JP5575519B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP5575519B2
JP5575519B2 JP2010072574A JP2010072574A JP5575519B2 JP 5575519 B2 JP5575519 B2 JP 5575519B2 JP 2010072574 A JP2010072574 A JP 2010072574A JP 2010072574 A JP2010072574 A JP 2010072574A JP 5575519 B2 JP5575519 B2 JP 5575519B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
cooling water
pipe
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010072574A
Other languages
Japanese (ja)
Other versions
JP2011202923A (en
Inventor
修司 石崎
崇浩 小林
徹哉 徳田
恒仁 百瀬
惇 工藤
篤 海老澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010072574A priority Critical patent/JP5575519B2/en
Priority to KR1020100120403A priority patent/KR101167800B1/en
Priority to CN2010105687002A priority patent/CN102200357B/en
Publication of JP2011202923A publication Critical patent/JP2011202923A/en
Application granted granted Critical
Publication of JP5575519B2 publication Critical patent/JP5575519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

本発明は、高温再生器から凝縮器に冷媒を送る冷媒管にダンパを備える吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator having a damper in a refrigerant pipe that sends refrigerant from a high-temperature regenerator to a condenser.

従来、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機が知られている(例えば、特許文献1参照)。この吸収式冷凍機では、高温再生器と凝縮器とは、低温再生器の吸収液溜りに配管された伝熱管及び冷媒ドレン熱回収器を経由する冷媒管により接続されている。高温再生器で加熱されて吸収液から分離された冷媒蒸気は冷媒管を流通する過程で凝縮して冷媒液となり、この冷媒液は高温再生器と凝縮器との差圧によって冷媒管内を移動する。冷媒管を流通する冷媒の流速を低下させ、高温再生器からの冷媒蒸気の温熱で低温再生器内の吸収液や吸収器からの稀吸収液を十分に加熱させるため、冷媒管には、冷媒ドレン熱回収器の下流側に、流路抵抗を付与する流量制御弁やオリフィス等の流路抵抗手段が設けられている。   2. Description of the Related Art Conventionally, absorption refrigerating machines that include a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, which are connected to each other by piping to form a circulation path for absorption liquid and refrigerant, are known (for example, , See Patent Document 1). In this absorption refrigeration machine, the high-temperature regenerator and the condenser are connected by a heat transfer pipe that is piped to the absorption liquid reservoir of the low-temperature regenerator and a refrigerant pipe that passes through a refrigerant drain heat recovery unit. The refrigerant vapor heated by the high-temperature regenerator and separated from the absorbing liquid is condensed in the process of flowing through the refrigerant pipe, and becomes a refrigerant liquid. The refrigerant liquid moves in the refrigerant pipe due to the differential pressure between the high-temperature regenerator and the condenser. . In order to reduce the flow rate of the refrigerant flowing through the refrigerant pipe and sufficiently heat the absorption liquid in the low temperature regenerator and the rare absorption liquid from the absorber with the heat of the refrigerant vapor from the high temperature regenerator, On the downstream side of the drain heat recovery unit, flow resistance means such as a flow rate control valve and an orifice for imparting flow resistance are provided.

特開2003−287315号公報JP 2003-287315 A

ところで、吸収式冷凍機は、この吸収式冷凍機に供給される冷却水の温度(冷却水入口温度)が低下するにしたがい性能(COP:Coefficient of Performance)が向上する。しかしながら、冷却水入口温度が任意温度を下回ると、高温再生器の圧力低下に伴い高温再生器と凝縮器との差圧が小さくなるので、上記従来の吸収式冷凍機のように流路抵抗手段が設けられていると、冷媒の流動性が低下する。冷媒液の流動性が低下すると、冷媒管の低温再生器付近に冷媒液が溜まり、あるいは、冷媒液が冷媒管において低温再生器を行き来する状態が発生し、これにより低温再生器での吸収液の加熱再生が不安定になり、ひいては、熱負荷に供給するブラインの出口側の温度が上下に変動を繰り返すハンチングが発生してしまうおそれがある。
本発明は、上述した事情に鑑みてなされたものであり、冷却水の温度が低くても安定運転が可能な吸収式冷凍機を提供することを目的とする。
By the way, the absorption chiller is improved in performance (COP: Coefficient of Performance) as the temperature of the cooling water supplied to the absorption chiller (cooling water inlet temperature) decreases. However, if the cooling water inlet temperature is lower than the arbitrary temperature, the pressure difference between the high temperature regenerator and the condenser decreases as the pressure of the high temperature regenerator decreases. If it is provided, the fluidity of the refrigerant decreases. When the fluidity of the refrigerant liquid decreases, the refrigerant liquid accumulates in the vicinity of the low-temperature regenerator of the refrigerant pipe, or a state in which the refrigerant liquid flows back and forth through the low-temperature regenerator in the refrigerant pipe. There is a risk that the heating regeneration will become unstable, and as a result, hunting may occur in which the temperature on the outlet side of the brine supplied to the heat load repeatedly fluctuates up and down.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an absorption refrigerator that can be stably operated even when the temperature of the cooling water is low.

上記目的を達成するために、本発明は、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、高温再生器と凝縮器とを低温再生器を経由する冷媒管で接続し、この冷媒管に、流路抵抗を付与する流路抵抗手段と、この流路抵抗手段をバイパスするバイパス管とを設け、このバイパス管に開閉弁を設けた吸収式冷凍機において、前記吸収器及び前記凝縮器に順次冷却水を流通させる冷却水管を設け、前記冷却水管の吸収器入口側に冷却水入口温度を計測する冷却水温度センサを設け、前記冷却水温度センサの計測結果に応じて前記開閉弁を制御する弁制御手段を備え、前記弁制御手段は、前記冷却水温度センサが計測した冷却水入口温度が第1温度以下の場合に、前記開閉弁を開くことを特徴とする。 In order to achieve the above object, the present invention comprises a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber, and the high temperature regenerator and the condenser are connected by a refrigerant pipe passing through the low temperature regenerator. In the absorption refrigerator, in which the refrigerant pipe is provided with flow path resistance means for imparting flow path resistance and a bypass pipe for bypassing the flow path resistance means, and the bypass pipe is provided with an open / close valve. A cooling water pipe for sequentially circulating cooling water to the condenser and the condenser, a cooling water temperature sensor for measuring the cooling water inlet temperature on the absorber inlet side of the cooling water pipe, and according to the measurement result of the cooling water temperature sensor Valve control means for controlling the on-off valve, and the valve control means opens the on-off valve when the cooling water inlet temperature measured by the cooling water temperature sensor is equal to or lower than a first temperature. .

上記構成において、前記弁制御手段は、前記冷却水温度センサが計測した冷却水入口温度が第1温度以下の場合に、前記開閉弁を全開にしてもよい。 The said structure WHEREIN: The said valve control means may open the said on-off valve fully, when the cooling water inlet temperature measured by the said cooling water temperature sensor is below 1st temperature.

上記構成において、前記弁制御手段は、前記冷却水温度センサが計測した冷却水入口温度が前記第1温度よりも高い第2温度に至った場合に、前記開閉弁を全閉にしてもよい。
In the above configuration, the valve control means may fully close the on-off valve when the coolant inlet temperature measured by the coolant temperature sensor reaches a second temperature higher than the first temperature.

上記構成において、前記高温再生器の入熱量を制御する入熱量制御弁を備え、前記弁制御手段は、前記冷却水温度センサの計測結果と、前記入熱量制御弁の開度とに応じて前記開閉弁を制御してもよい。   In the above-described configuration, a heat input amount control valve for controlling the heat input amount of the high-temperature regenerator is provided, and the valve control unit is configured to perform the measurement according to the measurement result of the cooling water temperature sensor and the opening degree of the heat input amount control valve. The on-off valve may be controlled.

上記構成において、前記低温再生器の下流側の前記冷媒管には、当該冷媒管を流通する冷媒と、前記吸収器から延びる稀吸収液管を流通する稀吸収液との間で熱交換を行う冷媒ドレン熱回収器が設けられ、前記高温再生器に当該高温再生器内の圧力を検出する圧力センサを設け、前記冷媒管の冷媒ドレン熱回収器出口側に冷媒の温度を計測する冷媒温度センサを設け、前記弁制御手段は、前記冷却水温度センサの計測結果と、前記圧力センサの検出結果と、前記冷媒温度センサの計測結果とに応じて前記開閉弁を制御してもよい。   In the above configuration, the refrigerant pipe on the downstream side of the low-temperature regenerator performs heat exchange between the refrigerant flowing through the refrigerant pipe and the rare absorbent flowing through the rare absorbent pipe extending from the absorber. A refrigerant drain heat recovery device is provided, a pressure sensor for detecting the pressure in the high temperature regenerator is provided in the high temperature regenerator, and a refrigerant temperature sensor for measuring the temperature of the refrigerant on the refrigerant drain heat recovery device outlet side of the refrigerant pipe The valve control means may control the on-off valve according to a measurement result of the cooling water temperature sensor, a detection result of the pressure sensor, and a measurement result of the refrigerant temperature sensor.

本発明によれば、吸収器及び凝縮器に順次冷却水を流通させる冷却水管を設け、冷却水管の吸収器入口側に冷却水の温度を計測する冷却水温度センサを設け、冷却水温度センサの計測結果に応じて開閉弁を制御する弁制御手段を備えたため、例えば、冷却水温度が低い場合に、バイパス管を流通する冷媒量を増加するように、開閉弁を制御することで、冷媒管の冷媒を流れやすくすることができるので、吸収式冷凍機を安定して運転させることができる。   According to the present invention, the cooling water pipe for sequentially circulating the cooling water to the absorber and the condenser is provided, the cooling water temperature sensor for measuring the temperature of the cooling water is provided on the absorber inlet side of the cooling water pipe, and the cooling water temperature sensor Since the valve control means for controlling the on-off valve according to the measurement result is provided, for example, when the coolant temperature is low, the on-off valve is controlled so as to increase the amount of refrigerant flowing through the bypass pipe. Therefore, the absorption refrigerator can be operated stably.

本発明の第1の実施の形態に係る吸収式冷凍機の概略構成図である。It is a schematic block diagram of the absorption refrigerator which concerns on the 1st Embodiment of this invention. 開閉弁の制御を説明する図である。It is a figure explaining control of an on-off valve. 本発明の第3の実施の形態に係る吸収式冷凍機の概略構成図である。It is a schematic block diagram of the absorption refrigerator which concerns on the 3rd Embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。
〔第1の実施の形態〕
図1は、第1の実施の形態に係る吸収式冷凍機の概略構成図である。
吸収式冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した二重効用型の吸収式冷凍機である。吸収式冷凍機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6及び凝縮器7を収納した低温再生器凝縮器胴8と、低温熱交換器12と、高温熱交換器13と、冷媒ドレン熱回収器16と、稀吸収液ポンプP1と、濃吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜25及び冷媒管31〜35などを介して配管接続されている。
また、符号14は、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば空気調和装置)に循環供給するための冷/温水管であり、この冷/温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。冷/温水管14の伝熱管14A下流側には、当該冷/温水管14内を流通するブラインの温度を計測する温度センサ61が設けられている。符号15は、吸収器2及び凝縮器7に順次冷却水を流通させるための冷却水管であり、この冷却水管15の一部に形成された各伝熱管15A、15Bがそれぞれ吸収器2及び凝縮器7内に配置されている。符号50は、吸収式冷凍機100全体の制御を司る制御装置である。上記温度センサ61は、制御装置50の制御によって、計測結果を制御装置50に出力する。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic configuration diagram of an absorption refrigerator according to the first embodiment.
The absorption refrigerator 100 is a double-effect absorption refrigerator that uses water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid. As shown in FIG. 1, the absorption refrigerator 100 includes an evaporator 1, an absorber 2 provided in parallel with the evaporator 1, and an evaporator absorber body 3 that houses the evaporator 1 and the absorber 2. A high temperature regenerator 5 having a gas burner 4, a low temperature regenerator 6, a condenser 7 arranged in parallel with the low temperature regenerator 6, and a low temperature regenerator condensing the low temperature regenerator 6 and the condenser 7. The body 8, the low-temperature heat exchanger 12, the high-temperature heat exchanger 13, the refrigerant drain heat recovery unit 16, a rare absorption liquid pump P 1, a concentrated absorption liquid pump P 2, and a refrigerant pump P 3 are provided. Each device is connected by piping through absorption liquid pipes 21 to 25, refrigerant pipes 31 to 35, and the like.
Reference numeral 14 denotes a cold / hot water pipe for circulatingly supplying brine heat exchanged with the refrigerant in the evaporator 1 to a heat load (not shown) (for example, an air conditioner). A heat transfer tube 14 </ b> A formed in the section is arranged in the evaporator 1. A temperature sensor 61 for measuring the temperature of the brine flowing through the cold / hot water pipe 14 is provided on the downstream side of the heat transfer pipe 14 </ b> A of the cold / hot water pipe 14. Reference numeral 15 denotes a cooling water pipe for sequentially flowing the cooling water to the absorber 2 and the condenser 7, and the heat transfer pipes 15 </ b> A and 15 </ b> B formed in a part of the cooling water pipe 15 are respectively connected to the absorber 2 and the condenser. 7 is arranged. Reference numeral 50 is a control device that controls the absorption refrigerator 100 as a whole. The temperature sensor 61 outputs a measurement result to the control device 50 under the control of the control device 50.

吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、インバータ51により周波数可変に制御される稀吸収液ポンプP1が設けられた稀吸収液管21の一端が接続されている。稀吸収液管21は、稀吸収液ポンプP1の下流側で第1稀吸収液管21Aと第2稀吸収液管21Bとに分岐され、第1稀吸収液管21Aは冷媒ドレン熱回収器16を経由し、第2稀吸収液管21Bは低温熱交換器12を経由した後に再び合流する。そして、稀吸収液管21の他端は、第3稀吸収液管21Cと第4稀吸収液管21Dとに分岐され、第3稀吸収液管21Cは高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口し、第4稀吸収液管21Dは低温再生器6内の上部に形成された気層部6Aに開口している。   The absorber 2 has a function of absorbing the refrigerant vapor evaporated in the evaporator 1 into the absorption liquid and maintaining the pressure in the evaporator absorber body 3 in a high vacuum state. Under the absorber 2, a rare absorbing liquid reservoir 2A is formed in which the diluted absorbing liquid diluted by absorbing the refrigerant vapor is accumulated. The rare absorbing liquid reservoir 2A is controlled by the inverter 51 so that the frequency is variable. One end of the rare absorbent pipe 21 provided with the rare absorbent pump P1 is connected. The rare absorbent pipe 21 is branched into a first rare absorbent pipe 21A and a second rare absorbent pipe 21B on the downstream side of the rare absorbent pump P1, and the first rare absorbent pipe 21A is connected to the refrigerant drain heat recovery unit 16. , The second dilute absorption liquid pipe 21 </ b> B joins again after passing through the low temperature heat exchanger 12. Then, the other end of the rare absorbent pipe 21 is branched into a third rare absorbent pipe 21C and a fourth rare absorbent pipe 21D, and the third rare absorbent pipe 21C passes through the high-temperature heat exchanger 13, Opening to the gas layer part 5B located above the heat exchanging part 5A formed in the high temperature regenerator 5, the fourth rare absorbent liquid pipe 21D is connected to the gas layer part 6A formed in the upper part in the low temperature regenerator 6. It is open.

高温再生器5の下部には、例えば都市ガス等の燃料に点火する点火器4Aと、燃料量を制御して熱源量を可変にする燃料制御弁(入熱量制御弁)4Bとを備えるガスバーナ4が収容されている。ガスバーナ4は、制御装置50が出力した燃焼信号を受信すると、ガスを燃焼させ、燃料制御弁4Bの開度は、制御装置50により、温度センサ61が計測した温度に応じて制御されている。高温再生器5には、ガスバーナ4の上方に当該ガスバーナ4の火炎を熱源として吸収液を加熱再生する熱交換部5Aが形成されている。この熱交換部5Aには、ガスバーナ4で燃焼された排気ガスが流通する排気経路17が接続され、熱交換部5Aの側方には、この熱交換部5Aで加熱再生された後に当該熱交換部5Aから流出した濃吸収液が溜る濃吸収液溜り5Cが形成されている。この濃吸収液溜り5Cには、濃吸収液溜り5C(高温再生器5内)に溜った吸収液の液面レベルを検知する液面センサ52が設けられている。   Under the high-temperature regenerator 5, a gas burner 4 is provided with an igniter 4A for igniting a fuel such as city gas, and a fuel control valve (heat input control valve) 4B for controlling the amount of fuel to change the amount of heat source. Is housed. When the gas burner 4 receives the combustion signal output from the control device 50, the gas burner 4 burns the gas, and the opening degree of the fuel control valve 4 </ b> B is controlled by the control device 50 according to the temperature measured by the temperature sensor 61. The high-temperature regenerator 5 is formed with a heat exchanging unit 5 </ b> A that heats and regenerates the absorbing liquid using the flame of the gas burner 4 as a heat source above the gas burner 4. An exhaust path 17 through which exhaust gas combusted by the gas burner 4 circulates is connected to the heat exchanging section 5A, and the heat exchanging section 5A is connected to the side of the heat exchanging section 5A after being heated and regenerated by the heat exchanging section 5A. A concentrated absorbent reservoir 5C is formed in which the concentrated absorbent that has flowed out of the portion 5A accumulates. The concentrated absorbent pool 5C is provided with a liquid level sensor 52 for detecting the level of the absorbent stored in the concentrated absorbent pool 5C (in the high temperature regenerator 5).

濃吸収液溜り5Cの下端には、濃吸収液管22の一端が接続され、この濃吸収液管22の他端は、高温熱交換器13を介して、低温再生器6から延びる中間吸収液管24と合流する。高温熱交換器13は、濃吸収液溜り5Cから流出した高温の吸収液の温熱で第3稀吸収液管21Cを流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。また、濃吸収液管22の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管23により接続されている。   One end of the concentrated absorbent liquid pipe 22 is connected to the lower end of the concentrated absorbent pool 5C, and the other end of the concentrated absorbent liquid pipe 22 is an intermediate absorbent that extends from the low temperature regenerator 6 via the high temperature heat exchanger 13. Merge with tube 24. The high temperature heat exchanger 13 heats the absorption liquid flowing through the third rare absorption liquid pipe 21C with the high temperature of the high temperature absorption liquid flowing out from the concentrated absorption liquid reservoir 5C, and the fuel consumption of the gas burner 4 in the high temperature regenerator 5 The amount is reduced. The upstream side of the high-temperature heat exchanger 13 of the concentrated absorbent liquid pipe 22 and the absorber 2 are connected by an absorbent liquid pipe 23 with an on-off valve V1 interposed therebetween.

低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、気層部6Aの下方に形成された吸収液溜り6Bに溜った吸収液を加熱再生するものであり、吸収液溜り6Bには、高温再生器5の上端部から凝縮器7の底部への延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、上記伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Bに溜った吸収液に伝達され、この吸収液が濃縮される。
低温再生器6の吸収液溜り6Bには、中間吸収液管24の一端が接続され、この中間吸収液管24の他端は、上記濃吸収液管22と合流して濃吸収液管25となる。この濃吸収液管25は、濃吸収液ポンプP2及び低温熱交換器12を介して、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。低温熱交換器12は、高温再生器5の濃吸収液溜まり5Cから流出した濃吸収液、及び、低温再生器6の吸収液溜り6Bから流出した中間吸収液の温熱で第2稀吸収液管21Bを流れる稀吸収液を加熱するものである。また、濃吸収液ポンプP2の上流側には、この濃吸収液ポンプP2及び低温熱交換器12をバイパスするバイパス管25A,25Bが設けられており、濃吸収液ポンプP2の運転が停止している場合には、高温再生器5の濃吸収液溜まり5Cから流出した濃吸収液、及び、低温再生器6の吸収液溜り6Bから流出した中間吸収液は、バイパス管25A,25B通じて低温熱交換器12を経由することなく吸収器2内に供給される。
The low-temperature regenerator 6 uses the refrigerant vapor separated by the high-temperature regenerator 5 as a heat source to heat and regenerate the absorption liquid stored in the absorption liquid reservoir 6B formed below the gas layer portion 6A. In 6B, a heat transfer tube 31A formed in a part of the refrigerant tube 31 extending from the upper end of the high temperature regenerator 5 to the bottom of the condenser 7 is disposed. By circulating the refrigerant vapor through the refrigerant pipe 31, the heat of the refrigerant vapor is transmitted to the absorption liquid stored in the absorption liquid reservoir 6B via the heat transfer pipe 31A, and the absorption liquid is concentrated.
One end of an intermediate absorption liquid pipe 24 is connected to the absorption liquid reservoir 6B of the low-temperature regenerator 6, and the other end of the intermediate absorption liquid pipe 24 joins with the concentrated absorption liquid pipe 22 and the concentrated absorption liquid pipe 25. Become. The concentrated absorbent pipe 25 is connected to a concentrated sprayer 2C provided on the upper part of the gas layer 2B of the absorber 2 via the concentrated absorbent pump P2 and the low temperature heat exchanger 12. The low-temperature heat exchanger 12 is a second rare absorption liquid tube with the heat of the concentrated absorption liquid flowing out from the concentrated absorption liquid reservoir 5C of the high-temperature regenerator 5 and the intermediate absorption liquid flowing out from the absorption liquid reservoir 6B of the low-temperature regenerator 6. The rare absorption liquid flowing through 21B is heated. Further, on the upstream side of the concentrated absorbent pump P2, bypass pipes 25A and 25B for bypassing the concentrated absorbent pump P2 and the low-temperature heat exchanger 12 are provided, and the operation of the concentrated absorbent pump P2 is stopped. If so, the concentrated absorbent that has flowed out of the concentrated absorbent pool 5C of the high-temperature regenerator 5 and the intermediate absorbent that has flowed out of the absorbent pool 6B of the low-temperature regenerator 6 are transferred to the low-temperature heat through the bypass pipes 25A and 25B. It is supplied into the absorber 2 without going through the exchanger 12.

上述のように、高温再生器5の気層部5Bと凝縮器7の底部に形成された冷媒液溜り7Aとは、低温再生器6の吸収液溜り6Bに配管された伝熱管31A及び冷媒ドレン熱回収器16を経由する冷媒管31により接続されている。この冷媒管31には、冷媒ドレン熱回収器16の下流に、流路抵抗を付与するダンパ(流路抵抗手段)41が設けられており、このダンパ41によって冷媒管31を流れる冷媒の流速が低下し、冷媒管31の冷媒蒸気と低温再生器6内の吸収液との間で熱交換が十分に行われるとともに、冷媒管31の冷媒蒸気と第1稀吸収液管21A内の稀吸収液との間で熱交換が十分に行われる。   As described above, the refrigerant liquid reservoir 7A formed at the gas layer portion 5B of the high temperature regenerator 5 and the bottom of the condenser 7 includes the heat transfer pipe 31A and the refrigerant drain piped to the absorption liquid reservoir 6B of the low temperature regenerator 6. The refrigerant pipe 31 is connected via the heat recovery unit 16. The refrigerant pipe 31 is provided with a damper (flow path resistance means) 41 for imparting flow resistance downstream of the refrigerant drain heat recovery device 16, and the flow rate of the refrigerant flowing through the refrigerant pipe 31 by the damper 41 is reduced. And the heat exchange is sufficiently performed between the refrigerant vapor in the refrigerant pipe 31 and the absorbent in the low temperature regenerator 6, and the refrigerant vapor in the refrigerant pipe 31 and the rare absorbent in the first rare absorbent pipe 21A. The heat exchange between the two is sufficiently performed.

冷媒管31の伝熱管31A上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。また、凝縮器7の冷媒液溜り7Aと蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在する冷媒管34により接続されている。この冷媒管34の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは開閉弁V3が介在する冷媒管35により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V4が介在する連通管36により接続されている。   The heat transfer pipe 31A upstream side of the refrigerant pipe 31 and the gas layer portion 2B of the absorber 2 are connected by a refrigerant pipe 32 having an on-off valve V2. Further, the refrigerant liquid reservoir 7A of the condenser 7 and the gas layer portion 1A of the evaporator 1 are connected by a refrigerant pipe 33 in which a U seal portion 33A is interposed. A refrigerant liquid reservoir 1B in which liquefied refrigerant accumulates is formed below the evaporator 1, and the refrigerant liquid reservoir 1B and the spreader 1C disposed above the gas layer portion 1A of the evaporator 1 are refrigerant pumps P3. The refrigerant pipe 34 is connected. The refrigerant pipe 34 downstream side of the refrigerant pump P3 and the absorbing liquid reservoir 2A of the absorber 2 are connected by a refrigerant pipe 35 having an on-off valve V3 interposed therebetween. The outlet side of the heat transfer pipe 14A of the cold / hot water pipe 14 and the outlet side of the heat transfer pipe 15B of the cooling water pipe 15 are connected by a communication pipe 36 with an on-off valve V4 interposed therebetween.

吸収式冷凍機100は、制御装置50の制御により、冷/温水管14から冷水を取り出す冷房運転が実行される。冷房運転時には、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度(温度センサ61にて計測される温度)が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御装置50により制御される。具体的には、制御装置50は、すべてのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させ、温度センサ61が計測するブラインの温度が所定の7℃となるようにガスバーナ4の火力を制御する。なお、冷房運転時には、開閉弁V1〜V4は閉じられる。   The absorption chiller 100 is subjected to a cooling operation in which cold water is taken out from the cold / hot water pipe 14 under the control of the control device 50. During the cooling operation, the evaporator 1 outlet side temperature (temperature measured by the temperature sensor 61) of brine (for example, cold water) circulated and supplied to a heat load (not shown) via the cold / hot water pipe 14 is a predetermined set temperature, For example, the amount of heat input to the absorption refrigeration machine 100 is controlled by the control device 50 so as to be 7 ° C. Specifically, the control device 50 starts all the pumps P1 to P3, burns the gas in the gas burner 4, and the gas burner 4 so that the temperature of the brine measured by the temperature sensor 61 becomes a predetermined 7 ° C. Control the firepower. During the cooling operation, the on-off valves V1 to V4 are closed.

吸収器2から稀吸収液管21を介して、稀吸収液ポンプP1により高温再生器5に搬送された稀吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この稀吸収液中の冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した濃吸収液は、濃吸収液管22を介して、濃吸収液管25の濃吸収液ポンプP2により高温熱交換器13を経由し、濃吸収液管25に流れる。
吸収器2から稀吸収液管21を介して、稀吸収液ポンプP1により低温再生器6に搬送された稀吸収液は、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、この稀吸収液中の冷媒が蒸発分離する。低温再生器6で冷媒を蒸発分離して濃度が上昇した中間吸収液は、中間吸収液管24を流れ、濃吸収液管22を流れる濃吸収液と濃吸収液管25で合流する。合流した濃吸収液は、低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。
The rare absorbent transported from the absorber 2 to the high temperature regenerator 5 by the rare absorbent pump P1 through the rare absorbent pipe 21 is heated by the flame by the gas burner 4 and the high temperature combustion gas in the high temperature regenerator 5. Therefore, the refrigerant in the rare absorbent is evaporated and separated. The concentrated absorbent whose concentration has been increased by evaporating and separating the refrigerant in the high-temperature regenerator 5 passes through the concentrated absorbent pipe 22 and the concentrated absorbent pump P2 of the concentrated absorbent pipe 25 via the high-temperature heat exchanger 13; It flows into the thick absorption liquid pipe 25.
The rare absorbent transported from the absorber 2 to the low temperature regenerator 6 by the rare absorbent pump P1 through the rare absorbent pipe 21 is supplied from the high temperature regenerator 5 through the refrigerant pipe 31 to the heat transfer pipe 31A. Heated by the flowing high-temperature refrigerant vapor, the refrigerant in the rare absorbent is evaporated and separated. The intermediate absorption liquid whose concentration has been increased by evaporating and separating the refrigerant in the low temperature regenerator 6 flows through the intermediate absorption liquid pipe 24, and joins in the concentrated absorption liquid pipe 25 and the concentrated absorption liquid pipe 25. The merged concentrated absorbent is sent to the absorber 2 via the low-temperature heat exchanger 12 and dispersed from above the concentrated liquid spreader 2C.

一方、低温再生器6で分離生成した冷媒は凝縮器7に入って凝縮して冷媒液溜り7Aに溜まる。そして、冷媒液溜り7Aに冷媒液が多く溜まると、この冷媒液は冷媒液溜り7Aから流出し、冷媒管33を経由して蒸発器1に入り、冷媒ポンプP3の運転により冷媒管34を介して揚液されて散布器1Cから冷/温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、高温再生器5及び低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって高温再生器5に搬送される循環を繰り返す。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
On the other hand, the refrigerant separated and generated by the low temperature regenerator 6 enters the condenser 7, condenses, and accumulates in the refrigerant liquid reservoir 7A. When a large amount of refrigerant liquid accumulates in the refrigerant liquid reservoir 7A, the refrigerant liquid flows out of the refrigerant liquid reservoir 7A, enters the evaporator 1 via the refrigerant pipe 33, and passes through the refrigerant pipe 34 by the operation of the refrigerant pump P3. The liquid is pumped and sprayed from the sprayer 1C onto the heat transfer tube 14A of the cold / hot water tube 14.
The refrigerant liquid sprayed on the heat transfer tube 14A evaporates by removing vaporization heat from the brine passing through the inside of the heat transfer tube 14A, so that the brine passing through the inside of the heat transfer tube 14A is cooled, and the brine thus lowered in temperature is A cooling operation such as cooling is performed by supplying the heat load from the cold / hot water pipe 14.
Then, the refrigerant evaporated in the evaporator 1 enters the absorber 2, is absorbed by the concentrated absorbent supplied from the high temperature regenerator 5 and the low temperature regenerator 6 and sprayed from above, and is stored in the rare absorbent pool of the absorber 2. The circulation which accumulates in 2A and is conveyed to the high temperature regenerator 5 by the rare absorption liquid pump P1 is repeated. Note that the heat generated when the absorbing liquid absorbs the refrigerant is cooled by the heat transfer pipe 15 </ b> A of the cooling water pipe 15 disposed in the absorber 2.

ところで、吸収式冷凍機100では、当該吸収式冷凍機100に供給される冷却水の温度(冷却水入口温度)が低下するにしたがい性能(COP)が向上する。通常、冷却水入口温度は約32℃に設定されており、この冷却水入口温度が任意温度(例えば、17℃)を下回ると、高温再生器5の圧力低下に伴い高温再生器5と凝縮器7との差圧が小さくなる。冷媒管31にはダンパ41が設けられているため、高温再生器5と凝縮器7との差圧が小さくなると、冷媒の流動性が低下する。これにより、冷媒管31の低温再生器6付近に冷媒液が溜まり、あるいは、冷媒液が冷媒管31において低温再生器6を行き来する状態(以下、単に滞留状態と言う。)が発生し、ひいては、熱負荷に供給するブラインの出口温度が上下に変動を繰り返すハンチングが発生してしまうおそれがある。   By the way, in the absorption refrigerator 100, performance (COP) improves as the temperature of the cooling water supplied to the absorption refrigerator 100 (cooling water inlet temperature) decreases. Usually, the cooling water inlet temperature is set to about 32 ° C., and when the cooling water inlet temperature falls below an arbitrary temperature (for example, 17 ° C.), the high temperature regenerator 5 and the condenser are accompanied by a pressure drop of the high temperature regenerator 5. The differential pressure from 7 is reduced. Since the refrigerant pipe 31 is provided with the damper 41, when the differential pressure between the high temperature regenerator 5 and the condenser 7 is reduced, the fluidity of the refrigerant is lowered. As a result, a refrigerant liquid is accumulated near the low-temperature regenerator 6 in the refrigerant pipe 31 or a state in which the refrigerant liquid moves back and forth through the low-temperature regenerator 6 in the refrigerant pipe 31 (hereinafter simply referred to as a staying state). There is a risk that hunting may occur in which the outlet temperature of the brine supplied to the heat load repeatedly fluctuates up and down.

そこで、本実施の形態では、冷媒管31に設けられたダンパ41をバイパスするバイパス管42と、このバイパス管42に設けられた開閉弁43と、冷却水管15の吸収器2入口側に設けられて冷却水入口温度を計測する冷却水温度センサ62と、冷却水温度センサ62の計測結果に応じて開閉弁43を制御する制御装置(弁制御手段)50とを備える構成としている。上述したように、冷媒の滞留は、高温再生器5と凝縮器7との差圧に起因しており、本実施の形態では、高温再生器5と凝縮器7との差圧を、冷却水入口温度に対応させている。   Therefore, in the present embodiment, the bypass pipe 42 that bypasses the damper 41 provided in the refrigerant pipe 31, the on-off valve 43 provided in the bypass pipe 42, and the absorber 2 inlet side of the cooling water pipe 15 are provided. The cooling water temperature sensor 62 for measuring the cooling water inlet temperature and the control device (valve control means) 50 for controlling the on-off valve 43 according to the measurement result of the cooling water temperature sensor 62 are provided. As described above, the stagnation of the refrigerant is caused by the differential pressure between the high temperature regenerator 5 and the condenser 7, and in this embodiment, the differential pressure between the high temperature regenerator 5 and the condenser 7 is changed to the cooling water. Corresponds to the inlet temperature.

開閉弁43は、全開及び全閉可能に構成された操作弁であり、制御装置50の制御によって作動する。冷却水温度センサ62は、制御装置50の制御によって、計測結果を制御装置50に出力する。
制御装置50は、図2に示すように、冷却水温度センサ62が計測した温度が第1温度T1以下になると、開閉弁43を全開にする。ここで、第1温度T1は、図1に示す高温再生器5と凝縮器7との差圧が小さくなり、吸収式冷凍機100の運転が不安定になり始める直前の冷却水入口温度であり、予め実験等によって取得され、本実施の形態では15℃に設定されている。これにより、冷却水入口温度が第1温度T1(15℃)以下であり、高温再生器5と凝縮器7との差圧が小さくなっても、冷媒液がダンパ41をバイパスするバイパス管42を流通するので、冷媒の滞留を防止でき、その結果、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。
The on-off valve 43 is an operation valve configured to be fully openable and fully closeable, and is operated under the control of the control device 50. The coolant temperature sensor 62 outputs the measurement result to the control device 50 under the control of the control device 50.
As shown in FIG. 2, when the temperature measured by the coolant temperature sensor 62 becomes equal to or lower than the first temperature T1, the control device 50 fully opens the on-off valve 43. Here, the first temperature T1 is the cooling water inlet temperature immediately before the differential pressure between the high-temperature regenerator 5 and the condenser 7 shown in FIG. 1 decreases and the operation of the absorption chiller 100 starts to become unstable. It is acquired in advance by experiments or the like, and is set to 15 ° C. in this embodiment. Thereby, even if the cooling water inlet temperature is equal to or lower than the first temperature T1 (15 ° C.) and the differential pressure between the high-temperature regenerator 5 and the condenser 7 decreases, the bypass pipe 42 that bypasses the damper 41 with the refrigerant liquid is provided. Since it circulates, the refrigerant can be prevented from staying, and as a result, the absorption refrigerator 100 can be operated stably. Therefore, since low temperature cooling water can be used, the COP of the absorption chiller 100 can be improved.

一方、制御装置50は、図2に示すように、冷却水温度センサ62が計測した温度が第2温度T2以上になると、開閉弁43を全閉にする。ここで、第2温度T2は、図1に示す高温再生器5と凝縮器7との差圧が大きくなり、吸収式冷凍機100の運転が安定するときの冷却水入口温度であり、予め実験等によって取得され、本実施の形態では、第1温度T1より5℃高い20℃に設定されている。これにより、冷却水入口温度が第2温度T2(20℃)以上になり、高温再生器5と凝縮器7との差圧が大きくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。   On the other hand, as shown in FIG. 2, when the temperature measured by the cooling water temperature sensor 62 becomes equal to or higher than the second temperature T2, the control device 50 fully closes the on-off valve 43. Here, the second temperature T2 is the cooling water inlet temperature when the differential pressure between the high-temperature regenerator 5 and the condenser 7 shown in FIG. In this embodiment, the temperature is set to 20 ° C., which is 5 ° C. higher than the first temperature T1. Accordingly, when the cooling water inlet temperature becomes equal to or higher than the second temperature T2 (20 ° C.) and the differential pressure between the high-temperature regenerator 5 and the condenser 7 increases, the refrigerant liquid does not flow through the bypass pipe 42. The flow rate of the refrigerant flowing through the refrigerant pipe 31 decreases, and the absorption liquid in the low temperature regenerator 6 and the rare absorption liquid in the first rare absorption liquid pipe 21A are sufficiently heated by the heat of the refrigerant vapor from the high temperature regenerator 5. Can do.

このように、本実施の形態では、ダンパ41を有する吸収式冷凍機100に、ダンパ41をバイパスするバイパス管42を設け、このバイパス管42に開閉弁43を設けるという簡単な構造で、吸収式冷凍機100を低温の冷却水に対応させることができる。また、高温再生器5や凝縮器7内の圧力を検出する比較的高価な圧力検出手段を必要としないので、開閉弁43を制御することによるコストアップを抑制できる。さらに、冷却水温度センサ62は、冷却水管15の吸収器2入口側に設けられているため、例えば、冷却水管15の吸収器2出口側や、凝縮器7出口側に設けられる場合に比べ、図示しない冷却水ポンプのインバータ制御、吸収器2や凝縮器7での熱交換等の影響を受けることがなく安定した温度を計測でき、その結果、開閉弁43をより正確に制御することが可能になる。   As described above, in the present embodiment, the absorption refrigerator 100 having the damper 41 is provided with the bypass pipe 42 that bypasses the damper 41, and the bypass pipe 42 is provided with the on-off valve 43. The refrigerator 100 can be adapted to low-temperature cooling water. Further, since a relatively expensive pressure detecting means for detecting the pressure in the high temperature regenerator 5 and the condenser 7 is not required, an increase in cost due to the control of the on-off valve 43 can be suppressed. Furthermore, since the cooling water temperature sensor 62 is provided on the absorber 2 inlet side of the cooling water pipe 15, for example, compared to the case where it is provided on the absorber 2 outlet side of the cooling water pipe 15 or the condenser 7 outlet side, Stable temperature can be measured without being affected by inverter control of the cooling water pump (not shown), heat exchange in the absorber 2 and the condenser 7, and as a result, the on-off valve 43 can be controlled more accurately. become.

以上説明したように、本実施の形態によれば、吸収器2及び凝縮器7に順次冷却水を流通させる冷却水管15を設け、冷却水管15の吸収器入口側に冷却水の温度を計測する冷却水温度センサ62を設け、冷却水温度センサ62の計測結果に応じて開閉弁43を制御する制御装置50を備える構成とした。この構成により、例えば、冷却水入口温度が低い場合に、バイパス管42を流通する冷媒量を増加するように、開閉弁43を制御することで、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。   As described above, according to the present embodiment, the cooling water pipe 15 for sequentially circulating the cooling water to the absorber 2 and the condenser 7 is provided, and the temperature of the cooling water is measured on the inlet side of the cooling water pipe 15. The cooling water temperature sensor 62 is provided, and the controller 50 that controls the on-off valve 43 according to the measurement result of the cooling water temperature sensor 62 is provided. With this configuration, for example, when the cooling water inlet temperature is low, the on-off valve 43 is controlled so as to increase the amount of refrigerant flowing through the bypass pipe 42, whereby the refrigerant in the refrigerant pipe 31 can easily flow. Therefore, the absorption refrigerator 100 can be operated stably. Therefore, since low temperature cooling water can be used, the COP of the absorption chiller 100 can be improved.

また、本実施の形態によれば、制御装置50は、冷却水温度センサ62の計測した温度が第1温度T1以下の場合に、開閉弁43を全開にする構成とした。この構成により、冷却水入口温度が第1温度T1以下になった場合に、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。   Further, according to the present embodiment, the control device 50 is configured to fully open the on-off valve 43 when the temperature measured by the coolant temperature sensor 62 is equal to or lower than the first temperature T1. With this configuration, when the cooling water inlet temperature becomes equal to or lower than the first temperature T1, the refrigerant in the refrigerant pipe 31 can be made to flow easily, so that the absorption chiller 100 can be stably operated. Therefore, since low temperature cooling water can be used, the COP of the absorption chiller 100 can be improved.

また、本実施の形態によれば、制御装置50は、冷却水温度センサ62の計測した温度が第1温度T1よりも高い第2温度T2に至った場合に、開閉弁43を全閉にする構成とした。この構成により、冷却水入口温度が第2温度T2以上になった場合に、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。   Further, according to the present embodiment, the control device 50 fully closes the on-off valve 43 when the temperature measured by the coolant temperature sensor 62 reaches the second temperature T2 higher than the first temperature T1. The configuration. With this configuration, when the cooling water inlet temperature becomes equal to or higher than the second temperature T2, the refrigerant liquid does not flow through the bypass pipe 42. Therefore, the flow rate of the refrigerant flowing through the refrigerant pipe 31 is reduced by the damper 41, and the high temperature regenerator 5 It is possible to sufficiently heat the absorption liquid in the low temperature regenerator 6 and the rare absorption liquid in the first rare absorption liquid pipe 21 </ b> A by the heat of the refrigerant vapor.

〔第2の実施の形態〕
第1の実施の形態では、制御装置50は、開閉弁43を冷却水温度センサ62の計測結果に応じて制御していたが、第2の実施の形態では、開閉弁43を冷却水温度センサ62の計測結果と燃料制御弁4Bの開度とに応じて制御している。
冷媒の滞留は、高温再生器5と凝縮器7との差圧に加え、高温再生器5で発生する冷媒蒸気の量に起因しており、燃料制御弁4Bの開度は、高温再生器5で発生する冷媒蒸気の最大発生量に対するその開度時における冷媒蒸気の発生量の割合とほぼ比例の関係がある。そこで、本実施の形態では、高温再生器5と凝縮器7との差圧を、冷却水入口温度に対応させるとともに、冷媒蒸気の発生量を燃料制御弁4Bの開度に対応させている。
[Second Embodiment]
In the first embodiment, the control device 50 controls the on-off valve 43 according to the measurement result of the cooling water temperature sensor 62. However, in the second embodiment, the on-off valve 43 is controlled by the cooling water temperature sensor. Control is performed according to the measurement result 62 and the opening of the fuel control valve 4B.
Retention of the refrigerant is caused by the amount of refrigerant vapor generated in the high temperature regenerator 5 in addition to the differential pressure between the high temperature regenerator 5 and the condenser 7. There is a substantially proportional relationship with the ratio of the amount of refrigerant vapor generated at the opening degree to the maximum amount of refrigerant vapor generated in the above. Therefore, in the present embodiment, the differential pressure between the high-temperature regenerator 5 and the condenser 7 is made to correspond to the cooling water inlet temperature, and the generated amount of refrigerant vapor is made to correspond to the opening of the fuel control valve 4B.

制御装置50は、燃料制御弁4Bの開度が所定開度以上の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下になると、バイパス管42の開閉弁43を全開にする。所定開度は、高温再生器5での冷媒蒸気の発生量が比較的多く、高温再生器5と凝縮器7との差圧が小さい場合には、吸収式冷凍機100の運転が不安定になり始める直前の開度であり、予め実験等によって取得され、本実施の形態では、冷媒蒸気の発生量が最大時の50%となる、50%に設定されている。これにより、燃料制御弁4Bの開度が所定開度(50%)以上であり、高温再生器5での冷媒蒸気の発生量が比較的多い状態において、冷却水入口温度が第1温度T1(15℃)以下になり、高温再生器5と凝縮器7との差圧が小さくなっても、冷媒液がダンパ41をバイパスするバイパス管42を流通するので、冷媒の滞留を防止でき、その結果、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。   When the opening degree of the fuel control valve 4B is equal to or larger than the predetermined opening degree, the control device 50, when the temperature measured by the cooling water temperature sensor 62 becomes equal to or lower than the first temperature T1 (15 ° C.) as shown in FIG. The on-off valve 43 of the bypass pipe 42 is fully opened. When the predetermined opening degree is such that the amount of refrigerant vapor generated in the high temperature regenerator 5 is relatively large and the differential pressure between the high temperature regenerator 5 and the condenser 7 is small, the operation of the absorption chiller 100 becomes unstable. The opening degree immediately before starting to be obtained and obtained in advance through experiments or the like. In this embodiment, the amount of refrigerant vapor generated is set to 50%, which is 50% of the maximum. Thereby, in the state where the opening degree of the fuel control valve 4B is a predetermined opening degree (50%) or more and the generation amount of the refrigerant vapor in the high temperature regenerator 5 is relatively large, the cooling water inlet temperature is the first temperature T1 ( Even if the differential pressure between the high-temperature regenerator 5 and the condenser 7 becomes small, the refrigerant liquid flows through the bypass pipe 42 that bypasses the damper 41, so that the refrigerant can be prevented from staying. The absorption refrigerator 100 can be stably operated. Therefore, since low temperature cooling water can be used, the COP of the absorption chiller 100 can be improved.

一方、制御装置50は、燃料制御弁4Bの開度が所定開度(50%)以上の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第2温度T2(20℃)以上になると、開閉弁43を全閉にする。これにより、燃料制御弁4Bの開度が所定開度(50%)以上であり、高温再生器5での冷媒蒸気の発生量が比較的多い状態において、冷却水入口温度が第2温度T2(20℃)以上になり、高温再生器5と凝縮器7との差圧が大きくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。   On the other hand, when the opening degree of the fuel control valve 4B is equal to or greater than a predetermined opening degree (50%), the control device 50 determines that the temperature measured by the cooling water temperature sensor 62 is the second temperature T2 (20 When the temperature is higher than or equal to (° C.), the on-off valve 43 is fully closed. Thereby, in the state where the opening degree of the fuel control valve 4B is equal to or larger than the predetermined opening degree (50%) and the amount of refrigerant vapor generated in the high temperature regenerator 5 is relatively large, the cooling water inlet temperature is set to the second temperature T2 ( When the pressure difference between the high-temperature regenerator 5 and the condenser 7 increases, the refrigerant liquid does not flow through the bypass pipe 42, so that the flow rate of the refrigerant flowing through the refrigerant pipe 31 by the damper 41 decreases, and the high temperature The absorption liquid in the low temperature regenerator 6 and the rare absorption liquid in the first rare absorption liquid pipe 21A can be sufficiently heated by the warm heat of the refrigerant vapor from the regenerator 5.

また、制御装置50は、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下であっても、燃料制御弁4Bの開度が所定開度(50%)未満になると、開閉弁43を全閉にする。すなわち、本実施の形態では、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下である条件、及び、燃料制御弁4Bの開度が所定開度(50%)以上である条件の両方を満たした場合のみ、開閉弁43が開放される。これにより、冷却水入口温度が第1温度T1(15℃)以下であり、高温再生器5と凝縮器7との差圧が小さくても、燃料制御弁4Bの開度が所定開度(50%)未満になり、高温再生器5での冷媒蒸気の発生量が少なくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液を十分に加熱させることができる。
このように、本実施の形態では、高温再生器5と凝縮器7との差圧に加え、高温再生器5で発生する冷媒蒸気の発生量に応じて開閉弁43を制御する構成としたため、高温再生器5と凝縮器7との差圧が小さくても、高温再生器5で発生する冷媒蒸気の発生量が少なく、冷媒の滞留が生じにくい場合には、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100の性能の低下を抑制できる。
Further, even when the temperature measured by the cooling water temperature sensor 62 is equal to or lower than the first temperature T1 (15 ° C.), the control device 50 is configured such that when the opening degree of the fuel control valve 4B becomes less than a predetermined opening degree (50%), The on-off valve 43 is fully closed. That is, in the present embodiment, the condition that the temperature measured by the cooling water temperature sensor 62 is equal to or lower than the first temperature T1 (15 ° C.) and the opening degree of the fuel control valve 4B is equal to or higher than a predetermined opening degree (50%). Only when both of certain conditions are satisfied, the on-off valve 43 is opened. Thereby, even if the cooling water inlet temperature is equal to or lower than the first temperature T1 (15 ° C.) and the differential pressure between the high-temperature regenerator 5 and the condenser 7 is small, the opening degree of the fuel control valve 4B is the predetermined opening degree (50 %) And the amount of refrigerant vapor generated in the high-temperature regenerator 5 decreases, the refrigerant liquid does not flow through the bypass pipe 42, so the flow rate of the refrigerant flowing through the refrigerant pipe 31 by the damper 41 decreases, and the high-temperature regenerator The absorbing liquid in the low temperature regenerator 6 can be sufficiently heated by the heat of the refrigerant vapor from 5.
As described above, in the present embodiment, in addition to the differential pressure between the high temperature regenerator 5 and the condenser 7, the on-off valve 43 is controlled according to the amount of refrigerant vapor generated in the high temperature regenerator 5, Even if the differential pressure between the high-temperature regenerator 5 and the condenser 7 is small, when the amount of refrigerant vapor generated in the high-temperature regenerator 5 is small and the refrigerant does not easily stay, the on-off valve 43 is opened. Therefore, it is possible to suppress a decrease in the performance of the absorption refrigerator 100.

以上説明したように、本実施の形態によれば、高温再生器5の入熱量を制御する燃料制御弁4Bを備え、制御装置50は、冷却水温度センサ62の計測結果と、燃料制御弁4Bの開度とに応じて開閉弁43を制御する構成とした。この構成により、例えば、冷却水入口温度が低い場合、かつ、燃料制御弁4Bの開度が大きい場合に、バイパス管42を流通する冷媒量を増加するように、開閉弁43を制御することで、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。また、高温再生器5で発生する冷媒蒸気の発生量が少なく、冷媒の滞留が生じにくい場合に、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100のCOPを向上させることができる。   As described above, according to the present embodiment, the fuel control valve 4B that controls the heat input amount of the high-temperature regenerator 5 is provided, and the control device 50 includes the measurement result of the coolant temperature sensor 62 and the fuel control valve 4B. The on-off valve 43 is controlled according to the opening degree. With this configuration, for example, when the cooling water inlet temperature is low and the opening degree of the fuel control valve 4B is large, the on-off valve 43 is controlled so as to increase the amount of refrigerant flowing through the bypass pipe 42. Since the refrigerant in the refrigerant pipe 31 can be made to flow easily, the absorption refrigeration machine 100 can be operated stably. Therefore, since low temperature cooling water can be used, the COP of the absorption chiller 100 can be improved. Further, when the amount of refrigerant vapor generated in the high-temperature regenerator 5 is small and it is difficult for the refrigerant to stay, it is possible to prevent the opening / closing valve 43 from being opened, so that the COP of the absorption refrigerator 100 can be improved. Can do.

〔第3の実施の形態〕
図3は、第3の実施の形態に係る吸収式冷凍機を示す概略構成図である。本実施の形態の吸収式冷凍機200は、高温再生器5内の圧力を検出する圧力センサ53と、冷媒管31の冷媒ドレン熱回収器16出口側の冷媒の温度を計測する冷媒温度センサ63とを備える点で上記した吸収式冷凍機100と構成を異にする。その他の構成は吸収式冷凍機100と同一であるため、同一の符号を付して説明を省略する。
第1の実施の形態では、制御装置50は、開閉弁43を冷却水温度センサ62の計測結果に応じて制御していたが、本実施の形態では、冷却水温度センサ62の計測結果と、圧力センサ53の検出結果と、冷媒温度センサ63の計測結果とに応じて開閉弁43を制御している。
[Third Embodiment]
FIG. 3 is a schematic configuration diagram illustrating an absorption refrigerator according to the third embodiment. The absorption refrigerator 200 of the present embodiment includes a pressure sensor 53 that detects the pressure in the high-temperature regenerator 5 and a refrigerant temperature sensor 63 that measures the temperature of the refrigerant on the outlet side of the refrigerant drain heat recovery unit 16 in the refrigerant pipe 31. The configuration is different from the absorption refrigerator 100 described above in that Since the other structure is the same as that of the absorption refrigerator 100, the same reference numerals are given and the description thereof is omitted.
In the first embodiment, the control device 50 controls the on-off valve 43 according to the measurement result of the cooling water temperature sensor 62, but in this embodiment, the measurement result of the cooling water temperature sensor 62, The on-off valve 43 is controlled according to the detection result of the pressure sensor 53 and the measurement result of the refrigerant temperature sensor 63.

上述したように、冷媒の滞留は、高温再生器5と凝縮器7との差圧に起因しており、本実施の形態では、高温再生器5と凝縮器7との差圧を、冷却水入口温度と、高温再生器5の圧力とに対応させている。また、冷媒が滞留する際、すなわち、冷媒管31を流通する冷媒の流速が遅くなる際には、低温再生器6及び冷媒ドレン熱回収器16での熱交換量が多くなり、冷媒ドレン熱回収器16出口側の冷媒温度(冷媒出口温度)が低くなるので、この冷媒出口温度によっても、冷媒の滞留を検知できる。そこで、本実施の形態では、冷媒の流速を、冷媒管31の冷媒ドレン熱回収器16出口側での冷媒の温度に対応させている。   As described above, the stagnation of the refrigerant is caused by the differential pressure between the high temperature regenerator 5 and the condenser 7, and in this embodiment, the differential pressure between the high temperature regenerator 5 and the condenser 7 is changed to the cooling water. It corresponds to the inlet temperature and the pressure of the high temperature regenerator 5. Further, when the refrigerant stays, that is, when the flow rate of the refrigerant flowing through the refrigerant pipe 31 becomes slow, the amount of heat exchange in the low-temperature regenerator 6 and the refrigerant drain heat recovery unit 16 increases, and the refrigerant drain heat recovery is performed. Since the refrigerant temperature at the outlet side of the container 16 (refrigerant outlet temperature) is lowered, the refrigerant stagnation can also be detected by this refrigerant outlet temperature. Therefore, in the present embodiment, the flow rate of the refrigerant is made to correspond to the temperature of the refrigerant at the outlet side of the refrigerant drain heat recovery unit 16 of the refrigerant pipe 31.

圧力センサ53は、制御装置50の制御によって、高温再生器5内の圧力を検出し、その検出結果を制御装置50に出力する。また、冷媒温度センサ63は、制御装置50の制御によって、計測結果を制御装置50に出力する。
制御装置50は、圧力センサ53が検出した圧力が所定圧力未満であり、冷媒温度センサ63が計測した温度が所定温度以下の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下になると、バイパス管42の開閉弁43を全開にする。上記所定圧力は、高温再生器5内の圧力が低く、高温再生器5と凝縮器7との差圧が小さくなり、吸収式冷凍機100の運転が不安定になり始める直前の高温再生器5内の圧力であり、予め実験等によって取得され、本実施の形態では、絶対圧力基準で20kPaに設定されている。なお、通常、高温再生器5内の圧力は、絶対圧力基準で約80kPa程度である。また、上記所定温度は、冷媒管31を流通する冷媒の流速が遅く、低温再生器6及び冷媒ドレン熱回収器16で熱交換を通常以上に行って冷媒の温度が低くなっていることを示す冷媒出口温度であり、予め実験等によって取得され、本実施の形態では、30℃に設定されている。なお、通常、冷媒出口温度は約40℃程度である。
The pressure sensor 53 detects the pressure in the high-temperature regenerator 5 under the control of the control device 50 and outputs the detection result to the control device 50. The refrigerant temperature sensor 63 outputs a measurement result to the control device 50 under the control of the control device 50.
When the pressure detected by the pressure sensor 53 is less than the predetermined pressure and the temperature measured by the refrigerant temperature sensor 63 is equal to or lower than the predetermined temperature, the control device 50 measures the cooling water temperature sensor 62 as shown in FIG. When the temperature falls below the first temperature T1 (15 ° C.), the on-off valve 43 of the bypass pipe 42 is fully opened. The predetermined pressure is such that the pressure in the high temperature regenerator 5 is low, the differential pressure between the high temperature regenerator 5 and the condenser 7 becomes small, and the high temperature regenerator 5 immediately before the operation of the absorption refrigeration machine 100 starts to become unstable. This pressure is acquired in advance through experiments or the like, and is set to 20 kPa based on the absolute pressure in this embodiment. Normally, the pressure in the high-temperature regenerator 5 is about 80 kPa on an absolute pressure basis. In addition, the predetermined temperature indicates that the flow rate of the refrigerant flowing through the refrigerant pipe 31 is slow, and that the temperature of the refrigerant is lowered by performing heat exchange more than usual in the low-temperature regenerator 6 and the refrigerant drain heat recovery unit 16. The refrigerant outlet temperature is obtained in advance through experiments or the like, and is set to 30 ° C. in the present embodiment. Normally, the refrigerant outlet temperature is about 40 ° C.

これにより、高温再生器5内の圧力が所定圧力(20kPa)未満であり、冷媒管31の冷媒ドレン熱回収器16出口側の温度が所定温度(30℃)以下の状態において、冷却水入口温度が第1温度T1(15℃)以下になり、高温再生器5と凝縮器7との差圧が小さくなっても、冷媒液がダンパ41をバイパスするバイパス管42を流通するので、冷媒管31において低温再生器6に冷媒液が溜まるのを防止でき、その結果、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。   Thus, in the state where the pressure in the high-temperature regenerator 5 is less than a predetermined pressure (20 kPa) and the temperature on the refrigerant drain heat recovery unit 16 outlet side of the refrigerant pipe 31 is equal to or lower than the predetermined temperature (30 ° C.), the cooling water inlet temperature Since the refrigerant liquid flows through the bypass pipe 42 that bypasses the damper 41 even when the temperature becomes equal to or lower than the first temperature T1 (15 ° C.) and the differential pressure between the high temperature regenerator 5 and the condenser 7 decreases, the refrigerant pipe 31 , The refrigerant liquid can be prevented from accumulating in the low temperature regenerator 6, and as a result, the absorption refrigerator 100 can be operated stably. Therefore, since low temperature cooling water can be used, the COP of the absorption chiller 100 can be improved.

一方、制御装置50は、圧力センサ53が検出した圧力が所定圧力(20kPa)未満であり、冷媒温度センサ63が計測した温度が所定温度(30℃)以下の場合において、燃料制御弁4Bの開度が所定開度(50%)以上の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第2温度T2(20℃)以上になると、開閉弁43を全閉にする。これにより、高温再生器5内の圧力が所定圧力(20kPa)未満であり、冷媒出口温度が所定温度(30℃)以下の状態において、冷却水入口温度が第2温度T2(20℃)以上になり、高温再生器5と凝縮器7との差圧が大きくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。   On the other hand, the control device 50 opens the fuel control valve 4B when the pressure detected by the pressure sensor 53 is less than the predetermined pressure (20 kPa) and the temperature measured by the refrigerant temperature sensor 63 is equal to or lower than the predetermined temperature (30 ° C.). When the degree is equal to or greater than the predetermined opening (50%), as shown in FIG. 2, when the temperature measured by the cooling water temperature sensor 62 becomes equal to or higher than the second temperature T2 (20 ° C.), the on-off valve 43 is fully closed. To do. Thus, when the pressure in the high-temperature regenerator 5 is less than the predetermined pressure (20 kPa) and the refrigerant outlet temperature is equal to or lower than the predetermined temperature (30 ° C.), the cooling water inlet temperature is equal to or higher than the second temperature T2 (20 ° C.). When the differential pressure between the high-temperature regenerator 5 and the condenser 7 increases, the refrigerant liquid does not flow through the bypass pipe 42, so that the flow rate of the refrigerant flowing through the refrigerant pipe 31 is reduced by the damper 41, The absorption liquid in the low temperature regenerator 6 and the rare absorption liquid in the first rare absorption liquid pipe 21A can be sufficiently heated by the heat of the refrigerant vapor.

また、制御装置50は、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下であっても、圧力センサ53が検出した圧力が所定圧力(20kPa)以上になり、あるいは、冷媒温度センサ63が計測した温度が所定温度(30℃)より高くなると、開閉弁43を全閉にする。すなわち、本実施の形態では、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下である条件、圧力センサ53が検出した圧力が所定圧力(20kPa)未満である条件、及び、冷媒温度センサ63が計測した温度が所定温度(30℃)未満である条件の全てを満たした場合のみ、開閉弁43が開放される。これにより、冷却水入口温度が第1温度T1(15℃)以下であり、高温再生器5と凝縮器7との差圧が小さくても、高温再生器5内の圧力が所定圧力(20kPa)以上になり、あるいは、冷媒出口温度が所定温度(30℃)より高くなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。   Further, the control device 50 determines that the pressure detected by the pressure sensor 53 is equal to or higher than a predetermined pressure (20 kPa) even if the temperature measured by the cooling water temperature sensor 62 is equal to or lower than the first temperature T1 (15 ° C.), or When the temperature measured by the refrigerant temperature sensor 63 becomes higher than a predetermined temperature (30 ° C.), the on-off valve 43 is fully closed. That is, in the present embodiment, the condition that the temperature measured by the cooling water temperature sensor 62 is equal to or lower than the first temperature T1 (15 ° C.), the condition that the pressure detected by the pressure sensor 53 is less than a predetermined pressure (20 kPa), and Only when the temperature measured by the refrigerant temperature sensor 63 is less than the predetermined temperature (30 ° C.), the on-off valve 43 is opened. Thereby, even if the cooling water inlet temperature is equal to or lower than the first temperature T1 (15 ° C.) and the differential pressure between the high temperature regenerator 5 and the condenser 7 is small, the pressure in the high temperature regenerator 5 is a predetermined pressure (20 kPa). If the refrigerant outlet temperature becomes higher than the predetermined temperature (30 ° C.) as described above, the refrigerant liquid does not flow through the bypass pipe 42, so that the flow rate of the refrigerant flowing through the refrigerant pipe 31 is reduced by the damper 41, and the high temperature regenerator 5 It is possible to sufficiently heat the absorption liquid in the low temperature regenerator 6 and the rare absorption liquid in the first rare absorption liquid pipe 21 </ b> A by the heat of the refrigerant vapor.

このように、本実施の形態では、高温再生器5と凝縮器7との差圧を冷温水入口温度及び高温再生器5内の圧力の両方に対応させているため、高温再生器5と凝縮器7との差圧を確実に検知できる。また、高温再生器5と凝縮器7との差圧及び冷媒出口温度に応じて開閉弁43を制御する構成としたため、高温再生器5と凝縮器7との差圧が小さくても、冷媒管31を流通する冷媒の流速が速く、冷媒の滞留が生じにくい場合には、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100の性能の低下を抑制できる。さらに、凝縮器7内の圧力を検出する比較的高価な圧力検出手段を必要としないので、開閉弁43を制御することによるコストアップを抑制できる。   As described above, in the present embodiment, the differential pressure between the high temperature regenerator 5 and the condenser 7 is made to correspond to both the cold / hot water inlet temperature and the pressure in the high temperature regenerator 5. The differential pressure with the vessel 7 can be detected reliably. In addition, since the on-off valve 43 is controlled according to the differential pressure between the high temperature regenerator 5 and the condenser 7 and the refrigerant outlet temperature, the refrigerant pipe can be used even if the differential pressure between the high temperature regenerator 5 and the condenser 7 is small. When the flow rate of the refrigerant flowing through the refrigerant 31 is fast and the refrigerant is unlikely to stay, the opening / closing valve 43 can be prevented from being opened, so that a decrease in the performance of the absorption refrigerator 100 can be suppressed. Furthermore, since a relatively expensive pressure detecting means for detecting the pressure in the condenser 7 is not required, an increase in cost due to control of the on-off valve 43 can be suppressed.

以上説明したように、本実施の形態によれば、低温再生器6の下流側の冷媒管31には、冷媒管31を流通する冷媒と、吸収器2から延びる第1稀吸収液管21Aを流通する稀吸収液との間で熱交換を行う冷媒ドレン熱回収器16が設けられ、高温再生器5に高温再生器5内の圧力を検出する圧力センサ53を設け、冷媒管31の冷媒ドレン熱回収器16出口側に冷媒の温度を計測する冷媒温度センサ63を設け、制御装置50は、冷却水温度センサ62の計測結果と、圧力センサ53の検出結果と、冷媒温度センサ63の計測結果とに応じて開閉弁43を制御する構成とした。この構成により、例えば、冷却水の温度が低い場合、かつ、高温再生器5内の圧力が低い場合、かつ、冷媒の冷媒ドレン熱回収器16出口側の温度が高い場合に、バイパス管42を流通する冷媒量を増加するように、開閉弁43を制御することにより、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。また、冷媒管31を流通する冷媒の流速が速く、冷媒の滞留が生じにくい場合に、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100のCOPを向上させることができる。   As described above, according to the present embodiment, the refrigerant pipe 31 on the downstream side of the low-temperature regenerator 6 includes the refrigerant flowing through the refrigerant pipe 31 and the first rare absorption liquid pipe 21 </ b> A extending from the absorber 2. A refrigerant drain heat recovery device 16 that exchanges heat with the circulating rare absorbent is provided, a pressure sensor 53 that detects the pressure in the high temperature regenerator 5 is provided in the high temperature regenerator 5, and a refrigerant drain of the refrigerant pipe 31 is provided. A refrigerant temperature sensor 63 that measures the temperature of the refrigerant is provided on the outlet side of the heat recovery unit 16, and the control device 50 measures the measurement result of the cooling water temperature sensor 62, the detection result of the pressure sensor 53, and the measurement result of the refrigerant temperature sensor 63. The on-off valve 43 is controlled according to the above. With this configuration, for example, when the temperature of the cooling water is low, the pressure in the high-temperature regenerator 5 is low, and the temperature of the refrigerant at the outlet side of the refrigerant drain heat recovery device 16 is high, the bypass pipe 42 is provided. By controlling the on-off valve 43 so as to increase the amount of refrigerant flowing, the refrigerant in the refrigerant pipe 31 can be made to flow easily, so that the absorption refrigeration machine 100 can be operated stably. Therefore, since low temperature cooling water can be used, the COP of the absorption chiller 100 can be improved. Moreover, since the flow rate of the refrigerant | coolant which distribute | circulates the refrigerant | coolant pipe | tube 31 is high and it is hard to produce a refrigerant | coolant retention, it can prevent that the on-off valve 43 is opened, Therefore The COP of the absorption refrigeration machine 100 can be improved.

但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、高温再生器5にて吸収液を加熱する加熱手段として燃料ガスを燃焼させて加熱を行うガスバーナ4を備える構成について説明したが、これに限るものではなく、灯油やA重油を燃焼させるバーナを備える構成や、蒸気や排気ガス等の温熱を用いて加熱する構成としてもよい。
また、上記実施の形態では、流路抵抗手段をダンパ41として説明したが、流路抵抗手段は、これに限定されず、例えば流量制御弁やオリフィスであってもよい。
However, the above embodiment is an aspect of the present invention, and it is needless to say that the embodiment can be appropriately changed without departing from the gist of the present invention.
For example, in the above-described embodiment, the configuration including the gas burner 4 that heats the fuel gas by burning it as the heating means that heats the absorbing liquid in the high-temperature regenerator 5 has been described. It is good also as a structure provided with the burner which burns A heavy oil, or the structure heated using warm heat, such as a vapor | steam and exhaust gas.
In the above embodiment, the flow path resistance means is described as the damper 41. However, the flow path resistance means is not limited to this, and may be, for example, a flow rate control valve or an orifice.

また、上記実施の形態では、吸収式冷凍機100は、吸収器2から延びる稀吸収液管21が高温再生器5及び低温再生器6へと2つに分岐するいわゆるパラレルフローサイクルに形成されていたが、これに限定されず、例えば、高温再生器から流出した吸収液を低温再生器に供給するいわゆるシリーズフローサイクルや、低温再生器から流出した吸収液を高温再生器に供給するいわゆるリバースフローサイクルに形成された吸収式冷凍機に本発明を適用してもよい。   Moreover, in the said embodiment, the absorption refrigerator 100 is formed in what is called a parallel flow cycle in which the rare absorption liquid pipe 21 extended from the absorber 2 branches into the high temperature regenerator 5 and the low temperature regenerator 6. However, the present invention is not limited to this, for example, a so-called series flow cycle in which the absorption liquid flowing out from the high temperature regenerator is supplied to the low temperature regenerator, or a so-called reverse flow in which the absorption liquid flowing out from the low temperature regenerator is supplied to the high temperature regenerator. The present invention may be applied to an absorption refrigerator formed in a cycle.

また、上記実施の形態では、吸収式冷温水機は二重効用型であるが、一重効用型を始め、一重二重効用型及び三重効用型の吸収式冷温水機及び吸収式ヒートポンプ装置に本発明を適用可能なことは勿論である。   In the above embodiment, the absorption chiller / heater is a double-effect type, but this is not limited to single-effect type, single-double-effect type and triple-effect type absorption chiller / heater and absorption heat pump devices. Of course, the invention is applicable.

1 蒸発器
2 吸収器
4B 燃料制御弁(入熱量制御弁)
5 高温再生器
6 低温再生器
7 凝縮器
15 冷却水管
16 冷媒ドレン熱回収器
21A 第1稀吸収液管(稀吸収液管)
31 冷媒管
41 ダンパ(流路抵抗手段)
42 バイパス管
43 開閉弁
50 制御装置(弁制御手段)
53 圧力センサ
62 冷却水温度センサ
63 冷媒温度センサ
100 吸収式冷凍機
1 Evaporator 2 Absorber 4B Fuel control valve (heat input control valve)
DESCRIPTION OF SYMBOLS 5 High temperature regenerator 6 Low temperature regenerator 7 Condenser 15 Cooling water pipe 16 Refrigerant drain heat recovery device 21A 1st rare absorption liquid pipe (rare absorption liquid pipe)
31 Refrigerant pipe 41 Damper (flow path resistance means)
42 Bypass pipe 43 On-off valve 50 Control device (valve control means)
53 Pressure Sensor 62 Cooling Water Temperature Sensor 63 Refrigerant Temperature Sensor 100 Absorption Refrigerator

Claims (5)

高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、高温再生器と凝縮器とを低温再生器を経由する冷媒管で接続し、この冷媒管に、流路抵抗を付与する流路抵抗手段と、この流路抵抗手段をバイパスするバイパス管とを設け、このバイパス管に開閉弁を設けた吸収式冷凍機において、
前記吸収器及び前記凝縮器に順次冷却水を流通させる冷却水管を設け、
前記冷却水管の吸収器入口側に冷却水入口温度を計測する冷却水温度センサを設け、
前記冷却水温度センサの計測結果に応じて前記開閉弁を制御する弁制御手段を備え
前記弁制御手段は、前記冷却水温度センサが計測した冷却水入口温度が第1温度以下の場合に、前記開閉弁を開くことを特徴とする吸収式冷凍機。
A high-temperature regenerator, a low-temperature regenerator, an evaporator, a condenser, and an absorber are provided. The high-temperature regenerator and the condenser are connected by a refrigerant pipe passing through the low-temperature regenerator, and flow resistance is given to the refrigerant pipe. In the absorption refrigerator having a flow path resistance means and a bypass pipe that bypasses the flow path resistance means, and provided with an on-off valve in the bypass pipe,
Providing a cooling water pipe for circulating cooling water sequentially to the absorber and the condenser;
A cooling water temperature sensor for measuring the cooling water inlet temperature is provided on the absorber inlet side of the cooling water pipe,
Comprising valve control means for controlling the on-off valve according to the measurement result of the cooling water temperature sensor ,
The said valve control means opens the said on-off valve when the cooling water inlet temperature measured by the said cooling water temperature sensor is below 1st temperature, The absorption refrigerator characterized by the above-mentioned .
前記弁制御手段は、前記冷却水温度センサが計測した冷却水入口温度が第1温度以下の場合に、前記開閉弁を全開にすることを特徴とする請求項1に記載の吸収式冷凍機。 The absorption chiller according to claim 1, wherein the valve control means fully opens the on-off valve when a cooling water inlet temperature measured by the cooling water temperature sensor is equal to or lower than a first temperature. 前記弁制御手段は、前記冷却水温度センサが計測した冷却水入口温度が前記第1温度よりも高い第2温度に至った場合に、前記開閉弁を全閉にすることを特徴とする請求項2に記載の吸収式冷凍機。 The valve control means fully closes the on-off valve when a coolant inlet temperature measured by the coolant temperature sensor reaches a second temperature higher than the first temperature. 2. The absorption refrigerator according to 2. 前記高温再生器の入熱量を制御する入熱量制御弁を備え、
前記弁制御手段は、前記冷却水温度センサの計測結果と、前記入熱量制御弁の開度とに応じて前記開閉弁を制御することを特徴とする請求項1に記載の吸収式冷凍機。
A heat input amount control valve for controlling the heat input amount of the high temperature regenerator,
The absorption chiller according to claim 1, wherein the valve control means controls the on-off valve in accordance with a measurement result of the cooling water temperature sensor and an opening degree of the heat input control valve.
前記低温再生器の下流側の前記冷媒管には、当該冷媒管を流通する冷媒と、前記吸収器から延びる稀吸収液管を流通する稀吸収液との間で熱交換を行う冷媒ドレン熱回収器が設けられ、
前記高温再生器に当該高温再生器内の圧力を検出する圧力センサを設け、
前記冷媒管の冷媒ドレン熱回収器出口側に冷媒の温度を計測する冷媒温度センサを設け、
前記弁制御手段は、前記冷却水温度センサの計測結果と、前記圧力センサの検出結果と、前記冷媒温度センサの計測結果とに応じて前記開閉弁を制御することを特徴とする請求項1に記載の吸収式冷凍機。
The refrigerant pipe at the downstream side of the low-temperature regenerator has a refrigerant drain heat recovery for exchanging heat between the refrigerant flowing through the refrigerant pipe and the rare absorbent flowing through the rare absorbent pipe extending from the absorber. Vessel is provided,
A pressure sensor for detecting the pressure in the high temperature regenerator is provided in the high temperature regenerator,
A refrigerant temperature sensor for measuring the temperature of the refrigerant is provided on the refrigerant drain heat recovery device outlet side of the refrigerant pipe,
The valve control means controls the on-off valve according to a measurement result of the cooling water temperature sensor, a detection result of the pressure sensor, and a measurement result of the refrigerant temperature sensor. The absorption refrigerator described.
JP2010072574A 2010-03-26 2010-03-26 Absorption refrigerator Active JP5575519B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010072574A JP5575519B2 (en) 2010-03-26 2010-03-26 Absorption refrigerator
KR1020100120403A KR101167800B1 (en) 2010-03-26 2010-11-30 Absorption type refrigerating machine
CN2010105687002A CN102200357B (en) 2010-03-26 2010-11-30 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072574A JP5575519B2 (en) 2010-03-26 2010-03-26 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2011202923A JP2011202923A (en) 2011-10-13
JP5575519B2 true JP5575519B2 (en) 2014-08-20

Family

ID=44661224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072574A Active JP5575519B2 (en) 2010-03-26 2010-03-26 Absorption refrigerator

Country Status (3)

Country Link
JP (1) JP5575519B2 (en)
KR (1) KR101167800B1 (en)
CN (1) CN102200357B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914081A (en) * 2012-10-27 2013-02-06 双良节能系统股份有限公司 Two-section flue gas hot-water single/double-effect composite lithium bromide absorption type refrigerating unit
JP6765056B2 (en) * 2016-11-10 2020-10-07 パナソニックIpマネジメント株式会社 Absorption chiller
KR102292398B1 (en) 2020-01-15 2021-08-20 엘지전자 주식회사 A Freezing Machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024380B2 (en) * 1978-03-31 1985-06-12 三洋電機株式会社 Absorption chiller control device
JPS5986876A (en) * 1982-11-09 1984-05-19 三洋電機株式会社 Controller for double effect absorption refrigerator
JP2873538B2 (en) * 1994-04-11 1999-03-24 矢崎総業株式会社 Double-effect absorption chiller / heater
JPH10170090A (en) 1996-12-11 1998-06-26 Sanyo Electric Co Ltd Absorbing type freezer
CN1211710A (en) * 1997-09-12 1999-03-24 华中理工大学 Absorption type refrigerating circulation
CN1135343C (en) * 1998-01-29 2004-01-21 三洋电机株式会社 Absorption type refrigerating machine
JPH11230631A (en) 1998-02-18 1999-08-27 Sanyo Electric Co Ltd Absorption refrigerator
JP3851204B2 (en) * 2002-03-28 2006-11-29 三洋電機株式会社 Absorption refrigerator
JP4166037B2 (en) * 2002-05-24 2008-10-15 三洋電機株式会社 Absorption chiller / heater
JP2005300126A (en) * 2004-03-15 2005-10-27 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2005282968A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP4390267B2 (en) * 2004-08-30 2009-12-24 東京瓦斯株式会社 Single double effect absorption refrigerator and operation control method thereof
JP2006250427A (en) * 2005-03-10 2006-09-21 Yazaki Corp Absorption refrigerating machine
JP2009085509A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine
CN101619907B (en) * 2009-07-24 2011-04-13 大连三洋制冷有限公司 High-efficiency vapor double effect lithium bromide absorption type refrigerating unit

Also Published As

Publication number Publication date
KR101167800B1 (en) 2012-07-25
CN102200357A (en) 2011-09-28
CN102200357B (en) 2013-07-17
JP2011202923A (en) 2011-10-13
KR20110108235A (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP5575519B2 (en) Absorption refrigerator
JP4166037B2 (en) Absorption chiller / heater
JP7213476B2 (en) Absorption chiller
JP5405335B2 (en) Absorption refrigerator
CN107388615B (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP2018169075A (en) Absorption type refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP5449862B2 (en) Absorption refrigeration system
JP4090262B2 (en) Absorption refrigerator
JP7054855B2 (en) Absorption chiller
JP5456368B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP5967407B2 (en) Absorption type water heater
JP4632633B2 (en) Absorption heat pump device
JP6264636B2 (en) Absorption refrigerator
JP4326478B2 (en) Single double-effect absorption refrigerator
JP2010276244A (en) Absorption type water chiller/heater
JP2010266170A (en) Absorption-type refrigerating machine
JP6765056B2 (en) Absorption chiller
JP2011094910A (en) Absorption refrigerating machine
JP2011033261A (en) Absorption type refrigerating machine
JP2017125653A (en) Absorption type refrigerator
JP4971929B2 (en) Absorption liquid circulation control method for absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150