JP3735745B2 - Cooling operation control method for absorption air conditioner - Google Patents

Cooling operation control method for absorption air conditioner Download PDF

Info

Publication number
JP3735745B2
JP3735745B2 JP03519397A JP3519397A JP3735745B2 JP 3735745 B2 JP3735745 B2 JP 3735745B2 JP 03519397 A JP03519397 A JP 03519397A JP 3519397 A JP3519397 A JP 3519397A JP 3735745 B2 JP3735745 B2 JP 3735745B2
Authority
JP
Japan
Prior art keywords
liquid refrigerant
refrigerant
liquid
cooling operation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03519397A
Other languages
Japanese (ja)
Other versions
JPH10232064A (en
Inventor
清春 曽根
徹 柳澤
昇 小林
和哉 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP03519397A priority Critical patent/JP3735745B2/en
Publication of JPH10232064A publication Critical patent/JPH10232064A/en
Application granted granted Critical
Publication of JP3735745B2 publication Critical patent/JP3735745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷暖房装置の冷房運転制御方法に係り、特に室内機への2次側冷媒の供給制御方法に関するものである。
【0002】
【従来の技術】
図4は、吸収式冷暖房装置内に設けられた2次側循環回路を示す系統図である。2次側循環回路2において、冷房運転時、室内機側より冷媒ガス管18を介して冷媒ガス29が蒸発器の蒸発器コイル4に導入され、冷却、凝縮して液冷媒30となり、吸込管路11に導かれる。吸込管路11に接続されたレシーバタンク14内にはフロートスイッチ15が設けられ、レシーバタンク14内に液が溜るとフロートスイッチ15が作動し液レベル信号がコントローラ25に入力され、搬送補助装置であるブースター10に起動信号を送りブースター10が起動(ON)され、吐出管路12より液冷媒が液冷媒管19へ圧送される。この時、暖房弁23は閉となっており、、吸込管路11へバイパスすることはない。
【0003】
暖房運転時は、ブースター10は停止し、暖房弁23は開となる。暖房運転時は2次側冷媒の流れ方向が逆となり、液冷媒管19より液冷媒30が導かれ暖房弁23を経て蒸発器コイル4で加温され、冷媒ガス29となって冷媒ガス管18を通り室内機に供給される。尚、符号8は吸収式冷暖房装置、22は流路を示す。
【0004】
図5は、従来技術に係る吸収式冷暖房装置の冷房運転制御方法の系統図である。先ずスタート指令100により冷房か暖房かの判断101を行なう。冷房運転の場合は、暖房弁閉102で暖房弁の閉が行なわれる。冷房か暖房かの判断101で暖房運転の場合は、暖房弁開106で暖房弁の開が行なわれブースターOFF107でブースターの停止が行なわれる。
【0005】
次に、暖房弁の閉が行なわれると、フロートスィッチ液レベルの判定103で所定の滞留量m0(又は所定の高さh0)以上の場合はブースターON104でブースターの起動が行なわれ、フロートスィッチ液レベルの判定103の前に戻る。一方、フロートスィッチ液レベルの判定103で所定の滞留量m0(又は所定の高さh0)未満の場合はブースターOFF105でブースターの停止が行なわれ、同じくフロートスィッチ液レベルの判定103の前に戻る。
【0006】
【発明が解決しようとする課題】
しかしながら、ブースター10が起動(ON)し、吐出管路12より液冷媒を液冷媒管19へ圧送すると、レシーバタンク14内の液量が減少し、フロートスイッチ15が予め設定された液冷媒の所定の滞留量m0を検知し、ブースター10は停止する。しかし、この時、液冷媒供給量が急減し、2次側室内機への供給量が減るため、室内機の大幅な出力低下を起こし室内の不快感を生じる。
【0007】
図6は、図5の冷房運転制御方法による時間と液冷媒供給量の関係の線図である。図6に示すように、従来の制御ではブースター10が起動すると、区間t101〜t102、t103〜t104、t105〜t106の間は液冷媒を安定的に供給するが、区間t100〜t101、t102〜t103、t104〜t105の間は液冷媒供給量V100が小さくなり、急減し、室内機に十分な安定的した液冷媒を供給することが困難である。
【0008】
本発明の課題は、冷媒及び吸収溶液の1次側循環回路を形成し、冷暖房のための2次側冷媒の加熱又は冷却を行なう吸収式冷暖房装置の冷房運転制御方法において、蒸発器の液側から液冷媒管側に送られる2次側液冷媒の送り出しを停止した時に、室内機側への液冷媒の供給量をコストアップなしに平準化し、室内の快適環境を維持することである。
【0009】
【課題を解決するための手段】
上記課題を解決するため本発明は、高温再生器、低温再生器、凝縮器、蒸発器及び吸収器等を接続して冷媒及び吸収溶液の1次側循環回路を形成し、冷房運転時に室内機から冷媒ガス管を介して戻ってきた冷媒ガスを前記蒸発器によって冷却、凝縮させてレシーバタンクに溜め、前記レシーバタンク内の液冷媒を液冷媒搬送装置によって液冷媒管を介して前記室内機に供給する2次側循環回路を形成した吸収式冷暖房装置の冷房運転制御方法において、冷房運転時に、前記レシーバタンク内の液冷媒が所定の滞留量より少なくなって前記液冷媒搬送装置が停止された際に、前記蒸発器の液側と前記液冷媒管側との間に設けた弁を開いて液冷媒を前記室内機に供給することである。
【0010】
すなわち、液冷媒搬送装置が停止された際に、蒸発器の液側から液ヘッド圧によって液冷媒を送ることができ、室内機側への液冷媒の供給量を平準化し、室内の快適環境を維持する。
【0012】
【発明の実施の形態】
以下に、本発明に係る吸収式冷暖房装置の実施の形態を図面に基づいて説明する。
【0013】
図3は、吸収式冷暖房装置の全体回路の系統図である。この吸収式冷暖房装置1は、冷却水管80a、80bで接続され冷却水を冷却しファン82を有するクーリングタワー81と、この吸収式冷暖房装置1に冷媒ガス管18及び液冷媒管19で接続され空調対象空間に配置されて該空間の空気との熱交換を行う図示されていない空調用室内機とが付設されている。又、冷却水管80bには、冷却水をクーリングタワー81から吸収式冷暖房装置1に循環させる冷却水循環ポンプ73が介装され、更に、2次側液冷媒管19に介装され、冷媒ガス管18及び液冷媒管19内の2次側冷媒を吸収式冷暖房装置1と前記空調用室内機の間で循環させる図示していない2次側冷媒循環ポンプが付設されている。
【0014】
前記空調用室内機に対して、クーリングタワー81と併せて通常、室外機と呼ばれる吸収式冷暖房装置1は、この場合燃料をバーナで燃焼させ、その燃焼熱で希溶液を加熱する加熱源47を有する高温再生器46と、この高温再生器46で加熱された希溶液から冷媒蒸気と中間濃溶液を分離する分離器49と、分離された冷媒蒸気を熱源として前記中間濃溶液を加熱してさらに冷媒蒸気を発生させる低温再生器50と、この低温再生器50を通過した冷媒蒸気及び低温再生器50で発生した冷媒蒸気を冷却して凝縮し液化させ液冷媒を生成する凝縮器51と、この凝縮器51で生成された液冷媒を内装した冷媒分配器54から同じく内装した蒸発コイル4上に滴下、蒸発させ、この蒸発コイル4中の2次側冷媒を冷却する蒸発器53とを有する。
【0015】
更に、吸収式冷暖房装置1は、上記蒸発器53で蒸発した冷媒蒸気を濃溶液に吸収させ希溶液を生成する吸収器52と、この希溶液を加圧し低温溶液熱交換器57、高温溶液熱交換器56の被加熱流体側を経て高温再生器46に送りこむ溶液循環ポンプ60と、分離器49の底部と蒸発器53の底部を冷暖切換弁61を介して連通する管路62と、低温溶液熱交換器57の加熱流体出側を吸収器52の上部に接続する濃溶液管58と、この濃溶液管58と吸収器52の下部を溶液バイパス弁70を介して接続する管路71と、濃溶液管58と蒸発器53に内装された冷媒分配器54を凍結防止弁67を介して連通する管路68と、凝縮器51から冷媒分配器54に液冷媒を導く水冷媒管66と、この水冷媒管66に並列に接続され水冷媒比例弁64を介装する管路65とを含んで構成されている。
【0016】
そして、上記分離器49で分離された中間濃溶液が高温溶液熱交換器56の加熱流体側を経て低温再生器50に導かれ、低温再生器50で冷媒を蒸発させて濃溶液となったのち、低温溶液熱交換器57の加熱流体側を経て濃溶液管58に導かれるように管路が構成されている。吸収器52及び凝縮器51にはそれぞれ冷却水コイルが内装され、吸収器52の冷却水コイルの出口は凝縮器51の冷却水コイルの入口に接続されていて、吸収器52の冷却水コイルの入口は冷却水管80bに、凝縮器51の冷却水コイルの出口は冷却水管80aに、それぞれ接続されている。2次側冷媒の液冷媒管19は蒸発コイル4の液側に、2次側冷媒の冷媒ガス管18は蒸発コイル4のガス側にそれぞれ接続されている。
【0017】
上記構成の装置において、冷暖切換弁61は、冷房と暖房の切り替えを行なうもので、冷房時は閉、暖房時は開とされる。水冷媒比例弁64は、蒸発器53の温度(蒸発器温度センサの出力)を入力として開度制御され、溶液濃度の調整を行なう弁である。凍結防止弁67は、蒸発温度が低下して1℃になれば開いて濃溶液を冷媒分配器54に流入させ、冷媒(吸収式冷暖房装置の冷媒には通常水が使用される。以下、水冷媒ともいう)の凍結を防ぐ弁である。溶液バイパス弁70は、冷房立上り時及び低負荷運転時に、蒸発器温度が低下したとき、凍結防止弁67が作動する前に濃溶液を吸収器52の下部にバイパスして吸収器52の吸収能力を低下させ、蒸発器53のそれ以上の温度低下を防ぐためのオン−オフ制御弁である。
【0018】
図3において、2次側循環回路2については先の図4において説明したが、この2次側循環回路2は、図3の蒸発器53で凝縮した液冷媒30を液冷媒管19に戻し室内機に再び供給する液冷媒搬送装置或いは液冷媒戻し手段であるブースター10を有している。
【0019】
上記構成を有する吸収式冷暖房装置1において、本実施の形態の冷房運転制御方法は、図4に示すように、蒸発器の液側5から2次側液冷媒30を供給する液冷媒管19側に送られる液冷媒30の送り出しをブースター10を止めることによって停止し、2次側液冷媒30が所定の滞留量(m0)より少ない時に、蒸発器の液側5と液冷媒管19側との間に設けられ、暖房運転時に液冷媒管19側から蒸発器の液側5に通ずるバイパス流路である流路22の途中に設けられた暖房弁23を開くことである。
【0020】
図1は、上記冷房運転制御方法を線図で示した系統図である。先ずスタート指令33により冷房か暖房かの判断34を行なう。冷房運転の場合は、暖房弁閉35で暖房弁の閉が行なわれる。冷房か暖房かの判断34で暖房運転の場合は、暖房弁開40で暖房弁の開が行なわれブースターOFF41でブースターの停止が行なわれる。
【0021】
次に、暖房弁の閉が行なわれると、フロートスィッチ液レベルの判定36に移り、フロートスィッチ液レベルの判定36で所定の滞留量m0(又は所定の高さh0)以上の場合はブースターON37でブースターの起動を行ない、暖房弁閉35の前に戻る。一方、フロートスィッチ液レベルの判定36で所定の滞留量m0(又は所定の高さh0)より少ない時にブースターOFF38でブースターの停止を行ない、暖房弁開39で暖房弁を開きフロートスィッチ液レベルの判定36の前に戻る。
【0022】
上記冷房運転制御方法は、2次側液冷媒30が所定の滞留量(m0)より少なく、且つ蒸発器の液側5から液冷媒管19側に送られる液冷媒30の送り出しを停止した時に、流路22の途中に設けられた暖房弁23を開くことにより、従来は流路が狭いブースター内(ブースター自体は停止しているが内部を液冷媒30が通るのは可能)を液ヘッド圧のみで液冷媒管19へ送っていただけであったが、本実施の形態では、この流路22及び今まで送り出しをした流路(吸込管路11及び吐出管路12)の両方によって液ヘッド圧によって送ることが出来、しかも流路はより広くなるので液冷媒の供給量も増加する。しかし、ブースター10の供給量ほど多くないので、徐々にレシーバタンク14内に液がたまり、室内機側への液冷媒30の供給量を平準化し、液冷媒の供給量を大きく低下させないで室内の快適環境を維持する。
【0023】
更に、新たにバイパス流路を設けてバイパスさせることなく、コストアップなしに室内機側への液冷媒の供給量を平準化することが出来る。又、2次側液冷媒30が所定の滞留量(m0)より少ない時には、液冷媒管19への供給量よりも蒸発器コイル4から流入する液冷媒の方が多いので徐々に液冷媒が溜り、所定の滞留量(m0)に達した時点で再び十分な安定した液冷媒の供給をすることが出来る。この時、暖房弁23は再び閉となり、吸込管路11への液冷媒のバイパスは防止される。
【0024】
図2は、図1の冷房運転制御方法による時間と液冷媒供給量の関係の線図である。この図から分かるように、時間当りの供給量自体は変らないが、区間t0〜t1、t2〜t3、t4〜t5においては液冷媒供給量V1(単位時間当り供給量)が図6に示した液冷媒供給量V100に比べ大きくなり、供給量の平準化が成され、2次側室内機への冷媒供給量が安定し、室内の快適性を保つ。
【0025】
尚、上記実施の形態の冷房運転制御方法は、水冷の吸収式冷暖房装置に適用した場合について説明したが、本発明はこれに限定されず、空冷の吸収式冷暖房装置に対しても適用出来ることは勿論である。更に、高温再生器の加熱源は、バーナによる燃焼加熱の他に、排蒸気又は排温水による加熱、電気ヒータによる加熱等が利用出来る。更に、2次側冷媒は、相変化するフロン(HFC−134a)を使用しているが、この他にアルコール、水と潜熱剤の混合物等が使用出来る。
【0026】
【発明の効果】
本発明の吸収式冷暖房装置の冷房運転制御方法によれば、蒸発器の液側から液冷媒管側に送られる2次側液冷媒の送り出しを停止した時に、室内機側への液冷媒の供給量をコストアップなしに平準化することが出来、室内の快適環境を維持することが出来る。
【図面の簡単な説明】
【図1】本発明に係る吸収式冷暖房装置の冷房運転制御方法の一実施の形態を線図で示した系統図である。
【図2】図1の冷房運転制御方法による時間と液冷媒供給量の関係の線図である。
【図3】吸収式冷暖房装置の全体回路の系統図である。
【図4】図3の吸収式冷暖房装置内に設けられた2次側循環回路を示す系統図である。
【図5】従来技術に係る吸収式冷暖房装置の冷房運転制御方法の系統図である。
【図6】図5の冷房運転制御方法による時間と液冷媒供給量の関係の線図である。
【符号の説明】
1 吸収式冷暖房装置
5 液側
10 ブースター
19 液冷媒管
22 流路(バイパス流路)
23 暖房弁
28 2次側冷媒
30 2次側液冷媒
44 1次側循環回路
53 蒸発器
0 所定の滞留量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling operation control method for an absorption air conditioner, and more particularly, to a secondary side refrigerant supply control method for an indoor unit.
[0002]
[Prior art]
FIG. 4 is a system diagram showing a secondary side circulation circuit provided in the absorption type air conditioner. In the secondary side circulation circuit 2, during the cooling operation, the refrigerant gas 29 is introduced into the evaporator coil 4 of the evaporator from the indoor unit side via the refrigerant gas pipe 18, cooled and condensed to become the liquid refrigerant 30, and the suction pipe It is led to the path 11. A float switch 15 is provided in the receiver tank 14 connected to the suction pipe 11, and when the liquid accumulates in the receiver tank 14, the float switch 15 is activated and a liquid level signal is input to the controller 25, and the transfer assist device An activation signal is sent to a certain booster 10, the booster 10 is activated (ON), and the liquid refrigerant is pressure-fed from the discharge pipe 12 to the liquid refrigerant pipe 19. At this time, the heating valve 23 is closed and is not bypassed to the suction pipe 11.
[0003]
During the heating operation, the booster 10 is stopped and the heating valve 23 is opened. During the heating operation, the flow direction of the secondary refrigerant is reversed, the liquid refrigerant 30 is guided from the liquid refrigerant pipe 19, is heated by the evaporator coil 4 through the heating valve 23, becomes the refrigerant gas 29, and the refrigerant gas pipe 18. Is supplied to the indoor unit. In addition, the code | symbol 8 shows an absorption-type air conditioning apparatus, 22 shows a flow path.
[0004]
FIG. 5 is a system diagram of a cooling operation control method for an absorption air-conditioning apparatus according to the prior art. First, it is determined 101 whether cooling or heating based on the start command 100. In the case of the cooling operation, the heating valve is closed by the heating valve closing 102. In the case of the heating operation by the determination 101 of cooling or heating, the heating valve is opened by opening the heating valve 106 and the booster is stopped by booster OFF107.
[0005]
Next, when the heating valve is closed, when the float switch liquid level determination 103 is greater than or equal to a predetermined retention amount m 0 (or a predetermined height h 0 ), the booster is activated by the booster ON 104, and the float Return to before the switch liquid level determination 103. On the other hand, when the float switch liquid level determination 103 is less than the predetermined retention amount m 0 (or the predetermined height h 0 ), the booster is stopped at the booster OFF 105, and before the float switch liquid level determination 103. Return.
[0006]
[Problems to be solved by the invention]
However, when the booster 10 is activated (ON) and the liquid refrigerant is pumped from the discharge pipe 12 to the liquid refrigerant pipe 19, the amount of liquid in the receiver tank 14 decreases, and the float switch 15 is set to a predetermined liquid refrigerant predetermined value. detecting the holdup m 0, the booster 10 is stopped. However, at this time, the supply amount of the liquid refrigerant is drastically reduced and the supply amount to the secondary side indoor unit is reduced, so that the output of the indoor unit is greatly reduced, resulting in indoor discomfort.
[0007]
6 is a diagram of the relationship between the time and the liquid refrigerant supply amount according to the cooling operation control method of FIG. As shown in FIG. 6, when the conventional control the booster 10 is activated during the interval t 101 ~t 102, t 103 ~t 104, t 105 ~t 106 is stably supplying liquid refrigerant, the interval t 100 ~t 101, t 102 ~t 103 , between t 104 ~t 105 decreases the liquid refrigerant supply amount V 100, it decreases rapidly, it is difficult to supply a sufficient stable beneath liquid refrigerant to the indoor unit .
[0008]
An object of the present invention is to provide a cooling-side operation control method for an absorption-type air-conditioning apparatus that forms a primary-side circulation circuit for a refrigerant and an absorbing solution and heats or cools a secondary-side refrigerant for cooling and heating. When the delivery of the secondary side liquid refrigerant sent from the liquid refrigerant pipe to the liquid refrigerant pipe side is stopped, the supply amount of the liquid refrigerant to the indoor unit side is leveled without increasing the cost, and the indoor comfortable environment is maintained.
[0009]
[Means for Solving the Problems]
The present invention for solving the above problems, the high-temperature regenerator, a low temperature regenerator, a condenser, an evaporator and connect the absorber or the like to form a primary circulation circuit of the refrigerant and the absorbent solution, the indoor unit during the cooling operation The refrigerant gas returned from the refrigerant gas pipe is cooled and condensed by the evaporator and accumulated in the receiver tank, and the liquid refrigerant in the receiver tank is transferred to the indoor unit by the liquid refrigerant conveyance device via the liquid refrigerant pipe. In the cooling operation control method of the absorption-type air conditioner in which the secondary circulation circuit to be supplied is formed , the liquid refrigerant in the receiver tank is less than a predetermined retention amount and the liquid refrigerant transfer device is stopped during the cooling operation. At this time, a valve provided between the liquid side of the evaporator and the liquid refrigerant pipe side is opened to supply liquid refrigerant to the indoor unit .
[0010]
That is, when the liquid refrigerant transfer device is stopped, the liquid refrigerant can be sent from the liquid side of the evaporator by the liquid head pressure, and the amount of liquid refrigerant supplied to the indoor unit side is leveled, thereby improving the indoor comfortable environment. maintain.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Embodiments of an absorption type air conditioner according to the present invention will be described below with reference to the drawings.
[0013]
FIG. 3 is a system diagram of the entire circuit of the absorption type air conditioner. This absorption type air conditioner 1 is connected with cooling water pipes 80a and 80b to cool the cooling water and has a fan 82, and is connected to the absorption type air conditioning apparatus 1 with a refrigerant gas pipe 18 and a liquid refrigerant pipe 19 for air conditioning. An air conditioning indoor unit (not shown) that is disposed in the space and performs heat exchange with the air in the space is attached. The cooling water pipe 80b is provided with a cooling water circulation pump 73 that circulates the cooling water from the cooling tower 81 to the absorption-type air conditioner 1. Further, the cooling water pipe 80b is provided in the secondary liquid refrigerant pipe 19, and the refrigerant gas pipe 18 and A secondary side refrigerant circulation pump (not shown) for circulating the secondary side refrigerant in the liquid refrigerant pipe 19 between the absorption air conditioner 1 and the indoor unit for air conditioning is attached.
[0014]
In this case, the absorption-type air conditioner 1 that is usually called an outdoor unit together with the cooling tower 81 has a heating source 47 that burns fuel with a burner and heats the diluted solution with the combustion heat. A high-temperature regenerator 46, a separator 49 for separating the refrigerant vapor and the intermediate concentrated solution from the diluted solution heated by the high-temperature regenerator 46, and further heating the intermediate concentrated solution using the separated refrigerant vapor as a heat source to further cool the refrigerant. A low-temperature regenerator 50 that generates steam, a refrigerant vapor that has passed through the low-temperature regenerator 50 and a refrigerant vapor generated in the low-temperature regenerator 50 are cooled, condensed, and liquefied to generate liquid refrigerant, and the condensation An evaporator 53 that cools the secondary refrigerant in the evaporation coil 4 by dropping and evaporating from the refrigerant distributor 54 having the liquid refrigerant generated in the evaporator 51 onto the evaporation coil 4 that is also installed. .
[0015]
Further, the absorption type air conditioner 1 absorbs the refrigerant vapor evaporated in the evaporator 53 into a concentrated solution to generate a diluted solution, pressurizes the diluted solution, and presses the diluted solution into a low-temperature solution heat exchanger 57 and a high-temperature solution heat. A solution circulation pump 60 fed to the high temperature regenerator 46 via the heated fluid side of the exchanger 56, a pipe 62 communicating the bottom of the separator 49 and the bottom of the evaporator 53 via a cooling / heating switching valve 61, and a low temperature solution A concentrated solution pipe 58 that connects the heated fluid outlet side of the heat exchanger 57 to the upper part of the absorber 52; a pipe line 71 that connects the concentrated solution pipe 58 and the lower part of the absorber 52 via a solution bypass valve 70; A conduit 68 communicating the concentrated solution pipe 58 and the refrigerant distributor 54 built in the evaporator 53 via an antifreezing valve 67; a water refrigerant pipe 66 for guiding the liquid refrigerant from the condenser 51 to the refrigerant distributor 54; A water refrigerant proportionally connected to the water refrigerant pipe 66 in parallel. It is configured to include a conduit 65 which is interposed a 64.
[0016]
Then, the intermediate concentrated solution separated by the separator 49 is led to the low temperature regenerator 50 through the heating fluid side of the high temperature solution heat exchanger 56, and after the refrigerant is evaporated by the low temperature regenerator 50, a concentrated solution is obtained. The pipe is configured to be led to the concentrated solution pipe 58 through the heating fluid side of the low-temperature solution heat exchanger 57. Each of the absorber 52 and the condenser 51 is provided with a cooling water coil, and the outlet of the cooling water coil of the absorber 52 is connected to the inlet of the cooling water coil of the condenser 51. The inlet is connected to the cooling water pipe 80b, and the outlet of the cooling water coil of the condenser 51 is connected to the cooling water pipe 80a. The secondary refrigerant liquid refrigerant pipe 19 is connected to the liquid side of the evaporation coil 4, and the secondary refrigerant refrigerant gas pipe 18 is connected to the gas side of the evaporation coil 4.
[0017]
In the apparatus having the above-described configuration, the cooling / heating switching valve 61 switches between cooling and heating, and is closed during cooling and opened during heating. The water refrigerant proportional valve 64 is a valve whose opening degree is controlled with the temperature of the evaporator 53 (output of the evaporator temperature sensor) as an input, and for adjusting the solution concentration. The anti-freezing valve 67 opens when the evaporation temperature falls to 1 ° C. and allows the concentrated solution to flow into the refrigerant distributor 54, and normal water is used as the refrigerant (the refrigerant of the absorption type air conditioner). This is a valve that prevents freezing of the refrigerant. The solution bypass valve 70 bypasses the concentrated solution to the lower part of the absorber 52 before the anti-freezing valve 67 operates when the evaporator temperature is lowered at the time of cooling start and during low load operation, and the absorption capacity of the absorber 52 This is an on-off control valve for reducing the temperature of the evaporator 53 and preventing further temperature drop of the evaporator 53.
[0018]
In FIG. 3, the secondary side circulation circuit 2 has been described with reference to FIG. 4. However, the secondary side circulation circuit 2 returns the liquid refrigerant 30 condensed by the evaporator 53 of FIG. It has a booster 10 which is a liquid refrigerant transfer device or a liquid refrigerant return means to be supplied again to the machine.
[0019]
In the absorption air conditioner 1 having the above-described configuration, the cooling operation control method according to the present embodiment is, as shown in FIG. 4, the liquid refrigerant pipe 19 side for supplying the secondary liquid refrigerant 30 from the liquid side 5 of the evaporator. When the booster 10 is stopped and the secondary liquid refrigerant 30 is less than the predetermined retention amount (m 0 ), the liquid side 5 of the evaporator and the liquid refrigerant pipe 19 side The heating valve 23 provided in the middle of the flow path 22 which is a bypass flow path provided between the liquid refrigerant pipe 19 side and the liquid side 5 of the evaporator during heating operation is opened.
[0020]
FIG. 1 is a system diagram schematically showing the cooling operation control method. First, the start command 33 determines 34 whether the cooling or heating. In the case of the cooling operation, the heating valve is closed by the heating valve closing 35. In the case of the heating operation based on the judgment 34 for cooling or heating, the heating valve is opened by opening the heating valve 40 and the booster is stopped by booster OFF41.
[0021]
Next, when the heating valve is closed, the process proceeds to the determination 36 of the float switch liquid level. If the determination 36 of the float switch liquid level is equal to or greater than a predetermined residence amount m 0 (or a predetermined height h 0 ), the booster The booster is activated at ON 37 and returns to the state before the heating valve closing 35. On the other hand, when the float switch liquid level determination 36 is smaller than the predetermined retention amount m 0 (or a predetermined height h 0 ), the booster is stopped with the booster OFF 38, the heating valve is opened with the heating valve open 39, and the float switch liquid level is set. Return to before the determination 36.
[0022]
In the cooling operation control method, when the secondary liquid refrigerant 30 is less than the predetermined retention amount (m 0 ) and the delivery of the liquid refrigerant 30 sent from the liquid side 5 of the evaporator to the liquid refrigerant pipe 19 side is stopped. By opening the heating valve 23 provided in the middle of the flow path 22, the liquid head pressure in the booster having a narrow flow path (the liquid refrigerant 30 can pass through the booster itself is stopped). However, in the present embodiment, the liquid head pressure is increased by both the flow path 22 and the flow paths (the suction pipe line 11 and the discharge pipe line 12) that have been sent so far. Moreover, since the flow path becomes wider, the supply amount of the liquid refrigerant also increases. However, since the supply amount of the booster 10 is not so large, the liquid gradually accumulates in the receiver tank 14, leveling the supply amount of the liquid refrigerant 30 to the indoor unit side, and greatly reducing the supply amount of the liquid refrigerant without reducing the supply amount of the liquid refrigerant Maintain a comfortable environment.
[0023]
Furthermore, the supply amount of the liquid refrigerant to the indoor unit side can be leveled without increasing the cost without newly providing a bypass flow path for bypassing. Further, when the secondary liquid refrigerant 30 is smaller than the predetermined retention amount (m 0 ), the liquid refrigerant flowing from the evaporator coil 4 is larger than the supply amount to the liquid refrigerant pipe 19, so that the liquid refrigerant gradually increases. When the liquid has accumulated and reaches a predetermined retention amount (m 0 ), a sufficiently stable liquid refrigerant can be supplied again. At this time, the heating valve 23 is closed again, and the bypass of the liquid refrigerant to the suction pipe 11 is prevented.
[0024]
FIG. 2 is a diagram of the relationship between the time and the liquid refrigerant supply amount according to the cooling operation control method of FIG. As can be seen from this figure, the supply amount per hour itself does not change, but in the sections t 0 to t 1 , t 2 to t 3 , and t 4 to t 5 , the liquid refrigerant supply amount V 1 (supply amount per unit time) ) Becomes larger than the liquid refrigerant supply amount V 100 shown in FIG. 6, the supply amount is leveled, the refrigerant supply amount to the secondary side indoor unit is stabilized, and indoor comfort is maintained.
[0025]
In addition, although the cooling operation control method of the said embodiment demonstrated the case where it applied to the water-cooled absorption-type air conditioning apparatus, this invention is not limited to this, It can apply also to an air-cooled absorption-type air conditioning apparatus. Of course. Furthermore, as a heating source of the high-temperature regenerator, heating by exhaust steam or exhaust hot water, heating by an electric heater, or the like can be used in addition to combustion heating by a burner. Furthermore, although the refrigerant | coolant (HFC-134a) which changes a phase is used for the secondary side refrigerant | coolant, alcohol, the mixture of water and a latent heat agent, etc. can be used besides this.
[0026]
【The invention's effect】
According to the cooling operation control method of the absorption type air conditioning apparatus of the present invention, when the delivery of the secondary liquid refrigerant sent from the liquid side of the evaporator to the liquid refrigerant pipe side is stopped, the liquid refrigerant is supplied to the indoor unit side. The amount can be leveled without increasing the cost, and a comfortable indoor environment can be maintained.
[Brief description of the drawings]
FIG. 1 is a system diagram schematically showing an embodiment of a cooling operation control method for an absorption air conditioner according to the present invention.
FIG. 2 is a diagram of the relationship between time and liquid refrigerant supply amount according to the cooling operation control method of FIG. 1;
FIG. 3 is a system diagram of an entire circuit of the absorption type air conditioner.
4 is a system diagram showing a secondary-side circulation circuit provided in the absorption type air conditioner of FIG. 3. FIG.
FIG. 5 is a system diagram of a cooling operation control method for an absorption air-conditioning apparatus according to the prior art.
6 is a diagram of the relationship between the time and the liquid refrigerant supply amount according to the cooling operation control method of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Absorption type air conditioner 5 Liquid side 10 Booster 19 Liquid refrigerant pipe 22 Flow path (bypass flow path)
23 Heating valve 28 Secondary side refrigerant 30 Secondary side liquid refrigerant 44 Primary side circulation circuit 53 Evaporator m 0 Predetermined residence amount

Claims (1)

高温再生器、低温再生器、凝縮器、蒸発器及び吸収器等を接続して冷媒及び吸収溶液の1次側循環回路を形成し、冷房運転時に室内機から冷媒ガス管を介して戻ってきた冷媒ガスを前記蒸発器によって冷却、凝縮させてレシーバタンクに溜め、前記レシーバタンク内の液冷媒を液冷媒搬送装置によって液冷媒管を介して前記室内機に供給する2次側循環回路を形成した吸収式冷暖房装置の冷房運転制御方法において、冷房運転時に、前記レシーバタンク内の液冷媒が所定の滞留量より少なくなって前記液冷媒搬送装置が停止された際に、前記蒸発器の液側と前記液冷媒管側との間に設けた弁を開いて液冷媒を前記室内機に供給することを特徴とする吸収式冷暖房装置の冷房運転制御方法。A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, and the like are connected to form a primary circulation circuit for the refrigerant and the absorbing solution, and returned from the indoor unit via the refrigerant gas pipe during the cooling operation. Refrigerant gas is cooled and condensed by the evaporator, accumulated in a receiver tank, and a secondary side circulation circuit is formed in which the liquid refrigerant in the receiver tank is supplied to the indoor unit via a liquid refrigerant pipe by a liquid refrigerant transfer device. In the cooling operation control method of the absorption type air conditioner, when the liquid refrigerant in the receiver tank is less than a predetermined retention amount and the liquid refrigerant transfer device is stopped during the cooling operation, the liquid side of the evaporator A cooling operation control method for an absorption type air conditioner , wherein a valve provided between the liquid refrigerant pipe side is opened and liquid refrigerant is supplied to the indoor unit .
JP03519397A 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner Expired - Fee Related JP3735745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03519397A JP3735745B2 (en) 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03519397A JP3735745B2 (en) 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH10232064A JPH10232064A (en) 1998-09-02
JP3735745B2 true JP3735745B2 (en) 2006-01-18

Family

ID=12435031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03519397A Expired - Fee Related JP3735745B2 (en) 1997-02-19 1997-02-19 Cooling operation control method for absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3735745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4566919B2 (en) * 2006-01-24 2010-10-20 株式会社日本製鋼所 Double-effect absorption chill generation / output device

Also Published As

Publication number Publication date
JPH10232064A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
JP4827307B2 (en) Air conditioner
US6748762B2 (en) Absorption-refrigerator
KR101046059B1 (en) Dual-effect Absorption Chiller in Japan and Its Operation Control Method
JP5384072B2 (en) Absorption type water heater
JP3735745B2 (en) Cooling operation control method for absorption air conditioner
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3920619B2 (en) Absorption chiller / heater and control method thereof
JP3986122B2 (en) Exhaust heat absorption type absorption air conditioner
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JP4315855B2 (en) Absorption refrigerator
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP3851204B2 (en) Absorption refrigerator
JP4079570B2 (en) Control method of absorption refrigerator
JP3381094B2 (en) Absorption type heating and cooling water heater
JP2003287314A (en) Absorption refrigerating machine
JP4107582B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP4201418B2 (en) Control method of absorption chiller / heater
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP2895974B2 (en) Absorption refrigerator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JPH0443264A (en) Absorption type heat source device
KR0136049Y1 (en) Absorption room cooler
JPH11257787A (en) Absorption cold heat generator
JPH11257779A (en) Absorption type cold heat generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees