JP6385044B2 - Absorption refrigeration system - Google Patents

Absorption refrigeration system Download PDF

Info

Publication number
JP6385044B2
JP6385044B2 JP2013219906A JP2013219906A JP6385044B2 JP 6385044 B2 JP6385044 B2 JP 6385044B2 JP 2013219906 A JP2013219906 A JP 2013219906A JP 2013219906 A JP2013219906 A JP 2013219906A JP 6385044 B2 JP6385044 B2 JP 6385044B2
Authority
JP
Japan
Prior art keywords
cold storage
absorption
storage operation
storage tank
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013219906A
Other languages
Japanese (ja)
Other versions
JP2015081730A (en
Inventor
正登 小粥
正登 小粥
義裕 市野
義裕 市野
元巳 稲垣
元巳 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2013219906A priority Critical patent/JP6385044B2/en
Priority to CN201480058334.2A priority patent/CN105683684B/en
Priority to PCT/JP2014/078256 priority patent/WO2015060404A1/en
Publication of JP2015081730A publication Critical patent/JP2015081730A/en
Application granted granted Critical
Publication of JP6385044B2 publication Critical patent/JP6385044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸収式冷凍システムに関する。   The present invention relates to an absorption refrigeration system.

従来、太陽光の受光によって熱媒を加熱する太陽熱集熱器と、太陽熱集熱器にて加熱された熱媒を導入して蓄熱する蓄熱槽と、を備えた太陽熱利用システムが提案されている。また、このような太陽熱利用システムには、蓄熱槽と吸収式冷凍機との間を配管接続し、これらの間で熱媒を循環させることにより、吸収式冷凍機の再生器において希溶液の加熱に利用する吸収式冷凍システムについても提案されている(特許文献1参照)。   Conventionally, a solar heat utilization system including a solar heat collector that heats a heat medium by receiving sunlight and a heat storage tank that stores heat by introducing a heat medium heated by the solar heat collector has been proposed. . Also, in such a solar heat utilization system, a dilute solution is heated in a regenerator of an absorption refrigerator by connecting a pipe between the heat storage tank and the absorption refrigerator and circulating a heat medium between them. Also, an absorption refrigeration system used for the above has been proposed (see Patent Document 1).

この吸収式冷凍システムによれば、太陽熱という再生可能エネルギーを利用して希溶液を加熱することができ、希溶液の加熱に要する燃料費を削減することができる。さらに、太陽熱集熱器と吸収式冷凍機との間には蓄熱槽が介在することとなり、これがバッファの役目をするため、日射量に左右されることなく、蓄熱槽から比較的高温の熱媒を吸収式冷凍機に供給することができる。すなわち、日射量が小さい場合に、太陽熱集熱器から吸収式冷凍機に直接熱媒を供給すると、温度が低い熱媒が吸収式冷凍機に供給されることとなり、効率の良い運転を行うことができなくなってしまうが、蓄熱槽を備えることにより安定的な温度の熱媒を吸収式冷凍機に供給できるため、効率の良い運転を行うことができる。   According to this absorption refrigeration system, the dilute solution can be heated using renewable energy called solar heat, and the fuel cost required for heating the dilute solution can be reduced. Furthermore, a heat storage tank is interposed between the solar heat collector and the absorption refrigerator, and this acts as a buffer. Can be supplied to an absorption refrigerator. That is, when the amount of solar radiation is small, if a heat medium is supplied directly from the solar heat collector to the absorption refrigerator, the heat medium having a low temperature will be supplied to the absorption refrigerator, and efficient operation will be performed. However, since a heat medium having a stable temperature can be supplied to the absorption refrigeration machine by providing the heat storage tank, an efficient operation can be performed.

特開2012−127574号公報JP 2012-127574 A

上記のような吸収式冷凍システムでは、吸収式冷凍機が室内機と配管接続されており、室内機に冷却液が供給されるようになっている。ここで、吸収式冷凍機から室内機に向かう配管上に蓄冷を行う蓄冷槽を備え、例えば日射環境が良いときに吸収式冷凍機において蓄冷運転を行って蓄冷槽により蓄冷を行い、日射環境が悪いときなどに蓄冷槽にて蓄冷された冷熱を用いて冷房を行おうとした場合、以下の問題が発生する。   In the absorption refrigeration system as described above, the absorption refrigeration unit is connected to the indoor unit by piping, and coolant is supplied to the indoor unit. Here, a cold storage tank for storing cold is provided on the pipe from the absorption chiller to the indoor unit.For example, when the solar radiation environment is good, the cold storage operation is performed in the absorption chiller and cold storage is performed by the cold storage tank. The following problems occur when trying to cool using cold energy stored in a cold storage tank when it is bad.

まず、蓄冷槽の冷熱を用いて冷房を行う場合、蓄冷されてから冷熱が使用されるまでの間に蓄冷槽にて放熱してしまうことを考慮すると、蓄冷を行う際には通常の冷房時における冷却液の温度よりも低い温度にて蓄冷を行う必要がある。このため、吸収式冷凍機から室内機(蓄冷槽)に向かう配管における冷却液の目標温度を下げることとなる。しかし、冷却液の目標温度を下げてしまうと、通常の冷房時においては、必要以上に冷却液の温度が低くなってしまい、効率の良い運転を行っているとはいえない。   First, when performing cooling using the cold energy of the cold storage tank, considering that heat is radiated in the cold storage tank after the cold storage until the cold heat is used, when performing cold storage, during normal cooling It is necessary to perform cold storage at a temperature lower than the temperature of the coolant in For this reason, the target temperature of the coolant in the piping from the absorption refrigerator to the indoor unit (cold storage tank) is lowered. However, if the target temperature of the coolant is lowered, the temperature of the coolant becomes lower than necessary during normal cooling, and it cannot be said that an efficient operation is performed.

さらに、必要以上に冷却液の温度が低くなってしまうと、室内機側において結露が発生することもある。   Furthermore, if the temperature of the coolant becomes lower than necessary, condensation may occur on the indoor unit side.

なお、上記問題は、太陽熱により熱媒を加熱する方式に限らず、排熱を利用して熱媒を加熱して蓄熱するシステムや、地熱やバイオマスなどの再生可能エネルギーを利用して熱媒を加熱して蓄熱するシステムを有する吸収式冷凍システムにおいても共通する問題である。   Note that the above problem is not limited to the method of heating the heat medium by solar heat, but a system that heats the heat medium by using exhaust heat to store the heat medium, or by using renewable energy such as geothermal or biomass. This is a common problem even in an absorption refrigeration system having a system for storing heat by heating.

さらに、上記問題は、室内機に接続される吸収式冷凍機を含む吸収式冷凍システムに限らず、工業用冷却装置等の他の外部機器と接続される吸収式冷凍機を含む吸収式冷凍システムにおいても共通する問題である。   Furthermore, the above problem is not limited to an absorption refrigeration system including an absorption chiller connected to an indoor unit, but an absorption refrigeration system including an absorption chiller connected to another external device such as an industrial cooling device. This is a common problem.

本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、より効率の良い運転を可能とすると共に結露が発生する可能性を低減することが可能な吸収式冷凍システムを提供することにある。   The present invention has been made to solve such a conventional problem, and the object of the present invention is to enable more efficient operation and reduce the possibility of condensation. The object is to provide an absorption refrigeration system.

本発明の吸収式冷凍システムは、機器からの排熱又はエネルギー源として永続的に利用可能な再生可能エネルギーにより熱媒を加熱する集熱器と、前記集熱器にて加熱された熱媒を導入して再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷却液を得る吸収式冷凍機と、前記吸収式冷凍機にて得られた冷却液を前記吸収式冷凍機の前記蒸発器と外部機器との間で循環させる循環流路と、前記循環流路から分岐した分岐流路と、前記循環流路を流れる冷却液の流れ方向を切り替えて前記分岐流路に流入させる切替弁と、前記分岐流路上に設けられ、前記吸収式冷凍機にて得られた冷却液を導入して蓄冷すると共に蓄えた冷熱を前記外部機器に供給する蓄冷槽と、所定条件が満たされた場合に、前記吸収式冷凍機に対して蓄冷運転信号を送信し、前記所定条件が満たされない場合に蓄冷運転信号の送信を禁止するコントローラと、を備え、前記コントローラは、前記蓄冷運転信号を送信した場合、前記切替弁を制御して前記吸収式冷凍機からの冷却液を前記分岐流路に流入させ、前記吸収式冷凍機は、前記コントローラから前記蓄冷運転信号を受信して冷却液を前記分岐流路を介して蓄冷槽に供給する場合、前記コントローラから前記蓄冷運転信号を受信しておらず冷却液を前記分岐流路を介することなく前記外部機器に供給する場合よりも冷却液の目標温度を低下させることを特徴とする。 The absorption refrigeration system of the present invention comprises a heat collector that heats a heat medium with renewable energy that can be permanently used as an exhaust heat or energy source from equipment, and a heat medium that is heated by the heat collector. An absorption refrigerator that introduces and heats a dilute solution in a regenerator and obtains a cooling liquid by a circulation cycle of the regenerator, condenser, evaporator, and absorber, and cooling obtained by the absorption refrigerator The circulation flow path for circulating the liquid between the evaporator of the absorption refrigeration machine and the external device, the branch flow path branched from the circulation flow path, and the flow direction of the coolant flowing through the circulation flow path are switched. A switching valve that flows into the branch flow path, and a cold storage that is provided on the branch flow path, introduces the cooling liquid obtained by the absorption chiller , stores the cold, and supplies the stored cold heat to the external device. When the tank and the specified conditions are met, A cool storage operation signal is transmitted to the absorption refrigerator, and the controller prohibits transmission of the cool storage operation signal when the predetermined condition is not satisfied, and when the controller transmits the cool storage operation signal, The switching valve is controlled to cause the coolant from the absorption chiller to flow into the branch flow path, and the absorption chiller receives the cold storage operation signal from the controller and transfers the coolant to the branch flow path. to supply the cold storage tank via, than the case of supplying the cooling liquid not received the cold-storage operation signal from the controller to the external apparatus without passing through the branch flow path, the target temperature of the cooling liquid It is characterized by lowering.

