid tube 17, 18 Absorption liquid pump 19-21 Refrigerant tube 22 Refrigerant pump 23 Cold water pipe 24 Cooling water pipe 25 exhaust pipe 26 First exhaust gas heat recovery unit 27 Second exhaust gas heat recovery device 28 Flow control valve 28A switching valve 29 Flow control valve 30-32 Temperature sensor 33 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊良皆 数恭 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山崎 志奥 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 鎌田 泰司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3L093 AA01 BB11 BB22 BB29 BB37 CC00 DD08 EE09 GG02 HH08 JJ02 KK03 LL03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ira Minoru Kazuyasu             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Shioku Yamazaki             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Yasushi Kamata             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F term (reference) 3L093 AA01 BB11 BB22 BB29 BB37                       CC00 DD08 EE09 GG02 HH08                       JJ02 KK03 LL03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼装置で加熱沸騰させて冷媒を蒸発分
離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再
生器と、この高温再生器で生成して供給される中間吸収
液を高温再生器で生成した冷媒蒸気で加熱してさらに冷
媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を
得る低温再生器と、この低温再生器で中間吸収液を加熱
して凝縮した冷媒液が供給されると共に、低温再生器で
生成して供給される冷媒蒸気を冷却して冷媒液を得る凝
縮器と、この凝縮器から供給された冷媒液が伝熱管の上
に散布され、伝熱管内を流れる流体から熱を奪って冷媒
が蒸発する蒸発器と、この蒸発器で生成して供給される
冷媒蒸気を低温再生器から冷媒蒸気を分離して供給され
る濃吸収液に吸収させて稀吸収液にし、高温再生器に供
給する吸収器と、この吸収器に出入する稀吸収液と濃吸
収液とが熱交換する低温熱交換器と、高温再生器に出入
する中間吸収液と稀吸収液とが熱交換する高温熱交換器
とを備えた吸収式冷凍機において、吸収器から吐出した
稀吸収液の一部が低温再生器から放熱して吐出した冷媒
と低温熱交換器を迂回して熱交換する冷媒熱回収器と、
冷媒熱回収器で稀吸収液に放熱した冷媒を凝縮器に導入
する冷媒管に流路抵抗を付与する手段とを設けたことを
特徴とする吸収式冷凍機。
1. A high-temperature regenerator for heating and boiling in a combustion device to evaporate and separate a refrigerant to obtain a refrigerant vapor and an intermediate absorption liquid from a rare absorption liquid, and an intermediate absorption liquid generated and supplied by the high-temperature regenerator. A low-temperature regenerator that heats the refrigerant vapor generated in the high-temperature regenerator to further evaporate and separate the refrigerant to obtain the refrigerant vapor and concentrated absorbent from the intermediate absorption liquid, and the intermediate absorption liquid is heated and condensed in this low-temperature regenerator. A refrigerant liquid is supplied, a condenser that cools the refrigerant vapor generated and supplied by the low temperature regenerator to obtain a refrigerant liquid, and the refrigerant liquid supplied from this condenser is sprayed on the heat transfer tubes, The evaporator that takes heat from the fluid flowing in the heat transfer tube to evaporate the refrigerant and the refrigerant vapor that is generated and supplied by this evaporator are separated from the refrigerant vapor from the low-temperature regenerator and absorbed by the concentrated absorbing liquid that is supplied. The absorber that supplies the high temperature regenerator with diluted absorbent Equipped with a low temperature heat exchanger that exchanges heat between the rare absorbent and the concentrated absorbent that enter and leave the absorber, and a high temperature heat exchanger that exchanges heat between the intermediate absorbent and the rare absorbent that enter and exit the high temperature regenerator. In the absorption chiller, a part of the rare absorbent discharged from the absorber radiates heat from the low temperature regenerator and is discharged, and a refrigerant heat recovery device that bypasses the low temperature heat exchanger and exchanges heat.
An absorption refrigerating machine, which is provided with means for imparting flow path resistance to a refrigerant pipe that introduces a refrigerant that radiates heat to a rare absorption liquid in a refrigerant heat recovery device into a condenser.
【請求項2】 冷媒熱回収器から吐出した冷媒が凝縮器
ではなく蒸発器に導入可能に冷媒管が配管されたことを
特徴とする請求項1記載の吸収式冷凍機。
2. The absorption refrigerator according to claim 1, wherein a refrigerant pipe is arranged so that the refrigerant discharged from the refrigerant heat recovery device can be introduced into the evaporator instead of the condenser.
【請求項3】 冷媒管に設けた流路抵抗を付与する手段
が可変抵抗部材であり、冷媒熱回収器を吐出した冷媒の
温度が、稀吸収液の熱交換前温度+所定温度α(但し、
α>0)となるように流路抵抗可変部材の流路抵抗が制
御されることを特徴とする請求項1または2記載の吸収
式冷凍機。
3. A variable resistance member is provided in the refrigerant pipe to provide flow resistance, and the temperature of the refrigerant discharged from the refrigerant heat recovery device is equal to the temperature before heat exchange of the rare absorption liquid + predetermined temperature α (however). ,
3. The absorption refrigerator according to claim 1, wherein the flow path resistance of the flow path resistance variable member is controlled so that α> 0).
JP2002092104A 2002-03-28 2002-03-28 Absorption refrigerator Expired - Fee Related JP3851204B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002092104A JP3851204B2 (en) 2002-03-28 2002-03-28 Absorption refrigerator
KR10-2003-0019046A KR100493598B1 (en) 2002-03-28 2003-03-27 Absorption Type Refrigerator
CN03108520A CN1448670A (en) 2002-03-28 2003-03-28 Absorption-type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092104A JP3851204B2 (en) 2002-03-28 2002-03-28 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003287315A true JP2003287315A (en) 2003-10-10
JP3851204B2 JP3851204B2 (en) 2006-11-29

