JP6814071B2 - Absorption chiller system and absorption chiller using waste heat - Google Patents

Absorption chiller system and absorption chiller using waste heat Download PDF

Info

Publication number
JP6814071B2
JP6814071B2 JP2017034456A JP2017034456A JP6814071B2 JP 6814071 B2 JP6814071 B2 JP 6814071B2 JP 2017034456 A JP2017034456 A JP 2017034456A JP 2017034456 A JP2017034456 A JP 2017034456A JP 6814071 B2 JP6814071 B2 JP 6814071B2
Authority
JP
Japan
Prior art keywords
absorption
absorber
regenerator
path
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017034456A
Other languages
Japanese (ja)
Other versions
JP2018141564A (en
Inventor
富幸 松清
富幸 松清
杉山 隆英
隆英 杉山
山田 哲也
哲也 山田
尚士 ▲高▼橋
尚士 ▲高▼橋
修 檜山
修 檜山
峻吾 齋藤
峻吾 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2017034456A priority Critical patent/JP6814071B2/en
Publication of JP2018141564A publication Critical patent/JP2018141564A/en
Application granted granted Critical
Publication of JP6814071B2 publication Critical patent/JP6814071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Description

本発明は、廃熱利用吸収式冷凍システム及び吸収式冷凍機に関する。 The present invention relates to a waste heat utilization absorption chiller system and an absorption chiller.

従来、発電を行う発電装置と発電装置の廃熱を再生器における希溶液の加熱に用いた吸収式冷凍機とからなる廃熱利用吸収式冷凍システムが提案されている。ここで、発電装置は発電負荷が比較的一定となるように計画されている。一方、吸収式冷凍機は負荷に応じて運転するようになっている。このため、吸収式冷凍機の負荷が小さい場合には発電装置からの廃熱の全てを利用する必要がなくなる。そこで、特許文献1に記載のシステムが提案されている。 Conventionally, an absorption chilling system using waste heat has been proposed, which comprises a power generation device that generates power and an absorption chiller that uses the waste heat of the power generation device to heat a dilute solution in a regenerator. Here, the power generation device is planned so that the power generation load is relatively constant. On the other hand, the absorption chiller is designed to operate according to the load. Therefore, when the load of the absorption chiller is small, it is not necessary to utilize all the waste heat from the power generation device. Therefore, the system described in Patent Document 1 has been proposed.

特許文献1に記載のシステムでは、吸収式冷凍機の負荷が小さくなると、吸収器の吸収液を冷媒と共に蒸発器に対して供給し、蒸発温度を高めて冷却能力を低下させることで、低負荷の運転を行うようにしている。 In the system described in Patent Document 1, when the load of the absorption chiller becomes small, the absorption liquid of the absorber is supplied to the evaporator together with the refrigerant to raise the evaporation temperature and lower the cooling capacity, thereby reducing the load. I try to drive.

特許第3851764号公報Japanese Patent No. 3851764

しかし、特許文献1に記載の廃熱利用吸収式冷凍システムは、吸収液が蒸発器に供給されることから、再生器にて再生される吸収液の量が大きく減少することとなり、再生器における加熱に必要となる熱量の大きな低下を招いてしまう。このため、特許文献1に記載の廃熱利用吸収式冷凍システムにおいて、上記の運転を継続すると発電装置の異常停止状態を招いてしまう可能性がある。 However, in the waste heat utilization absorption refrigeration system described in Patent Document 1, since the absorption liquid is supplied to the evaporator, the amount of the absorption liquid regenerated in the regenerator is greatly reduced, and the regenerator It causes a large decrease in the amount of heat required for heating. Therefore, in the waste heat absorption chilling system described in Patent Document 1, if the above operation is continued, there is a possibility that the power generation device may be abnormally stopped.

また、上記の異常停止状態を回避するためには再生器へ戻される吸収液の量を増大させたり吸収器や凝縮器を流れる冷却水の量を増大させたりするためにポンプに過大な運転を強いると、電力消費量が高まってしまう。 In addition, in order to avoid the above-mentioned abnormal stop state, the pump is operated excessively in order to increase the amount of the absorbent liquid returned to the regenerator and the amount of the cooling water flowing through the absorber and the condenser. If forced, power consumption will increase.

さらに、特許文献1に記載の廃熱利用吸収式冷凍システムは、蒸発器の下部に液冷媒が溜まっている状態となっており、これをポンプにより再度蒸発器の伝熱管に散布する構成となっている。このため、負荷が小さくなって蒸発器内に吸収液を送り込んでしまうと、溜まっている液冷媒に吸収液が混入することとなり、低負荷の運転から定格運転に戻す場合には、吸収液を蒸発器内から排出するのに時間が掛かり、直ちに定格運転状態とすることができなくなってしまう。 Further, the waste heat absorption absorption refrigeration system described in Patent Document 1 has a state in which a liquid refrigerant is accumulated in the lower part of the evaporator, and this is sprayed again to the heat transfer tube of the evaporator by a pump. ing. For this reason, if the load becomes small and the absorbing liquid is sent into the evaporator, the absorbing liquid will be mixed in the accumulated liquid refrigerant, and when returning from the low load operation to the rated operation, the absorbing liquid is used. It takes a long time to discharge from the evaporator, and it becomes impossible to immediately return to the rated operation state.

本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、発電装置の異常停止状態の可能性を低減させ、また異常停止状態の回避に要する電力消費量を抑えつつも、定格運転への復帰をよりスムーズに行うことが可能な廃熱利用吸収式冷凍システム及び吸収式冷凍機を提供することにある。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to reduce the possibility of an abnormal stop state of a power generation device and to consume power required to avoid the abnormal stop state. It is an object of the present invention to provide a waste heat utilization absorption chilling system and an absorption chiller capable of more smoothly returning to the rated operation while suppressing the amount.

本発明は、再生器における加熱によって得られた濃溶液を吸収伝熱管に散布することなく吸収器に導く第2経路を備え、蒸発伝熱管から送り出される冷却対象液の温度に応じて制御弁の開度を調整して第1経路と第2経路とを流れる濃溶液の割合を制御することで、吸収器における冷媒蒸気の吸収力を制御し、第3経路を流れて吸収器から再生器に戻される吸収液の量を、制御弁の開度にかかわらず一定に維持することを特徴とする。
The present invention includes a second path for guiding the concentrated solution obtained by heating in the regenerator to the absorber without spraying it on the absorption heat transfer tube, and the control valve is provided according to the temperature of the cooling target liquid sent out from the evaporation heat transfer tube. By adjusting the opening degree and controlling the ratio of the concentrated solution flowing through the first path and the second path, the absorption capacity of the refrigerant vapor in the absorber is controlled , and the flow through the third path from the absorber to the regenerator. It is characterized in that the amount of the absorbed liquid returned is kept constant regardless of the opening degree of the control valve .

本発明によれば、例えば吸収式冷凍機側の負荷が小さくなり、負荷の変化が冷却対象液の温度変化となって検出された場合に、第2経路を通じて吸収器に至る濃溶液の量を増大させて吸収器の吸収伝熱管に散布される濃溶液の量を減少させることにより吸収器の吸収力を低下させることができ、蒸発器における蒸発についても抑えることができる。そして、蒸発を抑えることで、蒸発器内の蒸発伝熱管を流れる冷却対象液が冷却され難くなり、低負荷の運転を行うことができる。しかも、第2経路を通じて吸収器に至った濃溶液は再生器に戻されることから、再生器にて再生される吸収液の量は維持され、再生器の加熱に要する熱量の大きな低下を抑えることとなる。これにより、再生器へ戻される吸収液の量を増大させたり吸収器や凝縮器を流れる冷却水の量を増大させたりするなどの消費電力量が高まってしまう手段を講じる必要が無く、発電装置が異常停止状態となってしまうことを回避することができる。 According to the present invention, for example, when the load on the absorption chiller side becomes small and the change in load is detected as the temperature change of the liquid to be cooled, the amount of concentrated solution reaching the absorber through the second path is determined. By increasing the amount and reducing the amount of the concentrated solution sprayed on the absorption heat transfer tube of the absorber, the absorption capacity of the absorber can be reduced, and the evaporation in the evaporator can also be suppressed. Then, by suppressing evaporation, it becomes difficult for the cooling target liquid flowing through the evaporation heat transfer tube in the evaporator to be cooled, and low-load operation can be performed. Moreover, since the concentrated solution that reaches the absorber through the second path is returned to the regenerator, the amount of the absorbent liquid regenerated by the regenerator is maintained, and a large decrease in the amount of heat required for heating the regenerator is suppressed. It becomes. As a result, there is no need to take measures to increase the amount of power consumption, such as increasing the amount of absorbent liquid returned to the regenerator or increasing the amount of cooling water flowing through the absorber or condenser, and the power generation device. Can be prevented from becoming an abnormal stop state.

また、吸収液を蒸発器にて散布することがないことから、たとえ蒸発器において液冷媒を循環させる循環式の構成を採用していたとしても、定格運転に戻すときに液冷媒から吸収液を排出するまでに時間が掛かり過ぎてしまうことも防止できる。 In addition, since the absorbent liquid is not sprayed by the evaporator, even if the evaporator adopts a circulation type configuration in which the liquid refrigerant is circulated, the absorbent liquid is discharged from the liquid refrigerant when returning to the rated operation. It is also possible to prevent it from taking too long to discharge.

従って、発電装置の異常停止状態の可能性を低減させ、また異常停止状態の回避に要する電力消費量を抑えつつも、定格運転への復帰をよりスムーズに行うことができる。 Therefore, it is possible to return to the rated operation more smoothly while reducing the possibility of the abnormal stop state of the power generation device and suppressing the power consumption required for avoiding the abnormal stop state.

本発明によれば、発電装置の異常停止状態の可能性を低減させ、また異常停止状態の回避に要する電力消費量を抑えつつも、定格運転への復帰をよりスムーズに行うことができる。 According to the present invention, it is possible to more smoothly return to the rated operation while reducing the possibility of the abnormal stop state of the power generation device and suppressing the power consumption required for avoiding the abnormal stop state.

本発明の実施形態に係る廃熱利用吸収式冷凍システムの概略構成図である。It is a schematic block diagram of the waste heat utilization absorption type refrigeration system which concerns on embodiment of this invention. 本実施形態に係る廃熱利用吸収式冷凍システムの制御盤の処理を示すフローチャートである。It is a flowchart which shows the process of the control panel of the waste heat absorption type refrigeration system which concerns on this embodiment.

以下、本発明を好適な実施形態に沿って説明する。なお、本発明は以下に示す実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾点が発生しない範囲内において、適宜公知又は周知の技術が適用されていることはいうまでもない。 Hereinafter, the present invention will be described with reference to preferred embodiments. The present invention is not limited to the embodiments shown below, and can be appropriately modified without departing from the spirit of the present invention. Further, in the embodiments shown below, some parts of the configuration are omitted from the illustration and description, but the details of the omitted technology are within a range that does not cause any contradiction with the contents described below. Needless to say, publicly known or well-known techniques are appropriately applied.

図1は、本発明の実施形態に係る廃熱利用吸収式冷凍システムの概略構成図である。図1に示すように、本実施形態に係る廃熱利用吸収式冷凍システム1は、発電装置10と、吸収式冷凍機20と、接続機器30とから構成されている。 FIG. 1 is a schematic configuration diagram of a waste heat absorption chilling system according to an embodiment of the present invention. As shown in FIG. 1, the waste heat utilization absorption chiller system 1 according to the present embodiment includes a power generation device 10, an absorption chiller 20, and a connecting device 30.

発電装置10は、発電を行うものであって、例えばエンジン11と発電機12とを組み合わせた装置によって構成されている。この発電装置10においては、エンジン11が動作して発電機12を稼働させて発電を行う。エンジン11は水(液体)によって冷却される水冷式のものであり、エンジン11で発生する熱は冷却水によって除去される。なお、本実施形態において発電装置10は、エンジン11と発電機12とを組み合わせた装置に限らず、水冷式のものであれば例えば燃料電池などの他の発電機器であってもよい。 The power generation device 10 generates power, and is composed of, for example, a device in which an engine 11 and a generator 12 are combined. In the power generation device 10, the engine 11 operates to operate the generator 12 to generate electricity. The engine 11 is a water-cooled type that is cooled by water (liquid), and the heat generated by the engine 11 is removed by the cooling water. In the present embodiment, the power generation device 10 is not limited to a device in which the engine 11 and the generator 12 are combined, and may be another power generation device such as a fuel cell as long as it is a water-cooled device.

吸収式冷凍機20は、再生器21、凝縮器22、蒸発器23及び吸収器24を備え、これらによる循環サイクルによって蒸発器23内の蒸発伝熱管23aを流れる冷却対象液を冷却するものである。さらに、吸収式冷凍機20は、第1〜第3ポンプP1〜P3と、冷却塔CTと、冷却対象液行き配管23bと、冷却対象液戻り配管23cと、濃溶液配管(第1経路)25と、熱交換器26とを備えている。以下、吸収式冷凍機20について詳細に説明する。 The absorption chiller 20 includes a regenerator 21, a condenser 22, an evaporator 23, and an absorber 24, and cools the cooling target liquid flowing through the evaporation heat transfer tube 23a in the evaporator 23 by a circulation cycle by these. .. Further, the absorption chiller 20 includes the first to third pumps P1 to P3, a cooling tower CT, a pipe 23b for the liquid to be cooled, a pipe 23c for returning the liquid to be cooled, and a concentrated solution pipe (first path) 25. And a heat exchanger 26. Hereinafter, the absorption chiller 20 will be described in detail.

再生器21は、例えば冷媒となる水(以下、冷媒が蒸気化したものを冷媒蒸気と称し、冷媒が液化したものを液冷媒と称する)と、吸収液となる臭化リチウム(LiBr)とが混合された希溶液(吸収液の濃度が低い溶液)を加熱するものである。再生器21は、この加熱により希溶液から冷媒蒸気を放出させ、冷媒蒸気と濃溶液(吸収液の濃度が高い溶液)とを生成する。 The regenerator 21 contains, for example, water as a refrigerant (hereinafter, vaporized refrigerant is referred to as refrigerant vapor, and liquefied refrigerant is referred to as liquid refrigerant) and lithium bromide (LiBr) as an absorbing liquid. It heats a mixed dilute solution (a solution with a low concentration of absorption liquid). The regenerator 21 releases the refrigerant vapor from the dilute solution by this heating, and produces the refrigerant vapor and a concentrated solution (a solution having a high concentration of the absorbing liquid).

凝縮器22は、再生器21から供給された冷媒蒸気を液化させるものである。この凝縮器22内には、凝縮伝熱管22aが挿通されている。凝縮伝熱管22aには冷却塔CTから冷却水(冷却液)が第1ポンプP1の動力によって供給されており、蒸発した冷媒蒸気は凝縮伝熱管22a内の冷却水によって冷却されて液化する。さらに、凝縮器22にて液化した液冷媒は蒸発器23に供給される。 The condenser 22 liquefies the refrigerant vapor supplied from the regenerator 21. A condensed heat transfer tube 22a is inserted into the condenser 22. Cooling water (cooling liquid) is supplied to the condensed heat transfer tube 22a from the cooling tower CT by the power of the first pump P1, and the evaporated refrigerant vapor is cooled by the cooling water in the condensed heat transfer tube 22a and liquefied. Further, the liquid refrigerant liquefied in the condenser 22 is supplied to the evaporator 23.

蒸発器23は、液冷媒を蒸発させるものである。この蒸発器23内には、蒸発伝熱管23aが設けられている。この蒸発伝熱管23aは、冷却対象液行き配管23b及び冷却対象液戻り配管23cを介して、例えば室内機IUと接続されており、室内機IUによる冷房利用によって温まった冷却対象液が第2ポンプP2の動力によって供給される。また、蒸発器23内は、略真空状態となっている。このため、冷媒である水の蒸発温度は約5℃となる。よって、蒸発伝熱管23a上に散布された液冷媒は蒸発伝熱管23aの温度によって蒸発することとなる。また、蒸発伝熱管23a内の冷却対象液は、液冷媒の蒸発によって温度が奪われる。これにより、蒸発伝熱管23aの冷却対象液は冷却されて室内機IUに供給され、室内機IUは冷却された冷却対象液を利用して冷風を室内に供給することとなる。 The evaporator 23 evaporates the liquid refrigerant. An evaporation heat transfer tube 23a is provided in the evaporator 23. The evaporation heat transfer tube 23a is connected to, for example, the indoor unit IU via the cooling target liquid going pipe 23b and the cooling target liquid returning pipe 23c, and the cooling target liquid warmed by the cooling utilization by the indoor unit IU is the second pump. It is supplied by the power of P2. Further, the inside of the evaporator 23 is in a substantially vacuum state. Therefore, the evaporation temperature of water as a refrigerant is about 5 ° C. Therefore, the liquid refrigerant sprayed on the evaporation heat transfer tube 23a evaporates depending on the temperature of the evaporation heat transfer tube 23a. Further, the temperature of the cooling target liquid in the evaporation heat transfer tube 23a is deprived by the evaporation of the liquid refrigerant. As a result, the cooling target liquid of the evaporation heat transfer tube 23a is cooled and supplied to the indoor unit IU, and the indoor unit IU supplies cold air into the room by using the cooled cooling target liquid.

吸収器24は、蒸発器23において蒸発した冷媒を吸収するものである。この吸収器24内には濃溶液配管25を通じて再生器21からの濃溶液が供給される。また、吸収器24には、吸収伝熱管24aが挿通されている。濃溶液配管25を通じて再生器21に至った濃溶液は吸収伝熱管24aに散布される。これにより、蒸発器23において蒸発した冷媒蒸気は吸収伝熱管24aの表面において濃溶液によって吸収され、希溶液が生成される。また、吸収伝熱管24aには冷却塔CTからの冷却水が流れており、濃溶液の冷媒蒸気の吸収により生じる吸収熱は、吸収伝熱管24aの冷却水により除去される。この吸収伝熱管24aは、凝縮伝熱管22aと接続されている。 The absorber 24 absorbs the refrigerant evaporated in the evaporator 23. The concentrated solution from the regenerator 21 is supplied into the absorber 24 through the concentrated solution pipe 25. Further, an absorption heat transfer tube 24a is inserted through the absorber 24. The concentrated solution that has reached the regenerator 21 through the concentrated solution pipe 25 is sprayed on the absorption heat transfer tube 24a. As a result, the refrigerant vapor evaporated in the evaporator 23 is absorbed by the concentrated solution on the surface of the absorption heat transfer tube 24a, and a dilute solution is generated. Further, the cooling water from the cooling tower CT flows through the absorption heat transfer tube 24a, and the endothermic heat generated by the absorption of the refrigerant vapor of the concentrated solution is removed by the cooling water of the absorption heat transfer tube 24a. The absorption heat transfer tube 24a is connected to the condensation heat transfer tube 22a.

また、本実施形態においては蒸発器23と吸収器24との下部は連通している。このため、吸収器24における冷媒の吸収により濃度が低下した希溶液、及び、蒸発器23において蒸発しきれなかった液冷媒は、第3ポンプP3によって再生器21に供給される。 Further, in the present embodiment, the lower part of the evaporator 23 and the absorber 24 communicate with each other. Therefore, the dilute solution whose concentration has decreased due to the absorption of the refrigerant in the absorber 24 and the liquid refrigerant that could not be completely evaporated in the evaporator 23 are supplied to the regenerator 21 by the third pump P3.

さらに、熱交換器26は、第3ポンプP3によって再生器21に供給される希溶液及び液冷媒と、濃溶液配管25により再生器21から吸収器24に供給される濃溶液との熱交換を行う。 Further, the heat exchanger 26 exchanges heat between the dilute solution and the liquid refrigerant supplied to the regenerator 21 by the third pump P3 and the concentrated solution supplied from the regenerator 21 to the absorber 24 by the concentrated solution pipe 25. Do.

接続機器30は、発電装置10と吸収式冷凍機20とを熱的に接続するものであって、エンジン冷却配管31と、熱源水供給配管32と、熱交換器33とを備えている。エンジン冷却配管31は、エンジン11を冷却する冷却水が流れる配管である。熱源水供給配管32は、吸収式冷凍機20の再生器21に熱源水を供給する配管である。熱交換器33は、エンジン11を冷却して昇温した冷却水を導入し、冷却水の熱を熱源水供給配管32の熱源水に供給するものである。このような構成により、エンジン11の廃熱は吸収式冷凍機20の再生器21において希溶液の加熱に利用されることとなる。 The connection device 30 thermally connects the power generation device 10 and the absorption chiller 20 and includes an engine cooling pipe 31, a heat source water supply pipe 32, and a heat exchanger 33. The engine cooling pipe 31 is a pipe through which cooling water for cooling the engine 11 flows. The heat source water supply pipe 32 is a pipe that supplies heat source water to the regenerator 21 of the absorption chiller 20. The heat exchanger 33 cools the engine 11 and introduces the heated cooling water, and supplies the heat of the cooling water to the heat source water of the heat source water supply pipe 32. With such a configuration, the waste heat of the engine 11 is used for heating the dilute solution in the regenerator 21 of the absorption chiller 20.

さらに、接続機器30は、第4ポンプP4と、第1三方弁V1とを備えている。第4ポンプP4は、熱源水供給配管32のうち熱源水行き配管32aに設けられており、熱源水を再生器21に供給する動力源となるものである。第1三方弁V1は、熱源水供給配管32のうち熱源水戻り配管32bに設けられている。この第1三方弁V1は、再生器21から戻ってくる熱源水を熱交換器33に供給するルートと、熱源水行き配管32aのうち第4ポンプP4の下流側に接続されるバイパス管32cを通じて熱源水を熱交換器33に戻すルートとを選択可能に構成されている。 Further, the connecting device 30 includes a fourth pump P4 and a first three-way valve V1. The fourth pump P4 is provided in the heat source water bound pipe 32a of the heat source water supply pipe 32, and serves as a power source for supplying the heat source water to the regenerator 21. The first three-way valve V1 is provided in the heat source water return pipe 32b of the heat source water supply pipe 32. The first three-way valve V1 passes through a route for supplying the heat source water returning from the regenerator 21 to the heat exchanger 33 and a bypass pipe 32c connected to the downstream side of the fourth pump P4 in the heat source water going pipe 32a. A route for returning the heat source water to the heat exchanger 33 can be selected.

また、本実施形態に係る廃熱利用吸収式冷凍システム1は、第2三方弁V2とラジエータRとを備えている。エンジン冷却配管31は、冷却水行き配管31aと冷却水戻り配管31bとからなり、第2三方弁V2は、冷却水戻り配管31b上に設けられており、熱交換器33から戻ってくる冷却水をラジエータRに供給するルートと、エンジン11に戻すルートとを選択可能に構成されている。 Further, the waste heat absorption absorption chilling system 1 according to the present embodiment includes a second three-way valve V2 and a radiator R. The engine cooling pipe 31 is composed of a cooling water going pipe 31a and a cooling water return pipe 31b, and the second three-way valve V2 is provided on the cooling water return pipe 31b, and the cooling water returning from the heat exchanger 33 is provided. The route for supplying the radiator R to the radiator R and the route for returning the engine 11 to the engine 11 can be selected.

ここで、上記の第1及び第2三方弁V1,V2及びラジエータRは、例えば吸収式冷凍機20のメンテナンス時に使用されるものである。メンテナンス時においてはエンジン11の廃熱を吸収式冷凍機20に供給することができなくなる。このため、第1三方弁V1は、熱交換器33から排出された熱源水をバイパス管32cを介して再度熱交換器33に戻すルートを選択する(通常時にはもう一方のルートを選択する)。また、第2三方弁V2は、冷却水をラジエータRに供給するルートを選択する(通常時にはもう一方のルートを選択する)。これにより、エンジン11の異常停止を回避しながら、吸収式冷凍機20のメンテナンスを行うことができる。なお、これらの構成は、メンテナンス時以外に使用されてもよい。 Here, the first and second three-way valves V1 and V2 and the radiator R are used, for example, during maintenance of the absorption chiller 20. At the time of maintenance, the waste heat of the engine 11 cannot be supplied to the absorption chiller 20. Therefore, the first three-way valve V1 selects a route for returning the heat source water discharged from the heat exchanger 33 to the heat exchanger 33 again via the bypass pipe 32c (normally, the other route is selected). Further, the second three-way valve V2 selects a route for supplying cooling water to the radiator R (normally, the other route is selected). As a result, maintenance of the absorption chiller 20 can be performed while avoiding abnormal stoppage of the engine 11. In addition, these configurations may be used other than at the time of maintenance.

ここで、本実施形態に係る廃熱利用吸収式冷凍システム1において、発電装置10は発電負荷が比較的一定となるように計画されている。一方、吸収式冷凍機20は負荷の大きさに応じて運転するようになっている。このため、吸収式冷凍機20の負荷が小さい場合には発電装置10からの廃熱の全てを利用する必要がなくなる。これに対して、本実施形態に係る廃熱利用吸収式冷凍システム1は、更に、濃溶液バイパス管(第2経路)27、制御弁28、温度センサ(温度検出手段)T及び制御盤(吸収力制御手段)29を備えることにより、吸収式冷凍機20の吸収力を制御し、略全量の廃熱を吸収式冷凍機20に供給しつつも負荷に応じた運転を吸収式冷凍機20に行わせるようにしている。この際、本実施形態においては基本的にラジエータRを利用する必要が無い。以下、この点について説明する。 Here, in the waste heat utilization absorption refrigeration system 1 according to the present embodiment, the power generation device 10 is planned so that the power generation load is relatively constant. On the other hand, the absorption chiller 20 is designed to operate according to the magnitude of the load. Therefore, when the load of the absorption chiller 20 is small, it is not necessary to utilize all the waste heat from the power generation device 10. On the other hand, the waste heat utilization absorption chilling system 1 according to the present embodiment further includes a concentrated solution bypass tube (second path) 27, a control valve 28, a temperature sensor (temperature detecting means) T, and a control panel (absorption). By providing the force control means) 29, the absorption capacity of the absorption chiller 20 is controlled, and the absorption chiller 20 is operated according to the load while supplying substantially the entire amount of waste heat to the absorption chiller 20. I'm trying to do it. At this time, it is basically unnecessary to use the radiator R in this embodiment. This point will be described below.

濃溶液バイパス管27は、一端が濃溶液配管25のうち熱交換器26の下流側に接続され、他端が吸収器24のうち吸収伝熱管24aよりも下方に位置した配管である。すなわち、濃溶液バイパス管27を通じて吸収器24に至る濃溶液は、吸収伝熱管24aに散布されることなく、第3ポンプP3によって再生器21に戻されることとなる。 The concentrated solution bypass pipe 27 is a pipe having one end connected to the downstream side of the heat exchanger 26 of the concentrated solution pipe 25 and the other end of the absorber 24 located below the absorption heat transfer pipe 24a. That is, the concentrated solution reaching the absorber 24 through the concentrated solution bypass tube 27 is returned to the regenerator 21 by the third pump P3 without being sprayed on the absorption heat transfer tube 24a.

制御弁28は、濃溶液バイパス管27上に設けられた開度を調整可能な弁である。ここで、制御弁28が全開状態(開度100%)となると、再生器21からの濃溶液の全てが濃溶液バイパス管27を通じて吸収器24に至ることとなる。一方、制御弁28が全閉状態(開度0%)となると、再生器21からの濃溶液の全てが濃溶液バイパス管27を介することなく、吸収器24の上部から吸収伝熱管24aに散布されることとなる。また、制御弁28の開度が50%となると、濃溶液が半分ずつ双方の経路を介して吸収器24に至ることとなる。このように、制御弁28は、双方の経路を流れる濃溶液の割合を調整するものとして機能することとなる。 The control valve 28 is a valve provided on the concentrated solution bypass pipe 27 with an adjustable opening degree. Here, when the control valve 28 is fully opened (opening 100%), all of the concentrated solution from the regenerator 21 reaches the absorber 24 through the concentrated solution bypass pipe 27. On the other hand, when the control valve 28 is in the fully closed state (opening 0%), all the concentrated solution from the regenerator 21 is sprayed from the upper part of the absorber 24 to the absorption heat transfer tube 24a without passing through the concentrated solution bypass pipe 27. Will be done. Further, when the opening degree of the control valve 28 becomes 50%, the concentrated solution reaches the absorber 24 by half through both paths. In this way, the control valve 28 functions as adjusting the ratio of the concentrated solution flowing through both paths.

温度センサTは、冷却対象液行き配管23b上に設けられ、蒸発器23内の蒸発伝熱管23aから室内機IUに送り出される冷却対象液の温度を検出するものである。制御盤29は、吸収式冷凍機20の全体を制御するものである。特に本実施形態において制御盤29は、吸収式冷凍機20の運転状態において、温度センサTにより検出された温度に応じて制御弁28の開度を調整する。これにより、制御盤29は、濃溶液バイパス管27を介さず吸収器24に至る濃溶液と濃溶液バイパス管27を介して吸収器24に至る濃溶液との割合を制御し、吸収器24における冷媒蒸気の吸収力を制御することとなる。ここで、濃溶液は吸収伝熱管24aの表面において冷媒蒸気を吸収する。このため、濃溶液バイパス管27を介して吸収器24に至る濃溶液の量を増加させることで、吸収器24の吸収力を低下させることができ、蒸発器23における蒸発も抑えることができる。これにより、冷却対象液の温度を低下させ難くし、低負荷の運転を行うことができる。 The temperature sensor T is provided on the pipe 23b for the cooling target liquid, and detects the temperature of the cooling target liquid sent from the evaporation heat transfer tube 23a in the evaporator 23 to the indoor unit IU. The control panel 29 controls the entire absorption chiller 20. In particular, in the present embodiment, the control panel 29 adjusts the opening degree of the control valve 28 according to the temperature detected by the temperature sensor T in the operating state of the absorption chiller 20. As a result, the control panel 29 controls the ratio of the concentrated solution reaching the absorber 24 via the concentrated solution bypass tube 27 and the concentrated solution reaching the absorber 24 via the concentrated solution bypass tube 27, and the absorber 24 controls the ratio. The absorption capacity of the refrigerant vapor will be controlled. Here, the concentrated solution absorbs the refrigerant vapor on the surface of the absorption heat transfer tube 24a. Therefore, by increasing the amount of the concentrated solution reaching the absorber 24 via the concentrated solution bypass tube 27, the absorbing power of the absorber 24 can be reduced, and the evaporation in the evaporator 23 can also be suppressed. As a result, it is difficult to lower the temperature of the liquid to be cooled, and low-load operation can be performed.

具体的に制御盤29は、温度センサTにより検出された冷却対象液の温度が第1所定温度以下となる場合に、制御弁28の開度を調整して濃溶液バイパス管27を流れる濃溶液の量が増加するように制御し吸収力を低下させる。一方、制御盤29は、温度センサTにより検出された冷却対象液の温度が第2所定温度(第1所定温度以上の温度)以上となる場合に、制御弁28の開度を調整して吸収伝熱管24aに散布される濃溶液の量が増加するように制御し吸収力を増大させる。これにより、冷却対象液の温度を一定化しながら、吸収力を変化させて低負荷運転や定格運転等を行うようにしている。 Specifically, when the temperature of the liquid to be cooled detected by the temperature sensor T becomes equal to or lower than the first predetermined temperature, the control panel 29 adjusts the opening degree of the control valve 28 to adjust the opening degree of the concentrated solution to flow through the concentrated solution bypass pipe 27. The amount of water is controlled to increase and the absorption capacity is reduced. On the other hand, when the temperature of the solution to be cooled detected by the temperature sensor T becomes equal to or higher than the second predetermined temperature (temperature equal to or higher than the first predetermined temperature), the control panel 29 adjusts the opening degree of the control valve 28 to absorb the temperature. The amount of the concentrated solution sprayed on the heat transfer tube 24a is controlled to increase to increase the absorption capacity. As a result, while keeping the temperature of the liquid to be cooled constant, the absorption capacity is changed to perform low load operation, rated operation, and the like.

特に、本実施形態では特許文献1のように、再生器21へ戻される吸収液の量が減少することがないため、再生器21にて再生される吸収液の量は維持され、再生器21の加熱に要する熱量の大きな低下を抑えることとなる。これにより、発電装置10が異常停止状態となってしまうことを回避することができる。 In particular, in the present embodiment, unlike Patent Document 1, the amount of the absorbent liquid returned to the regenerator 21 does not decrease, so that the amount of the absorbent liquid regenerated by the regenerator 21 is maintained and the regenerator 21 is used. It is possible to suppress a large decrease in the amount of heat required for heating. As a result, it is possible to prevent the power generation device 10 from being in an abnormally stopped state.

加えて、再生器21にて再生される吸収液の量は維持されることから、再生器21へ戻される吸収液の量を増大させるといった消費電力量が高まってしまう手段を講じる必要もない。また、冷却水の循環量を増大させたりする手段も講じる必要が無い。 In addition, since the amount of the absorbent liquid regenerated by the regenerator 21 is maintained, it is not necessary to take measures such as increasing the amount of the absorbent liquid returned to the regenerator 21 to increase the power consumption. Further, it is not necessary to take measures such as increasing the circulation amount of the cooling water.

次に、本実施形態に係る廃熱利用吸収式冷凍システム1の動作を説明する。図2は、本実施形態に係る廃熱利用吸収式冷凍システム1の制御盤29の処理を示すフローチャートである。なお、図2に示す処理は、吸収式冷凍機20の電源がオフされるまで繰り返し実行される。 Next, the operation of the waste heat absorption chilling system 1 according to the present embodiment will be described. FIG. 2 is a flowchart showing the processing of the control panel 29 of the waste heat absorption chilling system 1 according to the present embodiment. The process shown in FIG. 2 is repeatedly executed until the power of the absorption chiller 20 is turned off.

図2に示すように、制御盤29は、温度センサTからの信号に基づいて、蒸発伝熱管23aから室内機IUに送り出される冷却対象液の温度を検出する(S1)。次に、制御盤29は、ステップS1において検出した冷却対象液の温度が第1所定温度以下であるかを判断する(S2)。 As shown in FIG. 2, the control panel 29 detects the temperature of the cooling target liquid sent from the evaporation heat transfer tube 23a to the indoor unit IU based on the signal from the temperature sensor T (S1). Next, the control panel 29 determines whether the temperature of the cooling target liquid detected in step S1 is equal to or lower than the first predetermined temperature (S2).

冷却対象液の温度が第1所定温度以下であると判断した場合(S2:YES)、制御盤29は、制御弁28の開度を所定量だけ増加させる(S3)。これにより、制御盤29は、吸収伝熱管24aに散布されずに吸収器24に供給される濃溶液の量を増加させ、吸収器24の吸収力を低下させる。そして、図2に示す処理は終了する。 When it is determined that the temperature of the liquid to be cooled is equal to or lower than the first predetermined temperature (S2: YES), the control panel 29 increases the opening degree of the control valve 28 by a predetermined amount (S3). As a result, the control panel 29 increases the amount of the concentrated solution supplied to the absorber 24 without being sprayed on the absorption heat transfer tube 24a, and lowers the absorption capacity of the absorber 24. Then, the process shown in FIG. 2 is completed.

一方、冷却対象液の温度が第1所定温度以下でないと判断した場合(S2:NO)、制御盤29は、ステップS1において検出した冷却対象液の温度が第2所定温度以上であるかを判断する(S4)。冷却対象液の温度が第2所定温度以上でないと判断した場合(S4:NO)、図2に示す処理は終了する。 On the other hand, when it is determined that the temperature of the cooling target liquid is not equal to or lower than the first predetermined temperature (S2: NO), the control panel 29 determines whether the temperature of the cooling target liquid detected in step S1 is equal to or higher than the second predetermined temperature. (S4). When it is determined that the temperature of the liquid to be cooled is not equal to or higher than the second predetermined temperature (S4: NO), the process shown in FIG. 2 ends.

一方、冷却対象液の温度が第2所定温度以上であると判断した場合(S4:YES)、制御盤29は、制御弁28の開度を所定量だけ減少させる(S5)。これにより、制御盤29は、吸収伝熱管24aに散布される濃溶液の量を増加させ、吸収器24の吸収力を高める。そして、図2に示す処理は終了する。 On the other hand, when it is determined that the temperature of the liquid to be cooled is equal to or higher than the second predetermined temperature (S4: YES), the control panel 29 reduces the opening degree of the control valve 28 by a predetermined amount (S5). As a result, the control panel 29 increases the amount of the concentrated solution sprayed on the absorption heat transfer tube 24a, and enhances the absorption capacity of the absorber 24. Then, the process shown in FIG. 2 is completed.

このようにして、本実施形態に係る廃熱利用吸収式冷凍システム1及び吸収式冷凍機20によれば、再生器21における加熱によって得られた濃溶液を吸収伝熱管24aに散布することなく吸収器24に導く濃溶液バイパス管27を備え、冷却対象液の温度に応じて制御弁28の開度を調整して濃溶液バイパス管27を介さず流れる濃溶液と濃溶液バイパス管27を介して流れる濃溶液の割合を制御することで、吸収器24における冷媒蒸気の吸収力を制御する。 In this way, according to the waste heat utilization absorption chilling system 1 and the absorption chiller 20 according to the present embodiment, the concentrated solution obtained by heating in the regenerator 21 is absorbed without being sprayed on the absorption heat transfer tube 24a. A concentrated solution bypass pipe 27 leading to the vessel 24 is provided, and the opening degree of the control valve 28 is adjusted according to the temperature of the liquid to be cooled to flow through the concentrated solution bypass pipe 27 and the concentrated solution bypass pipe 27. By controlling the proportion of the concentrated solution flowing, the absorption capacity of the refrigerant vapor in the absorber 24 is controlled.

このため、例えば吸収式冷凍機20側の負荷が小さくなり、負荷の変化が冷却対象液の温度変化となって検出された場合に、濃溶液バイパス管27を通じて吸収器24に至る濃溶液の量を増大させて吸収器24の吸収伝熱管24aに散布される濃溶液の量を減少させることにより吸収器24の吸収力を低下させることができ、蒸発器23における蒸発についても抑えることができる。そして、蒸発を抑えることで、蒸発器23内の蒸発伝熱管23aを流れる冷却対象液が冷却され難くなり、低負荷の運転を行うことができる。しかも、濃溶液バイパス管27を通じて吸収器24に至った濃溶液は再生器21に戻されることから、再生器21にて再生される吸収液の量は維持され、再生器21の加熱に要する熱量の大きな低下を抑えることとなる。これにより、再生器21へ戻される吸収液の量を増大させたり吸収器24や凝縮器22を流れる冷却水の量を増大させたりするなどの消費電力量が高まってしまう手段を講じる必要が無く、発電装置10が異常停止状態となってしまうことを回避することができる。 Therefore, for example, when the load on the absorption chiller 20 side becomes small and the change in load is detected as the temperature change of the liquid to be cooled, the amount of concentrated solution reaching the absorber 24 through the concentrated solution bypass pipe 27. By increasing the amount of the concentrated solution sprayed on the absorption heat transfer tube 24a of the absorber 24, the absorption capacity of the absorber 24 can be reduced, and the evaporation in the evaporator 23 can also be suppressed. Then, by suppressing evaporation, it becomes difficult for the cooling target liquid flowing through the evaporation heat transfer tube 23a in the evaporator 23 to be cooled, and a low load operation can be performed. Moreover, since the concentrated solution that has reached the absorber 24 through the concentrated solution bypass tube 27 is returned to the regenerator 21, the amount of the absorbent liquid regenerated by the regenerator 21 is maintained, and the amount of heat required for heating the regenerator 21 is maintained. Will suppress a large decrease in. As a result, it is not necessary to take measures such as increasing the amount of the absorbent liquid returned to the regenerator 21 or increasing the amount of cooling water flowing through the absorber 24 and the condenser 22 to increase the power consumption. , It is possible to prevent the power generation device 10 from being abnormally stopped.

また、吸収液を蒸発器23にて散布することがないことから、たとえ蒸発器23において液冷媒を循環させる循環式の構成を採用していたとしても、定格運転に戻すときに液冷媒から吸収液を排出するまでに時間が掛かり過ぎてしまうことも防止できる。 Further, since the absorbing liquid is not sprayed by the evaporator 23, even if the evaporator 23 adopts a circulation type configuration in which the liquid refrigerant is circulated, it is absorbed from the liquid refrigerant when returning to the rated operation. It is also possible to prevent the liquid from taking too long to be discharged.

従って、発電装置10の異常停止状態の可能性を低減させ、また異常停止状態の回避に要する電力消費量を抑えつつも、定格運転への復帰をよりスムーズに行うことができる。 Therefore, it is possible to return to the rated operation more smoothly while reducing the possibility of the abnormal stop state of the power generation device 10 and suppressing the power consumption required for avoiding the abnormal stop state.

また、冷却対象液の温度が第1所定温度以下となる場合に、濃溶液バイパス管27を流れる濃溶液の量が増加するように制御して吸収器24の吸収力を低下させるため、蒸発器23における蒸発を抑え、冷却対象液の温度を高めることとなる。一方、冷却対象液の温度が第2所定温度以上となる場合に、濃溶液バイパス管27を介さない濃溶液の量が増加するように制御して吸収器24の吸収力を増大させるため、蒸発器23における蒸発を増加させ、冷却対象液の温度を低めることとなる。このように、冷却対象液の温度を一定化しつつ、低負荷運転と定格運転等を行うことができる。 Further, when the temperature of the liquid to be cooled becomes equal to or lower than the first predetermined temperature, the amount of the concentrated solution flowing through the concentrated solution bypass tube 27 is controlled to increase to reduce the absorbing power of the absorber 24, so that the evaporator Evaporation in No. 23 is suppressed, and the temperature of the solution to be cooled is raised. On the other hand, when the temperature of the liquid to be cooled becomes equal to or higher than the second predetermined temperature, evaporation is performed in order to increase the absorption capacity of the absorber 24 by controlling the amount of the concentrated solution not via the concentrated solution bypass tube 27 to increase. The evaporation in the vessel 23 is increased, and the temperature of the solution to be cooled is lowered. In this way, low-load operation, rated operation, and the like can be performed while keeping the temperature of the liquid to be cooled constant.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、可能な範囲で適宜他の技術を組み合わせてもよい。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above-described embodiments, and changes may be made without departing from the spirit of the present invention, and other examples may be made as appropriate. Techniques may be combined.

例えば本実施形態に係る廃熱利用吸収式冷凍システム1は、エンジン11の冷却水を熱源水と熱交換しているが、これに限らず、更にエンジン11からの排ガスを熱源水と熱交換するようにしてもよい。 For example, in the waste heat absorption chilling system 1 according to the present embodiment, the cooling water of the engine 11 is heat-exchanged with the heat source water, but the present invention is not limited to this, and the exhaust gas from the engine 11 is further heat-exchanged with the heat source water. You may do so.

さらに、上記実施形態では、吸収式冷凍機20の機能を備えていれば、吸収式冷温水器を用いてもよい。 Further, in the above embodiment, an absorption chiller-heater may be used as long as it has the function of the absorption chiller 20.

1 :廃熱利用吸収式冷凍システム
10 :発電装置
11 :エンジン
12 :発電機
20 :吸収式冷凍機
21 :再生器
22 :凝縮器
22a :凝縮伝熱管
23 :蒸発器
23a :蒸発伝熱管
23b :冷却対象液行き配管
23c :冷却対象液戻り配管
24 :吸収器
24a :吸収伝熱管
25 :濃溶液配管(第1経路)
26 :熱交換器
27 :濃溶液バイパス管(第2経路)
28 :制御弁
29 :制御盤(吸収力制御手段)
30 :接続機器
31 :エンジン冷却配管
31a :冷却水行き配管
31b :冷却水戻り配管
32 :熱源水供給配管
32a :熱源水行き配管
32b :熱源水戻り配管
32c :バイパス管
33 :熱交換器
CT :冷却塔
IU :室内機
P1〜P4 :ポンプ
R :ラジエータ
T :温度センサ(温度検出手段)
V1,V2:三方弁
1: Absorption chiller system using waste heat 10: Power generation device 11: Engine 12: Generator 20: Absorption chiller 21: Regenerator 22: Condenser 22a: Condensation heat transfer tube 23: Evaporator 23a: Evaporation heat transfer tube 23b: Cooling target liquid going pipe 23c: Cooling target liquid return pipe 24: Absorber 24a: Absorption heat transfer pipe 25: Concentrated solution pipe (first path)
26: Heat exchanger 27: Concentrated solution bypass tube (second path)
28: Control valve 29: Control panel (absorption force control means)
30: Connection equipment 31: Engine cooling pipe 31a: Cooling water bound pipe 31b: Cooling water return pipe 32: Heat source water supply pipe 32a: Heat source water bound pipe 32b: Heat source water return pipe 32c: Bypass pipe 33: Heat exchanger CT: Cooling tower IU: Indoor unit P1 to P4: Pump R: Radiator T: Temperature sensor (temperature detecting means)
V1, V2: Three-way valve

Claims (3)

発電を行うと共に液体により冷却される発電装置と、再生器、凝縮器、蒸発器、及び吸収器による循環サイクルによって前記蒸発器内の蒸発伝熱管を流れる冷却対象液を冷却する吸収式冷凍機と、を備え、前記発電装置を冷却することにより昇温した液体を利用して前記再生器において希溶液を加熱する廃熱利用吸収式冷凍システムであって、
前記吸収式冷凍機は、
前記再生器における加熱によって得られた濃溶液を前記吸収器に導いて前記吸収器内において冷却液が流れる吸収伝熱管に散布するための第1経路と、
前記再生器における加熱によって得られた濃溶液を前記吸収伝熱管に散布することなく前記吸収器に導く第2経路と、
前記蒸発器内の前記蒸発伝熱管から送り出された冷却対象液の温度を検出する温度検出手段と、
前記第1経路と前記第2経路とを流れる濃溶液の割合を調整するための制御弁と、
前記再生器で希溶液が加熱される運転状態において、前記温度検出手段により検出された冷却対象液の温度に応じて前記制御弁の開度を調整して前記第1経路と前記第2経路とを流れる濃溶液の割合を制御することにより、前記吸収器における冷媒蒸気の吸収力を制御する吸収力制御手段と、
前記吸収器から前記再生器に吸収液を導く第3経路と、
前記再生器で希溶液が加熱される運転状態において、前記第3経路を流れて前記吸収器から前記再生器に戻される吸収液の量を、前記制御弁の開度にかかわらず一定に維持する吸収液戻し量制御手段と
を備えることを特徴とする廃熱利用吸収式冷凍システム。
A power generation device that generates power and is cooled by a liquid, and an absorption chiller that cools the liquid to be cooled flowing through the evaporation heat transfer tube in the evaporator by a circulation cycle of a regenerator, a condenser, an evaporator, and an absorber. A waste heat absorption chilling system that heats a rare solution in the regenerator using a liquid that has been heated by cooling the power generation device.
The absorption chiller
A first path for guiding the concentrated solution obtained by heating in the regenerator to the absorber and spraying it on the absorption heat transfer tube through which the coolant flows in the absorber.
A second path that guides the concentrated solution obtained by heating in the regenerator to the absorber without spraying it on the absorption heat transfer tube.
A temperature detecting means for detecting the temperature of the liquid to be cooled sent from the evaporation heat transfer tube in the evaporator, and a temperature detecting means.
A control valve for adjusting the ratio of the concentrated solution flowing through the first path and the second path, and
In the operating state in which the dilute solution is heated by the regenerator, the opening degree of the control valve is adjusted according to the temperature of the cooling target liquid detected by the temperature detecting means, and the first path and the second path Absorption power control means for controlling the absorption power of the refrigerant vapor in the absorber by controlling the ratio of the concentrated solution flowing through the absorber.
A third path that guides the absorbent solution from the absorber to the regenerator,
In the operating state in which the dilute solution is heated by the regenerator, the amount of the absorbing liquid flowing through the third path and returned from the absorber to the regenerator is maintained constant regardless of the opening degree of the control valve. A waste heat absorption absorption refrigeration system characterized by being provided with an absorption liquid return amount control means .
前記吸収力制御手段は、前記温度検出手段により検出された冷却対象液の温度が第1所定温度以下となる場合に、前記制御弁の開度を調整して前記第2経路を流れる濃溶液の量が増加するように制御して吸収力を低下させ、前記温度検出手段により検出された冷却対象液の温度が前記第1所定温度以上となる第2所定温度以上となる場合に、前記制御弁の開度を調整して前記第1経路を流れる濃溶液の量が増加するように制御して吸収力を増大させる
ことを特徴とする請求項1に記載の廃熱利用吸収式冷凍システム。
When the temperature of the cooling target liquid detected by the temperature detecting means becomes equal to or lower than the first predetermined temperature, the absorbing power controlling means adjusts the opening degree of the control valve to adjust the opening degree of the concentrated solution flowing through the second path. The control valve is controlled so that the amount is increased to reduce the absorption capacity, and when the temperature of the cooling target liquid detected by the temperature detecting means becomes equal to or higher than the first predetermined temperature or higher than the second predetermined temperature. The waste heat utilization absorption type refrigeration system according to claim 1, wherein the opening degree of the system is adjusted so that the amount of the concentrated solution flowing through the first path is controlled to increase the absorption capacity.
再生器、凝縮器、蒸発器、及び吸収器による循環サイクルによって前記蒸発器内の蒸発伝熱管を流れる冷却対象液を冷却すると共に、熱源水を利用して前記再生器において希溶液を加熱する吸収式冷凍機であって、
前記再生器における加熱によって得られた濃溶液を前記吸収器に導いて前記吸収器内において冷却液が流れる吸収伝熱管に散布するための第1経路と、
前記再生器における加熱によって得られた濃溶液を前記吸収伝熱管に散布することなく前記吸収器に導く第2経路と、
前記蒸発器内の前記蒸発伝熱管から送り出された冷却対象液の温度を検出する温度検出手段と、
前記第1経路と前記第2経路とを流れる濃溶液の割合を調整するための制御弁と、
前記再生器で希溶液が加熱される運転状態において、前記温度検出手段により検出された冷却対象液の温度に応じて前記制御弁の開度を調整して前記第1経路と前記第2経路とを流れる濃溶液の割合を制御することにより、前記吸収器における冷媒蒸気の吸収力を制御する吸収力制御手段と、
前記吸収器から前記再生器に吸収液を導く第3経路と、
前記再生器で希溶液が加熱される運転状態において、前記第3経路を流れて前記吸収器から前記再生器に戻される吸収液の量を、前記制御弁の開度にかかわらず一定に維持する吸収液戻し量制御手段と
を備えることを特徴とする吸収式冷凍機。
Absorption that cools the liquid to be cooled flowing through the evaporation heat transfer tube in the evaporator by a circulation cycle by the regenerator, the condenser, the evaporator, and the absorber, and heats the dilute solution in the regenerator using the heat source water. It is a type refrigerator
A first path for guiding the concentrated solution obtained by heating in the regenerator to the absorber and spraying it on the absorption heat transfer tube through which the coolant flows in the absorber.
A second path that guides the concentrated solution obtained by heating in the regenerator to the absorber without spraying it on the absorption heat transfer tube.
A temperature detecting means for detecting the temperature of the liquid to be cooled sent from the evaporation heat transfer tube in the evaporator, and a temperature detecting means.
A control valve for adjusting the ratio of the concentrated solution flowing through the first path and the second path, and
In the operating state in which the dilute solution is heated by the regenerator, the opening degree of the control valve is adjusted according to the temperature of the cooling target liquid detected by the temperature detecting means, and the first path and the second path Absorption power control means for controlling the absorption power of the refrigerant vapor in the absorber by controlling the ratio of the concentrated solution flowing through the absorber.
A third path that guides the absorbent solution from the absorber to the regenerator,
In the operating state in which the dilute solution is heated by the regenerator, the amount of the absorbing liquid flowing through the third path and returned from the absorber to the regenerator is maintained constant regardless of the opening degree of the control valve. An absorption chiller characterized by being provided with an absorption liquid return amount control means .
JP2017034456A 2017-02-27 2017-02-27 Absorption chiller system and absorption chiller using waste heat Active JP6814071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034456A JP6814071B2 (en) 2017-02-27 2017-02-27 Absorption chiller system and absorption chiller using waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034456A JP6814071B2 (en) 2017-02-27 2017-02-27 Absorption chiller system and absorption chiller using waste heat

Publications (2)

Publication Number Publication Date
JP2018141564A JP2018141564A (en) 2018-09-13
JP6814071B2 true JP6814071B2 (en) 2021-01-13

Family

ID=63526642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034456A Active JP6814071B2 (en) 2017-02-27 2017-02-27 Absorption chiller system and absorption chiller using waste heat

Country Status (1)

Country Link
JP (1) JP6814071B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192076B1 (en) * 2019-12-19 2020-12-16 비케이이엔지 주식회사 cold water manufacturing system using waste heat
CN113720040B (en) * 2021-09-14 2022-12-13 哈尔滨工程大学 Combined cooling, heating and power system with waste heat grading recovery and absorption type refrigerating device

Also Published As

Publication number Publication date
JP2018141564A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6385044B2 (en) Absorption refrigeration system
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP6415378B2 (en) Air conditioning system
JP2004101129A (en) Control method for refrigerator and refrigeration device
WO2015060369A1 (en) Absorption-type hot and cold water system
JP6871015B2 (en) Absorption refrigeration system
KR100585352B1 (en) Absorption refrigerator
JP2009058207A (en) Absorption water cooler/heater
JP2009236369A (en) Absorption chiller/heater
JP2010255880A (en) Absorption type system
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP3075944B2 (en) Absorption chiller / heater
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JP3157349B2 (en) Absorption refrigerator control device
JP3081490B2 (en) Absorption refrigerator
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP2022044123A (en) Controller of heat exchange medium of waste heat utilization/absorption type freezer, and waste heat utilization/absorption type refrigeration system
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2020046128A (en) Absorption refrigerator
JP2017036856A (en) Waste heat input type absorption chiller heater and waste heat recovery amount control method thereof
JPH04313652A (en) Absorption refrigerating machine
JP4115020B2 (en) Control method of absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6814071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250