本発明の吸収式冷凍システムによれば、所定条件が満たされた場合に、吸収式冷凍機に対して蓄冷運転信号を送信し、所定条件が満たされない場合に蓄冷運転信号の送信を禁止し、コントローラから蓄冷運転信号を受信している場合、コントローラから蓄冷運転信号を受信していない場合よりも、吸収式冷凍機から外部機器に向かう流路における冷却液の目標温度を低下させる。このため、蓄冷運転を行う場合には、冷却液の目標温度を下げることができ、通常の冷房運転時において必要以上に冷却液の温度が低くなってしまい運転効率が悪化してしまうことを防止することができる。さらに、蓄冷運転を行う場合には冷却液の目標温度が下がることから、通常冷房時に必要以上に温度の低い冷却液が外部機器に供給されることなく、外部機器において結露が発生してしまう可能性を低減することとなる。従って、より効率の良い運転を可能とすると共に結露が発生する可能性を低減することが可能な吸収式冷凍システムを提供することができる。   According to the absorption refrigeration system of the present invention, when a predetermined condition is satisfied, a cold storage operation signal is transmitted to the absorption refrigerator, and when the predetermined condition is not satisfied, transmission of the cold storage operation signal is prohibited, When the cold storage operation signal is received from the controller, the target temperature of the coolant in the flow path from the absorption chiller to the external device is lowered than when the cold storage operation signal is not received from the controller. For this reason, when performing a cold storage operation, the target temperature of the coolant can be lowered, preventing the coolant temperature from becoming lower than necessary during normal cooling operation and deteriorating the operation efficiency. can do. Furthermore, when performing a cold storage operation, the target temperature of the coolant is lowered, so that the coolant having a temperature lower than necessary during normal cooling is not supplied to the external device, and condensation may occur in the external device. Will be reduced. Therefore, it is possible to provide an absorption refrigeration system that enables more efficient operation and can reduce the possibility of condensation.

また、本発明の吸収式冷凍システムにおいて、前記蓄冷槽の蓄冷温度を検出する蓄冷槽温度センサをさらに備え、前記吸収式冷凍機は、前記蓄冷運転信号を受信している場合において、前記蓄冷槽温度センサにより検出された蓄冷温度が第1所定値以上となるときに、前記蓄冷槽に冷却液を導入して蓄冷する蓄冷運転を開始し、前記蓄冷槽温度センサにより検出された蓄冷温度が第1所定値よりも低い第2所定値以下となるときに、前記蓄冷運転を停止することが好ましい。   In the absorption refrigeration system of the present invention, the absorption refrigeration system further includes a cold storage tank temperature sensor that detects a cold storage temperature of the cold storage tank, and the absorption refrigerator is receiving the cold storage operation signal, the cold storage tank When the cold storage temperature detected by the temperature sensor is equal to or higher than the first predetermined value, a cold storage operation is started in which the cooling liquid is introduced into the cold storage tank for cold storage, and the cold storage temperature detected by the cold storage tank temperature sensor is It is preferable that the cold storage operation is stopped when the temperature is equal to or lower than a second predetermined value lower than the predetermined value.

この吸収式冷凍システムによれば、吸収式冷凍機は、蓄冷運転信号を受信している場合において、蓄冷槽温度センサにより検出された蓄冷温度が第1所定値以上となるときに、蓄冷槽に冷却液を導入して蓄冷する蓄冷運転を開始する。また、蓄冷槽温度センサにより検出された蓄冷温度が第1所定値よりも低い第2所定値以下となるときに、蓄冷運転を停止する。このため、蓄冷槽において充分に冷熱を確保できていない状態において蓄冷運転が行われ、蓄冷槽において充分に冷熱を確保できている場合には蓄冷運転が停止することとなり、無駄な蓄冷運転を防止することができる。   According to this absorption refrigeration system, when the absorption chiller receives a cold storage operation signal, the absorption chiller is installed in the cold storage tank when the cold storage temperature detected by the cold storage tank temperature sensor is equal to or higher than the first predetermined value. The cold storage operation for introducing the coolant and storing the cold is started. Further, the cold storage operation is stopped when the cold storage temperature detected by the cold storage tank temperature sensor is equal to or lower than a second predetermined value lower than the first predetermined value. For this reason, the cold storage operation is performed in a state where sufficient cold heat cannot be secured in the cold storage tank, and the cold storage operation is stopped when sufficient cold heat is secured in the cold storage tank, preventing unnecessary cold storage operation. can do.

また、本発明の吸収式冷凍システムの制御方法は、機器からの排熱又はエネルギー源として永続的に利用可能な再生可能エネルギーにより熱媒を加熱する集熱器と、前記集熱器にて加熱された熱媒を導入して再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷却液を得る吸収式冷凍機と、前記吸収式冷凍機にて得られた冷却液を前記吸収式冷凍機の前記蒸発器と外部機器との間で循環させる循環流路と、前記循環流路から分岐した分岐流路と、前記循環流路を流れる冷却液の流れ方向を切り替えて前記分岐流路に流入させる切替弁と、前記分岐流路上に設けられ、前記吸収式冷凍機にて得られた冷却液を導入して蓄冷すると共に蓄えた冷熱を前記外部機器に供給する蓄冷槽と、前記吸収式冷凍機に対する蓄冷運転信号の送信、及び当該送信の禁止を行うコントローラと、を備えた吸収式冷凍システムの制御方法であって、所定条件が満たされた場合に、前記コントローラから前記吸収式冷凍機に対して蓄冷運転信号を送信する第1工程と、前記所定条件が満たされない場合に蓄冷運転信号の送信を禁止する第2工程と、前記第1工程にて蓄冷運転信号を送信した場合、前記切替弁を制御して前記吸収式冷凍機からの冷却液を前記分岐流路に流入させる第3工程と、前記第1工程にて前記コントローラから前記吸収式冷凍機に対して蓄冷運転信号が送信され冷却液を前記分岐流路を介して蓄冷槽に供給する場合、前記第2工程にて前記コントローラから前記吸収式冷凍機に対して蓄冷運転信号が送信されておらず冷却液を前記分岐流路を介することなく前記外部機器に供給する場合よりも冷却液の目標温度を低下させる第4工程と、を備えることを特徴とする。 Further, the control method of the absorption refrigeration system according to the present invention includes a heat collector that heats a heat medium by renewable energy that can be permanently used as an exhaust heat or energy source from the device, and a heating by the heat collector. An absorption refrigerator that heats the diluted solution in the regenerator by introducing the heated heat medium and obtains a cooling liquid by a circulation cycle of the regenerator, the condenser, the evaporator, and the absorber, and the absorption refrigerator A circulation flow path for circulating the obtained cooling liquid between the evaporator of the absorption chiller and an external device, a branch flow path branched from the circulation flow path, and a cooling liquid flowing through the circulation flow path A switching valve that switches the flow direction of the refrigerant to flow into the branch flow channel, and is provided on the branch flow channel, introduces a cooling liquid obtained by the absorption refrigeration machine , stores the cold, and stores the stored heat. a cold storage tank to supply the equipment, the absorption cold A control method for an absorption refrigeration system comprising: a controller for transmitting a cold storage operation signal to the machine; and a controller for prohibiting the transmission, from the controller to the absorption chiller when a predetermined condition is satisfied The first step of transmitting a cold storage operation signal to the second step, the second step of prohibiting transmission of the cold storage operation signal when the predetermined condition is not satisfied, and the switching when the cold storage operation signal is transmitted in the first step. A cool storage operation signal is transmitted from the controller to the absorption refrigerator in the third step of controlling the valve to allow the coolant from the absorption refrigerator to flow into the branch flow path, and in the first step. when supplying cooling liquid to the cold storage tank through the branch flow path, the branch flow coolant not cold-storage operation signal is transmitted to the absorption chiller from the controller in the second step Than the case of supplying to the external device without using, characterized in that it comprises a fourth step of lowering the target temperature of the cooling liquid.

この吸収式冷凍システムの制御方法によれば、所定条件が満たされた場合に、吸収式冷凍機に対して蓄冷運転信号を送信し、所定条件が満たされない場合に蓄冷運転信号の送信を禁止し、コントローラから蓄冷運転信号を受信している場合、コントローラから蓄冷運転信号を受信していない場合よりも、吸収式冷凍機から外部機器に向かう流路における冷却液の目標温度を低下させる。このため、蓄冷運転を行う場合には、冷却液の目標温度を下げることができ、通常の冷房運転時において必要以上に冷却液の温度が低くなってしまい運転効率が悪化してしまうことを防止することができる。さらに、蓄冷運転を行う場合には冷却液の目標温度が下がることから、通常冷房時に必要以上に温度の低い冷却液が外部機器に供給されることなく、外部機器において結露が発生してしまう可能性を低減することとなる。従って、より効率の良い運転を可能とすると共に結露が発生する可能性を低減することが可能な吸収式冷凍システムを提供することができる。   According to this control method for an absorption refrigeration system, when a predetermined condition is satisfied, a cold storage operation signal is transmitted to the absorption chiller, and when the predetermined condition is not satisfied, transmission of the cold storage operation signal is prohibited. When the cold storage operation signal is received from the controller, the target temperature of the coolant in the flow path from the absorption refrigerator to the external device is lowered as compared with the case where the cold storage operation signal is not received from the controller. For this reason, when performing a cold storage operation, the target temperature of the coolant can be lowered, preventing the coolant temperature from becoming lower than necessary during normal cooling operation and deteriorating the operation efficiency. can do. Furthermore, when performing a cold storage operation, the target temperature of the coolant is lowered, so that the coolant having a temperature lower than necessary during normal cooling is not supplied to the external device, and condensation may occur in the external device. Will be reduced. Therefore, it is possible to provide an absorption refrigeration system that enables more efficient operation and can reduce the possibility of condensation.

本発明によれば、より効率の良い運転を可能とすると共に結露が発生する可能性を低減することが可能な吸収式冷凍システムを提供することができる。   According to the present invention, it is possible to provide an absorption refrigeration system that enables more efficient operation and can reduce the possibility of condensation.

本発明の実施形態に係る吸収式冷凍システムの概略構成図である。1 is a schematic configuration diagram of an absorption refrigeration system according to an embodiment of the present invention. 吸収式冷凍機の一例を示す概略構成図である。It is a schematic block diagram which shows an example of an absorption refrigerator. 本実施形態に係る集熱ポンプの制御を示す図である。It is a figure which shows control of the heat collecting pump which concerns on this embodiment. 通常冷房運転時における吸収式冷凍機の動作を説明する図である。It is a figure explaining operation of an absorption refrigerating machine at the time of normal cooling operation. 蓄冷運転時における吸収式冷凍システムの動作を説明する図であり、(a)は吸収式冷凍機の動作を示し、(b)はシステム全体の動作を示している。It is a figure explaining operation | movement of the absorption refrigeration system at the time of cool storage operation, (a) shows operation | movement of an absorption refrigeration machine, (b) has shown operation | movement of the whole system. 本実施形態に係る吸収式冷凍システムのシステムコントローラにおける処理を示すフローチャートであって、蓄冷運転信号の送信及び禁止の処理を示している。It is a flowchart which shows the process in the system controller of the absorption refrigeration system which concerns on this embodiment, Comprising: The process of transmission of a cool storage operation signal and prohibition is shown. 本実施形態に係る吸収式冷凍システムのシステムコントローラにおける処理を示すフローチャートであって、切替弁の処理を示している。It is a flowchart which shows the process in the system controller of the absorption refrigeration system which concerns on this embodiment, Comprising: The process of the switching valve is shown.

以下、本発明の好適な実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係る吸収式冷凍システムの概略構成図である。図1に示すように、本実施形態に係る吸収式冷凍システム1は、太陽熱を利用して吸収式冷凍機21の希溶液を加熱するものであって、第1システム10と、第2システム20と、第3システム30とを備えている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an absorption refrigeration system according to an embodiment of the present invention. As shown in FIG. 1, an absorption refrigeration system 1 according to the present embodiment heats a diluted solution of an absorption refrigeration machine 21 using solar heat, and includes a first system 10 and a second system 20. And a third system 30.

第1システム10は、太陽熱を利用して熱媒を加熱するものであって、太陽熱集熱器(集熱器)11と、蓄熱槽12と、集熱流路13と、集熱ポンプ14とを備えている。なお、本実施形態において第1システム10は、太陽熱を利用して熱媒を加熱するものであるが、これに限らず、排熱を利用して熱媒を加熱するものであってもよいし、地熱、バイオマス等の再生可能エネルギー(エネルギー源として永続的に利用可能なもの)を利用して熱媒を加熱するものであってもよい。   The first system 10 heats a heat medium using solar heat, and includes a solar heat collector (heat collector) 11, a heat storage tank 12, a heat collection channel 13, and a heat collection pump 14. I have. In the present embodiment, the first system 10 heats the heat medium using solar heat, but is not limited thereto, and may heat the heat medium using exhaust heat. Further, the heating medium may be heated using renewable energy (one that can be permanently used as an energy source) such as geothermal or biomass.

太陽熱集熱器11は、太陽光を受光することで熱媒を加熱するものであって、例えば屋根の上などの太陽光を受光し易い位置に設置されるものである。なお、熱媒は、水、不凍液、及びプロピレングリコール水溶液などが用いられる。   The solar heat collector 11 heats the heat medium by receiving sunlight, and is installed at a position where it is easy to receive sunlight, such as on a roof. As the heat medium, water, antifreeze, propylene glycol aqueous solution, or the like is used.

蓄熱槽12は、太陽熱集熱器11にて加熱された熱媒を導入して蓄熱するものである。この蓄熱槽12は、熱媒を内部に貯めるタンクであってもよいし、導入した熱媒の熱を蓄熱材により蓄熱するものであってもよい。   The heat storage tank 12 introduces a heat medium heated by the solar heat collector 11 and stores heat. The heat storage tank 12 may be a tank that stores the heat medium therein, or may be one that stores heat of the introduced heat medium using a heat storage material.

なお、蓄熱槽12が蓄熱材により蓄熱するものである場合、蓄熱材料は、例えば水酸化マグネシウムが用いられるが特にこれに限られるものではない。さらに、熱媒が水であり、蓄熱槽12が水を内部に貯めるタンクである場合、蓄熱槽12はいわゆる貯湯槽として機能し、家庭等に湯水が供給されるようになっていてもよい。加えて、蓄熱槽12は熱交換機を備えるタイプのものであってもよい。   In addition, when the heat storage tank 12 stores heat with a heat storage material, for example, magnesium hydroxide is used as the heat storage material, but is not limited thereto. Furthermore, when the heat medium is water and the heat storage tank 12 is a tank that stores water therein, the heat storage tank 12 may function as a so-called hot water storage tank, and hot water may be supplied to a home or the like. In addition, the heat storage tank 12 may be of a type including a heat exchanger.

集熱流路13は、蓄熱槽12から太陽熱集熱器11を経て再度蓄熱槽12に熱媒を循環させる配管である。このうち、蓄熱槽12から太陽熱集熱器11に向かう流路を第1集熱流路13aと称し、太陽熱集熱器11から蓄熱槽12に向かう流路を第2集熱流路13bと称する。   The heat collection channel 13 is a pipe that circulates the heat medium from the heat storage tank 12 through the solar heat collector 11 to the heat storage tank 12 again. Among these, the flow path from the heat storage tank 12 to the solar heat collector 11 is referred to as a first heat collection flow path 13a, and the flow path from the solar heat collector 11 to the heat storage tank 12 is referred to as a second heat collection flow path 13b.

集熱ポンプ14は、集熱流路13のうち第1集熱流路13aに設けられており、蓄熱槽12から太陽熱集熱器11を経て再度蓄熱槽12に熱媒を循環させる動力源となるものである。   The heat collection pump 14 is provided in the first heat collection flow path 13a of the heat collection flow path 13, and serves as a power source for circulating the heat medium from the heat storage tank 12 through the solar heat collector 11 to the heat storage tank 12 again. It is.

このような第1システム10では、集熱ポンプ14が動作することにより、集熱流路13を熱媒が循環する。熱媒は太陽熱集熱器11によって加熱され、第2集熱流路13bを通じて蓄熱槽12に至り、蓄熱槽12において蓄熱されることとなる。   In such a first system 10, the heat medium circulates through the heat collecting flow path 13 by operating the heat collecting pump 14. The heat medium is heated by the solar heat collector 11, reaches the heat storage tank 12 through the second heat collection flow path 13 b, and is stored in the heat storage tank 12.

第2システム20は、蓄熱槽12に貯められている熱媒や蓄熱材を介して昇温した熱媒を吸収式冷凍機21に供給するものであって、吸収式冷凍機21と、熱媒流路22と、熱媒ポンプ23とを備えている。   The second system 20 supplies a heat medium heated in a heat storage tank 12 and a heat medium heated through a heat storage material to the absorption refrigeration machine 21, and includes the absorption refrigeration machine 21 and the heat medium. A flow path 22 and a heat medium pump 23 are provided.

吸収式冷凍機21は、再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷却液を得るものである。   The absorption refrigerator 21 heats a dilute solution in a regenerator, and obtains a cooling liquid by a circulation cycle of the regenerator, a condenser, an evaporator, and an absorber.

図2は、吸収式冷凍機21の一例を示す概略構成図である。具体的に、再生器101は、例えば冷媒となる水(以下、冷媒が蒸気化したものを冷媒蒸気と称し、冷媒が液化したものを液冷媒と称する)と、吸収液となる臭化リチウム(LiBr)とが混合された希溶液(吸収液の濃度が低い溶液)を加熱するものである。この再生器101には熱媒流路22が配置されており、熱媒流路22上に希溶液が散布され加熱される。再生器101は、この加熱により希溶液から蒸気を放出させることにより、冷媒蒸気と濃溶液(吸収液の濃度が高い溶液)とを生成する。   FIG. 2 is a schematic configuration diagram illustrating an example of the absorption refrigerator 21. Specifically, the regenerator 101 includes, for example, water serving as a refrigerant (hereinafter, the refrigerant vaporized is referred to as refrigerant vapor, and the refrigerant liquefied is referred to as liquid refrigerant), and lithium bromide (absorbent liquid) ( A dilute solution (solution having a low concentration of the absorbing solution) mixed with LiBr) is heated. The regenerator 101 is provided with a heat medium flow path 22, and a dilute solution is sprayed on the heat medium flow path 22 and heated. The regenerator 101 generates a refrigerant vapor and a concentrated solution (a solution having a high concentration of absorption liquid) by releasing the vapor from the dilute solution by this heating.

凝縮器102は、再生器101から供給された冷媒蒸気を液化させるものである。この凝縮器102内には、第1冷水伝熱管102aが挿通されている。第1冷水伝熱管102aには冷却塔などから冷却水が供給されており、蒸発した冷媒蒸気は第1冷水伝熱管102a内の冷却水によって液化する。さらに、凝縮器102にて液化した液冷媒は蒸発器103に供給される。   The condenser 102 liquefies the refrigerant vapor supplied from the regenerator 101. A first cold water heat transfer tube 102a is inserted into the condenser 102. Cooling water is supplied to the first cold water heat transfer tube 102a from a cooling tower or the like, and the evaporated refrigerant vapor is liquefied by the cooling water in the first cold water heat transfer tube 102a. Further, the liquid refrigerant liquefied by the condenser 102 is supplied to the evaporator 103.

蒸発器103は、液冷媒を蒸発させるものである。この蒸発器103内には、室内機(外部機器の一例)に接続される第2冷水伝熱管(循環流路)31が設けられている。この第2冷水伝熱管31は、例えば室内機と接続されており、室内機による冷却によって暖められた水が流れている。また、蒸発器103内は、真空状態となっている。このため、冷媒である水の蒸発温度は約5℃となる。よって、第2冷水伝熱管31上に散布された液冷媒は第2冷水伝熱管31の温度によって蒸発することとなる。また、第2冷水伝熱管31内の水は、液冷媒の蒸発によって温度が奪われる。これにより、第2冷水伝熱管31の水は冷水(冷却液の一例)として室内機に供給され、室内機は冷水を利用して冷風を室内に供給することとなる。   The evaporator 103 evaporates the liquid refrigerant. In this evaporator 103, the 2nd cold water heat exchanger tube (circulation flow path) 31 connected to an indoor unit (an example of an external device) is provided. The second cold water heat transfer tube 31 is connected to, for example, an indoor unit, and water warmed by cooling by the indoor unit flows. Further, the inside of the evaporator 103 is in a vacuum state. For this reason, the evaporating temperature of the water which is a refrigerant | coolant will be about 5 degreeC. Therefore, the liquid refrigerant sprayed on the second cold water heat transfer tube 31 evaporates depending on the temperature of the second cold water heat transfer tube 31. Further, the temperature of the water in the second cold water heat transfer tube 31 is deprived of the temperature by evaporation of the liquid refrigerant. Thereby, the water of the 2nd cold water heat exchanger tube 31 will be supplied to an indoor unit as cold water (an example of a cooling fluid), and an indoor unit will supply cold air indoors using cold water.

吸収器104は、蒸発器103において蒸発した冷媒を吸収するものである。この吸収器104内には再生器101から濃溶液が供給され、蒸発した冷媒は濃溶液によって吸収され、希溶液が生成される。また、吸収器104には、第3冷水伝熱管104aが挿通されている。第3冷水伝熱管104aには冷却水が流れており、濃溶液の冷媒の吸収により生じる吸収熱は、第3冷水伝熱管104aの冷却水により除去される。なお、この第3冷水伝熱管104aは、第1冷水伝熱管102aと接続されている。また、吸収器104は、冷媒の吸収により濃度が低下した希溶液をポンプ104bによって再生器101に供給する。   The absorber 104 absorbs the refrigerant evaporated in the evaporator 103. A concentrated solution is supplied from the regenerator 101 into the absorber 104, and the evaporated refrigerant is absorbed by the concentrated solution to generate a diluted solution. The absorber 104 is inserted with a third cold water heat transfer tube 104a. The cooling water flows through the third cold water heat transfer tube 104a, and the absorbed heat generated by the absorption of the refrigerant of the concentrated solution is removed by the cooling water of the third cold water heat transfer tube 104a. The third cold water heat transfer tube 104a is connected to the first cold water heat transfer tube 102a. Moreover, the absorber 104 supplies the regenerator 101 with the dilute solution whose density | concentration fell by absorption of the refrigerant | coolant by the pump 104b.

なお、上記において第2冷水伝熱管31は室内機に接続されているが、これ限らず、工業用の冷却装置等と接続されていてもよい。以下の説明では室内機を外部機器の一例として説明するものとする。   In addition, although the 2nd cold water heat exchanger tube 31 is connected to the indoor unit in the above, it is not restricted to this, You may connect with an industrial cooling device etc. In the following description, an indoor unit will be described as an example of an external device.

さらに、吸収式冷凍機21は、制御部105を備えている。この制御部105はCPU(Central Processing Unit)を備え、吸収式冷凍機21の全体を制御するものである。また、この制御部105は、後述のシステムコントローラ44からの信号に基づいて制御内容を変更する構成となっている。   Further, the absorption chiller 21 includes a control unit 105. The control unit 105 includes a CPU (Central Processing Unit) and controls the entire absorption refrigerator 21. The control unit 105 is configured to change the control content based on a signal from a system controller 44 described later.

再度図1を参照する。熱媒流路22は、蓄熱槽12から吸収式冷凍機21の再生器101を経て再度蓄熱槽12に熱媒を循環させる配管である。このうち、蓄熱槽12から吸収式冷凍機21の再生器101に向かう流路を第1熱媒流路22aと称し、吸収式冷凍機21の再生器101から蓄熱槽12に向かう流路を第2熱媒流路22bと称する。   Refer to FIG. 1 again. The heat medium flow path 22 is a pipe that circulates the heat medium from the heat storage tank 12 through the regenerator 101 of the absorption refrigerator 21 to the heat storage tank 12 again. Among these, the flow path from the heat storage tank 12 to the regenerator 101 of the absorption chiller 21 is referred to as a first heat medium flow path 22a, and the flow path from the regenerator 101 of the absorption refrigeration machine 21 to the heat storage tank 12 is the first. This is referred to as two heat medium flow path 22b.

熱媒ポンプ23は、熱媒流路22のうち第1熱媒流路22aに設けられており、蓄熱槽12から吸収式冷凍機21の再生器101を経て再度蓄熱槽12に熱媒を循環させる動力源となるものである。   The heat medium pump 23 is provided in the first heat medium flow path 22 a of the heat medium flow path 22, and circulates the heat medium from the heat storage tank 12 to the heat storage tank 12 again through the regenerator 101 of the absorption refrigerator 21. It becomes a power source to be made.

第3システム30は、吸収式冷凍機21にて得られた冷却液を室内機に送出したり、冷却液による蓄冷を行ったりする部位であって、上記した第2冷水伝熱管31(以下循環流路31という)に加えて、蓄冷槽32、第1及び第2切替弁33a,33b、第1〜第4分岐流路34a〜34d、及び、循環ポンプ35を備えている。   The third system 30 is a part that sends out the coolant obtained by the absorption refrigerator 21 to the indoor unit or performs cold storage using the coolant, and the second cold water heat transfer pipe 31 (hereinafter referred to as circulation). In addition to the flow path 31, a regenerator 32, first and second switching valves 33 a and 33 b, first to fourth branch flow paths 34 a to 34 d, and a circulation pump 35 are provided.

上記した循環流路31は、吸収式冷凍機21にて得られた冷水を吸収式冷凍機21の蒸発器103と室内機との間で循環させる流路である。この循環流路31のうち、吸収式冷凍機21から室内機に向かう流路を第1循環流路31aと称し、室内機から吸収式冷凍機21に向かう流路を第2循環流路31bと称する。   The above-described circulation flow path 31 is a flow path for circulating cold water obtained by the absorption chiller 21 between the evaporator 103 of the absorption chiller 21 and the indoor unit. Among the circulation channels 31, a channel from the absorption chiller 21 to the indoor unit is referred to as a first circulation channel 31a, and a channel from the indoor unit to the absorption chiller 21 is referred to as a second circulation channel 31b. Called.

蓄冷槽32は、循環流路31のうち第1循環流路31aから分岐した流路(第1及び第2分岐流路34a,34b)上に設けられ、吸収式冷凍機21にて得られた冷水を導入して蓄冷するものである。   The cold storage tank 32 is provided on a flow path (first and second branch flow paths 34 a, 34 b) branched from the first circulation flow path 31 a among the circulation flow paths 31, and obtained by the absorption refrigerator 21. Cold water is introduced to store cold.

この蓄冷槽32は、冷水を内部に貯めるタンクであってもよいし、導入した冷水の冷熱を蓄冷材により蓄冷するものであってもよい。なお、蓄冷槽32が蓄冷材により蓄冷するものである場合、蓄冷材料は、例えば水とゲル剤(天然高分子)との混合物が用いられるが特にこれに限られるものではない。加えて、蓄冷槽32は熱交換機を備えるタイプのものであってもよい。   The cold storage tank 32 may be a tank that stores cold water therein, or may store cold heat of the introduced cold water using a cold storage material. In addition, when the cool storage tank 32 is what cools with a cool storage material, the cool storage material is, for example, a mixture of water and a gel agent (natural polymer), but is not particularly limited thereto. In addition, the cold storage tank 32 may be of a type including a heat exchanger.

第1切替弁33aは、第1循環流路31a上に設けられた三方弁であり、第1及び第2ポートA,Bが第1循環流路31a上に位置するものである。第1分岐流路34aは、一端が第1切替弁33aの第3ポートCに接続され、他端が蓄冷槽32の入口に接続されている。このため、第1切替弁33aは、吸収式冷凍機21からの冷水を室内機に供給するルート(A−B)と蓄冷槽32に供給するルート(A−C)とを切り替えることとなる。   The first switching valve 33a is a three-way valve provided on the first circulation channel 31a, and the first and second ports A and B are located on the first circulation channel 31a. One end of the first branch channel 34 a is connected to the third port C of the first switching valve 33 a, and the other end is connected to the inlet of the regenerator 32. For this reason, the 1st switching valve 33a will switch the route (AB) which supplies the cold water from the absorption refrigeration machine 21 to an indoor unit, and the route (AC) which supplies the cool storage tank 32.

第2切替弁33bは、蓄冷槽32の出口側に設けられた三方弁である。第2分岐流路34bは、一端が蓄冷槽32の出口に接続され、他端が第2切替弁33bの第1ポートDに接続されている。第3分岐流路34cは、一端が第2切替弁33bの第2ポートEに接続され、他端が第2循環流路31bに接続されている。第4分岐配管34dは、一端が第2切替弁33bの第3ポートFに接続され、他端が第1循環流路31aの第1切替弁33aの下流側に接続されている。このため、第2切替弁33bは、蓄冷槽32からの冷水を第2循環流路31bに戻すルート(D−E)と室内機に供給するルート(D−F)とを切り替えることとなる。   The second switching valve 33 b is a three-way valve provided on the outlet side of the cold storage tank 32. The second branch channel 34b has one end connected to the outlet of the regenerator 32 and the other end connected to the first port D of the second switching valve 33b. The third branch channel 34c has one end connected to the second port E of the second switching valve 33b and the other end connected to the second circulation channel 31b. The fourth branch pipe 34d has one end connected to the third port F of the second switching valve 33b and the other end connected to the downstream side of the first switching valve 33a of the first circulation channel 31a. For this reason, the 2nd switching valve 33b will switch the route (D-E) which returns the cold water from the cool storage tank 32 to the 2nd circulation flow path 31b, and the route (DF) which supplies an indoor unit.

循環ポンプ35は、第2循環流路31bのうち、第2循環流路31bと第3分岐流路34cとの接続点よりも下流側の位置に設けられ、吸収式冷凍機21の蒸発器103から室内機を経て再度吸収式冷凍機21の蒸発器103に冷水を循環させる動力源となるものである。また、この循環ポンプ35は、第1及び第2切替弁33a,33bが制御されて、A−Cルート及びD−Eルートが選択された場合、冷水を室内機に供給することなく、吸収式冷凍機21と蓄冷槽32とを介して冷水を循環させる動力源となる。   The circulation pump 35 is provided at a position downstream of the connection point between the second circulation channel 31 b and the third branch channel 34 c in the second circulation channel 31 b, and the evaporator 103 of the absorption chiller 21. To the power source for circulating cold water to the evaporator 103 of the absorption refrigerator 21 again through the indoor unit. In addition, when the first and second switching valves 33a and 33b are controlled and the AC route and the DE route are selected, the circulation pump 35 does not supply cold water to the indoor unit without absorbing it. It becomes a power source for circulating cold water through the refrigerator 21 and the cold storage tank 32.

さらに、本実施形態に係る吸収式冷凍システム1は、集熱器温度センサ41と、蓄熱槽温度センサ42と、蓄冷槽温度センサ43と、システムコントローラ(コントローラ)44とを備えている。   Furthermore, the absorption refrigeration system 1 according to the present embodiment includes a collector temperature sensor 41, a heat storage tank temperature sensor 42, a cold storage tank temperature sensor 43, and a system controller (controller) 44.

集熱器温度センサ41は、太陽熱集熱器11からの熱媒の温度を検出するものであって、熱媒温度に応じた信号をシステムコントローラ44に送信するものである。蓄熱槽温度センサ42は、蓄熱槽12内の熱媒の温度(蓄熱温度)を検出するものであって、熱媒温度に応じた信号をシステムコントローラ44に送信するものである。蓄冷槽温度センサ43は、蓄冷槽32の冷水の温度(蓄冷温度)を検出するものであって、冷水温度に応じた信号をシステムコントローラ44に送信するものである。   The heat collector temperature sensor 41 detects the temperature of the heat medium from the solar heat collector 11, and transmits a signal corresponding to the heat medium temperature to the system controller 44. The heat storage tank temperature sensor 42 detects the temperature of the heat medium in the heat storage tank 12 (heat storage temperature), and transmits a signal corresponding to the heat medium temperature to the system controller 44. The cold storage tank temperature sensor 43 detects the temperature of the cold water in the cold storage tank 32 (cold storage temperature), and transmits a signal corresponding to the cold water temperature to the system controller 44.

システムコントローラ44は、CPUを備え、吸収式冷凍システム1の全体を制御するものである。特に、本実施形態に係るシステムコントローラ44は、蓄冷運転信号を吸収式冷凍機21の制御部105に対して送信し、又は送信を禁止する機能を有しており、吸収式冷凍機21は、蓄冷運転信号を受信した場合、蓄冷運転信号を受信していない場合よりも、吸収式冷凍機21から室内機に向かう流路(すなわち第1循環流路31a)における冷却液の目標温度(以下出口目標温度)を低下させる。   The system controller 44 includes a CPU and controls the entire absorption refrigeration system 1. In particular, the system controller 44 according to the present embodiment has a function of transmitting a cold storage operation signal to the control unit 105 of the absorption chiller 21 or prohibiting the transmission. When the cold storage operation signal is received, the target temperature of the coolant (hereinafter referred to as the outlet) in the flow path from the absorption chiller 21 to the indoor unit (that is, the first circulation flow path 31a) is greater than when the cold storage operation signal is not received. Reduce target temperature.

次に、本実施形態に係る吸収式冷凍システム1の制御方法を説明する。図3は、本実施形態に係る集熱ポンプ14の制御を示す図である。   Next, a control method of the absorption refrigeration system 1 according to the present embodiment will be described. FIG. 3 is a diagram illustrating control of the heat collecting pump 14 according to the present embodiment.

まず、集熱ポンプ14が停止しているものとする。この状態においてシステムコントローラ44は、集熱器温度センサ41からの信号を入力すると共に、蓄熱槽温度センサ42からの信号を入力する。次いで、システムコントーラ44は、これら信号に基づいて、差温を算出する。この差温は、集熱器温度センサ41の検出温度から蓄熱槽温度センサ42の検出温度を減算したものである。次いで、システムコントーラ44は、差温が図3に示すT1℃以上であるか判断し、T1℃以上であると判断した場合、集熱ポンプ14を動作させ(ON)、T1℃以上でないと判断した場合、集熱ポンプ14を停止状態のままとする(OFF)。   First, it is assumed that the heat collection pump 14 is stopped. In this state, the system controller 44 inputs a signal from the heat collector temperature sensor 41 and a signal from the heat storage tank temperature sensor 42. Next, the system controller 44 calculates the differential temperature based on these signals. This differential temperature is obtained by subtracting the temperature detected by the heat storage tank temperature sensor 42 from the temperature detected by the heat collector temperature sensor 41. Next, the system controller 44 determines whether or not the temperature difference is equal to or higher than T1 ° C. shown in FIG. 3. When it is determined that the temperature difference is equal to or higher than T1 ° C., the heat collecting pump 14 is operated (ON) and is determined not to be higher than T1 ° C. In this case, the heat collecting pump 14 is kept stopped (OFF).

集熱ポンプ14の動作後、システムコントローラ44は、集熱器温度センサ41及び蓄熱槽温度センサ42からの信号を入力し、差温を算出する。そして、システムコントーラ44は、差温が図3に示すT2℃以下であるかを判断する。システムコントローラ44は、T2℃以下であると判断した場合、集熱ポンプ14を停止させ(OFF)、T2℃以下でないと判断した場合、集熱ポンプ14を動作状態のままとする(ON)。   After the operation of the heat collecting pump 14, the system controller 44 inputs signals from the heat collector temperature sensor 41 and the heat storage tank temperature sensor 42 and calculates a differential temperature. Then, the system controller 44 determines whether the temperature difference is equal to or lower than T2 ° C. shown in FIG. When the system controller 44 determines that the temperature is equal to or lower than T2 ° C., the system controller 44 stops the heat collecting pump 14 (OFF). When the system controller 44 determines that the temperature is not lower than T2 ° C., the system controller 44 keeps the heat collecting pump 14 in an operating state (ON).

なお、上記差温については、移動平均等の値を採用してもよい。   In addition, about the said temperature difference, you may employ | adopt values, such as a moving average.

また、吸収式冷凍機21は、通常冷房運転と、蓄冷運転とを行うようになっている。通常冷房運転と蓄冷運転とが行われている場合、すなわち、吸収式冷凍機21が停止していない場合に、システムコントローラ44は、熱媒ポンプ23を動作させ、蓄熱槽12からの熱媒を吸収式冷凍機21の再生器101に供給する。これにより、蓄熱槽12からの熱媒が再生器101における希溶液の加熱に用いられることとなる。   Moreover, the absorption refrigerator 21 performs a normal cooling operation and a cold storage operation. When the normal cooling operation and the cold storage operation are performed, that is, when the absorption refrigeration machine 21 is not stopped, the system controller 44 operates the heat medium pump 23 to transfer the heat medium from the heat storage tank 12. The refrigerating machine 101 of the absorption refrigerator 21 is supplied. Thereby, the heat medium from the heat storage tank 12 is used for heating the dilute solution in the regenerator 101.

また、通常冷房運転時において吸収式冷凍システム1は以下のように動作する。図4は、通常冷房運転時における吸収式冷凍機21の動作を説明する図である。図4に示すように、吸収式冷凍機21の制御部105には、通常冷房運転時における温調停止温度T3℃と温調開始温度T4℃とが記憶されている。また、第3システム30は、吸収式冷凍機21から室内機に向かう流路における冷却液の温度(以下出口温度という)を検出する温度センサ(不図示)を備えており、制御部105は、この温度センサからの信号に基づいて吸収式冷凍機21を制御する。   Further, the absorption refrigeration system 1 operates as follows during normal cooling operation. FIG. 4 is a diagram for explaining the operation of the absorption refrigerator 21 during the normal cooling operation. As shown in FIG. 4, the control unit 105 of the absorption refrigerator 21 stores a temperature adjustment stop temperature T3 ° C. and a temperature adjustment start temperature T4 ° C. during normal cooling operation. Further, the third system 30 includes a temperature sensor (not shown) that detects the temperature of the coolant in the flow path from the absorption chiller 21 to the indoor unit (hereinafter referred to as outlet temperature). The absorption refrigerator 21 is controlled based on the signal from the temperature sensor.

すなわち、制御部105は、吸収式冷凍機21の通常冷房運転中において温度センサにより検出される出口温度が温調停止温度T3℃以下になると、その運転を一時停止させる。また、制御部105は、一時停止中において出口温度が温調開始温度T4℃以上となると、その運転を再開する。なお、一時停止中において循環ポンプ35は動作しており、冷水は循環させられている。   That is, when the outlet temperature detected by the temperature sensor during the normal cooling operation of the absorption refrigerator 21 becomes equal to or lower than the temperature adjustment stop temperature T3 ° C., the control unit 105 temporarily stops the operation. Further, the control unit 105 resumes the operation when the outlet temperature becomes equal to or higher than the temperature adjustment start temperature T4 ° C. during the temporary stop. During the temporary stop, the circulation pump 35 is operating and the cold water is circulated.

また、蓄冷運転時において吸収式冷凍システム1は以下のように動作する。図5は、蓄冷運転時における吸収式冷凍システム1の動作を説明する図であり、(a)は吸収式冷凍機21の動作を示し、(b)はシステム1全体の動作を示している。図5(a)に示すように、吸収式冷凍機21の制御部105には、蓄冷運転時における温調停止温度T5℃と温調開始温度T6℃とが記憶されている。ここで、蓄冷運転時における温調停止温度T5℃は、通常冷房運転時における温調停止温度T3℃よりも低く、蓄冷運転時における温調開始温度T6℃は、通常冷房運転時における温調開始温度T4℃よりも低い。   Further, during the cold storage operation, the absorption refrigeration system 1 operates as follows. FIG. 5 is a diagram for explaining the operation of the absorption refrigeration system 1 during the cold storage operation, where (a) shows the operation of the absorption refrigeration machine 21 and (b) shows the operation of the entire system 1. As shown in FIG. 5A, the control unit 105 of the absorption refrigerator 21 stores a temperature adjustment stop temperature T5 ° C. and a temperature adjustment start temperature T6 ° C. during the cold storage operation. Here, the temperature adjustment stop temperature T5 ° C. during the cold storage operation is lower than the temperature adjustment stop temperature T3 ° C. during the normal cooling operation, and the temperature adjustment start temperature T6 ° C. during the cold storage operation is the temperature adjustment start during the normal cooling operation. The temperature is lower than T4 ° C.

制御部105は、吸収式冷凍機21の蓄冷運転中において温度センサにより検出される出口温度が温調停止温度T5℃以下になると、その運転を一時停止させる。また、制御部105は、一時停止中において出口温度が温調開始温度T6℃以上となると、その運転を再開する。なお、一時停止中において循環ポンプ35は動作しており、冷水は循環させられている。   When the outlet temperature detected by the temperature sensor during the cold storage operation of the absorption refrigerator 21 is equal to or lower than the temperature adjustment stop temperature T5 ° C., the control unit 105 temporarily stops the operation. In addition, when the outlet temperature becomes equal to or higher than the temperature adjustment start temperature T6 ° C. during the temporary stop, the control unit 105 resumes the operation. During the temporary stop, the circulation pump 35 is operating and the cold water is circulated.

さらに、システムコントローラ44は、図5(b)に示す蓄冷運転終了温度T7℃(第2所定値)と蓄冷運転開始温度T8℃(第1所定値)とを記憶している。ここで、蓄冷運転終了温度T7℃は、蓄冷運転時における温調停止温度T5℃よりも高い。また、蓄冷運転開始温度T8℃は、蓄冷運転時における温調開始温度T6℃と同じであり、通常冷房運転時における温調開始温度T4℃よりも低い。   Further, the system controller 44 stores a cold storage operation end temperature T7 ° C. (second predetermined value) and a cold storage operation start temperature T8 ° C. (first predetermined value) shown in FIG. Here, the cool storage operation end temperature T7 ° C is higher than the temperature control stop temperature T5 ° C during the cool storage operation. The cold storage operation start temperature T8 ° C. is the same as the temperature adjustment start temperature T6 ° C. during the cold storage operation, and is lower than the temperature control start temperature T4 ° C. during the normal cooling operation.

システムコントローラ44は、蓄冷運転中において蓄冷槽温度センサ43により検出される蓄冷温度が蓄冷運転終了温度T7℃以下になると、システム1の全体(集熱ポンプ14の動作を除く)を停止させる。すなわち、熱媒ポンプ23及び循環ポンプ35は動作を停止し、吸収式冷凍機21においては循環サイクルによる冷水の生成が停止することとなる。   When the cold storage temperature detected by the cold storage tank temperature sensor 43 during the cold storage operation becomes equal to or lower than the cold storage operation end temperature T7 ° C., the system controller 44 stops the entire system 1 (except for the operation of the heat collection pump 14). That is, the operation of the heat medium pump 23 and the circulation pump 35 stops, and the absorption refrigerator 21 stops the production of cold water by the circulation cycle.

また、システムコントローラ44は、システム全体の停止中において蓄冷槽温度センサ43により検出される蓄冷温度が蓄冷運転開始温度T8℃以上となると、システム全体の運転を開始させる。すなわち、熱媒ポンプ23及び循環ポンプ35は動作を開始し、吸収式冷凍機21においては循環サイクルにより冷水が得られることとなる。   Further, the system controller 44 starts the operation of the entire system when the cold storage temperature detected by the cold storage tank temperature sensor 43 becomes equal to or higher than the cold storage operation start temperature T8 ° C. while the entire system is stopped. That is, the heat medium pump 23 and the circulation pump 35 start operation, and in the absorption refrigerator 21, cold water is obtained by the circulation cycle.

さらに、システムコントローラ44は、蓄冷運転を行うかを判断し、行うと判断した場合、蓄冷運転信号を吸収式冷凍機21の制御部105に出力する。吸収式冷凍機21の制御部105は、蓄冷運転信号を受信すると、制御内容を図4に示すものから図5(a)に示すものに移行させることとなる。すなわち、制御部105は、蓄冷運転信号を受信した場合、蓄冷運転信号を受信していない場合よりも、出口目標温度を低下させることとなる。   Further, the system controller 44 determines whether or not to perform a cold storage operation, and outputs a cold storage operation signal to the control unit 105 of the absorption chiller 21 when it is determined to perform the cold storage operation. When receiving the cold storage operation signal, the control unit 105 of the absorption refrigerator 21 shifts the control content from the one shown in FIG. 4 to the one shown in FIG. That is, when the control unit 105 receives the cold storage operation signal, the control unit 105 lowers the target outlet temperature than when the cold storage operation signal is not received.

なお、蓄冷運転信号の送信の可否は、システムコントローラ44内のタイマが参照され、蓄冷運転日や蓄冷運転時間帯(所定条件の一例)であれば蓄冷運転信号が送信され、通常空調日や通常空調時間帯であれば蓄冷運転信号の送信が禁止される。   Whether or not the cool storage operation signal can be transmitted is referred to a timer in the system controller 44, and if the cool storage operation date or the cool storage operation time zone (an example of a predetermined condition), the cool storage operation signal is transmitted and the normal air conditioning day or normal Transmission of the cold storage operation signal is prohibited during the air conditioning time period.

加えて、システムコントローラ44は、第1及び第2切替弁33a,33bの制御も実行する。すなわち、システムコントローラ44は、通常冷房運転時において第1切替弁33aを制御してA−Bルートを選択すると共に、第2切替弁33bを制御してD−Eルートを選択する。また、システムコントローラ44は、蓄冷運転時において第1切替弁33aを制御してA−Cルートを選択すると共に、第2切替弁33bを制御してD−Eルートを選択する。   In addition, the system controller 44 also executes control of the first and second switching valves 33a and 33b. That is, the system controller 44 controls the first switching valve 33a to select the A-B route during the normal cooling operation, and controls the second switching valve 33b to select the D-E route. Further, the system controller 44 controls the first switching valve 33a to select the A-C route during the cold storage operation, and controls the second switching valve 33b to select the D-E route.

さらに、室内機は蓄冷槽32から供給される冷水によっても冷房運転可能である。このため、蓄冷槽32内の冷水を使用して冷房運転を行う場合、システムコントローラ44は、第1切替弁33aを制御してA−Cルートを選択すると共に、第2切替弁33bを制御してD−Fルートを選択する。   Furthermore, the indoor unit can also be cooled by cold water supplied from the cold storage tank 32. For this reason, when performing cooling operation using the cold water in the cold storage tank 32, the system controller 44 controls the first switching valve 33a to select the AC route and also controls the second switching valve 33b. To select the DF route.

図6は、本実施形態に係る吸収式冷凍システム1のシステムコントローラ44における処理を示すフローチャートであって、蓄冷運転信号の送信及び禁止の処理を示している。なお、図6に示す処理はシステム1全体が停止するまで実行される。   FIG. 6 is a flowchart showing processing in the system controller 44 of the absorption refrigeration system 1 according to the present embodiment, and shows processing for transmitting and prohibiting a cold storage operation signal. 6 is executed until the entire system 1 is stopped.

まず、システムコントローラ44は、タイマ判断を行う(S1)。タイマ判断の結果、現在が蓄冷運転日又は蓄冷運転時間帯(所定条件の一例)である場合(S1:蓄冷運転日又は蓄冷運転時間帯)、システムコントローラ44は、蓄冷運転信号を吸収式冷凍機21に送信し(S2)、その後図6に示す処理はステップS1に移行する。   First, the system controller 44 makes a timer determination (S1). As a result of the timer determination, when the current time is the cold storage operation day or the cold storage operation time zone (an example of the predetermined condition) (S1: the cold storage operation date or the cold storage operation time zone), the system controller 44 absorbs the cold storage operation signal. 21 (S2), and then the processing shown in FIG. 6 proceeds to step S1.

一方、タイマ判断の結果、現在が通常空調日又は通常空調時間帯である場合(S1:通常空調日又は通常空調時間帯)、システムコントローラ44は、現在空調負荷があるか、すなわちユーザより冷房運転の指令があったかを判断する(S3)。現在空調負荷がない場合(S3:NO)、システムコントローラ44は、蓄冷運転信号を吸収式冷凍機21に送信し(S2)、その後図6に示す処理はステップS1に移行する。   On the other hand, if the result of the timer determination indicates that the current time is a normal air conditioning day or a normal air conditioning time zone (S1: normal air conditioning date or normal air conditioning time zone), the system controller 44 has a current air conditioning load, that is, a cooling operation from the user. Is judged (S3). If there is currently no air conditioning load (S3: NO), the system controller 44 transmits a cold storage operation signal to the absorption chiller 21 (S2), and then the processing shown in FIG. 6 proceeds to step S1.

現在空調負荷がある場合(S3:YES)、システムコントローラ44は、蓄冷運転信号の送信を禁止し(S4)、その後図6に示す処理はステップS1に移行する。   If there is a current air conditioning load (S3: YES), the system controller 44 prohibits transmission of the cold storage operation signal (S4), and then the processing shown in FIG. 6 proceeds to step S1.

図7は、本実施形態に係る吸収式冷凍システム1のシステムコントローラ44における処理を示すフローチャートであって、切替弁33a,33bの処理を示している。なお、図7に示す処理はシステム1全体が停止するまで実行される。   FIG. 7 is a flowchart showing processing in the system controller 44 of the absorption refrigeration system 1 according to this embodiment, and shows processing of the switching valves 33a and 33b. 7 is executed until the entire system 1 is stopped.

まず、システムコントローラ44は、蓄冷運転時であるかを判断する(S11)。蓄冷運転時であるか否かは、図6のステップS2において蓄冷運転信号を送信したか否かに基づいて判断してもよいし、図6のステップS1のようにタイマ判断と同様に判断してもよい。   First, the system controller 44 determines whether it is during a cold storage operation (S11). Whether or not it is during the cold storage operation may be determined based on whether or not the cold storage operation signal is transmitted in step S2 of FIG. 6, or may be determined in the same manner as the timer determination as in step S1 of FIG. May be.

蓄冷運転時であると判断した場合(S11:YES)、システムコントローラ44は、第1切替弁33aを制御してA−Cルートを選択すると共に、第2切替弁33bを制御してD−Eルートを選択する(S12)。すなわち、上記ルートを選択することにより、システムコントローラ44は、冷水を室内機に供給することなく、吸収式冷凍機21と蓄冷槽32との間で循環させることとなる。そして、図7に示す処理はステップS11に移行する。   When it is determined that the cold storage operation is being performed (S11: YES), the system controller 44 controls the first switching valve 33a to select the AC route, and controls the second switching valve 33b to control D-E. A route is selected (S12). That is, by selecting the above route, the system controller 44 circulates between the absorption chiller 21 and the cold storage tank 32 without supplying cold water to the indoor unit. Then, the processing shown in FIG. 7 proceeds to step S11.

なお、この場合において吸収式冷凍機21の制御部105は、図4及び図5(a)に示すように、出口目標温度を低下させる。   In this case, the control unit 105 of the absorption refrigeration machine 21 decreases the target outlet temperature as shown in FIGS. 4 and 5A.

一方、蓄冷運転時でないと判断した場合(S11:NO)、システムコントローラ44は、通常冷房運転時であるかを判断する(S13)。この場合、システムコントローラ44は、例えば蓄冷槽温度センサ43からの信号に基づき、蓄冷槽32の蓄冷温度が所定温度を超える場合に、通常冷房運転時であると判断し(S13:YES)、そうでない場合に通常冷房運転時でないと判断する(S13:NO)。   On the other hand, when it is determined that it is not during the cold storage operation (S11: NO), the system controller 44 determines whether it is during the normal cooling operation (S13). In this case, for example, based on a signal from the cold storage tank temperature sensor 43, the system controller 44 determines that the normal cooling operation is being performed when the cold storage temperature of the cold storage tank 32 exceeds a predetermined temperature (S13: YES). If not, it is determined that it is not during normal cooling operation (S13: NO).

そして、通常冷房運転時であると判断した場合(S13:YES)、システムコントローラ44は、第1切替弁33aを制御してA−Bルートを選択すると共に、第2切替弁33bを制御してD−Eルートを選択する(S14)。すなわち、上記ルートを選択することにより、システムコントローラ44は、冷水を蓄冷槽32に供給することなく、吸収式冷凍機21と室内機との間で循環させることとなる。そして、図7に示す処理はステップS11に移行する。   If it is determined that it is during normal cooling operation (S13: YES), the system controller 44 controls the first switching valve 33a to select the A-B route and also controls the second switching valve 33b. The DE route is selected (S14). That is, by selecting the above route, the system controller 44 circulates between the absorption refrigerator 21 and the indoor unit without supplying cold water to the cold storage tank 32. Then, the processing shown in FIG. 7 proceeds to step S11.

通常冷房運転時でないと判断した場合(S13:NO)、システムコントローラ44は、蓄冷槽32内の冷水を使用して冷房運転を行うかを判断する(S15)。この場合、システムコントローラ44は、例えば蓄冷槽温度センサ43からの信号に基づき、蓄冷槽32の蓄冷温度が所定温度以下である場合に、蓄冷槽32内の冷水を使用した冷房を行うと判断し(S15:YES)、そうでない場合に蓄冷槽32内の冷水を使用した冷房を行わないと判断する(S15:NO)。   When it is determined that it is not during normal cooling operation (S13: NO), the system controller 44 determines whether to perform cooling operation using the cold water in the cold storage tank 32 (S15). In this case, for example, based on a signal from the cold storage tank temperature sensor 43, the system controller 44 determines that the cooling using the cold water in the cold storage tank 32 is performed when the cold storage temperature of the cold storage tank 32 is equal to or lower than a predetermined temperature. (S15: YES), otherwise, it is determined not to perform cooling using the cold water in the cold storage tank 32 (S15: NO).

そして、蓄冷槽32内の冷水を使用した冷房を行うと判断した場合(S15:YES)、システムコントローラ44は、第1切替弁33aを制御してA−Cルートを選択すると共に、第2切替弁33bを制御してD−Fルートを選択する(S16)。すなわち、上記ルートを選択することにより、システムコントローラ44は、蓄冷槽32を介したうえで、吸収式冷凍機21と室内機との間で冷水を循環させることとなる。そして、図7に示す処理は終了する。   If it is determined that the cooling using the cold water in the cold storage tank 32 is performed (S15: YES), the system controller 44 controls the first switching valve 33a to select the AC route and the second switching. The valve 33b is controlled to select the DF route (S16). That is, by selecting the above route, the system controller 44 circulates cold water between the absorption chiller 21 and the indoor unit through the cold storage tank 32. Then, the process shown in FIG. 7 ends.

一方、蓄冷槽32内の冷水を使用した冷房を行わないと判断した場合(S15:NO)、処理はステップS11に移行することとなる。   On the other hand, when it is determined not to perform cooling using the cold water in the cold storage tank 32 (S15: NO), the process proceeds to step S11.

このようにして、本実施形態に係る吸収式冷凍システム1によれば、所定条件が満たされた場合に、吸収式冷凍機21に対して蓄冷運転信号を送信し、所定条件が満たされない場合に蓄冷運転信号の送信を禁止し、システムコントローラ44から蓄冷運転信号を受信している場合、システムコントローラ44から蓄冷運転信号を受信していない場合よりも、吸収式冷凍機21から室内機に向かう第1循環流路31aにおける冷却液の目標温度を低下させる。このため、蓄冷運転を行う場合には、冷却液の目標温度を下げることができ、通常の冷房運転時において必要以上に冷却液の温度が低くなってしまい運転効率が悪化してしまうことを防止することができる。さらに、蓄冷運転を行う場合には冷却液の目標温度が下がることから、通常冷房時に必要以上に温度の低い冷却液が室内機に供給されることなく、室内機において結露が発生してしまう可能性を低減することとなる。従って、より効率の良い運転を可能とすると共に結露が発生する可能性を低減することが可能な吸収式冷凍システム1を提供することができる。   Thus, according to the absorption refrigeration system 1 according to the present embodiment, when a predetermined condition is satisfied, a cold storage operation signal is transmitted to the absorption refrigeration machine 21, and when the predetermined condition is not satisfied. In the case where the transmission of the cold storage operation signal is prohibited and the cold storage operation signal is received from the system controller 44, the absorption refrigerator 21 is directed to the indoor unit more than the case where the cold storage operation signal is not received from the system controller 44. The target temperature of the coolant in the 1 circulation channel 31a is lowered. For this reason, when performing a cold storage operation, the target temperature of the coolant can be lowered, preventing the coolant temperature from becoming lower than necessary during normal cooling operation and deteriorating the operation efficiency. can do. Furthermore, when performing the cold storage operation, the target temperature of the cooling liquid is lowered, so that the cooling liquid having a temperature lower than necessary during normal cooling is not supplied to the indoor unit, and condensation may occur in the indoor unit. Will be reduced. Therefore, it is possible to provide the absorption refrigeration system 1 that enables more efficient operation and can reduce the possibility of condensation.

また、吸収式冷凍機21は、蓄冷運転信号を受信している場合において、蓄冷槽温度センサ43により検出された蓄冷温度が蓄冷運転開始温度T8℃以上となるときに、蓄冷槽21に冷却液を導入して蓄冷する蓄冷運転を開始する。また、蓄冷槽温度センサ43により検出された蓄冷温度が蓄冷運転開始温度T8℃よりも低い蓄冷運転停止温度T7℃以下となるときに、蓄冷運転を停止する。このため、蓄冷槽32において充分に冷熱を確保できていない状態において蓄冷運転が行われ、蓄冷槽32において充分に冷熱を確保できている場合には蓄冷運転が停止することとなり、無駄な蓄冷運転を防止することができる。   Moreover, when the absorption refrigerator 21 is receiving the cool storage operation signal, when the cool storage temperature detected by the cool storage tank temperature sensor 43 is equal to or higher than the cool storage operation start temperature T8 ° C., the absorption cooler 21 supplies the coolant to the cool storage tank 21. To start cold storage operation. Further, when the cold storage temperature detected by the cold storage tank temperature sensor 43 is equal to or lower than the cold storage operation stop temperature T7 ° C. lower than the cold storage operation start temperature T8 ° C., the cold storage operation is stopped. For this reason, the cold storage operation is performed in a state where sufficient cold heat cannot be secured in the cold storage tank 32, and the cold storage operation is stopped when sufficient cold heat is secured in the cold storage tank 32, and wasteful cold storage operation is performed. Can be prevented.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよい。   As described above, the present invention has been described based on the embodiment, but the present invention is not limited to the above embodiment, and may be modified without departing from the gist of the present invention.

例えば上記した温度T1〜T8℃については適宜変更可能であり、各温度T1〜T8℃間の高低についても適宜変更可能である。また、外部機器が室内機でなく、工業用の冷却装置である場合には、通常冷房運転とは通常冷却運転等に読み替えられることは言うまでもない。さらに、外部機器が室内機及び工業用冷却装置を除く他の機器である場合においても、上記した各種文言は適宜読み替えられる。   For example, the above-described temperatures T1 to T8 ° C. can be appropriately changed, and the heights between the temperatures T1 to T8 ° C. can be appropriately changed. Needless to say, when the external device is not an indoor unit but an industrial cooling device, the normal cooling operation can be read as normal cooling operation. Furthermore, even when the external device is another device other than the indoor unit and the industrial cooling device, the various terms described above can be appropriately replaced.

さらに、上記実施形態では、現在が蓄冷運転日又は蓄冷運転時間帯である場合に所定条件が満たされたとし蓄冷運転信号を送信しているが、所定条件は上記に限らず、適宜変更可能である。例えばシステムコントローラ44の蓄冷運転ボタンが押下されるなどして、蓄冷運転の指示があったことを所定条件としてもよいし、他の条件を所定条件としてもよい。   Further, in the above embodiment, the cold storage operation signal is transmitted assuming that the predetermined condition is satisfied when the current day is the cold storage operation day or the cold storage operation time zone, but the predetermined condition is not limited to the above, and can be appropriately changed. is there. For example, a predetermined condition may be that the cold storage operation instruction of the system controller 44 has been pressed or the like, and other conditions may be set as the predetermined condition.

1…吸収式冷凍システム
10…第1システム
11…太陽熱集熱器(集熱器)
12…蓄熱槽
13…集熱流路
14…集熱ポンプ
20…第2システム
21…吸収式冷凍機
22…熱媒流路
23…熱媒ポンプ
30…第3システム
31…循環流路
32…蓄冷槽
33a,33b…切替弁
34a〜34d…分岐流路
35…循環ポンプ
41…集熱器温度センサ
42…蓄熱槽温度センサ
43…蓄冷槽温度センサ
44…システムコントローラ(コントローラ)
DESCRIPTION OF SYMBOLS 1 ... Absorption-type refrigeration system 10 ... 1st system 11 ... Solar thermal collector (heat collector)
DESCRIPTION OF SYMBOLS 12 ... Heat storage tank 13 ... Heat collection flow path 14 ... Heat collection pump 20 ... 2nd system 21 ... Absorption type refrigerator 22 ... Heat medium flow path 23 ... Heat transfer medium pump 30 ... 3rd system 31 ... Circulation flow path 32 ... Cold storage tank 33a, 33b ... switching valves 34a-34d ... branch passage 35 ... circulation pump 41 ... heat collector temperature sensor 42 ... heat storage tank temperature sensor 43 ... cool storage tank temperature sensor 44 ... system controller (controller)

Claims (3)

機器からの排熱又はエネルギー源として永続的に利用可能な再生可能エネルギーにより熱媒を加熱する集熱器と、
前記集熱器にて加熱された熱媒を導入して再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷却液を得る吸収式冷凍機と、
前記吸収式冷凍機にて得られた冷却液を前記吸収式冷凍機の前記蒸発器と外部機器との間で循環させる循環流路と、
前記循環流路から分岐した分岐流路と、
前記循環流路を流れる冷却液の流れ方向を切り替えて前記分岐流路に流入させる切替弁と、
前記分岐流路上に設けられ、前記吸収式冷凍機にて得られた冷却液を導入して蓄冷すると共に蓄えた冷熱を前記外部機器に供給する蓄冷槽と、
所定条件が満たされた場合に、前記吸収式冷凍機に対して蓄冷運転信号を送信し、前記所定条件が満たされない場合に蓄冷運転信号の送信を禁止するコントローラと、を備え、
前記コントローラは、前記蓄冷運転信号を送信した場合、前記切替弁を制御して前記吸収式冷凍機からの冷却液を前記分岐流路に流入させ、
前記吸収式冷凍機は、前記コントローラから前記蓄冷運転信号を受信して冷却液を前記分岐流路を介して蓄冷槽に供給する場合、前記コントローラから前記蓄冷運転信号を受信しておらず冷却液を前記分岐流路を介することなく前記外部機器に供給する場合よりも冷却液の目標温度を低下させる
ことを特徴とする吸収式冷凍システム。
A heat collector that heats the heat medium with renewable energy that is permanently available as waste heat or energy source from the equipment;
An absorption refrigerator that introduces a heat medium heated by the heat collector and heats a dilute solution in the regenerator, and obtains a cooling liquid by a circulation cycle of the regenerator, the condenser, the evaporator, and the absorber; ,
A circulation passage for circulating the coolant obtained by the absorption refrigerator between the evaporator of the absorption refrigerator and an external device;
A branch channel branched from the circulation channel;
A switching valve for switching the flow direction of the coolant flowing through the circulation flow path to flow into the branch flow path;
A cold storage tank that is provided on the branch flow path, cools the refrigerant obtained by the absorption chiller and cools it, and supplies the stored cold energy to the external device ;
A controller that transmits a cold storage operation signal to the absorption refrigerator when the predetermined condition is satisfied, and a controller that prohibits transmission of the cold storage operation signal when the predetermined condition is not satisfied,
When the controller transmits the cold storage operation signal, the controller controls the switching valve to flow the coolant from the absorption chiller into the branch flow path,
When the absorption refrigerator receives the cold storage operation signal from the controller and supplies the coolant to the cold storage tank via the branch flow path, the absorption refrigerator does not receive the cold storage operation signal from the controller. It said than that supplied to the external equipment, absorption refrigerating system and decreases the target temperature of the cooling fluid without passing through the branch flow path.
前記蓄冷槽の蓄冷温度を検出する蓄冷槽温度センサをさらに備え、
前記吸収式冷凍機は、前記蓄冷運転信号を受信している場合において、前記蓄冷槽温度センサにより検出された蓄冷温度が第1所定値以上となるときに、前記蓄冷槽に冷却液を導入して蓄冷する蓄冷運転を開始し、前記蓄冷槽温度センサにより検出された蓄冷温度が第1所定値よりも低い第2所定値以下となるときに、前記蓄冷運転を停止する
ことを特徴とする請求項1に記載の吸収式冷凍システム。
A cold storage tank temperature sensor for detecting the cold storage temperature of the cold storage tank;
In the case where the absorption refrigerator receives the cold storage operation signal, the absorption refrigerator introduces coolant into the cold storage tank when the cold storage temperature detected by the cold storage tank temperature sensor is equal to or higher than a first predetermined value. The cold storage operation is started, and the cold storage operation is stopped when the cold storage temperature detected by the cold storage tank temperature sensor becomes equal to or lower than a second predetermined value lower than the first predetermined value. Item 6. The absorption refrigeration system according to Item 1.
機器からの排熱又はエネルギー源として永続的に利用可能な再生可能エネルギーにより熱媒を加熱する集熱器と、
前記集熱器にて加熱された熱媒を導入して再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷却液を得る吸収式冷凍機と、
前記吸収式冷凍機にて得られた冷却液を前記吸収式冷凍機の前記蒸発器と外部機器との間で循環させる循環流路と、
前記循環流路から分岐した分岐流路と、
前記循環流路を流れる冷却液の流れ方向を切り替えて前記分岐流路に流入させる切替弁と、
前記分岐流路上に設けられ、前記吸収式冷凍機にて得られた冷却液を導入して蓄冷すると共に蓄えた冷熱を前記外部機器に供給する蓄冷槽と、
前記吸収式冷凍機に対する蓄冷運転信号の送信、及び当該送信の禁止を行うコントローラと、
を備えた吸収式冷凍システムの制御方法であって、
所定条件が満たされた場合に、前記コントローラから前記吸収式冷凍機に対して蓄冷運転信号を送信する第1工程と、
前記所定条件が満たされない場合に蓄冷運転信号の送信を禁止する第2工程と、
前記第1工程にて蓄冷運転信号を送信した場合、前記切替弁を制御して前記吸収式冷凍機からの冷却液を前記分岐流路に流入させる第3工程と、
前記第1工程にて前記コントローラから前記吸収式冷凍機に対して蓄冷運転信号が送信され冷却液を前記分岐流路を介して蓄冷槽に供給する場合、前記第2工程にて前記コントローラから前記吸収式冷凍機に対して蓄冷運転信号が送信されておらず冷却液を前記分岐流路を介することなく前記外部機器に供給する場合よりも冷却液の目標温度を低下させる第4工程と、
を備えることを特徴とする吸収式冷凍システムの制御方法。
A heat collector that heats the heat medium with renewable energy that is permanently available as waste heat or energy source from the equipment;
An absorption refrigerator that introduces a heat medium heated by the heat collector and heats a dilute solution in the regenerator, and obtains a cooling liquid by a circulation cycle of the regenerator, the condenser, the evaporator, and the absorber; ,
A circulation passage for circulating the coolant obtained by the absorption refrigerator between the evaporator of the absorption refrigerator and an external device;
A branch channel branched from the circulation channel;
A switching valve for switching the flow direction of the coolant flowing through the circulation flow path to flow into the branch flow path;
A cold storage tank that is provided on the branch flow path, cools the refrigerant obtained by the absorption chiller and cools it, and supplies the stored cold energy to the external device ;
A controller for transmitting a cold storage operation signal to the absorption refrigerator and prohibiting the transmission;
An absorption refrigeration system control method comprising:
A first step of transmitting a cold storage operation signal from the controller to the absorption chiller when a predetermined condition is satisfied;
A second step of prohibiting transmission of a cold storage operation signal when the predetermined condition is not satisfied;
When the cold storage operation signal is transmitted in the first step, the third step of controlling the switching valve to flow the coolant from the absorption refrigerator into the branch channel;
When the cool storage operation signal is transmitted from the controller to the absorption refrigerator in the first step and the coolant is supplied to the cool storage tank via the branch flow path, the controller from the controller in the second step A fourth step of lowering the target temperature of the coolant than when the cool storage operation signal is not transmitted to the absorption refrigerator and the coolant is supplied to the external device without passing through the branch flow path ;
An absorption refrigeration system control method comprising:
JP2013219906A 2013-10-23 2013-10-23 Absorption refrigeration system Active JP6385044B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013219906A JP6385044B2 (en) 2013-10-23 2013-10-23 Absorption refrigeration system
CN201480058334.2A CN105683684B (en) 2013-10-23 2014-10-23 Absorption refrigeration system
PCT/JP2014/078256 WO2015060404A1 (en) 2013-10-23 2014-10-23 Absorption-type refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219906A JP6385044B2 (en) 2013-10-23 2013-10-23 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2015081730A JP2015081730A (en) 2015-04-27
JP6385044B2 true JP6385044B2 (en) 2018-09-05

Family

ID=52992991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219906A Active JP6385044B2 (en) 2013-10-23 2013-10-23 Absorption refrigeration system

Country Status (3)

Country Link
JP (1) JP6385044B2 (en)
CN (1) CN105683684B (en)
WO (1) WO2015060404A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642816A (en) * 2017-01-06 2017-05-10 华北电力大学 Heating and cooling combined system for solving renewable energy power generation energy waste problem
JP6689801B2 (en) * 2017-09-13 2020-04-28 矢崎エナジーシステム株式会社 Solar air conditioning system
FR3082609B1 (en) * 2018-06-19 2020-11-20 Commissariat Energie Atomique SYSTEM INCLUDING AN ABSORPTION MACHINE FOR THE PRODUCTION OF COLD FROM THE FATAL HEAT OF EXHAUST GAS FROM A VEHICLE INCLUDING A THERMAL ENERGY STORAGE MODULE
FR3082608B1 (en) * 2018-06-19 2020-11-20 Commissariat Energie Atomique SYSTEM INCLUDING AN ABSORPTION MACHINE FOR THE PRODUCTION OF COLD FROM THE FATAL HEAT OF EXHAUST GAS FROM A VEHICLE INCLUDING A THERMAL ENERGY STORAGE MODULE
CN109883079B (en) * 2019-03-18 2023-05-23 华南理工大学 Absorption-compression interactive sub-cooling type composite refrigeration system and method
CN110118448B (en) * 2019-05-14 2021-04-06 湖南科技大学 Heat storage cold storage type gas auxiliary solar energy absorption type ammonia water cooling system
CN113669946A (en) * 2021-08-12 2021-11-19 上海碳索能源服务股份有限公司 Absorption type cold-heat combined supply system for hot filling workshop

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100959A (en) * 1994-09-30 1996-04-16 Toshiba Corp Air conditioner
JPH11304260A (en) * 1998-04-23 1999-11-05 Mitsubishi Cable Ind Ltd Cold storage cooling system
JP4958178B2 (en) * 2008-07-03 2012-06-20 東京瓦斯株式会社 Air conditioning system
CN201412989Y (en) * 2009-06-05 2010-02-24 陕西理工学院 Solar energy phase transition heat accumulation absorption type refrigeration apparatus
JP5693197B2 (en) * 2010-12-15 2015-04-01 株式会社日立製作所 Solar heat utilization system and control method of solar heat utilization system
JP5409704B2 (en) * 2011-05-24 2014-02-05 三菱電機株式会社 refrigerator
CN103017397B (en) * 2012-12-18 2015-02-11 中国科学院电工研究所 Medium-high temperature solar steam-absorption refrigeration-seawater desalination-energy storage coupling system

Also Published As

Publication number Publication date
WO2015060404A1 (en) 2015-04-30
CN105683684B (en) 2017-10-24
CN105683684A (en) 2016-06-15
JP2015081730A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6385044B2 (en) Absorption refrigeration system
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2002147885A (en) Absorption refrigerating machine
JP6689801B2 (en) Solar air conditioning system
JP2016057032A (en) Absorption type refrigeration system
JP6232251B2 (en) Absorption type hot and cold water system
JP6415378B2 (en) Air conditioning system
KR19980064574A (en) Operation stop method of absorption refrigeration unit
JP2000018762A (en) Absorption refrigerating machine
KR100981977B1 (en) Absorption water chiller-heater
JP4901655B2 (en) Absorption chiller / heater
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP6871015B2 (en) Absorption refrigeration system
JP5902955B2 (en) Absorption type hot and cold water system
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP3851764B2 (en) Absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2001099474A (en) Air conditioner
JP6132821B2 (en) Absorption refrigeration system
JP4315855B2 (en) Absorption refrigerator
JP5342759B2 (en) Absorption chiller / heater
JP2003004330A (en) Exhaust heat recovery air conditioner
JP2012067950A (en) Air conditioning system
JP2011106749A (en) Air conditioning system
JP3143251B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180807

R150 Certificate of patent or registration of utility model

Ref document number: 6385044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250