Family

ID=28786159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092104A Expired - Fee Related JP3851204B2 (en) 2002-03-28 2002-03-28 Absorption refrigerator

Country Status (3)

Country Link
JP (1) JP3851204B2 (en)
KR (1) KR100493598B1 (en)
CN (1) CN1448670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202923A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2021085328A (en) * 2019-11-25 2021-06-03 いすゞ自動車株式会社 Vehicle reducing agent defrosting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619907B (en) * 2009-07-24 2011-04-13 大连三洋制冷有限公司 High-efficiency vapor double effect lithium bromide absorption type refrigerating unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202923A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2021085328A (en) * 2019-11-25 2021-06-03 いすゞ自動車株式会社 Vehicle reducing agent defrosting device
JP7320194B2 (en) 2019-11-25 2023-08-03 いすゞ自動車株式会社 vehicle reductant thawing device

Also Published As

Publication number Publication date
KR100493598B1 (en) 2005-06-03
KR20030078701A (en) 2003-10-08
JP3851204B2 (en) 2006-11-29
CN1448670A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
US6487874B2 (en) Absorption refrigerator
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JP2003021425A (en) Cogeneration type absorption refrigerating machine and its operating method
JP2003343940A (en) Absorption water cooler/heater
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP2002295917A (en) Control method for absorption freezer
KR101167800B1 (en) Absorption type refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP2003287315A (en) Absorption refrigerating machine
JP4090262B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP3889655B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP2010276244A (en) Absorption type water chiller/heater
JP4308076B2 (en) Absorption refrigerator
JP2895974B2 (en) Absorption refrigerator
JP2000088391A (en) Absorption refrigerating machine
JP2005282968A (en) Absorption type refrigerating machine
JP2001124429A (en) Absorption type refrigerating machine
JP2001208443A (en) Absorption freezer
JP2001311569A (en) Absorption type freezer
JP2005326089A (en) Absorption refrigerating machine
JP2017125653A (en) Absorption type refrigerator
JP2000304370A (en) Absorption-type refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees