JP2007240062A - Cold/hot heat output method and device for absorption cooling/heating machine - Google Patents

Cold/hot heat output method and device for absorption cooling/heating machine Download PDF

Info

Publication number
JP2007240062A
JP2007240062A JP2006062888A JP2006062888A JP2007240062A JP 2007240062 A JP2007240062 A JP 2007240062A JP 2006062888 A JP2006062888 A JP 2006062888A JP 2006062888 A JP2006062888 A JP 2006062888A JP 2007240062 A JP2007240062 A JP 2007240062A
Authority
JP
Japan
Prior art keywords
evaporator
heat transfer
heat
volatile secondary
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006062888A
Other languages
Japanese (ja)
Inventor
Neiwa Ou
寧和 王
Kenjirou Chikara
健二郎 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2006062888A priority Critical patent/JP2007240062A/en
Publication of JP2007240062A publication Critical patent/JP2007240062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To output cold heat/hot heat by an evaporator and an air conditioner by utilizing evaporative latent heat of a volatile secondary refrigerant. <P>SOLUTION: This cold heat/hot heat output method and device for an absorption cooling/heating machine is composed of the evaporator 1 for outputting the volatile secondary refrigerant cold/hot heat comprising at least a refrigerant liquid dispersing device 1a and a refrigerant liquid pump 1b, a receiver 2, a volatile secondary refrigerant liquid pump 3, the air conditioner 4, and first-fourth three-way valves 5-8, and cold heat by evaporation of the refrigerant or hot heat generated by condensation of the refrigerant can be output by the volatile secondary refrigerant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な揮発性二次冷媒冷・温熱出力方式を適用する吸収式冷温機に関するものである。   The present invention relates to an absorption chiller to which a novel volatile secondary refrigerant cooling / heating output system is applied.

従来の吸収式冷温水機の循環冷温水による冷・温熱出力方法と装置を説明するため、従来の単効用臭化リチウム/水系吸収冷温水機を例にして図4に示す。
図示のように従来の臭化リチウム/水系吸収冷温水機に関しては、冷熱出力モードでは、循環冷水を循環冷温水ポンプ20により蒸発器1の伝熱管1aA内に導入し、また凝縮器1Aからの冷媒凝縮液を蒸発器1内に導入し、また冷媒液ポンプ3により、蒸発器1底部の循環冷媒液を循環して、冷媒液散布装置1aにより蒸発器1の伝熱管1aA外壁面に散布し、その蒸発吸熱により蒸発器1の伝熱管1aA内の循環冷水を冷却し、次にこの様に温度が下がった循環冷水を空調機4の伝熱管4aに送り、そこで送風される空調用空気を冷やして冷熱出力がなされる。
また温熱発生モードでは、循環温水を循環冷温水ポンプ20により蒸発器1の伝熱管1aA内に導入し、また熱源1gを有すると共に、溶液熱交換器1hを介して希吸収液ポンプ1fに接続された再生器1Cからの高温冷媒蒸気を暖房用冷媒蒸気通路1Dを介して直接に蒸発器1にバイパスさせ、これにより蒸発器1の伝熱管1aA内に流される循環温水を加熱して、次にこの様に温度が上がった循環温水を空調機4の伝熱管4a内に送り、そこで送風される空調用空気を温めて温熱出力がなされる。
また図示のように循環冷温水パイプライン21に冷温水補給のための膨張タンク22が取り付けられている。
FIG. 4 shows an example of a conventional single-effect lithium bromide / water-based absorption chiller / heater in order to describe a cooling / heat output method and apparatus using circulating chilled / hot water of a conventional absorption chiller / heater.
As shown in the figure, in the conventional lithium bromide / water absorption chiller / heater, in the heat output mode, the chilled water is introduced into the heat transfer tube 1aA of the evaporator 1 by the circulatory chilled / hot water pump 20, and from the condenser 1A. The refrigerant condensate is introduced into the evaporator 1, and the refrigerant liquid pump 3 circulates the circulating refrigerant liquid at the bottom of the evaporator 1, and the refrigerant liquid spraying device 1a sprays it on the outer wall surface of the heat transfer tube 1aA of the evaporator 1. Then, the circulating cold water in the heat transfer tube 1aA of the evaporator 1 is cooled by the evaporation heat absorption, and then the circulating cold water whose temperature has been lowered in this way is sent to the heat transfer tube 4a of the air conditioner 4, and the air conditioning air blown there is Cooling and cold output are made.
In the heat generation mode, the circulating hot water is introduced into the heat transfer pipe 1aA of the evaporator 1 by the circulating cold / hot water pump 20, and has a heat source 1g and is connected to the diluted absorbent pump 1f via the solution heat exchanger 1h. The high-temperature refrigerant vapor from the regenerator 1C is bypassed directly to the evaporator 1 via the heating refrigerant vapor passage 1D, thereby heating the circulating hot water flowing into the heat transfer pipe 1aA of the evaporator 1, The circulating hot water whose temperature has increased in this way is sent into the heat transfer pipe 4a of the air conditioner 4, and the air-conditioning air blown there is warmed to produce a thermal output.
Further, as shown in the figure, an expansion tank 22 for replenishing cold / hot water is attached to the circulating cold / hot water pipeline 21.

前述の様な従来型の吸収冷温水機は、以下のような課題が存在していた。
すなわち、冷熱出力モードでは循環冷水を蒸発器部で冷却されてこの様に温度が下がった循環冷水を空調機に送り、そこで空調用空気を冷やして冷熱出力をなされる。また温熱出力モードでは再生器から高温冷媒蒸気を蒸発器部に導入し、前記蒸発器伝熱管内に流される循環温水を加熱し、この様に温度が上がった循環温水を空調機に送り、そこで前記空調機伝熱管間に送風される空調用空気を温めて温熱出力がなされるのである。
この様にして循環冷温水の顕熱変化を利用して冷温熱出力をなされるため、所要循環冷温水量は多く、所要循環冷温水輸送動力が大きい。また循環冷温水側の局部熱伝達係数がさほど大きくないため、所要蒸発器と空調機サイズは比較的大きく、所要材料は多い。また循環冷温水装置は常に水が補給され、循環冷温水流路が密閉式でないため、蒸発器伝熱管を定期的に清掃する必要があった。
また冷熱出力のモードの場合、蒸発器部冷熱出力温度または冷熱発生温度は直接に吸収式冷温機の冷熱出力成績係数に影響を及ぼしており、二重効用吸収冷凍機または吸収冷温水機の場合には、循環冷水温度が1℃上がると成績係数が6〜7%で上がり、循環冷水温度の影響を大きく受けていた。
The conventional absorption chiller / heater as described above has the following problems.
In other words, in the cold power output mode, the circulating cold water is cooled by the evaporator section, and the circulating cold water whose temperature has been lowered in this way is sent to the air conditioner, where the air conditioning air is cooled to produce cold output. In the thermal output mode, high-temperature refrigerant vapor is introduced from the regenerator into the evaporator section, the circulating hot water flowing into the evaporator heat transfer pipe is heated, and the circulating hot water thus heated is sent to the air conditioner. Air conditioning air blown between the air conditioner heat transfer tubes is warmed to produce a warm output.
In this way, since the cooling / heating output is made using the sensible heat change of the circulating cold / hot water, the required circulating cold / hot water amount is large and the required circulating cold / hot water transport power is large. In addition, since the local heat transfer coefficient on the circulating cold / hot water side is not so large, the required evaporator and air conditioner sizes are relatively large, and there are many required materials. Further, since the circulating chilled / hot water device is always replenished with water and the circulating chilled / hot water flow path is not hermetically sealed, it has been necessary to periodically clean the evaporator heat transfer tubes.
In the case of the cold power output mode, the evaporator heat output temperature or the heat generation temperature directly affects the cooling output coefficient of performance of the absorption chiller. In the case of a double-effect absorption chiller or absorption chiller / heater When the circulating chilled water temperature increased by 1 ° C., the coefficient of performance increased by 6 to 7%, which was greatly influenced by the circulating chilled water temperature.

本発明による吸収冷温機の冷・温熱出力方法は、少なくとも冷媒液散布装置と冷媒液ポンプを備える蒸発器、レシーバー、揮発性二次冷媒液ポンプ、空調機、第1〜第4三方バルブより構成され、冷媒の蒸発による発生冷熱または冷媒の凝縮による発生温熱を揮発性二次冷媒により出力可能とし、冷熱出力モードでは、前記レシーバー内の揮発性二次冷媒液を前記揮発性二次冷媒液ポンプにより、前記第3、第4三方バルブを介して空調機の伝熱管内に送り、その蒸発吸熱による発生冷熱により、前記空調機の伝熱管外に送風される空調用空気を冷やして冷熱出力が行われ、前記空調機を出た揮発性二次冷媒蒸気を圧力差により前記蒸発器の伝熱管内に流入させ、また凝縮器からの冷媒液を前記蒸発器に導入し、同時に、前記蒸発器の循環冷媒液ポンプにより前記蒸発器の底部の冷媒液を循環し、前記冷媒液散布装置により、前記蒸発器の伝熱管外壁面に散布して膜状に流下させ、その蒸発吸熱による発生冷熱により前記蒸発器の伝熱管内に流される揮発性二次冷媒蒸気を凝縮させた揮発性二次冷媒凝縮液が第1、第2三方バルブを経てレシーバー内に導入され、そこでいったん溜まり、温熱出力モードでは、再生器から前記蒸発器内に高温冷媒蒸気を導入し、前記揮発性二次冷媒液ポンプにより前記レシーバー内の揮発性二次冷媒液が前記第3、第1三方バルブを経て前記蒸発器の伝熱管内に導入され、そこで前記蒸発器の伝熱管外冷媒蒸気の凝縮放熱による発生温熱により、前記蒸発器の伝熱管内の揮発性二次冷媒液を蒸発させた揮発性二次冷媒蒸気が圧力差により前記空調機の伝熱管内に流入し、その凝縮放熱による発生温熱より前記空調機の伝熱管外に送風される空調用空気を加熱して温熱出力が行われ、揮発性二次冷媒液が第4、第2三方バルブを経て前記レシーバーに戻される方法であり、前記蒸発器の揮発性二次冷媒液にHFE系冷媒または炭化水素系冷媒または代替フロン系冷媒またはアンモニアを適用する方法であり、また、前記空調機の伝熱管に、フィンチューブまたはプレートフィンチューブコンパクト型熱交換器を適用する方法であり、また、前記蒸発器の伝熱管にプレートチューブまたはフィン付き管またはローレット管またはフローテッド管を適用する方法であり、また、本発明による吸収冷温機の冷・温熱出力装置は、少なくとも冷媒液散布装置と冷媒液ポンプを備える蒸発器、レシーバー、揮発性二次冷媒液ポンプ、空調機、第1〜第4三方バルブより構成され、冷媒の蒸発による発生冷熱または冷媒の凝縮による発生温熱を揮発性二次冷媒により出力可能とし、冷熱出力モードでは、前記レシーバー内の揮発性二次冷媒液を前記揮発性二次冷媒液ポンプにより、前記第3、第4三方バルブを介して空調機の伝熱管内に送り、その蒸発吸熱による発生冷熱により、前記空調機の伝熱管外に送風される空調用空気を冷やして冷熱出力が行われ、前記空調機を出た揮発性二次冷媒蒸気を圧力差により前記蒸発器の伝熱管内に流入させ、また凝縮器からの冷媒液を前記蒸発器に導入し、同時に、前記蒸発器の循環冷媒液ポンプにより前記蒸発器の底部の冷媒液を循環し、前記冷媒液散布装置により、前記蒸発器の伝熱管外壁面に散布して膜状に流下させ、その蒸発吸熱による発生冷熱により前記蒸発器の伝熱管内に流される揮発性二次冷媒蒸気を凝縮させた揮発性二次冷媒凝縮液が第1、第2三方バルブを経てレシーバー内に導入され、そこでいったん溜まり、温熱出力モードでは、再生器から前記蒸発器内に高温冷媒蒸気を導入し、前記揮発性二次冷媒液ポンプにより前記レシーバー内の揮発性二次冷媒液が前記第3、第1三方バルブを経て前記蒸発器の伝熱管内に導入され、そこで前記蒸発器の伝熱管外冷媒蒸気の凝縮放熱による発生温熱により、前記蒸発器の伝熱管内の揮発性二次冷媒液を蒸発させた揮発性二次冷媒蒸気が圧力差により前記空調機の伝熱管内に流入し、その凝縮放熱による発生温熱より前記空調機の伝熱管外に送風される空調用空気を加熱して温熱出力が行われ、揮発性二次冷媒液が第4、第2三方バルブを経て前記レシーバーに戻される構成であり、また、前記蒸発器の揮発性二次冷媒液にHFE系冷媒または炭化水素系冷媒または代替フロン系冷媒またはアンモニアを適用する構成であり、また、前記空調機の伝熱管に、フィンチューブまたはプレートフィンチューブコンパクト型熱交換器を適用する構成であり、また、前記蒸発器の伝熱管にプレートチューブまたはフィン付き管またはローレット管またはフローテッド管を適用する構成である。   A cooling / heating output method of an absorption chiller according to the present invention includes an evaporator having at least a refrigerant liquid spraying device and a refrigerant liquid pump, a receiver, a volatile secondary refrigerant liquid pump, an air conditioner, and first to fourth three-way valves. In the cold output mode, the volatile secondary refrigerant liquid in the receiver is supplied to the volatile secondary refrigerant liquid pump. Thus, the air-conditioning air sent to the outside of the heat transfer pipe of the air conditioner is cooled by the cold heat generated by the evaporation heat absorption through the third and fourth three-way valves, and the cold output is generated. The volatile secondary refrigerant vapor exiting the air conditioner is caused to flow into the heat transfer pipe of the evaporator due to a pressure difference, and the refrigerant liquid from the condenser is introduced into the evaporator, and at the same time, the evaporator Circulation cooling The refrigerant liquid at the bottom of the evaporator is circulated by the liquid pump, and the refrigerant liquid spraying device is sprayed on the outer wall surface of the heat transfer tube of the evaporator to flow down into a film shape. Volatile secondary refrigerant condensate condensed from the volatile secondary refrigerant vapor flowing in the heat transfer pipe is introduced into the receiver through the first and second three-way valves, and is temporarily accumulated there. High-temperature refrigerant vapor is introduced into the evaporator from the evaporator, and the volatile secondary refrigerant liquid in the receiver is passed through the third and first three-way valves by the volatile secondary refrigerant liquid pump to transfer heat to the evaporator. The volatile secondary refrigerant vapor obtained by evaporating the volatile secondary refrigerant liquid in the heat transfer tube of the evaporator due to the heat generated by the condensation heat release of the refrigerant vapor outside the heat transfer tube of the evaporator is a pressure difference. By the air conditioner The air-conditioning air that flows into the heat transfer pipe and heats the air-conditioning air that is blown out of the heat transfer pipe of the air conditioner from the heat generated by the condensation heat release is used to generate a thermal output, and the volatile secondary refrigerant liquid is the fourth and second. A method of returning to the receiver via a three-way valve, a method of applying an HFE refrigerant, a hydrocarbon refrigerant, an alternative chlorofluorocarbon refrigerant or ammonia to the volatile secondary refrigerant liquid of the evaporator, and the air conditioning A method of applying a fin tube or a plate fin tube compact heat exchanger to the heat transfer tube of the machine, and a method of applying a plate tube, finned tube, knurled tube or floated tube to the heat transfer tube of the evaporator Further, the cooling / heating output device of the absorption chiller according to the present invention includes an evaporator and a receiver including at least a refrigerant liquid spraying apparatus and a refrigerant liquid pump. , A volatile secondary refrigerant liquid pump, an air conditioner, and first to fourth three-way valves, which can output cold heat generated by refrigerant evaporation or hot heat generated by refrigerant condensation using a volatile secondary refrigerant, and a cold output mode Then, the volatile secondary refrigerant liquid in the receiver is sent into the heat transfer pipe of the air conditioner through the third and fourth three-way valves by the volatile secondary refrigerant liquid pump, and by the generated cold heat due to the evaporation heat absorption. The air-conditioning air blown out of the heat transfer pipe of the air conditioner is cooled to produce a cold output, and the volatile secondary refrigerant vapor exiting the air conditioner is caused to flow into the heat transfer pipe of the evaporator due to a pressure difference. In addition, the refrigerant liquid from the condenser is introduced into the evaporator, and at the same time, the refrigerant liquid at the bottom of the evaporator is circulated by the circulating refrigerant liquid pump of the evaporator, and the evaporator liquid is circulated by the refrigerant liquid spraying device. Spread on the outer wall of the heat transfer tube The volatile secondary refrigerant condensate, which is made to flow down into a film and condenses the volatile secondary refrigerant vapor that flows into the heat transfer tube of the evaporator by the generated cold heat due to the evaporation heat absorption, passes through the first and second three-way valves. In the thermal output mode, the high-temperature refrigerant vapor is introduced from the regenerator into the evaporator, and the volatile secondary refrigerant liquid in the receiver is circulated by the volatile secondary refrigerant liquid pump. The refrigerant is introduced into the heat transfer tube of the evaporator through the third and first three-way valves, and there is volatile two-dimensionality in the heat transfer tube of the evaporator due to the heat generated by the condensation and heat radiation of the refrigerant vapor outside the heat transfer tube of the evaporator. The volatile secondary refrigerant vapor obtained by evaporating the secondary refrigerant liquid flows into the heat transfer tube of the air conditioner due to the pressure difference, and the air conditioning air blown out of the heat transfer tube of the air conditioner from the heat generated by the condensation heat release. Heat and heat out And the volatile secondary refrigerant liquid is returned to the receiver via the fourth and second three-way valves, and the volatile secondary refrigerant liquid of the evaporator is HFE refrigerant or hydrocarbon refrigerant. Alternatively, an alternative fluorocarbon refrigerant or ammonia is applied, and a fin tube or a plate fin tube compact heat exchanger is applied to the heat transfer tube of the air conditioner, and the evaporator heat transfer tube In this configuration, a plate tube, a finned tube, a knurled tube or a floated tube is applied.

本発明による吸収冷温機の冷・温熱出力方法及び装置は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、揮発性二次冷媒の凝縮及び蒸発潜熱を利用して冷温熱出力がなされるため、冷熱出力モードでは、蒸発器部の冷熱発生温度を合理的に高く設定でき、これにより最高再生温度の低下と成績係数の向上が図られる。
また、最高再生温度の低下により、熱源流体をより低温または低品位まで利用でき、熱源の熱エネルギー利用効率の向上が図られる。
また、冷温熱出力モードの両方には、同一のコンパクトな蒸発器と空調機を適用するため、装置全体のサイズが低減、省材料が図れる。また、所要循環揮発性二次冷媒動力は極小さく、省エネの効果が顕著である。さらに、揮発性二次冷媒流路が密閉であり、通常揮発性二次冷媒補給が不要なので、蒸発器と空調機の伝熱管内の定期的清掃は不要となる。
Since the cooling / heating output method and apparatus of the absorption chiller according to the present invention are configured as described above, the following effects can be obtained.
That is, since the cold heat output is made by using the condensation and latent heat of evaporation of the volatile secondary refrigerant, in the cold heat output mode, the cold heat generation temperature of the evaporator section can be set to a reasonably high temperature, thereby achieving the maximum regeneration temperature. Reduction and improvement in coefficient of performance are achieved.
Further, due to the decrease in the maximum regeneration temperature, the heat source fluid can be used at a lower temperature or lower quality, and the heat energy utilization efficiency of the heat source can be improved.
In addition, since the same compact evaporator and air conditioner are applied to both the cool / heat output modes, the overall size of the apparatus can be reduced and material saving can be achieved. Further, the required circulating volatile secondary refrigerant power is extremely small, and the energy saving effect is remarkable. Furthermore, since the volatile secondary refrigerant flow path is hermetically sealed, and volatile secondary refrigerant replenishment is usually unnecessary, periodic cleaning of the evaporator and the heat transfer tubes of the air conditioner is not necessary.

本発明は、揮発性二次冷媒の凝縮及び蒸発潜熱を利用して冷温熱出力を行うようにした吸収冷温機の冷・温熱出力方法及び装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling / heating output method and apparatus for an absorption chiller that performs cooling / heating output by utilizing condensation and evaporation latent heat of a volatile secondary refrigerant.

以下、図面と共に本発明による吸収冷温機の冷・温熱出力方法及び装置の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分には同一符号を付して説明する。
図1には本発明の揮発性二次冷媒冷・温熱出力装置の構成例を示す。図示のように前記揮発性二次冷媒冷・温熱出力装置は基本的に冷媒液散布装置1aと循環冷媒液ポンプ1b付き揮発性二次冷媒冷熱出力用蒸発器1、レシーバー2、揮発性二次冷媒液ポンプ3と揮発性二次冷媒冷熱出力用の空調機4、第1〜第4三方バルブ5、6、7、8より構成されている。
Hereinafter, preferred embodiments of a cooling / heating output method and apparatus for an absorption chiller according to the present invention will be described with reference to the drawings.
In addition, the same code | symbol is attached | subjected and demonstrated to a part the same as that of a prior art example, or an equivalent part.
FIG. 1 shows a configuration example of a volatile secondary refrigerant cooling / heating output device of the present invention. As shown in the figure, the volatile secondary refrigerant cooling / heating output device is basically a volatile secondary refrigerant cooling output evaporator 1 with a refrigerant liquid spraying device 1a and a circulating refrigerant liquid pump 1b, a receiver 2, a volatile secondary. The refrigerant liquid pump 3, the volatile secondary refrigerant cooling / heating air conditioner 4, and the first to fourth three-way valves 5, 6, 7, and 8 are configured.

冷熱出力モードでは、レシーバー2内の揮発性二次冷媒を前記揮発性二次冷媒液ポンプ3により第3、第4三方バルブ7、8を通じて空調機4の伝熱管4a内に送り、その蒸発吸熱による発生冷熱により、前記空調機4の伝熱管4a外に送風される空調用空気を冷やして冷熱出力がなされる。また、前記空調機4からの揮発性二次冷媒蒸気を圧力差により蒸発器1内に流入させ、図示しない凝縮器1Aからの冷媒凝縮液を前記蒸発器1内に導入し、同時に、蒸発器部循環冷媒液ポンプ1bにより冷媒液を循環し、前記冷媒液散布装置1aにより、前記蒸発器1の伝熱管1aA外壁面に散布して流下させ、その蒸発吸熱による発生冷熱より前記蒸発器1の伝熱管1aA内に流される冷媒蒸気を凝縮させ、この様になった冷媒凝縮液が第1、第2三方バルブ5、6を経てレシーバー2内に導入され、そこでいったん溜まる。   In the cold output mode, the volatile secondary refrigerant in the receiver 2 is sent into the heat transfer pipe 4a of the air conditioner 4 through the third and fourth three-way valves 7 and 8 by the volatile secondary refrigerant liquid pump 3, and the evaporation heat absorption thereof. Due to the generated cold heat, the air for air conditioning blown out of the heat transfer tube 4a of the air conditioner 4 is cooled to produce a cold output. Further, volatile secondary refrigerant vapor from the air conditioner 4 is caused to flow into the evaporator 1 due to a pressure difference, and refrigerant condensate from a condenser 1A (not shown) is introduced into the evaporator 1, and at the same time, the evaporator The refrigerant liquid is circulated by the partial circulation refrigerant liquid pump 1b, and is dispersed by the refrigerant liquid spraying device 1a on the outer wall surface of the heat transfer pipe 1aA of the evaporator 1, and the evaporator 1 The refrigerant vapor flowing into the heat transfer tube 1aA is condensed, and the refrigerant condensate thus formed is introduced into the receiver 2 through the first and second three-way valves 5 and 6, and temporarily accumulates there.

