JP2009085509A - Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine - Google Patents

Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine Download PDF

Info

Publication number
JP2009085509A
JP2009085509A JP2007255771A JP2007255771A JP2009085509A JP 2009085509 A JP2009085509 A JP 2009085509A JP 2007255771 A JP2007255771 A JP 2007255771A JP 2007255771 A JP2007255771 A JP 2007255771A JP 2009085509 A JP2009085509 A JP 2009085509A
Authority
JP
Japan
Prior art keywords
low
temperature
concentration
liquid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007255771A
Other languages
Japanese (ja)
Inventor
Hideki Funai
秀樹 府内
Shinichi Uekago
伸一 上篭
Akira Hatayama
朗 畑山
Yosuke Tanaka
洋介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007255771A priority Critical patent/JP2009085509A/en
Publication of JP2009085509A publication Critical patent/JP2009085509A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the crystallization of lithium bromide in a low-temperature heat exchanger through which, in particular, an absorbent of a high concentration passes in an absorption type refrigerating machine. <P>SOLUTION: In a double effect absorption type refrigerating machine comprising an absorber 1, a high-temperature regenerator 3, a low-temperature regenerator 5, a condenser 9, an evaporator 10 and the like, the absorbent of a high concentration produced in the low-temperature regenerator 5 is passed through the low-temperature heat exchanger 7 through a pipe conduit L3 by a concentrated liquid pump 6 and introduced to the absorber 1. A temperature sensor Ts is disposed at the outlet side of the low-temperature heat exchanger 7 to measure a temperature of the absorbent of the high concentration at the outlet side of the low-temperature heat exchanger 7, and the concentration or/and heat exchange amount of the absorbent of the high concentration are controlled on the basis of the measured temperature and a crystallization temperature of the absorbent of the high concentration. Thus the crystallization of lithium bromide in the low-temperature heat exchanger 7 can be prevented. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸収式冷凍機に係り、特に低温熱交換器での高濃度吸収液結晶化防止方法に関する。   The present invention relates to an absorption refrigerator, and more particularly to a method for preventing crystallization of a high-concentration absorption liquid in a low-temperature heat exchanger.

従来、例えば臭化リチウム溶液を吸収液とし、水を冷媒として高温再生器と低温再生器とを備えた二重効用の吸収式冷凍機が周知である。この二重効用吸収式冷凍機は、例えば図3に示すように吸収器1で冷媒蒸気を吸収して低濃度となった吸収液は稀液ポンプ2により高温再生器3に戻され、この高温再生器3においてバーナ4で加熱することにより冷媒蒸気を分離する。冷媒蒸気が分離されて中濃度となった吸収液は、管路L1を介して低温再生器5に導入されると共に、前記高温再生器3で分離された冷媒蒸気は管路L2を介して低温再生器5内を通過し、この低温再生器5において前記中濃度吸収液を加熱することにより冷媒蒸気が再分離される。冷媒蒸気が再分離されて高濃度となった吸収液は、濃液ポンプ6により管路L3を介して低温熱交換器7を通過して前記吸収器1に導入される。管路L3においては、濃液ポンプ6の上流側と低温熱交換器7の下流側とを結ぶバイパス管路8が設けられている。   2. Description of the Related Art Conventionally, for example, a dual effect absorption refrigerator having a high temperature regenerator and a low temperature regenerator using a lithium bromide solution as an absorption liquid and water as a refrigerant is well known. In this double-effect absorption refrigerator, for example, as shown in FIG. 3, the absorption liquid that has absorbed refrigerant refrigerant in the absorber 1 and has a low concentration is returned to the high-temperature regenerator 3 by the dilute liquid pump 2. The refrigerant vapor is separated by heating with the burner 4 in the regenerator 3. The absorbing liquid having a medium concentration as a result of separation of the refrigerant vapor is introduced into the low temperature regenerator 5 through the pipe L1, and the refrigerant vapor separated in the high temperature regenerator 3 is cooled through the pipe L2. The refrigerant vapor is re-separated by passing through the regenerator 5 and heating the medium concentration absorbent in the low-temperature regenerator 5. The absorption liquid having a high concentration as a result of re-separation of the refrigerant vapor passes through the low-temperature heat exchanger 7 through the conduit L3 by the concentrated liquid pump 6 and is introduced into the absorber 1. In the pipe line L3, a bypass pipe line 8 connecting the upstream side of the concentrated liquid pump 6 and the downstream side of the low-temperature heat exchanger 7 is provided.

一方、前記低温再生器5において、中濃度吸収液から再分離された冷媒蒸気は凝縮器9に導入されると共に、管路L4を介してこの凝縮器9内を通過する冷却水により凝縮して冷媒液となり、低温再生器5で冷媒蒸気を再分離した後冷媒液となって凝縮器9の底部に導入される冷媒液と合流する。合流した冷媒液は、管路L5を介して蒸発器10に導入されると共に、冷媒ポンプ11により蒸発器10上部の散布装置12から伝熱管13に散布され、この伝熱管13内を通過する冷温水と熱交換することにより冷媒蒸気となる。そして、この冷媒蒸気は前記吸収器1に導入され、この吸収器1において前記低温再生器5から導入される高濃度吸収液が上部の散布装置14から散布されて冷媒蒸気を吸収し、これにより低濃度となった吸収液は前記稀液ポンプ2により管路L6を介して前記高温再生器3に戻される構成となっている。このような二重効用の吸収式冷凍機は、例えば特許文献1や特許文献2等に開示されている。
特開2005−282968 特開2005−300126
On the other hand, in the low-temperature regenerator 5, the refrigerant vapor re-separated from the medium concentration absorbing liquid is introduced into the condenser 9 and condensed by the cooling water passing through the condenser 9 through the pipe L 4. The refrigerant liquid is re-separated by the low-temperature regenerator 5 and then merged with the refrigerant liquid introduced into the bottom of the condenser 9 as the refrigerant liquid. The merged refrigerant liquid is introduced into the evaporator 10 via the pipe line L5, and is sprayed from the spraying device 12 on the evaporator 10 to the heat transfer pipe 13 by the refrigerant pump 11, and the cold temperature passing through the heat transfer pipe 13 is reached. It becomes refrigerant vapor by heat exchange with water. And this refrigerant | coolant vapor | steam is introduce | transduced into the said absorber 1, and the high concentration absorption liquid introduce | transduced from the said low-temperature regenerator 5 in this absorber 1 is spread | dispersed from the upper spreading | diffusion apparatus 14, and a refrigerant | coolant vapor | steam is absorbed thereby. The absorption liquid having a low concentration is returned to the high-temperature regenerator 3 through the pipe L6 by the diluted liquid pump 2. Such double-effect absorption refrigerators are disclosed in, for example, Patent Document 1 and Patent Document 2.
JP-A-2005-282968 JP 2005-300126 A

上記のような吸収式冷凍機において、吸収剤として用いられる臭化リチウムは、濃度と温度の条件によっては結晶化するという特性がある。例えば、高温再生器でバーナの過熱により吸収液の濃度が濃くなりすぎて臭化リチウムの結晶化が生じたり、或は低温再生器から吸収器に管路を介して導入される高濃度吸収液が、その管路の途中で通過する低温熱交換器で結晶化が生じたりすることがある。このように、吸収液中の臭化リチウムが結晶化すると、吸収式冷凍機内で沈澱して吸収液の循環が悪くなり、効率低下を引き起こしたり故障や破損の原因になったりする。   In the absorption refrigerator as described above, lithium bromide used as an absorbent has the property of crystallizing depending on the conditions of concentration and temperature. For example, in a high-temperature regenerator, the concentration of the absorbent becomes too high due to overheating of the burner, resulting in crystallization of lithium bromide, or a high-concentration absorbent that is introduced from the low-temperature regenerator into the absorber via a conduit. However, crystallization may occur in a low-temperature heat exchanger that passes in the middle of the pipeline. In this way, when lithium bromide in the absorbing solution is crystallized, it precipitates in the absorption refrigerator and the absorbing solution is circulated, resulting in a decrease in efficiency and a failure or breakage.

本発明は、このような従来の吸収式冷凍機の不都合を解消するためになされ、特に高濃度吸収液が通過する低温熱交換器での臭化リチウムの結晶化を防止することを目的とする。   The present invention has been made to eliminate the disadvantages of such conventional absorption refrigerators, and in particular, to prevent crystallization of lithium bromide in a low-temperature heat exchanger through which a high concentration absorption liquid passes. .

上記の目的を達成するための手段として、本発明の請求項1は、吸収剤として臭化リチウム、冷媒として水を用い、吸収器で冷媒蒸気を吸収して低濃度となった吸収液は高温再生器に戻され、この高温再生器で加熱することにより低濃度吸収液から冷媒蒸気が分離され、中濃度となった吸収液は低温再生器に導入されると共に、前記低濃度吸収液から分離された冷媒蒸気は管路を介して低温再生器を通過し、その際前記中濃度吸収液を加熱することにより冷媒蒸気を再分離した後冷媒液となって凝縮器の底部に導入され、低温再生器で冷媒蒸気が再分離されて高濃度となった吸収液は濃液ポンプにより低温熱交換器を通過し、この低温熱交換器で吸収器から高温再生器に戻る低濃度吸収液と熱交換した後に吸収器に導入され、この濃液ポンプの上流側と低温熱交換器の下流側とを結ぶバイパス管路が設けられ、前記中濃度吸収液から再分離された冷媒蒸気は凝縮器に導入されると共に、管路を介してこの凝縮器内を通過する冷却水により凝縮して冷媒液となり、この冷媒液は前記凝縮器底部の冷媒液と合流して蒸発器に導入されると共に、冷媒ポンプを介して蒸発器の散布装置から伝熱管に散布され、この伝熱管内を通過する冷温水と熱交換することにより冷媒蒸気となり、この冷媒蒸気は前記吸収器に導入され、この吸収器で前記低温再生器から導入される高濃度吸収液が吸収器の散布装置から散布されて冷媒蒸気を吸収し、低濃度となった吸収液は稀液ポンプを介して前記高温再生器に戻される構成の吸収式冷凍機において、
前記低温熱交換器の出口側に温度センサを設け、当該低温熱交換器の出口側での高濃度吸収液の温度を計測し、この計測温度と高濃度吸収液の結晶化温度とに基づいて高濃度吸収液の濃度又は/及び熱交換量を制御するようにした吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法を要旨とする。
As means for achieving the above-mentioned object, claim 1 of the present invention uses lithium bromide as an absorbent and water as a refrigerant, and the absorption liquid that has become a low concentration by absorbing refrigerant vapor with an absorber has a high temperature. The refrigerant vapor is separated from the low-concentration absorbent by returning to the regenerator and heated by this high-temperature regenerator, and the medium-concentrated absorbent is introduced into the low-temperature regenerator and separated from the low-concentration absorbent. The refrigerant vapor passed through the low-temperature regenerator through the pipe line, and then the refrigerant of the refrigerant vapor is re-separated by heating the medium-concentration absorbing liquid, and then introduced into the bottom of the condenser as a refrigerant liquid. Absorbed liquid, which has become a high concentration due to re-separation of the refrigerant vapor in the regenerator, passes through the low-temperature heat exchanger by the concentrated liquid pump, and the low-concentrated absorbent and heat return from the absorber to the high-temperature regenerator with this low-temperature heat exchanger. This concentrated pump is introduced into the absorber after replacement A bypass pipe connecting the upstream side and the downstream side of the low-temperature heat exchanger is provided, and the refrigerant vapor re-separated from the medium-concentration absorbing liquid is introduced into the condenser, and inside the condenser via the pipe. The refrigerant is condensed by the cooling water passing through the refrigerant and becomes a refrigerant liquid. The refrigerant liquid merges with the refrigerant liquid at the bottom of the condenser and is introduced into the evaporator, and from the evaporator spraying device to the heat transfer tube via the refrigerant pump. The refrigerant vapor is formed by spraying and exchanging heat with cold / hot water passing through the heat transfer pipe, and this refrigerant vapor is introduced into the absorber, and the high-concentration absorption liquid introduced from the low-temperature regenerator is introduced into the absorber. In the absorption refrigeration machine configured to absorb the refrigerant vapor sprayed from the spraying device of the absorber and return to the high-temperature regenerator through the rare liquid pump,
A temperature sensor is provided on the outlet side of the low-temperature heat exchanger, the temperature of the high-concentration absorbing liquid on the outlet side of the low-temperature heat exchanger is measured, and based on the measured temperature and the crystallization temperature of the high-concentration absorbing liquid The gist is a method for preventing crystallization of a high-concentration absorbent liquid in a low-temperature heat exchanger in an absorption refrigerator in which the concentration or / and heat exchange amount of the high-concentration absorbent liquid is controlled.

本発明の請求項2は、請求項1に記載の吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法において、前記高濃度吸収液の計測温度と高濃度吸収液の結晶化温度とに基づいて、高濃度吸収液が結晶する前に前記濃液ポンプのインバータモータ周波数を増やすことを特徴とする。   Claim 2 of the present invention is the method for preventing crystallization of a high concentration absorbent in a low-temperature heat exchanger in the absorption refrigerator according to claim 1, wherein the measured temperature of the high concentration absorbent and the crystal of the high concentration absorbent are used. The inverter motor frequency of the concentrated liquid pump is increased before the high-concentration absorbing liquid is crystallized based on the crystallization temperature.

本発明の請求項3は、請求項1に記載の吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法において、前記高濃度吸収液の計測温度と高濃度吸収液の結晶化温度とに基づいて、高濃度吸収液が結晶する前に前記稀液ポンプのインバータモータ周波数を増やすことを特徴とする。   Claim 3 of the present invention is the method for preventing crystallization of a high-concentration absorbent in a low-temperature heat exchanger in the absorption refrigerator according to claim 1, wherein the measurement temperature of the high-concentration absorbent and the crystal of the high-concentration absorbent are used. The inverter motor frequency of the dilute liquid pump is increased before the high-concentration absorbing liquid crystallizes based on the crystallization temperature.

上記請求項1の発明によれば、高温再生器、低温再生器、凝縮器、蒸発器、吸収器を備え、吸収剤として臭化リチウム、冷媒として水が用いられ、低温再生器で冷媒蒸気が再分離されて高濃度となった吸収液が、濃液ポンプにより管路を介して低温熱交換器を通過し、この低温熱交換器で吸収器から高温再生器に戻る低濃度吸収液と熱交換して吸収器に導入される二重効用吸収式冷凍機において、前記低温熱交換器の出口側に温度センサを設け、当該低温熱交換器の出口側での高濃度吸収液の温度を計測し、この計測温度と高濃度吸収液の臭化リチウムが結晶する時の結晶化温度とに基づいて高濃度吸収液の濃度又は/及び熱交換量を制御することにより、低温熱交換器での高濃度吸収液の結晶化を防止することができる。   According to the first aspect of the invention, a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber are provided, lithium bromide is used as an absorbent, water is used as a refrigerant, and refrigerant vapor is generated in the low temperature regenerator. Absorbed liquid that has been re-separated to a high concentration passes through a low-temperature heat exchanger via a conduit by a concentrated liquid pump, and returns to the high-temperature regenerator from the absorber with this low-temperature heat exchanger. In a dual-effect absorption refrigerator that is exchanged and introduced into the absorber, a temperature sensor is provided on the outlet side of the low-temperature heat exchanger, and the temperature of the high-concentration absorbent on the outlet side of the low-temperature heat exchanger is measured. By controlling the concentration or / and heat exchange amount of the high concentration absorbent based on the measured temperature and the crystallization temperature when the lithium bromide of the high concentration absorbent is crystallized, Crystallization of the high concentration absorbent can be prevented.

上記請求項2の発明によれば、前記低温熱交換器の出口側での高濃度吸収液の計測温度と、高濃度吸収液の臭化リチウムが結晶する時の結晶化温度とに基づいて、高濃度吸収液が結晶する前に前記濃液ポンプのインバータモータ周波数を増やすことにより、低温熱交換器に流れる高濃度吸収液の液量が増え、この増えた液量の分だけ低温熱交換器の出口温度が高くなるため、当該高濃度吸収液の結晶化を防止することができる。   According to the invention of claim 2 above, based on the measurement temperature of the high concentration absorbent on the outlet side of the low temperature heat exchanger and the crystallization temperature when the lithium bromide of the high concentration absorbent crystallizes, By increasing the inverter motor frequency of the concentrate pump before the high-concentration absorbing liquid crystallizes, the amount of the high-concentration absorbing liquid flowing to the low-temperature heat exchanger increases, and the low-temperature heat exchanger increases by this increased liquid amount. Therefore, the crystallization of the high-concentration absorbing liquid can be prevented.

上記請求項3の発明によれば、前記低温熱交換器の出口側での高濃度吸収液の計測温度と、高濃度吸収液の臭化リチウムが結晶する時の結晶化温度とに基づいて、高濃度吸収液が結晶する前に前記稀液ポンプのインバータモータ周波数を増やすことにより、吸収器から高温再生器へ供給される低濃度吸収液量は増加し、前記高温再生器から低温再生器へと供給される中濃度吸収液の循環量が増加すると共に、その濃度は低下するものとなるため、前記低温熱交換器を通過する高濃度吸収液の濃度も低下して臭化リチウムの結晶化を防止することができる。   According to the third aspect of the invention, based on the measurement temperature of the high concentration absorbent on the outlet side of the low temperature heat exchanger and the crystallization temperature when the lithium bromide of the high concentration absorbent is crystallized, By increasing the inverter motor frequency of the dilute liquid pump before the high-concentration absorbent crystallizes, the amount of low-concentration absorbent supplied from the absorber to the high-temperature regenerator increases, and from the high-temperature regenerator to the low-temperature regenerator. As the circulation amount of the medium concentration absorbing solution supplied increases and the concentration decreases, the concentration of the high concentration absorbing solution passing through the low temperature heat exchanger also decreases and the crystallization of lithium bromide Can be prevented.

次に、本発明の実施形態を添付図面に基づいて説明する。図1は、本発明に係る吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法の実施形態を説明するための概略構成図である。図1では、前記従来例と同一又は実質的に同一部材は、前記と同じ符号を付ける。図中1は吸収器、3は高温再生器、5は低温再生器、9は凝縮器、10は蒸発器であり、吸収剤として臭化リチウム、冷媒として水がそれぞれ用いられる二重効用の吸収式冷凍機である。この吸収式冷凍機は、吸収器1で冷媒蒸気を吸収した低濃度吸収液が稀液ポンプ2により高温再生器3に戻されるが、その管路L6の途中で低温熱交換器7と高温熱交換器15とを通過する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram for explaining an embodiment of a high-concentration absorption liquid crystallization preventing method in a low-temperature heat exchanger in an absorption refrigerator according to the present invention. In FIG. 1, the same or substantially the same members as those of the conventional example are denoted by the same reference numerals as described above. In the figure, 1 is an absorber, 3 is a high-temperature regenerator, 5 is a low-temperature regenerator, 9 is a condenser, 10 is an evaporator, and lithium double bromide is used as an absorbent and water is used as a refrigerant. Type refrigerator. In this absorption refrigerator, the low-concentration absorbing liquid that has absorbed the refrigerant vapor in the absorber 1 is returned to the high-temperature regenerator 3 by the dilute pump 2, and the low-temperature heat exchanger 7 and the high-temperature heat are in the middle of the pipe L6. It passes through the exchanger 15.

高温再生器3において、吸収器1から戻された低濃度吸収液をバーナ4により加熱して冷媒蒸気を分離する。この高温再生器3で分離された冷媒蒸気は、管路L2を介して低温再生器5内を通過すると共に、冷媒ドレン熱回収器16を経て冷媒液となり、凝縮器9の底部に導入される。尚、17は凝縮器9に導入される冷媒液量を制御するために、冷媒ドレン熱回収器16の下流側に設けられた流量可変手段であり、分岐路を有すると共に電磁弁又は流量調整弁等の制御弁18を備えている。   In the high-temperature regenerator 3, the low concentration absorbent returned from the absorber 1 is heated by the burner 4 to separate the refrigerant vapor. The refrigerant vapor separated by the high-temperature regenerator 3 passes through the low-temperature regenerator 5 through the pipe L2 and becomes a refrigerant liquid through the refrigerant drain heat recovery unit 16, and is introduced into the bottom of the condenser 9. . Reference numeral 17 denotes a flow rate varying means provided on the downstream side of the refrigerant drain heat recovery unit 16 in order to control the amount of the refrigerant liquid introduced into the condenser 9, and has a branch passage and is also an electromagnetic valve or a flow rate adjustment valve. The control valve 18 is provided.

低温再生器5において、前記高温再生器3で生成された中濃度吸収液が、管路L1を介して高温熱交換器15を通過して導入され、この低温再生器5内を通過する前記冷媒蒸気により加熱されて冷媒蒸気が再分離される。この低温再生器5で再分離された冷媒蒸気は凝縮器9に導入し、管路L4を介して凝縮器9内を通過する冷却水により冷却されて凝縮し、冷媒液となって凝縮器9の底部に溜まる。   In the low-temperature regenerator 5, the medium-concentration absorbing liquid generated in the high-temperature regenerator 3 is introduced through the high-temperature heat exchanger 15 through the pipe L 1 and passes through the low-temperature regenerator 5. The refrigerant vapor is re-separated by being heated by the vapor. The refrigerant vapor re-separated by the low-temperature regenerator 5 is introduced into the condenser 9, cooled and condensed by the cooling water passing through the condenser 9 through the pipe L 4, and becomes a refrigerant liquid to form the condenser 9. Accumulate at the bottom.

低温再生器5で冷媒蒸気が再分離されて高濃度となった吸収液は、濃液ポンプ6により管路L3を介して低温熱交換器7を通過した後に吸収器1に導入される。尚、管路L3には濃液ポンプ6の上流側と低温熱交換器7の下流側とを結ぶバイパス管路8が設けられている。このバイパス管路8は、濃液ポンプ6のキャビテーションを防止すると共に、濃液ポンプ6での臭化リチウムの結晶化を防止する。   The absorption liquid having a high concentration as a result of re-separation of the refrigerant vapor in the low-temperature regenerator 5 is introduced into the absorber 1 after passing through the low-temperature heat exchanger 7 via the conduit L3 by the concentrated liquid pump 6. Incidentally, a bypass line 8 connecting the upstream side of the concentrated liquid pump 6 and the downstream side of the low-temperature heat exchanger 7 is provided in the line L3. The bypass pipe 8 prevents cavitation of the concentrated liquid pump 6 and prevents crystallization of lithium bromide in the concentrated liquid pump 6.

本発明では、前記濃液ポンプ6により低温再生器5で生成された高濃度吸収液を、低温熱交換器7を通過して吸収器1に導入する際に、低温熱交換器7で高濃度吸収液の結晶化が生じないように制御する。この制御方法の概要を説明すると、低温熱交換器7の出口側に温度センサTsを設け、この低温熱交換器7の出口側での高濃度吸収液の温度を計測し、当該計測温度と高濃度吸収液の結晶化温度とに基づいて高濃度吸収液の濃度又は/及び熱交換量を制御する。   In the present invention, when the high-concentration absorbent produced by the low-temperature regenerator 5 by the concentrated liquid pump 6 passes through the low-temperature heat exchanger 7 and is introduced into the absorber 1, the high-concentration liquid is produced by the low-temperature heat exchanger 7. Control is performed so that crystallization of the absorbing solution does not occur. The outline of this control method will be described. A temperature sensor Ts is provided on the outlet side of the low-temperature heat exchanger 7, the temperature of the high-concentration absorbing liquid on the outlet side of the low-temperature heat exchanger 7 is measured, and the measured temperature and the high temperature are measured. Based on the crystallization temperature of the concentration absorbing solution, the concentration or / and heat exchange amount of the high concentration absorbing solution are controlled.

高濃度吸収液の濃度を制御する場合は、低温熱交換器7の出口側での高濃度吸収液の計測温度が、結晶化温度に至る前の段階で、濃液ポンプ6のインバータモータ周波数を増大させる。これにより、低温熱交換器7を通過する高濃度吸収液の液量を増加させると共に、前記低温熱交換器7での当該高濃度吸収液の通過時間を短くすることにより、高濃度吸収液が結晶化する温度まで低下してしまうことを抑えることで臭化リチウムの結晶化を防止することができる。   When controlling the concentration of the high-concentration absorbing liquid, the inverter motor frequency of the concentrated liquid pump 6 is set at a stage before the measurement temperature of the high-concentration absorbing liquid on the outlet side of the low-temperature heat exchanger 7 reaches the crystallization temperature. Increase. Thereby, while increasing the liquid quantity of the high concentration absorption liquid which passes the low temperature heat exchanger 7, and shortening the passage time of the said high concentration absorption liquid in the said low temperature heat exchanger 7, a high concentration absorption liquid becomes By suppressing the temperature from decreasing to the crystallization temperature, crystallization of lithium bromide can be prevented.

図2は、結晶余裕度の変化に伴う濃液ポンプ6のインバータモータ周波数制御の一例を示すものである。ここで、結晶余裕度(℃)=(低温熱交換器出口での高濃度吸収液の温度)−(結晶温度)と定義する。結晶温度は高濃度吸収液の濃度より算出することが可能であり、この結晶温度を算出し、低温熱交換器出口温度と結晶温度との差により高濃度吸収液循環量を制御する。例えば(結晶余裕度)≦(結晶余裕度設定値)+(結晶回避温度幅)となった場合には、前回の濃液ポンプのインバータモータ周波数演算値から5Hz増加させて運転を継続する。(結晶余裕度)≧(結晶余裕度設定値)+(結晶回避温度幅)+1℃となった場合には、濃液ポンプのインバータモータ周波数はその時点の正常な演算値にする。尚、結晶余裕度設定値はその設定範囲を2.0〜10.0℃とし、結晶回避温度幅はその設定範囲を1.0〜5.0℃とする。   FIG. 2 shows an example of inverter motor frequency control of the concentrated liquid pump 6 in accordance with the change in crystal margin. Here, the crystal margin (° C.) = (Temperature of the high-concentration absorbing liquid at the outlet of the low-temperature heat exchanger) − (crystal temperature). The crystal temperature can be calculated from the concentration of the high-concentration absorbent, and the crystal temperature is calculated, and the circulation amount of the high-concentration absorbent is controlled by the difference between the low-temperature heat exchanger outlet temperature and the crystal temperature. For example, when (crystal margin) ≦ (crystal margin setting value) + (crystal avoidance temperature range), the operation is continued by increasing the inverter motor frequency calculation value of the previous concentrated liquid pump by 5 Hz. When (crystal margin) ≧ (crystal margin setting value) + (crystal avoidance temperature range) + 1 ° C., the inverter motor frequency of the concentrated liquid pump is set to a normal calculation value at that time. The crystal margin setting value has a setting range of 2.0 to 10.0 ° C, and the crystal avoidance temperature range has a setting range of 1.0 to 5.0 ° C.

従来では、同じように結晶余裕度を算出しても、結晶化の回避方法としては高温再生器のバーナの燃焼を停止させることで行っていた。このため、冷水出口温度などにも大きく影響していた。   Conventionally, even if the crystal margin is calculated in the same manner, as a method of avoiding crystallization, the combustion of the burner of the high-temperature regenerator is stopped. For this reason, it has had a great influence on the cold water outlet temperature.

一方、低温熱交換器7における高濃度吸収液の熱交換量を制御することで結晶化防止を図る場合は、前記稀液ポンプ2により吸収器1から高温再生器3に戻す低濃度吸収液が低温熱交換器7を通過する際の液量を制御することで行う。このため、稀液ポンプ2のインバータモータ周波数を制御し、低濃度吸収液の循環量を変えることで低温熱交換器7での高濃度吸収液の熱交換量を制御する。   On the other hand, when the prevention of crystallization is controlled by controlling the heat exchange amount of the high-concentration absorbent in the low-temperature heat exchanger 7, the low-concentration absorbent returned from the absorber 1 to the high-temperature regenerator 3 by the dilute liquid pump 2 This is done by controlling the amount of liquid when passing through the low-temperature heat exchanger 7. For this reason, the inverter motor frequency of the dilute liquid pump 2 is controlled, and the heat exchange amount of the high concentration absorbent in the low temperature heat exchanger 7 is controlled by changing the circulation amount of the low concentration absorbent.

この方法による場合は、低温熱交換器7の出口側での高濃度吸収液の温度に基づき、結晶化が始まる前段階で稀液ポンプ2のインバータモータ周波数を増大させる。これにより、
吸収器1から高温再生器3へと供給される低濃度吸収液量が増加し、当該高温再生器3から低温再生器5へと供給される中濃度吸収液も増加するものとなるが、バーナ4による加熱量は増加させないため、当該中濃度吸収液の濃度は低下し、低温再生器5から前記低温熱交換器7を通過する高濃度吸収液の濃度を低下させることができ、結晶化を防止することができる。尚、この方法と前記の方法とを併用して、臭化リチウムの結晶化を防止することも可能である。
In the case of this method, based on the temperature of the high-concentration absorbing liquid on the outlet side of the low-temperature heat exchanger 7, the inverter motor frequency of the dilute liquid pump 2 is increased before the crystallization starts. This
The amount of the low concentration absorbent supplied from the absorber 1 to the high temperature regenerator 3 increases, and the medium concentration absorbent supplied from the high temperature regenerator 3 to the low temperature regenerator 5 also increases. 4 does not increase the amount of heating, so that the concentration of the medium concentration absorbing liquid decreases, the concentration of the high concentration absorbing liquid passing through the low temperature heat exchanger 7 from the low temperature regenerator 5 can be decreased, and crystallization can be performed. Can be prevented. It is also possible to prevent crystallization of lithium bromide by using this method in combination with the above method.

前記凝縮器9において、低温再生器5で中濃度吸収液から再分離された冷媒蒸気が導入し、管路L4を介して凝縮器9内を通過する冷却水により冷却されて冷媒液になると共に、前記可変抵抗手段17を通って凝縮器9の底部に導入する冷媒液と合流して底部に溜まる。   In the condenser 9, the refrigerant vapor re-separated from the medium concentration absorbing liquid in the low temperature regenerator 5 is introduced and cooled by the cooling water passing through the condenser 9 through the pipe L4 to become a refrigerant liquid. The refrigerant liquid introduced into the bottom of the condenser 9 through the variable resistance means 17 joins and accumulates at the bottom.

蒸発器10において、凝縮器9の底部に溜まった冷媒液が管路L5を介して導入し、冷媒ポンプ11により蒸発器10内の上部に配設された散布装置12から散布され、伝熱管13を介して蒸発器10内を通過する冷温水と熱交換する。これにより、冷媒液は蒸発して冷温水を冷却し、この冷却された冷温水が負荷に導入されて冷房作用を行う。   In the evaporator 10, the refrigerant liquid accumulated at the bottom of the condenser 9 is introduced through the pipe L <b> 5, and is sprayed from the spraying device 12 disposed in the upper part of the evaporator 10 by the refrigerant pump 11. Heat exchange with cold / hot water passing through the evaporator 10 is performed. As a result, the refrigerant liquid evaporates and cools the cold / hot water, and the cooled cold / hot water is introduced into the load to perform a cooling operation.

吸収器5において、前記のように低温再生器5から高濃度吸収液が濃液ポンプ6により管路L3を介して低温熱交換器7を通過した後に、吸収器1の散布装置14から散布される。この散布装置14から散布される高濃度吸収液は、管路L4を介して吸収器1内を通過する冷却水と熱交換して冷却され、蒸発器10から導入する冷媒蒸気を吸収する。冷媒蒸気を吸収して濃度の低くなった低濃度吸収液は、前記のように稀液ポンプ2により管路L6を介して低温熱交換器7、高温熱交換器8を通過した後に高温再生器3に導入される。
尚、管路L6において、低温熱交換器7の上流側で分岐された管路L7は、前記冷媒ドレン熱回収器16を通過して低温熱交換器7の下流側に連結している。
In the absorber 5, as described above, the high-concentration absorbing liquid from the low-temperature regenerator 5 passes through the low-temperature heat exchanger 7 through the conduit L <b> 3 by the concentrated liquid pump 6 and is then sprayed from the spraying device 14 of the absorber 1. The The high-concentration absorbing liquid sprayed from the spraying device 14 is cooled by exchanging heat with the cooling water passing through the absorber 1 through the pipe L4, and absorbs the refrigerant vapor introduced from the evaporator 10. The low-concentration absorbing liquid whose concentration is reduced by absorbing the refrigerant vapor passes through the low-temperature heat exchanger 7 and the high-temperature heat exchanger 8 via the pipe L6 by the dilute pump 2 as described above, and then the high-temperature regenerator. 3 is introduced.
In addition, in the pipe line L6, the pipe line L7 branched on the upstream side of the low-temperature heat exchanger 7 passes through the refrigerant drain heat recovery unit 16 and is connected to the downstream side of the low-temperature heat exchanger 7.

以上、本発明について、二重効用吸収式冷凍機を一実施の形態として説明したが、上記した実施の形態はあくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形及び応用が可能である。
例えば、本発明は、三重効用吸収式冷凍機にも適用可能である。又、冷媒ドレン熱交換器16や、流量可変手段17を備えていない吸収式冷凍機であっても適用でき、高濃度吸収液の結晶化を防止することができるものである。
The dual-effect absorption refrigerator has been described as an embodiment of the present invention. However, the above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified within the scope of the present invention. And application is possible.
For example, the present invention can also be applied to a triple effect absorption refrigerator. Further, the present invention can be applied to an absorption refrigerator that does not include the refrigerant drain heat exchanger 16 or the flow rate varying means 17, and can prevent crystallization of the high concentration absorbent.

本発明は、二重効用吸収式冷凍機に適用することができ、濃液ポンプによって低温再生器から吸収器に高濃度吸収液を導入する管路の途中に設けられた低温熱交換器で、高濃度吸収液の濃度又は/及び熱交換量を制御することにより臭化リチウムの結晶化を防止することができる。   The present invention can be applied to a double-effect absorption refrigerator, and is a low-temperature heat exchanger provided in the middle of a pipeline for introducing a high-concentration absorption liquid from a low-temperature regenerator to an absorber by a concentrated liquid pump. Crystallization of lithium bromide can be prevented by controlling the concentration of the high concentration absorbent and / or the amount of heat exchange.

本発明に係る吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法の実施形態を説明するための概略構成図である。It is a schematic block diagram for demonstrating embodiment of the high concentration absorption liquid crystallization prevention method in the low-temperature heat exchanger in the absorption refrigerator which concerns on this invention. 本発明に係る吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法の実施形態であって、結晶余裕度の変化に伴う濃液ポンプのインバータモータ周波数制御の一例を示す説明図である。Description of an embodiment of a method for preventing crystallization of a high-concentration absorbent liquid in a low-temperature heat exchanger in an absorption refrigerator according to the present invention, showing an example of inverter motor frequency control of a concentrated liquid pump accompanying a change in crystal margin FIG. 従来の吸収式冷凍機を示す概略構成図である。It is a schematic block diagram which shows the conventional absorption refrigerator.

符号の説明Explanation of symbols

1 吸収器
2 稀液ポンプ
3 高温再生器
4 バーナ
5 低温再生器
6 濃液ポンプ
7 低温熱交換器
8 バイパス管路
9 凝縮器
10 蒸発器
11 冷媒ポンプ
12 散布装置
13 伝熱管
14 散布装置
15 高温熱交換器
16 冷媒ドレン熱回収器
17 流量可変手段
18 制御弁
DESCRIPTION OF SYMBOLS 1 Absorber 2 Rare liquid pump 3 High temperature regenerator 4 Burner 5 Low temperature regenerator 6 Concentrated pump 7 Low temperature heat exchanger 8 Bypass line 9 Condenser 10 Evaporator 11 Refrigerant pump 12 Spraying device 13 Heat transfer tube 14 Spreading device 15 High Heat exchanger 16 Refrigerant drain heat recovery unit 17 Flow rate variable means 18 Control valve

Claims (3)

吸収剤として臭化リチウム、冷媒として水を用い、吸収器で冷媒蒸気を吸収して低濃度となった吸収液は高温再生器に戻され、この高温再生器で加熱することにより低濃度吸収液から冷媒蒸気が分離され、中濃度となった吸収液は低温再生器に導入されると共に、前記低濃度吸収液から分離された冷媒蒸気は管路を介して低温再生器を通過し、その際前記中濃度吸収液を加熱することにより冷媒蒸気を再分離した後冷媒液となって凝縮器の底部に導入され、低温再生器で冷媒蒸気が再分離されて高濃度となった吸収液は濃液ポンプにより低温熱交換器を通過し、この低温熱交換器で吸収器から高温再生器に戻る低濃度吸収液と熱交換した後に吸収器に導入され、この濃液ポンプの上流側と低温熱交換器の下流側とを結ぶバイパス管路が設けられ、前記中濃度吸収液から再分離された冷媒蒸気は凝縮器に導入されると共に、管路を介してこの凝縮器内を通過する冷却水により凝縮して冷媒液となり、この冷媒液は前記凝縮器底部の冷媒液と合流して蒸発器に導入されると共に、冷媒ポンプを介して蒸発器の散布装置から伝熱管に散布され、この伝熱管内を通過する冷温水と熱交換することにより冷媒蒸気となり、この冷媒蒸気は前記吸収器に導入され、この吸収器で前記低温再生器から導入される高濃度吸収液が吸収器の散布装置から散布されて冷媒蒸気を吸収し、低濃度となった吸収液は稀液ポンプを介して前記高温再生器に戻される構成の吸収式冷凍機において、
前記低温熱交換器の出口側に温度センサを設け、当該低温熱交換器の出口側での高濃度吸収液の温度を計測し、この計測温度と高濃度吸収液の結晶化温度とに基づいて高濃度吸収液の濃度又は/及び熱交換量を制御することを特徴とする吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法。
Lithium bromide is used as the absorbent and water is used as the refrigerant. Absorbed liquid that has absorbed the refrigerant vapor in the absorber and has a low concentration is returned to the high-temperature regenerator, and is heated in this high-temperature regenerator, so that the low-concentration absorbent The refrigerant vapor is separated from the refrigerant and introduced into the low-temperature regenerator, and the refrigerant vapor separated from the low-concentration absorbent passes through the low-temperature regenerator via a pipe. After the refrigerant vapor is re-separated by heating the medium concentration absorbent, it is introduced into the bottom of the condenser as a refrigerant liquid, and the refrigerant liquid is concentrated again after being separated again in the low temperature regenerator. After passing through the low-temperature heat exchanger by the liquid pump and exchanging heat with the low-concentration absorbing liquid returning from the absorber to the high-temperature regenerator with this low-temperature heat exchanger, it is introduced into the absorber, and the upstream side of this concentrated liquid pump and the low-temperature heat There is a bypass line connecting the downstream side of the exchanger. The refrigerant vapor re-separated from the intermediate concentration absorbing liquid is introduced into the condenser, and is condensed by the cooling water passing through the condenser through a conduit to become the refrigerant liquid. The refrigerant is combined with the refrigerant liquid at the bottom of the vessel and introduced into the evaporator. The refrigerant is sprayed from the evaporator spraying device to the heat transfer pipe via the refrigerant pump and exchanges heat with cold / hot water passing through the heat transfer pipe. The refrigerant vapor is introduced into the absorber, and the high-concentration absorbing liquid introduced from the low-temperature regenerator is sprayed from the absorber spraying device to absorb the refrigerant vapor to a low concentration. In the absorption refrigerator having a configuration in which the absorbed liquid is returned to the high-temperature regenerator through a rare liquid pump,
A temperature sensor is provided on the outlet side of the low-temperature heat exchanger, the temperature of the high-concentration absorbing liquid on the outlet side of the low-temperature heat exchanger is measured, and based on the measured temperature and the crystallization temperature of the high-concentration absorbing liquid A method for preventing crystallization of a high-concentration absorbent liquid in a low-temperature heat exchanger in an absorption refrigerator, wherein the concentration or / and heat exchange amount of the high-concentration absorbent liquid is controlled.
前記高濃度吸収液の計測温度と高濃度吸収液の結晶化温度とに基づいて、高濃度吸収液が結晶する前に前記濃液ポンプのインバータモータ周波数を増やすことを特徴とする請求項1に記載の吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法。   The inverter motor frequency of the concentrated liquid pump is increased before the high concentration absorbent is crystallized based on the measured temperature of the high concentration absorbent and the crystallization temperature of the high concentration absorbent. The high concentration absorption liquid crystallization prevention method in the low-temperature heat exchanger in the absorption refrigerator as described. 前記高濃度吸収液の計測温度と高濃度吸収液の結晶化温度とに基づいて、高濃度吸収液が結晶する前に前記稀液ポンプのインバータモータ周波数を増やすことを特徴とする請求項1に記載の吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法。   2. The inverter motor frequency of the dilute liquid pump is increased before the high-concentration absorption liquid is crystallized based on the measured temperature of the high-concentration absorption liquid and the crystallization temperature of the high-concentration absorption liquid. The high concentration absorption liquid crystallization prevention method in the low-temperature heat exchanger in the absorption refrigerator as described.
JP2007255771A 2007-09-28 2007-09-28 Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine Pending JP2009085509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255771A JP2009085509A (en) 2007-09-28 2007-09-28 Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255771A JP2009085509A (en) 2007-09-28 2007-09-28 Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine

Publications (1)

Publication Number Publication Date
JP2009085509A true JP2009085509A (en) 2009-04-23

Family

ID=40659162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255771A Pending JP2009085509A (en) 2007-09-28 2007-09-28 Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JP2009085509A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153795A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Absorption type refrigerating machine
CN102200357A (en) * 2010-03-26 2011-09-28 三洋电机株式会社 Absorption refrigerator
JP2012063103A (en) * 2010-09-17 2012-03-29 Nagoya Univ Micro adsorbent dispersing absorption liquid, micro adsorbent dispersing latent heat accumulating material, and heat exchanger-type absorber
KR101213347B1 (en) * 2011-01-06 2012-12-18 엘지전자 주식회사 An Apparatus and Method for Preventing the Crystallization of a Solution in Absorption Type Cooler and Heater
CN106225298A (en) * 2016-08-19 2016-12-14 浙江智海化工设备工程有限公司 A kind of dual effect type lithium bromide fridge for air separation unit
US11466189B2 (en) 2017-04-05 2022-10-11 General Electric Company Absorption cycle apparatus and related method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153795A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Absorption type refrigerating machine
CN102200357A (en) * 2010-03-26 2011-09-28 三洋电机株式会社 Absorption refrigerator
KR101167800B1 (en) 2010-03-26 2012-07-25 산요덴키가부시키가이샤 Absorption type refrigerating machine
CN102200357B (en) * 2010-03-26 2013-07-17 三洋电机株式会社 Absorption refrigerator
JP2012063103A (en) * 2010-09-17 2012-03-29 Nagoya Univ Micro adsorbent dispersing absorption liquid, micro adsorbent dispersing latent heat accumulating material, and heat exchanger-type absorber
KR101213347B1 (en) * 2011-01-06 2012-12-18 엘지전자 주식회사 An Apparatus and Method for Preventing the Crystallization of a Solution in Absorption Type Cooler and Heater
CN106225298A (en) * 2016-08-19 2016-12-14 浙江智海化工设备工程有限公司 A kind of dual effect type lithium bromide fridge for air separation unit
US11466189B2 (en) 2017-04-05 2022-10-11 General Electric Company Absorption cycle apparatus and related method

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2009085509A (en) Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2002147885A (en) Absorption refrigerating machine
JP5097593B2 (en) Absorption heat pump
JP5261111B2 (en) Absorption refrigerator
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
KR20020077117A (en) Control method for absorption refrigerator
JP5575519B2 (en) Absorption refrigerator
JP2009058207A (en) Absorption water cooler/heater
JP2012167905A (en) Double effect absorption refrigerating machine
JP3910014B2 (en) Absorption refrigerator
KR20090103740A (en) Absorption heat pump
JP2010078298A (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
KR20080094985A (en) Hot-water using absorption chiller
JP4315855B2 (en) Absorption refrigerator
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2010007907A (en) Air conditioning system
JP4971929B2 (en) Absorption liquid circulation control method for absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
KR101012051B1 (en) Absorption heat pump
JP2009085508A (en) Absorption type refrigerating machine