また温熱出力モードでは、図示しない再生器1Cから前記蒸発器1に高温冷媒蒸気を導入し、また前記揮発性二次冷媒液ポンプ3により前記レシーバー2内の揮発性二次冷媒液を第3、第1三方バルブ7、5を経て前記蒸発器1の伝熱管1aA内に導入し、そこで前記蒸発器1の伝熱管1aAの冷媒蒸気の凝縮放熱による発生温熱により前記蒸発器1の伝熱管1aA内の揮発性二次冷媒液を蒸発させる。次にこの様になった揮発性二次冷媒蒸気が圧力差により前記空調機4の伝熱管4a内に導入され、そこでその凝縮放熱による発生温熱より、前記空調機4の伝熱管4a外に送風される空調用空気を加熱する。またこの様になった揮発性二次冷媒液が第4、第2三方バルブ8、6を経てレシーバー2に戻される。   In the thermal output mode, high-temperature refrigerant vapor is introduced into the evaporator 1 from a regenerator 1C (not shown), and the volatile secondary refrigerant liquid in the receiver 2 is supplied by the volatile secondary refrigerant liquid pump 3 to the third, The heat transfer tube 1aA of the evaporator 1 is introduced into the heat transfer tube 1aA of the evaporator 1 through the first three-way valves 7 and 5, and the heat transfer tube 1aA of the evaporator 1 is heated by the heat generated by the condensation and heat dissipation of the refrigerant vapor in the heat transfer tube 1aA of the evaporator 1. The volatile secondary refrigerant liquid is evaporated. Next, the volatile secondary refrigerant vapor thus formed is introduced into the heat transfer tube 4a of the air conditioner 4 due to a pressure difference, and is blown out of the heat transfer tube 4a of the air conditioner 4 from the heat generated by the condensation heat radiation. Heat the air conditioning air. Further, the volatile secondary refrigerant liquid thus formed is returned to the receiver 2 through the fourth and second three-way valves 8 and 6.

また前記冷温熱出力用揮発性二次冷媒に関してはHFE系冷媒(例えばHFE−245mc)、炭化水素(例えばイソブタン、シクロベンタン、プロパン)や代替フロン系冷媒(例えばHFC−134a)や、アンモニア等が適用できる。   As for the volatile secondary refrigerant for cooling / heating output, HFE refrigerant (for example, HFE-245mc), hydrocarbon (for example, isobutane, cyclobentane, propane), alternative chlorofluorocarbon refrigerant (for example, HFC-134a), ammonia, etc. Applicable.

図2は、本発明による揮発性二次冷媒冷熱出力用の蒸発器1の構成例を示す。
図示の蒸発器1の伝熱管1aAは伝熱管1aAの間に前記伝熱管外径より薄いプレート部が設けられるプレートチューブである。
図2の管内流体初期分配器1Jは冷熱出力モードまたは温熱出力モードにより、これに入ってくる揮発性二次冷媒蒸気または凝縮液を、複数プレートチューブのそれぞれの複数チューブ管内に分配するものである。
図2の管内流体サブ分配器1Lは上流側プレートチューブの複数管内流路からの蒸気または凝縮液または蒸気と凝縮液の二相流体を混合してその下流側プレートチューブの複数並列流路に分配する機能を備えるものである。
図2の管外液サブ分配装置1Kはプレートチューブ管外壁面に沿って流下した液流体を受けてから、その下流側プレートチューブの外壁面に再散布する機能を有するものである。
図2の出口ヘッダー1Mは複数のプレートチューブからの管内流体を合流させて導出するものである。
従って、図1に示した熱交換器である蒸発器1は上述の管内流体初期分配器1J、管内流体サブ分配器1L、管外液サブ分配装置1K、出口ヘッダー1Mとプレートチューブより構成されるコンパクト熱交換器である。
FIG. 2 shows a configuration example of the evaporator 1 for volatile secondary refrigerant cold output according to the present invention.
A heat transfer tube 1aA of the illustrated evaporator 1 is a plate tube in which a plate portion thinner than the outer diameter of the heat transfer tube is provided between the heat transfer tubes 1aA.
The in-pipe fluid initial distributor 1J shown in FIG. 2 distributes the volatile secondary refrigerant vapor or condensate entering the tube into each of the plurality of tube tubes of the plurality of plate tubes in the cold output mode or the thermal output mode. .
The in-pipe fluid sub-distributor 1L of FIG. 2 mixes vapor or condensate from two or more flow paths in the upstream plate tube or a two-phase fluid of steam and condensate and distributes it to the multiple parallel flow paths in the downstream plate tube. It has the function to do.
The extra-liquid sub-distribution device 1K of FIG. 2 has a function of receiving the liquid fluid flowing down along the outer wall surface of the plate tube and then respreading it on the outer wall surface of the downstream side plate tube.
The outlet header 1M shown in FIG. 2 is a unit that draws out the in-pipe fluids from a plurality of plate tubes.
Accordingly, the evaporator 1 which is the heat exchanger shown in FIG. 1 includes the above-described in-pipe fluid initial distributor 1J, the in-pipe fluid sub-distributor 1L, the extra-liquid sub-distributor 1K, the outlet header 1M and the plate tube. It is a compact heat exchanger.

図3は、本発明による吸収冷温機に適用する揮発性二次冷媒冷・温熱出力装置に含まれる空調機4の熱交換器の構成例を示す。図示の空調機4の熱交換器は、フィンチューブ3層パネル型コンパクト熱交換器である。冷熱出力モードでは、前記空調機4の伝熱管4a内には揮発性二次冷媒液を流し、パネル4cに設けた管外プレートフィン4b間流路に空調用空気を送風して、揮発性二次冷媒液の蒸発吸熱による発生冷熱により、前記管外プレートフィン4b間流路を通る空調用空気を冷却して冷熱出力がなされる。また、温熱出力モードでは、前記空調機4の伝熱管4a内には揮発性二次冷媒蒸気を流し、管外プレートフィン4b間流路に空調用空気を送風して前記揮発性二次冷媒蒸気の凝縮放熱により、前記管外プレートフィン4b間流路を通る空調用空気を加熱して温熱出力がなされる。   FIG. 3 shows a configuration example of the heat exchanger of the air conditioner 4 included in the volatile secondary refrigerant cooling / heating output device applied to the absorption chiller according to the present invention. The heat exchanger of the illustrated air conditioner 4 is a fin tube three-layer panel type compact heat exchanger. In the cold power output mode, a volatile secondary refrigerant liquid is caused to flow in the heat transfer pipe 4a of the air conditioner 4, and air conditioning air is blown to the flow path between the external plate fins 4b provided on the panel 4c. The cooling air generated by the evaporative heat absorption of the secondary refrigerant liquid cools the air-conditioning air passing through the flow path between the outer plate fins 4b, thereby producing a cold output. In the thermal output mode, the volatile secondary refrigerant vapor is caused to flow in the heat transfer pipe 4a of the air conditioner 4, and the air-conditioning air is blown to the flow path between the outer plate fins 4b so that the volatile secondary refrigerant vapor. Due to the condensation heat release, the air-conditioning air passing through the flow path between the external plate fins 4b is heated to produce a thermal output.

従って、本発明による前述の構成により、次のような方法と装置を得ることができる。
少なくとも冷媒液散布装置1aと冷媒液ポンプ1bを備える蒸発器1、レシーバー2、揮発性二次冷媒液ポンプ3、空調機4、第1〜第4三方バルブ5、6、7、8より構成され、冷媒の蒸発による発生冷熱または冷媒の凝縮による発生温熱を揮発性二次冷媒により出力可能とし、冷熱出力モードでは、前記レシーバー2内の揮発性二次冷媒液を前記揮発性二次冷媒液ポンプ3により、前記第3、第4三方バルブ7、8を介して空調機4の伝熱管4a内に送り、その蒸発吸熱による発生冷熱により、前記空調機4の伝熱管4a外に送風される空調用空気を冷やして冷熱出力が行われ、前記空調機4を出た揮発性二次冷媒蒸気を圧力差により前記蒸発器1の伝熱管1aA内に流入させ、また、凝縮器1Aからの冷媒液を前記蒸発器1に導入し、同時に、前記蒸発器1の循環冷媒液ポンプ1bにより前記蒸発器1の底部の冷媒液を循環し、前記冷媒液散布装置1aにより、前記蒸発器1の伝熱管外壁面に散布して膜状に流下させ、その蒸発吸熱による発生冷熱により前記蒸発器1の伝熱管内に流される揮発性二次冷媒蒸気を凝縮させた揮発性二次冷媒凝縮液が第1、第2三方バルブ5、6を経てレシーバー2内に導入され、そこでいったん溜まり、温熱出力モードでは、再生器1Cから前記蒸発器1内に高温冷媒蒸気を導入し、前記揮発性二次冷媒液ポンプ3により前記レシーバー2内の揮発性二次冷媒液が前記第3、第1三方バルブ7、5を経て前記蒸発器1の伝熱管1aA内に導入され、そこで前記蒸発器1の伝熱管外冷媒蒸気の凝縮放熱による発生温熱により、前記蒸発器1の伝熱管内の揮発性二次冷媒液を蒸発させた揮発性二次冷媒蒸気が圧力差により前記空調機4の伝熱管4a内に流入し、その凝縮放熱による発生温熱より前記空調機4の伝熱管4a外に送風される空調用空気を加熱して温熱出力が行われ、揮発性二次冷媒液が第4、第2三方バルブ8、6を経て前記レシーバー2に戻される吸収冷温機の冷・温熱出力方法及び前記蒸発器1の揮発性二次冷媒液にHFE系冷媒または炭化水素系冷媒または代替フロン系冷媒またはアンモニアを適用する吸収冷温機の冷・温熱出力方法及び前記空調機4の伝熱管4aに、フィンチューブまたはプレートフィンチューブコンパクト型熱交換器を適用する吸収冷温機用冷・温熱出力方法及び前記蒸発器1に電熱管1aにプレートチューブまたはフィン付き管またはローレット管またはフローテッド管を適用する吸収冷温機用冷・温熱出力方法及び少なくとも冷媒液散布装置1aと冷媒液ポンプ1bを備える蒸発器1、レシーバー2、揮発性二次冷媒液ポンプ3、空調機4、第1〜第4三方バルブ5、6、7、8より構成され、冷媒の蒸発による発生冷熱または冷媒の凝縮による発生温熱を揮発性二次冷媒により出力可能とし、冷熱出力モードでは、前記レシーバー2内の揮発性二次冷媒液を前記揮発性二次冷媒液ポンプ3により、前記第3、第4三方バルブ7、8を介して空調機4の伝熱管4a内に送り、その蒸発吸熱による発生冷熱により、前記空調機4の伝熱管4a外に送風される空調用空気を冷やして冷熱出力が行われ、前記空調機4を出た揮発性二次冷媒蒸気を圧力差により前記蒸発器1の伝熱管1aA内に流入させ、また、凝縮器1Aからの冷媒液を前記蒸発器に導入し、同時に、前記蒸発器1の循環冷媒液ポンプ1bにより前記蒸発器1の底部の冷媒液を循環し、前記冷媒液散布装置1aにより、前記蒸発器1の伝熱管外壁面に散布して膜状に流下させ、その蒸発吸熱による発生冷熱により前記蒸発器1の伝熱管内に流される揮発性二次冷媒蒸気を凝縮させた揮発性二次冷媒凝縮液が第1、第2三方バルブ5、6を経てレシーバー2内に導入され、そこでいったん溜まり、温熱出力モードでは、再生器1Cから前記蒸発器1内に高温冷媒蒸気を導入し、前記揮発性二次冷媒液ポンプ3により前記レシーバー2内の揮発性二次冷媒液が前記第3、第1三方バルブ7、5を経て前記蒸発器1の伝熱管内に導入され、そこで前記蒸発器1の伝熱管外冷媒蒸気の凝縮放熱による発生温熱により、前記蒸発器1の伝熱管1aA内の揮発性二次冷媒液を蒸発させた揮発性二次冷媒蒸気が圧力差により前記空調機4の伝熱管4a内に流入し、その凝縮放熱による発生温熱より前記空調機4の伝熱管4a外に送風される空調用空気を加熱して温熱出力が行われ、揮発性二次冷媒液が第4、第2三方バルブ8、6を経て前記レシーバー2に戻される吸収冷温機の冷・温熱出力装置及び前記蒸発器1の揮発性二次冷媒液にHFE系冷媒または炭化水素系冷媒または代替フロン系冷媒またはアンモニアを適用する吸収冷温機用冷・温熱出力装置及び前記空調機4の伝熱管4aに、フィンチューブまたはプレートフィンチューブコンパクト型熱交換器を適用する吸収冷温機用冷・温熱出力装置及び前記蒸発器1の伝熱管1aAにプレートチューブまたはフィン付き管またはローレット管またはフローテッド管を適用する吸収冷温機用冷・温熱出力装置である。
Therefore, the following method and apparatus can be obtained by the above-described configuration according to the present invention.
It comprises an evaporator 1, a receiver 2, a volatile secondary refrigerant liquid pump 3, an air conditioner 4, and first to fourth three-way valves 5, 6, 7, and 8 each having at least a refrigerant liquid spraying device 1a and a refrigerant liquid pump 1b. In addition, in the cold output mode, the volatile secondary refrigerant liquid in the receiver 2 can be used as the volatile secondary refrigerant liquid pump in the cold heat output mode. 3 is sent to the heat transfer pipe 4a of the air conditioner 4 through the third and fourth three-way valves 7 and 8, and the air conditioner blown out of the heat transfer pipe 4a of the air conditioner 4 by the cold heat generated by the evaporation heat absorption. The volatile secondary refrigerant vapor exiting the air conditioner 4 is caused to flow into the heat transfer pipe 1aA of the evaporator 1 by the pressure difference, and the refrigerant liquid from the condenser 1A is cooled. Is introduced into the evaporator 1, Sometimes, the refrigerant liquid at the bottom of the evaporator 1 is circulated by the circulating refrigerant liquid pump 1b of the evaporator 1, and is sprayed on the outer wall surface of the heat transfer tube of the evaporator 1 by the refrigerant liquid spraying device 1a. The volatile secondary refrigerant condensate obtained by condensing the volatile secondary refrigerant vapor that flows down into the heat transfer tube of the evaporator 1 by the generated cold heat due to the evaporation endotherm is connected to the first and second three-way valves 5 and 6. Then, it is introduced into the receiver 2, where it temporarily accumulates, and in the thermal output mode, high-temperature refrigerant vapor is introduced into the evaporator 1 from the regenerator 1 </ b> C, and volatilized in the receiver 2 by the volatile secondary refrigerant liquid pump 3. Secondary refrigerant liquid is introduced into the heat transfer pipe 1aA of the evaporator 1 through the third and first three-way valves 7 and 5, where the heat generated by the condensation heat release of the refrigerant vapor outside the heat transfer pipe of the evaporator 1 is introduced. , Transmission of the evaporator 1 The volatile secondary refrigerant vapor obtained by evaporating the volatile secondary refrigerant liquid in the pipe flows into the heat transfer pipe 4a of the air conditioner 4 due to the pressure difference, and the heat transfer pipe 4a of the air conditioner 4 from the heat generated by the condensation heat radiation. The air-conditioning air blown outside is heated to generate heat, and the volatile secondary refrigerant liquid is returned to the receiver 2 through the fourth and second three-way valves 8 and 6. Output method, cooling / heating output method of absorption chiller / heater applying HFE refrigerant, hydrocarbon refrigerant, alternative chlorofluorocarbon refrigerant, or ammonia to volatile secondary refrigerant liquid of evaporator 1 and heat transfer tube of air conditioner 4 4a is a cooling / heating output method for an absorption chiller / heater using a finned tube or plate finned tube compact heat exchanger, and the evaporator 1 is a plate tube or finned tube or rollet A cooling / heating output method for an absorption chiller / cooler using a tube or a floated tube, an evaporator 1 having at least a refrigerant liquid spraying device 1a and a refrigerant liquid pump 1b, a receiver 2, a volatile secondary refrigerant liquid pump 3, an air conditioner 4, the first to fourth three-way valves 5, 6, 7, 8 are configured to be able to output the generated cold heat due to the evaporation of the refrigerant or the generated heat heat due to the condensation of the refrigerant by the volatile secondary refrigerant. In the cold output mode, The volatile secondary refrigerant liquid in the receiver 2 is sent by the volatile secondary refrigerant liquid pump 3 into the heat transfer pipe 4a of the air conditioner 4 through the third and fourth three-way valves 7 and 8, and its evaporation heat absorption. Due to the generated cold heat, the air-conditioning air blown out of the heat transfer pipe 4a of the air conditioner 4 is cooled to produce a cold output, and the volatile secondary refrigerant vapor exiting the air conditioner 4 is converted into the evaporator by a pressure difference. 1 heat transfer tube 1aA And the refrigerant liquid from the condenser 1A is introduced into the evaporator, and at the same time, the refrigerant liquid at the bottom of the evaporator 1 is circulated by the circulating refrigerant liquid pump 1b of the evaporator 1, and the refrigerant liquid The spraying device 1a sprays the outer wall surface of the heat transfer tube of the evaporator 1 to flow down into a film shape, and condenses the volatile secondary refrigerant vapor flowing into the heat transfer tube of the evaporator 1 by the generated cold heat due to the evaporation heat absorption. The condensed volatile secondary refrigerant condensate is introduced into the receiver 2 through the first and second three-way valves 5 and 6 and is temporarily accumulated therein. In the thermal output mode, the high-temperature refrigerant is introduced into the evaporator 1 from the regenerator 1C. Steam is introduced, and the volatile secondary refrigerant liquid in the receiver 2 is introduced into the heat transfer tube of the evaporator 1 through the third and first three-way valves 7 and 5 by the volatile secondary refrigerant liquid pump 3. Where there is a heat transfer tube of the evaporator 1 The volatile secondary refrigerant vapor obtained by evaporating the volatile secondary refrigerant liquid in the heat transfer tube 1aA of the evaporator 1 due to the heat generated by the condensation heat radiation of the refrigerant vapor enters the heat transfer tube 4a of the air conditioner 4 due to the pressure difference. The air-conditioning air blown out of the heat transfer pipe 4a of the air conditioner 4 is heated from the heat generated by the condensation heat radiation, and the heat output is performed, and the volatile secondary refrigerant liquid is the fourth and second three-way valves. Applying HFE refrigerant, hydrocarbon refrigerant, alternative chlorofluorocarbon refrigerant or ammonia to the refrigeration / thermal output device of the absorption chiller and the volatile secondary refrigerant liquid of the evaporator 1 returned to the receiver 2 through 8 and 6 The cooling / heating output device for the absorption chiller and the evaporator, wherein a fin tube or a plate fin tube compact heat exchanger is applied to the cooling / heating output device for the absorption chiller and the heat transfer tube 4a of the air conditioner 4. This is a cooling / heating output device for an absorption chiller, in which a plate tube, a finned tube, a knurled tube, or a floated tube is applied to one heat transfer tube 1aA.

従って、前述の本発明の構成により、以下の作用を得ることができる。
その1、冷・温熱両出力モードでは、蒸発器1と空調機4での熱交換での冷媒と揮発性二次冷媒の潜熱を利用するため、冷媒と揮発性二次冷媒蒸気との両側の局部熱伝達係数が大きく、前記蒸発器1と空調機4の熱交換器のコンパクト化と省材料が図れる。
その2、冷・温熱両出力モードでは、同一の蒸発器1と空調機4を利用できるため、装置の簡素化が図れる。
その3、冷熱出力モードでは、揮発性二次冷媒の潜熱を利用して冷熱出力がなされるため、循環揮発性二次冷媒の圧損によるその温度変化を小さく抑えられるように蒸発器1と空調機4を設計することにより、冷熱出力時に蒸発器1の冷熱発生温度を適切に高く設定できる。また冷媒蒸気と吸収液との気液平衡関係により、吸収器部吸収操作温度の一定な条件下において再生済吸収液の濃度を低く設定でき、これにより再生器部の吸収液再生操作温度または多重効用の場合の最高再生温度を低く設定でき、熱源流体をより低温または低品位まで利用できることにより、熱源の熱エネルギー利用効率の向上が図れる。
その4、再生済吸収液濃度を低く設定できることにより、吸収液の結晶現象による運転支障発生の可能性は低くなるかあるいは無くなる。
その5、循環冷温水の冷・温熱出力時に比較的大きい循環水動力の代わりに、所要循環二次冷媒動力は極小さく、省エネの効果が顕著である。
その6、蒸発器1の熱交換器の伝熱管1aA内の定期的清掃は不要である。
Therefore, the following effects can be obtained by the configuration of the present invention described above.
First, in both the cold and hot output modes, the latent heat of the refrigerant and the volatile secondary refrigerant in the heat exchange between the evaporator 1 and the air conditioner 4 is used. The local heat transfer coefficient is large, and the heat exchangers of the evaporator 1 and the air conditioner 4 can be made compact and save materials.
Second, in both the cold and hot output modes, the same evaporator 1 and air conditioner 4 can be used, so that the apparatus can be simplified.
Third, in the cold heat output mode, since the cold heat output is made by using the latent heat of the volatile secondary refrigerant, the evaporator 1 and the air conditioner can suppress the temperature change due to the pressure loss of the circulating volatile secondary refrigerant. By designing 4, the cold heat generation temperature of the evaporator 1 can be set appropriately high at the time of cold heat output. In addition, due to the vapor-liquid equilibrium relationship between the refrigerant vapor and the absorption liquid, the concentration of the regenerated absorption liquid can be set low under a certain condition of the absorption operation temperature of the absorber. The maximum regeneration temperature in the case of utility can be set low, and the heat source fluid can be used at a lower temperature or lower quality, so that the heat energy utilization efficiency of the heat source can be improved.
Fourth, since the concentration of the regenerated absorbent solution can be set low, the possibility of occurrence of operational troubles due to the crystal phenomenon of the absorbent solution is reduced or eliminated.
No. 5, instead of the relatively large circulating water power at the time of cooling / heating output of the circulating cold / hot water, the required circulating secondary refrigerant power is extremely small, and the energy saving effect is remarkable.
No. 6, periodic cleaning of the heat exchanger tube 1aA of the heat exchanger of the evaporator 1 is not necessary.

本発明の揮発性二次冷媒による冷温熱出力装置の構成図である。It is a block diagram of the cold / heat output apparatus by the volatile secondary refrigerant | coolant of this invention. 図1の揮発性二次冷媒冷温熱出力用蒸発器の構成図である。It is a block diagram of the evaporator for volatile secondary refrigerant | coolant cold / heat output of FIG. 図1の揮発性二次冷媒冷温熱出力用空調機の構成図である。It is a block diagram of the air-conditioner for volatile secondary refrigerant | coolant cold / hot output of FIG. 従来の循環冷温水による冷温熱出力装置の構成図である。It is a block diagram of the conventional cold / hot output apparatus by circulating cold / hot water.

符号の説明Explanation of symbols

1 揮発性二次冷媒冷温熱出力用蒸発器(蒸発器)
1a 冷媒液散布装置
1b 循環冷媒液ポンプ
1aA 伝熱管
1A 凝縮器
1C 再生器
1D 暖房用冷媒蒸気通路
1f 希吸収液ポンプ
1h 溶液熱交換器
1g 熱源
1J 管内流体初期分配器
1K 管外液サブ分配装置
1L 管内流体サブ分配器
1M 出口ヘッダー
2 レシーバー
4 空調機
4a 伝熱管
4b 管外プレートフィン
4c パネル
5、6、7、8 第1〜第4三方バルブ
20 循環冷温水ポンプ
21 循環冷温水パイプライン
22 膨張タンク
1 Evaporator for volatile secondary refrigerant cold / hot output (evaporator)
1a Refrigerant liquid spraying apparatus 1b Circulating refrigerant liquid pump 1aA Heat transfer pipe 1A Condenser 1C Regenerator 1D Heating refrigerant vapor passage 1f Diluted liquid pump 1h Solution heat exchanger 1g Heat source 1J In-pipe fluid initial distributor 1K Out-of-tube liquid sub-distributor 1L In-pipe fluid sub-distributor 1M Outlet header 2 Receiver 4 Air conditioner 4a Heat transfer pipe 4b Outer plate fin 4c Panels 5, 6, 7, 8 First to fourth three-way valves 20 Circulating cold / hot water pump 21 Circulating cold / hot water pipeline 22 Expansion tank

Claims (8)

少なくとも冷媒液散布装置(1a)と循環冷媒液ポンプ(1b)を備える揮発性二次冷媒冷温熱出力用蒸発器(以下、蒸発器と省略)(1)、レシーバー(2)、揮発性二次冷媒液ポンプ(3)、空調機(4)、第1〜第4三方バルブ(5,6,7,8)より構成され、冷媒の蒸発による発生冷熱または冷媒の凝縮による発生温熱を揮発性二次冷媒により出力可能とし、冷熱出力モードでは、前記レシーバー(2)内の揮発性二次冷媒液を前記揮発性二次冷媒液ポンプ(3)により、前記第3、第4三方バルブ(7,8)を介して空調機(4)の伝熱管(4a)内に送り、その蒸発吸熱による発生冷熱により、前記空調機(4)の伝熱管(4a)外に送風される空調用空気を冷やして冷熱出力が行われ、前記空調機(4)を出た揮発性二次冷媒蒸気を圧力差により前記蒸発器(1)の伝熱管(1aA)内に流入させ、また、凝縮器(1A)からの冷媒液を前記蒸発器(1)に導入し、同時に、前記蒸発器(1)の循環冷媒液ポンプ(1b)により前記蒸発器(1)の底部の冷媒液を循環し、前記冷媒液散布装置(1a)により、前記蒸発器(1)の伝熱管(1aA)外壁面に散布して膜状に流下させ、その蒸発吸熱による発生冷熱により前記蒸発器(1)の伝熱管(1aA)内に流される揮発性二次冷媒蒸気を凝縮させた揮発性二次冷媒凝縮液が第1、第2三方バルブ(5,6)を経てレシーバー(2)内に導入され、そこでいったん溜まり、温熱出力モードでは、再生器(1C)から前記蒸発器(1)内に高温冷媒蒸気を導入し、前記揮発性二次冷媒液ポンプ(3)により前記レシーバー(2)内の揮発性二次冷媒液が前記第3、第1三方バルブ(7,5)を経て前記蒸発器(1)の伝熱管(1aA)内に導入され、そこで前記蒸発器(1)の伝熱管外冷媒蒸気の凝縮放熱による発生温熱により、前記蒸発器(1)の伝熱管(1aA)内の揮発性二次冷媒液を蒸発させた揮発性二次冷媒蒸気が圧力差により前記空調機(4)の伝熱管(4a)内に流入し、その凝縮放熱による発生温熱より前記空調機(4)の伝熱管(4a)外に送風される空調用空気を加熱して温熱出力が行われ、揮発性二次冷媒液が第4、第2三方バルブ(8,6)を経て前記レシーバー(2)に戻されることを特徴とする吸収冷温機の冷・温熱出力方法。   Volatile secondary refrigerant cool / heat output evaporator (hereinafter abbreviated as evaporator) (1), receiver (2), volatile secondary with at least refrigerant liquid spraying device (1a) and circulating refrigerant liquid pump (1b) It consists of a refrigerant liquid pump (3), an air conditioner (4), and first to fourth three-way valves (5, 6, 7, and 8). In the cold output mode, the volatile secondary refrigerant liquid in the receiver (2) is supplied to the third and fourth three-way valves (7, 7) by the volatile secondary refrigerant liquid pump (3). The air-conditioning air sent to the outside of the heat transfer pipe (4a) of the air conditioner (4) is cooled by the heat generated by the evaporation heat absorption through the heat transfer pipe (4a) of the air conditioner (4) through 8). The volatile secondary refrigerant vapor exiting the air conditioner (4) is caused to flow into the heat transfer pipe (1aA) of the evaporator (1) by the pressure difference, and the condenser (1A) From The refrigerant liquid is introduced into the evaporator (1), and at the same time, the refrigerant liquid at the bottom of the evaporator (1) is circulated by the circulating refrigerant liquid pump (1b) of the evaporator (1), and the refrigerant liquid spraying device (1a), sprayed on the outer wall surface of the heat transfer tube (1aA) of the evaporator (1) to flow down into a film, and the heat generated by the evaporation heat absorption into the heat transfer tube (1aA) of the evaporator (1). Volatile secondary refrigerant condensate obtained by condensing flowing volatile secondary refrigerant vapor is introduced into the receiver (2) through the first and second three-way valves (5, 6), where it temporarily accumulates, and the thermal output mode Then, high-temperature refrigerant vapor is introduced from the regenerator (1C) into the evaporator (1), and the volatile secondary refrigerant liquid in the receiver (2) is introduced into the receiver (2) by the volatile secondary refrigerant liquid pump (3). It is introduced into the heat transfer tube (1aA) of the evaporator (1) through the third and first three-way valves (7, 5), where the temperature generated by the condensation heat release of the refrigerant vapor outside the heat transfer tube of the evaporator (1). Thus, the volatile secondary refrigerant vapor obtained by evaporating the volatile secondary refrigerant liquid in the heat transfer tube (1aA) of the evaporator (1) enters the heat transfer tube (4a) of the air conditioner (4) due to a pressure difference. The air-conditioning air that is blown out of the heat transfer pipe (4a) of the air conditioner (4) is heated from the generated heat generated by the condensation heat radiation, and the heat output is performed, and the volatile secondary refrigerant liquid is the fourth, A cooling / heating output method for an absorption chiller, characterized in that it is returned to the receiver (2) through a second three-way valve (8, 6). 前記蒸発器(1)の揮発性二次冷媒液にHFE系冷媒または炭化水素系冷媒または代替フロン系冷媒またはアンモニアを適用することを特徴とする請求項1記載の吸収冷温機の冷・温熱出力方法。   The cooling / heating output of the absorption chiller according to claim 1, wherein an HFE refrigerant, a hydrocarbon refrigerant, an alternative chlorofluorocarbon refrigerant, or ammonia is applied to the volatile secondary refrigerant liquid of the evaporator (1). Method. 前記空調機(4)の伝熱管(4a)に、フィンチューブまたはプレートフィンチューブコンパクト型熱交換器を適用することを特徴とする請求項1又は2記載の吸収冷温機の冷・温熱出力方法。   The cooling / heating output method of an absorption chiller according to claim 1 or 2, wherein a fin tube or a plate fin tube compact heat exchanger is applied to the heat transfer tube (4a) of the air conditioner (4). 前記蒸発器(1)の伝熱管(1aA)にプレートチューブまたはフィン付き管またはローレット管またはフローテッド管を適用することを特徴とする請求項1ないし3の何れかに記載の吸収冷温機の冷・温熱出力方法。   The cooling of the absorption chiller according to any one of claims 1 to 3, wherein a plate tube, a finned tube, a knurled tube or a floated tube is applied to the heat transfer tube (1aA) of the evaporator (1). -Thermal output method. 少なくとも冷媒液散布装置(1a)と循環冷媒液ポンプ(1b)を備える蒸発器(1)、レシーバー(2)、揮発性二次冷媒液ポンプ(3)、空調機(4)、第1〜第4三方バルブ(5,6,7,8)より構成され、冷媒の蒸発による発生冷熱または冷媒の凝縮による発生温熱を揮発性二次冷媒により出力可能とし、冷熱出力モードでは、前記レシーバー(2)内の揮発性二次冷媒液を前記揮発性二次冷媒液ポンプ(3)により、前記第3、第4三方バルブ(7,8)を介して空調機(4)の伝熱管(4a)内に送り、その蒸発吸熱による発生冷熱により、前記空調機(4)の伝熱管(4a)外に送風される空調用空気を冷やして冷熱出力が行われ、前記空調機(4)を出た揮発性二次冷媒蒸気を圧力差により前記蒸発器(1)の伝熱管(1aA)内に流入させ、また、凝縮器(1A)からの冷媒液を前記蒸発器(1)に導入し、同時に、前記蒸発器(1)の循環冷媒液ポンプ(1b)により前記蒸発器(1)の底部の冷媒液を循環し、前記冷媒液散布装置(1a)により、前記蒸発器(1)の伝熱管(1aA)外壁面に散布して膜状に流下させ、その蒸発吸熱による発生冷熱により前記蒸発器(1)の伝熱管(1aA)内に流される揮発性二次冷媒蒸気を凝縮させた揮発性二次冷媒凝縮液が第1、第2三方バルブ(5,6)を経てレシーバー(2)内に導入され、そこでいったん溜まり、温熱出力モードでは、再生器(1C)から前記蒸発器(1)内に高温冷媒蒸気を導入し、前記揮発性二次冷媒液ポンプ(3)により前記レシーバー(2)内の揮発性二次冷媒液が前記第3、第1三方バルブ(7,5)を経て前記蒸発器(1)の伝熱管(1aA)内に導入され、そこで前記蒸発器(1)の伝熱管外冷媒蒸気の凝縮放熱による発生温熱により、前記蒸発器(1)の伝熱管(1aA)内の揮発性二次冷媒液を蒸発させた揮発性二次冷媒蒸気が圧力差により前記空調機(4)の伝熱管(4a)内に流入し、その凝縮放熱による発生温熱より前記空調機(4)の伝熱管(4a)外に送風される空調用空気を加熱して温熱出力が行われ、揮発性二次冷媒液が第4、第2三方バルブ(8,6)を経て前記レシーバー(2)に戻されることを特徴とする吸収冷温機の冷・温熱出力装置。   Evaporator (1) including at least a refrigerant liquid spraying device (1a) and a circulating refrigerant liquid pump (1b), a receiver (2), a volatile secondary refrigerant liquid pump (3), an air conditioner (4), first to first 4 The three-way valve (5, 6, 7, 8) is configured to output the cold heat generated by the evaporation of the refrigerant or the hot heat generated by the condensation of the refrigerant by the volatile secondary refrigerant. In the cold output mode, the receiver (2) The volatile secondary refrigerant liquid in the inside of the heat transfer pipe (4a) of the air conditioner (4) is passed through the third and fourth three-way valves (7, 8) by the volatile secondary refrigerant liquid pump (3). The cooling air generated by the evaporation heat absorption is used to cool the air-conditioning air blown out of the heat transfer pipe (4a) of the air conditioner (4) to produce a cold output, and the volatile from the air conditioner (4) is discharged. Secondary refrigerant vapor is caused to flow into the heat transfer pipe (1aA) of the evaporator (1) due to a pressure difference, and the refrigerant liquid from the condenser (1A) is introduced into the evaporator (1). The evaporation The refrigerant liquid at the bottom of the evaporator (1) is circulated by the circulating refrigerant liquid pump (1b) of (1), and the heat transfer pipe (1aA) of the evaporator (1) is circulated by the refrigerant liquid spraying device (1a). Volatile secondary refrigerant condensing by spreading on the wall surface and flowing down into a film, and condensing the volatile secondary refrigerant vapor flowing into the heat transfer tube (1aA) of the evaporator (1) by the cold heat generated by the evaporation heat absorption The liquid is introduced into the receiver (2) through the first and second three-way valves (5, 6), and temporarily accumulates there. In the thermal output mode, the high-temperature refrigerant is transferred from the regenerator (1C) to the evaporator (1). Vapor is introduced, and the volatile secondary refrigerant liquid in the receiver (2) is passed through the third and first three-way valves (7, 5) by the volatile secondary refrigerant liquid pump (3). The heat transfer pipe (1aA) of the evaporator (1) is introduced into the heat transfer pipe (1aA) of the evaporator (1), and the heat generated by the condensation heat dissipation of the refrigerant vapor outside the heat transfer pipe of the evaporator (1) causes volatility in the heat transfer pipe (1aA) of the evaporator (1). secondary The volatile secondary refrigerant vapor obtained by evaporating the liquid medium flows into the heat transfer pipe (4a) of the air conditioner (4) due to the pressure difference, and the heat transfer pipe of the air conditioner (4) from the heat generated by the condensation heat radiation ( 4a) Heating air-conditioning air blown to the outside to generate thermal output, and return the volatile secondary refrigerant liquid to the receiver (2) through the fourth and second three-way valves (8, 6). Cooling / heating output device of absorption chiller characterized by 前記蒸発器(1)の揮発性二次冷媒液にHFE系冷媒または炭化水素系冷媒または代替フロン系冷媒またはアンモニアを適用することを特徴とする請求項5記載の吸収冷温機の冷・温熱出力装置。   The cooling / heating output of the absorption chiller according to claim 5, wherein an HFE refrigerant, a hydrocarbon refrigerant, an alternative chlorofluorocarbon refrigerant, or ammonia is applied to the volatile secondary refrigerant liquid of the evaporator (1). apparatus. 前記空調機(4)の伝熱管(4a)に、フィンチューブまたはプレートフィンチューブコンパクト型熱交換器を適用することを特徴とする請求項5又は6記載の吸収冷温機の冷・温熱出力装置。   The cooling / heating output device of an absorption chiller according to claim 5 or 6, wherein a fin tube or a plate fin tube compact heat exchanger is applied to the heat transfer tube (4a) of the air conditioner (4). 前記蒸発器(1)の伝熱管(1aA)にプレートチューブまたはフィン付き管またはローレット管またはフローテッド管を適用することを特徴とする請求項5ないし7の何れかに記載の吸収冷温機の冷・温熱出力装置。   The cooling of the absorption chiller according to any one of claims 5 to 7, wherein a plate tube, a finned tube, a knurled tube or a floated tube is applied to the heat transfer tube (1aA) of the evaporator (1). -Thermal output device.
JP2006062888A 2006-03-08 2006-03-08 Cold/hot heat output method and device for absorption cooling/heating machine Pending JP2007240062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062888A JP2007240062A (en) 2006-03-08 2006-03-08 Cold/hot heat output method and device for absorption cooling/heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062888A JP2007240062A (en) 2006-03-08 2006-03-08 Cold/hot heat output method and device for absorption cooling/heating machine

Publications (1)

Publication Number Publication Date
JP2007240062A true JP2007240062A (en) 2007-09-20

Family

ID=38585767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062888A Pending JP2007240062A (en) 2006-03-08 2006-03-08 Cold/hot heat output method and device for absorption cooling/heating machine

Country Status (1)

Country Link
JP (1) JP2007240062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238224A (en) * 2017-06-29 2017-10-10 浙江腾云制冷科技有限公司 It is applicable the cooling body of the refrigerating box of hot environment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208561A (en) * 1982-05-29 1983-12-05 松下電器産業株式会社 Heat accumulation type heat pump
JPH10170179A (en) * 1996-12-04 1998-06-26 Sanyo Electric Co Ltd Air conditioning apparatus
JPH11304274A (en) * 1998-04-20 1999-11-05 Kawasaki Thermal Eng Co Ltd Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JPH11351690A (en) * 1998-06-05 1999-12-24 Sanyo Electric Co Ltd Air conditioner and method for operating it
JP2003240383A (en) * 2002-02-08 2003-08-27 Denso Corp Adsorption type refrigeration unit
JP2004092802A (en) * 2002-08-30 2004-03-25 Fuji Koki Corp Three-way valve and refrigerating cycle using this valve
JP2005321180A (en) * 2004-05-10 2005-11-17 Neiwa O Absorption type cold/heat generation, cascade cold/heat generation, cogeneration method and device and heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208561A (en) * 1982-05-29 1983-12-05 松下電器産業株式会社 Heat accumulation type heat pump
JPH10170179A (en) * 1996-12-04 1998-06-26 Sanyo Electric Co Ltd Air conditioning apparatus
JPH11304274A (en) * 1998-04-20 1999-11-05 Kawasaki Thermal Eng Co Ltd Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JPH11351690A (en) * 1998-06-05 1999-12-24 Sanyo Electric Co Ltd Air conditioner and method for operating it
JP2003240383A (en) * 2002-02-08 2003-08-27 Denso Corp Adsorption type refrigeration unit
JP2004092802A (en) * 2002-08-30 2004-03-25 Fuji Koki Corp Three-way valve and refrigerating cycle using this valve
JP2005321180A (en) * 2004-05-10 2005-11-17 Neiwa O Absorption type cold/heat generation, cascade cold/heat generation, cogeneration method and device and heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238224A (en) * 2017-06-29 2017-10-10 浙江腾云制冷科技有限公司 It is applicable the cooling body of the refrigerating box of hot environment

Similar Documents

Publication Publication Date Title
RU2012122709A (en) CASCADE REFRIGERATING SYSTEM WITH FLUOROFIN REFRIGERANT
WO2009089694A1 (en) A falling-film evaporation-cooling absorption refrigeration unit
JP2011089722A (en) Method and device for refrigeration/air conditioning
KR20040092481A (en) Absorption chiller
JPH0794933B2 (en) Air-cooled absorption air conditioner
JP2007240062A (en) Cold/hot heat output method and device for absorption cooling/heating machine
JP2007327658A (en) Single effect absorption-type cold generating/outputting device
KR100213780B1 (en) Water supply system of absortion type cooler
JP2009168271A (en) Double effect absorption type cold and heat generating/outputting device
JP2858908B2 (en) Absorption air conditioner
KR100554061B1 (en) Absorption type refrigerator
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP2007298240A (en) Triple effect absorption cold generation/output device
JP2014129944A (en) Refrigeration device
JPS6122225B2 (en)
KR0139349Y1 (en) Circulation of condensed water of evaporator for absorption type refrigerator
JP3857955B2 (en) Absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JPS6122224B2 (en)
KR0184216B1 (en) Ammonia absorptive refrigerator
KR0115194Y1 (en) Condensing apparatus for absorption type airconditioner
KR200172397Y1 (en) High temperature generator for an absorption refrigerator
JP2014119209A (en) Absorption type freezer and refrigeration system
JP4322997B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720