WO2015060369A1 - Absorption-type hot and cold water system - Google Patents

Absorption-type hot and cold water system Download PDF

Info

Publication number
WO2015060369A1
WO2015060369A1 PCT/JP2014/078152 JP2014078152W WO2015060369A1 WO 2015060369 A1 WO2015060369 A1 WO 2015060369A1 JP 2014078152 W JP2014078152 W JP 2014078152W WO 2015060369 A1 WO2015060369 A1 WO 2015060369A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
temperature
storage tank
temperature sensor
Prior art date
Application number
PCT/JP2014/078152
Other languages
French (fr)
Japanese (ja)
Inventor
正登 小粥
元巳 稲垣
了 鷲尾
Original Assignee
矢崎エナジーシステム株式会社
テクノ矢崎株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎エナジーシステム株式会社, テクノ矢崎株式会社 filed Critical 矢崎エナジーシステム株式会社
Priority to CN201480058337.6A priority Critical patent/CN105705883A/en
Publication of WO2015060369A1 publication Critical patent/WO2015060369A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/005Hot-water central heating systems combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1045Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump and solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/126Absorption type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to an absorption-type cold / hot water system.
  • a solar heat utilization system including a solar heat collector that heats a heat medium by receiving sunlight and a heat storage tank that stores heat by introducing a heat medium heated by the solar heat collector has been proposed.
  • a dilute solution is used in the regenerator of the absorption chiller / heater by connecting a pipe between the heat storage tank and the absorption chiller / heater and circulating a heat medium between them.
  • An absorption-type cold / hot water system used for heating the water has also been proposed (see Patent Document 1).
  • the dilute solution can be heated using renewable energy called solar heat, and the fuel cost required for heating the dilute solution can be reduced.
  • a heat storage tank is interposed between the solar heat collector and the absorption chiller / heater, and this acts as a buffer. Therefore, heat from the heat storage tank is not affected by the amount of solar radiation.
  • the medium can be supplied to the absorption chiller / heater. In other words, when the amount of solar radiation is small, if a heat medium is supplied directly from the solar heat collector to the absorption chiller / heater, a low-temperature heat medium will be supplied to the absorption chiller / heater, resulting in efficient operation. Although it cannot be performed, since a heat medium having a stable temperature can be supplied to the absorption chiller / heater by providing the heat storage tank, an efficient operation can be performed.
  • the heat medium from the solar heat collector becomes hotter than the heat medium from the heat storage tank. For this reason, when the heat medium is directly supplied from the solar heat collector to the absorption chiller / heater, an efficient operation can be performed in the absorption chiller / heater.
  • the above problem is not limited to the method of heating the heat medium using the solar heat utilization system, but the heat medium is heated and stored using exhaust heat, or the heat is generated using renewable energy such as geothermal or biomass. This is a common problem even in an absorption chilled / hot water system having a system for heating and storing a medium.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to provide an absorption chilled / hot water system capable of further improving the operation efficiency.
  • the absorption-type cold / hot water system of the present invention includes a heat collector that heats a heat medium with renewable energy that can be permanently used as an exhaust heat or energy source from an apparatus, and a heat medium heated by the heat collector.
  • An absorption chiller / heater that introduces and heats a dilute solution in a regenerator and obtains a chilled / hot liquid by a circulation cycle of the regenerator, condenser, evaporator, and absorber, and the absorption chiller / heater from the heat storage tank
  • a second system having a second pump that circulates a heat medium again to the heat storage tank via the regenerator, and an absorption-type cold / hot water system comprising the heat collector and the heat storage tank.
  • the switching valve provided on the flow path and the heat storage tank A bypass flow path connecting a flow path for supplying a heat medium to the absorption chiller / heater and the switching valve, a first temperature sensor for detecting a temperature of the heat medium from the heat collector, and the heat storage tank.
  • a second temperature sensor for detecting the temperature of the heat medium in the medium, and when the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, Control means for controlling the switching valve to supply the heat medium from the heat collector to the regenerator of the absorption chiller / heater through the bypass flow path.
  • the switching valve is controlled when the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more.
  • the heat collector from the heat collector is at a higher temperature than the heat medium from the heat storage tank.
  • the control means when the heat medium temperature detected by the first temperature sensor is equal to or lower than the heat medium temperature detected by the second temperature sensor, the control means And the heating medium temperature detected by the first temperature sensor is equal to or higher than the heating medium temperature detected by the second temperature sensor. If the heat medium temperature detected by the first temperature sensor is not higher than the heat medium temperature detected by the second temperature sensor, the switching valve is preferably maintained in the current state.
  • the heat medium from the heat collector is supplied to the heat storage tank.
  • the heat medium temperature detected by the first temperature sensor is not higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, and the heat medium temperature detected by the first temperature sensor is the second temperature.
  • the switching valve is maintained in the current state.
  • the control of the switching valve is provided with temperature hysteresis, and it is possible to prevent the switching valve from being frequently switched.
  • control means is configured such that the heat medium temperature detected by the first temperature sensor is an upper limit of an allowable temperature of the heat medium that is an appropriate temperature to be supplied to the absorption chiller / heater. When it is more than the value, it is preferable to control the switching valve to supply the heat medium from the heat collector to the heat storage tank.
  • the regenerator Even if the regenerator is supplied to the regenerator, if the heat medium temperature detected by the first temperature sensor is equal to or higher than the upper limit of the heat medium allowable temperature, the heat medium is supplied to the heat storage tank. It becomes. Thereby, it can prevent that an absorption type
  • the control means when the control means supplies the heat medium from the heat collector to the regenerator of the absorption chiller / heater through the bypass flow path, the second pump is used. It is preferable to operate the first pump without operating.
  • this absorption-type cold / hot water system when supplying the heat medium from a heat collector to the regenerator of an absorption-type cold / hot water machine through a bypass flow path, in order to operate a 1st pump, without operating a 2nd pump.
  • the heat medium from the heat collector can be supplied to the regenerator of the absorption chiller / heater.
  • “to obtain a cool / warm liquid by the circulation cycle of the regenerator, condenser, evaporator, and absorber” means to obtain a cooling liquid by a cooling cycle by the regenerator, condenser, evaporator, and absorber. This is a concept that includes both the case of obtaining the heating liquid by the heating cycle by the regenerator, the evaporator, and the absorber (that is, the case of not using the condenser).
  • the absorption chiller / heater is a concept including an absorption refrigerator that only obtains a coolant.
  • the cold / hot liquid may mean only the cooling liquid
  • the absorption cold / hot water system may mean an absorption refrigeration system.
  • FIG. 1 is a schematic configuration diagram of an absorption-type cold / hot water system according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating an example of an absorption chiller / heater.
  • FIG. 3 is a flowchart showing a control method of the absorption-type cold / hot water system according to the present embodiment.
  • FIG. 1 is a schematic configuration diagram of an absorption-type cold / hot water system according to an embodiment of the present invention.
  • the absorption-type cold / hot water system 1 which concerns on this embodiment heats the dilute solution of the absorption-type cold / hot water machine 21 using a solar heat, Comprising: 1st system 10 and 2nd System 20.
  • the first system 10 heats a heat medium using solar heat, and includes a solar heat collector (heat collector) 11, a heat storage tank 12, a heat collection flow path 13, and a heat collection pump (first heat pump). Pump) 14.
  • the first system 10 heats the heat medium using solar heat, but is not limited thereto, and may heat the heat medium using exhaust heat. Further, the heating medium may be heated using renewable energy (one that can be permanently used as an energy source) such as geothermal or biomass.
  • the solar heat collector 11 heats the heat medium by receiving sunlight, and is installed at a position where it is easy to receive sunlight, such as on a roof.
  • As the heat medium water, antifreeze, propylene glycol aqueous solution, or the like is used.
  • the heat storage tank 12 introduces a heat medium heated by the solar heat collector 11 and stores heat.
  • the heat storage tank 12 is a tank that stores a heat medium therein.
  • the heat collection channel 13 is a pipe that circulates the heat medium from the heat storage tank 12 through the solar heat collector 11 to the heat storage tank 12 again.
  • the flow path from the heat storage tank 12 to the solar heat collector 11 is referred to as a first heat collection flow path 13a
  • the flow path from the solar heat collector 11 to the heat storage tank 12 is referred to as a second heat collection flow path 13b.
  • the heat collection pump 14 is provided in the first heat collection flow path 13a of the heat collection flow path 13, and serves as a power source for circulating the heat medium from the heat storage tank 12 through the solar heat collector 11 to the heat storage tank 12 again. It is.
  • the heat medium circulates through the heat collecting flow path 13 by operating the heat collecting pump 14.
  • the heat medium is heated by the solar heat collector 11, reaches the heat storage tank 12 through the second heat collection flow path 13 b, and is stored in the heat storage tank 12.
  • the second system 20 supplies the heat medium stored in the heat storage tank 12 to the absorption chiller / heater 21, and includes an absorption chiller / heater 21, a heat medium flow path 22, a heat medium pump ( A second pump) 23.
  • the absorption chiller / heater 21 heats the dilute solution in the regenerator and cools the refrigerant by the circulation cycle of the regenerator, the condenser, the evaporator, and the absorber.
  • FIG. 2 is a schematic configuration diagram showing an example of the absorption chiller / heater 21.
  • the regenerator 101 includes, for example, water serving as a refrigerant (hereinafter, the refrigerant vaporized is referred to as refrigerant vapor, and the refrigerant liquefied is referred to as liquid refrigerant), and lithium bromide (absorbent liquid) ( A dilute solution (solution having a low concentration of the absorbing solution) mixed with LiBr) is heated.
  • the regenerator 101 is provided with piping constituting the heat medium flow path 22, and a dilute solution is sprayed on the heat medium flow path 22 and heated.
  • the regenerator 101 generates a refrigerant vapor and a concentrated solution (a solution having a high concentration of absorption liquid) by releasing the vapor from the dilute solution by this heating.
  • the condenser 102 liquefies the refrigerant vapor supplied from the regenerator 101.
  • a first cold water heat transfer tube 102a is inserted into the condenser 102. Cooling water is supplied to the first cold water heat transfer tube 102a from a cooling tower or the like, and the evaporated refrigerant vapor is liquefied by the cooling water in the first cold water heat transfer tube 102a. Further, the liquid refrigerant liquefied by the condenser 102 is supplied to the evaporator 103.
  • the evaporator 103 evaporates the liquid refrigerant.
  • the 2nd cold water heat exchanger tube 103a connected to an indoor unit etc. is provided.
  • the second cold water heat transfer tube 103a is connected to, for example, an indoor unit, and water warmed by cooling by the indoor unit flows. Further, the inside of the evaporator 103 is in a vacuum state. For this reason, the evaporation temperature of water as a refrigerant is about 5 ° C. Therefore, the liquid refrigerant spread on the second cold water heat transfer tube 103a evaporates depending on the temperature of the second cold water heat transfer tube 103a.
  • the temperature of the water in the second cold water heat transfer tube 103a is deprived of the temperature by evaporation of the liquid refrigerant.
  • the water of the 2nd cold water heat exchanger tube 103a is supplied to an indoor unit as cold water (an example of cold / warm liquid), and an indoor unit will supply cold air indoors using cold water.
  • the absorber 104 absorbs the refrigerant evaporated in the evaporator 103.
  • a concentrated solution is supplied from the regenerator 101 into the absorber 104, and the evaporated refrigerant is absorbed by the concentrated solution to generate a diluted solution.
  • the absorber 104 is inserted with a third cold water heat transfer tube 104a.
  • the cooling water flows through the third cold water heat transfer tube 104a, and the absorbed heat generated by the absorption of the refrigerant of the concentrated solution is removed by the cooling water of the third cold water heat transfer tube 104a.
  • the third cold water heat transfer tube 104a is connected to the first cold water heat transfer tube 102a.
  • the absorber 104 supplies the regenerator 101 with the dilute solution whose density
  • the absorption-type cold / hot water machine 21 can also perform heating operation.
  • a switching valve (not shown) is switched.
  • hot water an example of cold / warm liquid
  • the second cold water heat transfer tube 103a flows through the second cold water heat transfer tube 103a, and a heating effect is obtained in the indoor unit based on the hot water.
  • the second cold water heat transfer tube 103a is connected to the indoor unit.
  • the second cold water heat transfer tube 103a may be connected to an industrial cooling device or the like.
  • the heat medium flow path 22 is a pipe that circulates the heat medium from the heat storage tank 12 through the regenerator 101 of the absorption chiller / heater 21 to the heat storage tank 12 again.
  • the flow path from the heat storage tank 12 toward the regenerator 101 of the absorption chiller / heater 21 is referred to as a first heat medium flow path 22 a
  • the flow path from the regenerator 101 of the absorption chiller / heater 21 to the heat storage tank 12. Is referred to as a second heat medium flow path 22b.
  • the heat medium pump 23 is provided in the first heat medium flow path 22 a of the heat medium flow path 22, and passes the heat medium from the heat storage tank 12 to the heat storage tank 12 again through the regenerator 101 of the absorption chiller / heater 21. It becomes a power source to circulate.
  • the absorption chilled / hot water system 1 includes a switching valve 31, a bypass channel 32, a collector temperature sensor (first temperature sensor) 33, and a heat storage tank temperature sensor (second temperature sensor) 34. And a check valve 35 and a system controller (control means) 36.
  • the switching valve 31 is a three-way valve provided on the flow path from the solar heat collector 11 to the heat storage tank 12, that is, on the second heat collection flow path 13b.
  • the bypass flow path 32 is a flow path for supplying a heat medium from the heat storage tank 12 to the absorption chiller / heater 21, that is, a pipe connecting the first heat medium flow path 22 a and the switching valve 31.
  • the switching valve 31 is controlled by the system controller 36 to supply the heat medium heated by the solar heat collector 11 to the heat storage tank 12 only through the second heat collection flow path 13b or through the heat storage tank 12 through the bypass flow path 32. Without being supplied to the regenerator 101 of the absorption chiller / heater 21.
  • the heat collector temperature sensor 33 detects the temperature of the heat medium from the solar heat collector 11, and transmits a signal corresponding to the heat medium temperature to the system controller 36.
  • the heat storage tank temperature sensor 34 detects the temperature of the heat medium in the heat storage tank 12 and transmits a signal corresponding to the heat medium temperature to the system controller 36.
  • the check valve 35 is provided upstream of the connection point A between the first heat medium flow path 22a and the bypass flow path 32 and downstream of the heat medium pump 23 to prevent the back flow of the heat medium. It is.
  • the system controller 36 includes a CPU (Central Processing Unit), and switches the switching valve 31 according to the heat medium temperature detected by the heat collector temperature sensor 33 and the heat medium temperature detected by the heat storage tank temperature sensor 34. It is something to control.
  • CPU Central Processing Unit
  • the system controller 36 controls the switching valve 31 to control the bypass flow path when the heat medium temperature detected by the heat collector temperature sensor 33 is higher than the heat medium temperature detected by the heat storage tank temperature sensor 34 by a predetermined temperature or more.
  • the heat medium from the solar heat collector 11 is supplied to the regenerator 101 of the absorption chiller / heater 21 through 32. Thereby, in a situation where the heat medium from the solar heat collector 11 is at a higher temperature than the heat medium from the heat storage tank 12, the heat medium is supplied directly from the solar heat collector 11 to the absorption chiller / heater 21.
  • the absorption chiller / heater 21 is allowed to perform more efficient operation.
  • the system controller 36 controls the switching valve 31 to control the solar heat collector 11 when the heat medium temperature detected by the heat collector temperature sensor 33 is equal to or lower than the heat medium temperature detected by the heat storage tank temperature sensor 34.
  • the heat medium from is supplied to the heat storage tank 12. Therefore, in a situation where the solar radiation environment is bad and the temperature of the heat medium from the solar heat collector 11 is equal to or lower than the temperature of the heat medium from the heat storage tank 12, heat is directly applied to the absorption chiller / heater 21 from the solar heat collector 11. The situation where efficiency falls without supplying a medium is prevented.
  • the system controller 36 is configured so that the heat medium temperature detected by the heat collector temperature sensor 33 is not higher than the heat medium temperature detected by the heat storage tank temperature sensor 34 by a predetermined temperature and the heat collector temperature sensor 33 When the detected heat medium temperature is not lower than the heat medium temperature detected by the heat storage tank temperature sensor 34, the switching valve 31 is maintained in the current state. That is, temperature hysteresis is provided in the control of the switching valve 31, and the switching valve 31 is prevented from frequently switching.
  • the system controller 36 supplies the heat medium from the solar heat collector 11 to the regenerator 101 of the absorption chiller / heater 21 through the bypass flow path 32, the system controller 36 does not operate the heat medium pump 23, and the heat collection pump 14. To work. Thereby, only one of the two pumps 14 and 23 is operated, and the heat medium from the solar heat collector 11 is supplied to the regenerator 101 of the absorption chiller / heater 21.
  • FIG. 3 is a flowchart showing a control method of the absorption-type cold / hot water system 1 according to the present embodiment. In addition, the process shown in FIG. 3 is repeatedly performed until the absorption-type cold / hot water system 1 stops.
  • the heat medium temperature detected by the heat collector temperature sensor 33 is indicated as T1 (average value is T1 ave ), and the heat medium temperature detected by the heat storage tank temperature sensor 34 is indicated as T2 (average value is T2). ave ).
  • the system controller 36 sets the upper limit of the allowable heat medium temperature at which the heat medium temperature T1 detected by the collector temperature sensor 33 is an appropriate temperature to be supplied to the absorption chiller / heater 21. It is determined whether the value is greater than or equal to the value (S1). When it judges that it is more than an upper limit (S1: YES), system controller 36 switches changeover valve 31 to the heat storage tank 12 side (S2). Then, the process shown in FIG. 3 ends. At this time, both pumps 14 and 23 are in an operating state.
  • the system controller 36 detects the heat medium temperature T1 detected by the heat collector temperature sensor 33.
  • moving average temperature T1 ave of determines whether or higher than a predetermined temperature ⁇ T than the moving average temperature T2 ave of the heat storage tank temperature sensor 34 the heat transfer medium temperature T2 detected by (S3).
  • the system controller 36 switches the switching valve 31 to the bypass flow path 32 side (S4). Then, the process shown in FIG. 3 ends. At this time, the heat collecting pump 14 is in an operating state, but the heat medium pump 23 is stopped.
  • the moving average temperature T1 ave of the heat medium temperature T1 detected by the heat collector temperature sensor 33 is higher than the moving average temperature T2 ave of the heat medium temperature T2 detected by the heat storage tank temperature sensor 34 by a predetermined temperature ⁇ T or more.
  • the system controller 36 determines that the moving average temperature T1 ave of the heat medium temperature T1 detected by the heat collector temperature sensor 33 is the heat medium temperature detected by the heat storage tank temperature sensor 34. It is judged whether it is below the moving average temperature T2 ave of T2 (S5).
  • the system controller 36 switches the switching valve 31 to the heat storage tank 12 side (S2). Then, the process shown in FIG. 3 ends. At this time, both pumps 14 and 23 are in an operating state.
  • the system controller 36 maintains the switching valve 31 in the current state (S6). Then, the process shown in FIG. 3 ends. At this time, the states of both pumps 14 and 23 are also maintained.
  • the heat medium temperature T1 detected by the heat collector temperature sensor 33 is higher than the heat medium temperature T2 detected by the heat storage tank temperature sensor 34.
  • the solar heat collector 11 In order to supply the heat medium from the solar heat collector 11 to the regenerator 101 of the absorption chiller / heater 21 through the bypass channel 32 by controlling the switching valve 31 when the temperature is higher than the predetermined temperature ⁇ T, the solar heat collector 11 In a situation where the heat medium from the heat storage tank 12 is hotter than the heat medium from the heat storage tank 12, the heat medium is supplied directly from the solar heat collector 11 to the absorption chiller / heater 21, and the absorption chiller / heater 21 is more Efficient operation can be performed. Therefore, the absorption-type cold / hot water system 1 which can aim at the improvement of operating efficiency more can be provided.
  • the heat medium temperature T1 detected by the heat collector temperature sensor 33 is equal to or lower than the heat medium temperature T2 detected by the heat storage tank temperature sensor 34, the heat medium from the solar heat collector 11 is supplied to the heat storage tank 12.
  • the heat medium temperature T 1 detected by the heat collector temperature sensor 33 is not higher than the heat medium temperature T 2 detected by the heat storage tank temperature sensor 34 by a predetermined temperature ⁇ T and is detected by the heat collector temperature sensor 33. If the heat medium temperature T1 is not lower than the heat medium temperature T2 detected by the heat storage tank temperature sensor 34, the switching valve 31 is maintained in the current state.
  • the control of the switching valve 31 is provided with temperature hysteresis, and it is possible to prevent the switching valve 31 from being frequently switched.
  • the control valve 31 is controlled. Then, the heat medium from the solar heat collector 11 is supplied to the heat storage tank 12. Therefore, even if the heat medium temperature T 1 detected by the heat collector temperature sensor 33 is higher than the heat medium temperature T 2 detected by the heat storage tank temperature sensor 34 by a predetermined temperature ⁇ T or more, the solar heat collector 11 is passed through the bypass passage 32.
  • the heat medium temperature T1 detected by the heat collector temperature sensor 33 is equal to or higher than the upper limit of the allowable temperature of the heat medium.
  • the heat medium is supplied to the heat storage tank 12. Thereby, it is possible to prevent the absorption chiller / heater 21 from being damaged, for example, the concentrated solution becomes too thick in the regenerator 101.
  • the heat collector pump 14 when supplying the heat medium from the solar heat collector 11 to the regenerator 101 of the absorption chiller / heater 21 through the bypass channel 32, the heat collector pump 14 is operated without operating the heat medium pump 23. By operating only one of the two pumps 14, 23, the heat medium from the solar heat collector 11 can be supplied to the regenerator 101 of the absorption chiller / heater 21.
  • the absorption chiller / hot water system 1 including the absorption chiller / heater 21 is illustrated.
  • a heat collector that heats the heat medium by renewable energy that can be permanently used as exhaust heat from the equipment or as an energy source, and the heat medium heated by the heat collector
  • a second system (20) having: An absorption cold / hot water system (1) comprising: A switching valve (31) provided on the flow path from the heat collector to the heat storage tank; A bypass passage (32) for connecting a passage for supplying a heat medium from the heat storage tank to the absorption chiller / heater and the switching valve; A first temperature sensor (heat collector temperature sensor 33) for detecting the temperature of the heat medium from the heat collector; A second temperature sensor (heat storage tank temperature sensor 34) for detecting the temperature of the heat medium in the heat storage tank; When the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, the heat collector is controlled through the bypass flow path by controlling the switching valve.
  • Control means for supplying the heat medium from the refrigerating machine of the absorption chiller / heater, Absorption type cold / hot water system (1) provided with.
  • the control unit controls the switching valve to control the heat collector temperature.
  • the heating medium is supplied to the heat storage tank, the heating medium temperature detected by the first temperature sensor is not higher than the heating medium temperature detected by the second temperature sensor, and the first temperature If the heat medium temperature detected by the sensor is not lower than the heat medium temperature detected by the second temperature sensor, the switching valve is maintained in the current state.
  • Absorption type cold / hot water system (1) according to [1] above .
  • the present invention there is an effect that the driving efficiency can be further improved.
  • the present invention having this effect is useful for an absorption-type cold / hot water system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

An absorption-type hot and cold water system (1) equipped with: a changeover valve (31) provided in a flow path from a solar heat collector (11) to a heat storage tank (12); a bypass flow path (32) connecting the changeover valve (31) and a flow path (22a) that supplies a heat medium from the heat storage tank (12) to an absorption-type hot and cold water device (21); a heat collector temperature sensor (33) that detects the temperature of the heat medium from the solar heat collector (11); a heat storage tank temperature sensor (34) that detects the temperature of the heat medium in the heat storage tank (12); and a system controller (36) that controls the changeover valve (31) so as to supply the heat medium from the solar heat collector (11) to a regenerator of the absorption-type hot and cold water device (21) through the bypass passage (32) when the temperature of the heat medium as detected by the heat collector temperature sensor (33) is higher by at least a prescribed amount than the temperature of the heat medium as detected by the heat storage tank temperature sensor (34).

Description

吸収式冷温水システムAbsorption type hot and cold water system
 本発明は、吸収式冷温水システムに関する。 The present invention relates to an absorption-type cold / hot water system.
 従来、太陽光の受光によって熱媒を加熱する太陽熱集熱器と、太陽熱集熱器にて加熱された熱媒を導入して蓄熱する蓄熱槽と、を備えた太陽熱利用システムが提案されている。また、このような太陽熱利用システムには、蓄熱槽と吸収式冷温水機との間を配管接続し、これらの間で熱媒を循環させることにより、吸収式冷温水機の再生器において希溶液の加熱に利用する吸収式冷温水システムについても提案されている(特許文献1参照)。 Conventionally, a solar heat utilization system including a solar heat collector that heats a heat medium by receiving sunlight and a heat storage tank that stores heat by introducing a heat medium heated by the solar heat collector has been proposed. . Also, in such a solar heat utilization system, a dilute solution is used in the regenerator of the absorption chiller / heater by connecting a pipe between the heat storage tank and the absorption chiller / heater and circulating a heat medium between them. An absorption-type cold / hot water system used for heating the water has also been proposed (see Patent Document 1).
 この吸収式冷温水システムによれば、太陽熱という再生可能エネルギーを利用して希溶液を加熱することができ、希溶液の加熱に要する燃料費を削減することができる。さらに、太陽熱集熱器と吸収式冷温水機との間には蓄熱槽が介在することとなり、これがバッファの役目をするため、日射量に左右されることなく、蓄熱槽から比較的高温の熱媒を吸収式冷温水機に供給することができる。すなわち、日射量が小さい場合に、太陽熱集熱器から吸収式冷温水機に直接熱媒を供給すると、温度が低い熱媒が吸収式冷温水機に供給されることとなり、効率の良い運転を行うことができなくなってしまうが、蓄熱槽を備えることにより安定的な温度の熱媒を吸収式冷温水機に供給できるため、効率の良い運転を行うことができる。 According to this absorption-type cold / hot water system, the dilute solution can be heated using renewable energy called solar heat, and the fuel cost required for heating the dilute solution can be reduced. In addition, a heat storage tank is interposed between the solar heat collector and the absorption chiller / heater, and this acts as a buffer. Therefore, heat from the heat storage tank is not affected by the amount of solar radiation. The medium can be supplied to the absorption chiller / heater. In other words, when the amount of solar radiation is small, if a heat medium is supplied directly from the solar heat collector to the absorption chiller / heater, a low-temperature heat medium will be supplied to the absorption chiller / heater, resulting in efficient operation. Although it cannot be performed, since a heat medium having a stable temperature can be supplied to the absorption chiller / heater by providing the heat storage tank, an efficient operation can be performed.
日本国特開2012-127574号公報Japanese Unexamined Patent Publication No. 2012-127574
 ここで、吸収式冷温水システムでは、日射量が大きい場合、太陽熱集熱器からの熱媒が蓄熱槽からの熱媒よりも高温となる。このため、太陽熱集熱器から直接吸収式冷温水機に熱媒を供給した方が吸収式冷温水機において効率の良い運転を行うことができる。 Here, in the absorption cold / hot water system, when the amount of solar radiation is large, the heat medium from the solar heat collector becomes hotter than the heat medium from the heat storage tank. For this reason, when the heat medium is directly supplied from the solar heat collector to the absorption chiller / heater, an efficient operation can be performed in the absorption chiller / heater.
 しかし、従来の吸収式冷温水システムでは、日射量が大きい場合であっても、蓄熱槽からの熱媒を吸収式冷温水機の再生器に供給することとなるため、効率面において向上の余地があるものであった。 However, in the conventional absorption chilled / hot water system, even if the amount of solar radiation is large, the heat medium from the heat storage tank is supplied to the regenerator of the absorption chiller / heater, so there is room for improvement in efficiency. There was something.
 なお、上記問題は、太陽熱利用システムにより熱媒を加熱する方式に限らず、排熱を利用して熱媒を加熱して蓄熱するシステムや、地熱やバイオマスなどの再生可能エネルギーを利用して熱媒を加熱して蓄熱するシステムを有する吸収式冷温水システムにおいても共通する問題である。 Note that the above problem is not limited to the method of heating the heat medium using the solar heat utilization system, but the heat medium is heated and stored using exhaust heat, or the heat is generated using renewable energy such as geothermal or biomass. This is a common problem even in an absorption chilled / hot water system having a system for heating and storing a medium.
 本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、より運転効率の向上を図ることが可能な吸収式冷温水システムを提供することにある。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide an absorption chilled / hot water system capable of further improving the operation efficiency.
 本発明の吸収式冷温水システムは、機器からの排熱又はエネルギー源として永続的に利用可能な再生可能エネルギーにより熱媒を加熱する集熱器と、前記集熱器にて加熱された熱媒を導入して蓄熱する蓄熱槽と、前記蓄熱槽から前記集熱器を経て再度前記蓄熱槽に熱媒を循環させる第1ポンプと、を有する第1システムと、前記蓄熱槽内の熱媒を導入して再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷温液を得る吸収式冷温水機と、前記蓄熱槽から前記吸収式冷温水機の前記再生器を経て再度前記蓄熱槽に熱媒を循環させる第2ポンプと、を有する第2システムと、を備えた吸収式冷温水システムであって、前記集熱器から前記蓄熱槽までの流路上に設けられた切替弁と、前記蓄熱槽から前記吸収式冷温水機に熱媒を供給する流路と前記切替弁とを接続するバイパス流路と、前記集熱器からの熱媒の温度を検出する第1温度センサと、前記蓄熱槽内の熱媒の温度を検出する第2温度センサと、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度よりも所定温度以上高い場合に、前記切替弁を制御して前記バイパス流路を通じて前記集熱器からの熱媒を前記吸収式冷温水機の再生器に供給させる制御手段と、を備えることを特徴とする。 The absorption-type cold / hot water system of the present invention includes a heat collector that heats a heat medium with renewable energy that can be permanently used as an exhaust heat or energy source from an apparatus, and a heat medium heated by the heat collector. A heat storage tank for storing heat and a first pump for circulating a heat medium from the heat storage tank to the heat storage tank again through the heat collector, and a heat medium in the heat storage tank. An absorption chiller / heater that introduces and heats a dilute solution in a regenerator and obtains a chilled / hot liquid by a circulation cycle of the regenerator, condenser, evaporator, and absorber, and the absorption chiller / heater from the heat storage tank A second system having a second pump that circulates a heat medium again to the heat storage tank via the regenerator, and an absorption-type cold / hot water system comprising the heat collector and the heat storage tank. The switching valve provided on the flow path and the heat storage tank A bypass flow path connecting a flow path for supplying a heat medium to the absorption chiller / heater and the switching valve, a first temperature sensor for detecting a temperature of the heat medium from the heat collector, and the heat storage tank. A second temperature sensor for detecting the temperature of the heat medium in the medium, and when the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, Control means for controlling the switching valve to supply the heat medium from the heat collector to the regenerator of the absorption chiller / heater through the bypass flow path.
 本発明の吸収式冷温水システムによれば、第1温度センサにより検出された熱媒温度が第2温度センサにより検出された熱媒温度よりも所定温度以上高い場合に、切替弁を制御してバイパス流路を通じて集熱器からの熱媒を吸収式冷温水機の再生器に供給させるため、集熱器からの熱媒が蓄熱槽からの熱媒よりも高温となる状況において、集熱器から直接吸収式冷温水機に熱媒を供給することとなり、吸収式冷温水機においてより効率の良い運転を行うことができる。従って、より運転効率の向上を図ることが可能な吸収式冷温水システムを提供することができる。 According to the absorption-type cold / hot water system of the present invention, the switching valve is controlled when the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more. In order to supply the heat medium from the heat collector to the regenerator of the absorption chiller / heater through the bypass channel, the heat collector from the heat collector is at a higher temperature than the heat medium from the heat storage tank. Thus, the heat medium is supplied directly to the absorption chiller / heater, and the absorption chiller / heater can be operated more efficiently. Therefore, the absorption cold / hot water system which can aim at the improvement of operating efficiency more can be provided.
 また、本発明の吸収式冷温水システムにおいて、前記制御手段は、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度以下である場合、前記切替弁を制御して前記集熱器からの熱媒を前記蓄熱槽に供給させ、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度よりも所定温度以上高くなく、且つ、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度以下でない場合、前記切替弁を現在の状態で維持することが好ましい。 In the absorption chilled / hot water system of the present invention, when the heat medium temperature detected by the first temperature sensor is equal to or lower than the heat medium temperature detected by the second temperature sensor, the control means And the heating medium temperature detected by the first temperature sensor is equal to or higher than the heating medium temperature detected by the second temperature sensor. If the heat medium temperature detected by the first temperature sensor is not higher than the heat medium temperature detected by the second temperature sensor, the switching valve is preferably maintained in the current state.
 この吸収式冷温水システムによれば、第1温度センサにより検出された熱媒温度が第2温度センサにより検出された熱媒温度以下である場合、集熱器からの熱媒を蓄熱槽に供給させる。さらに、第1温度センサにより検出された熱媒温度が第2温度センサにより検出された熱媒温度よりも所定温度以上高くなく、且つ、第1温度センサにより検出された熱媒温度が第2温度センサにより検出された熱媒温度以下でない場合、切替弁を現在の状態で維持する。このように、切替弁の制御には、温度ヒステリシスを設けることとなり、頻繁に切替弁が切り替わってしまうことを防止することができる。 According to this absorption-type cold / hot water system, when the heat medium temperature detected by the first temperature sensor is equal to or lower than the heat medium temperature detected by the second temperature sensor, the heat medium from the heat collector is supplied to the heat storage tank. Let Furthermore, the heat medium temperature detected by the first temperature sensor is not higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, and the heat medium temperature detected by the first temperature sensor is the second temperature. When the temperature is not lower than the temperature of the heat medium detected by the sensor, the switching valve is maintained in the current state. Thus, the control of the switching valve is provided with temperature hysteresis, and it is possible to prevent the switching valve from being frequently switched.
 また、本発明の吸収式冷温水システムにおいて、前記制御手段は、前記第1温度センサにより検出された熱媒温度が、吸収式冷温水機に供給すべき適正温度である熱媒許容温度の上限値以上である場合、前記切替弁を制御して前記集熱器からの熱媒を前記蓄熱槽に供給させることが好ましい。 In the absorption chilled / hot water system of the present invention, the control means is configured such that the heat medium temperature detected by the first temperature sensor is an upper limit of an allowable temperature of the heat medium that is an appropriate temperature to be supplied to the absorption chiller / heater. When it is more than the value, it is preferable to control the switching valve to supply the heat medium from the heat collector to the heat storage tank.
 この吸収式冷温水システムによれば、第1温度センサにより検出された熱媒温度が、吸収式冷温水機に供給すべき適正温度である熱媒許容温度の上限値以上である場合、切替弁を制御して集熱器からの熱媒を蓄熱槽に供給させる。このため、たとえ第1温度センサにより検出された熱媒温度が第2温度センサにより検出された熱媒温度よりも所定温度以上高く、バイパス流路を通じて集熱器からの熱媒を吸収式冷温水機の再生器に供給させている状況であっても、第1温度センサにより検出された熱媒温度が熱媒許容温度の上限値以上である場合には、熱媒を蓄熱槽に供給させることとなる。これにより、再生器において濃溶液が濃くなりすぎるなど、吸収式冷温水機にダメージを与えてしまうことを防止することができる。 According to this absorption-type cold / hot water system, when the heat-medium temperature detected by the 1st temperature sensor is more than the upper limit of the heat-medium allowable temperature which is the appropriate temperature which should be supplied to an absorption-type cold / hot water machine, a switching valve And the heat medium from the heat collector is supplied to the heat storage tank. For this reason, even if the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, the heat medium from the heat collector is absorbed through the bypass channel. Even if the regenerator is supplied to the regenerator, if the heat medium temperature detected by the first temperature sensor is equal to or higher than the upper limit of the heat medium allowable temperature, the heat medium is supplied to the heat storage tank. It becomes. Thereby, it can prevent that an absorption type | formula cold / hot water machine is damaged, such as a concentrated solution becoming too thick in a regenerator.
 また、本発明の吸収式冷温水システムにおいて、前記制御手段は、前記バイパス流路を通じて前記集熱器からの熱媒を前記吸収式冷温水機の再生器に供給する場合、前記第2ポンプを動作させず、前記第1ポンプを動作させることが好ましい。 In the absorption chilled / hot water system of the present invention, when the control means supplies the heat medium from the heat collector to the regenerator of the absorption chiller / heater through the bypass flow path, the second pump is used. It is preferable to operate the first pump without operating.
 この吸収式冷温水システムによれば、バイパス流路を通じて集熱器からの熱媒を吸収式冷温水機の再生器に供給する場合、第2ポンプを動作させず、第1ポンプを動作させるため、2つのポンプのうち一方のみを動作させることにより、集熱器からの熱媒を吸収式冷温水機の再生器に供給することができる。 According to this absorption-type cold / hot water system, when supplying the heat medium from a heat collector to the regenerator of an absorption-type cold / hot water machine through a bypass flow path, in order to operate a 1st pump, without operating a 2nd pump. By operating only one of the two pumps, the heat medium from the heat collector can be supplied to the regenerator of the absorption chiller / heater.
 なお、上記において、「再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷温液を得る」とは、再生器、凝縮器、蒸発器、及び吸収器による冷房サイクルにより冷却液を得る場合と、再生器、蒸発器、及び吸収器による暖房サイクルによる加熱液を得る場合(すなわち凝縮器を用いない場合)との双方を含む概念である。 In the above description, “to obtain a cool / warm liquid by the circulation cycle of the regenerator, condenser, evaporator, and absorber” means to obtain a cooling liquid by a cooling cycle by the regenerator, condenser, evaporator, and absorber. This is a concept that includes both the case of obtaining the heating liquid by the heating cycle by the regenerator, the evaporator, and the absorber (that is, the case of not using the condenser).
 さらに、上記において吸収式冷温水機とは、冷却液を得るのみの吸収式冷凍機を含む概念である。従って、冷温液とは冷却液のみを意味することもあり、且つ、吸収式冷温水システムは吸収式冷凍システムを意味することもある。 Furthermore, in the above, the absorption chiller / heater is a concept including an absorption refrigerator that only obtains a coolant. Accordingly, the cold / hot liquid may mean only the cooling liquid, and the absorption cold / hot water system may mean an absorption refrigeration system.
 本発明によれば、より運転効率の向上を図ることが可能な吸収式冷温水システムを提供することができる。 According to the present invention, it is possible to provide an absorption-type cold / hot water system that can further improve the operation efficiency.
図1は、本発明の実施形態に係る吸収式冷温水システムの概略構成図である。FIG. 1 is a schematic configuration diagram of an absorption-type cold / hot water system according to an embodiment of the present invention. 図2は、吸収式冷温水機の一例を示す概略構成図である。FIG. 2 is a schematic configuration diagram illustrating an example of an absorption chiller / heater. 図3は、本実施形態に係る吸収式冷温水システムの制御方法を示すフローチャートである。FIG. 3 is a flowchart showing a control method of the absorption-type cold / hot water system according to the present embodiment.
 以下、本発明の好適な実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係る吸収式冷温水システムの概略構成図である。図1に示すように、本実施形態に係る吸収式冷温水システム1は、太陽熱を利用して吸収式冷温水機21の希溶液を加熱するものであって、第1システム10と、第2システム20とを備えている。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an absorption-type cold / hot water system according to an embodiment of the present invention. As shown in FIG. 1, the absorption-type cold / hot water system 1 which concerns on this embodiment heats the dilute solution of the absorption-type cold / hot water machine 21 using a solar heat, Comprising: 1st system 10 and 2nd System 20.
 第1システム10は、太陽熱を利用して熱媒を加熱するものであって、太陽熱集熱器(集熱器)11と、蓄熱槽12と、集熱流路13と、集熱ポンプ(第1ポンプ)14とを備えている。なお、本実施形態において第1システム10は、太陽熱を利用して熱媒を加熱するものであるが、これに限らず、排熱を利用して熱媒を加熱するものであってもよいし、地熱、バイオマス等の再生可能エネルギー(エネルギー源として永続的に利用可能なもの)を利用して熱媒を加熱するものであってもよい。 The first system 10 heats a heat medium using solar heat, and includes a solar heat collector (heat collector) 11, a heat storage tank 12, a heat collection flow path 13, and a heat collection pump (first heat pump). Pump) 14. In the present embodiment, the first system 10 heats the heat medium using solar heat, but is not limited thereto, and may heat the heat medium using exhaust heat. Further, the heating medium may be heated using renewable energy (one that can be permanently used as an energy source) such as geothermal or biomass.
 太陽熱集熱器11は、太陽光を受光することで熱媒を加熱するものであって、例えば屋根の上などの太陽光を受光し易い位置に設置されるものである。なお、熱媒は、水、不凍液、及びプロピレングリコール水溶液などが用いられる。 The solar heat collector 11 heats the heat medium by receiving sunlight, and is installed at a position where it is easy to receive sunlight, such as on a roof. As the heat medium, water, antifreeze, propylene glycol aqueous solution, or the like is used.
 蓄熱槽12は、太陽熱集熱器11にて加熱された熱媒を導入して蓄熱するものである。この蓄熱槽12は、熱媒を内部に貯めるタンクである。 The heat storage tank 12 introduces a heat medium heated by the solar heat collector 11 and stores heat. The heat storage tank 12 is a tank that stores a heat medium therein.
 集熱流路13は、蓄熱槽12から太陽熱集熱器11を経て再度蓄熱槽12に熱媒を循環させる配管である。このうち、蓄熱槽12から太陽熱集熱器11に向かう流路を第1集熱流路13aと称し、太陽熱集熱器11から蓄熱槽12に向かう流路を第2集熱流路13bと称する。 The heat collection channel 13 is a pipe that circulates the heat medium from the heat storage tank 12 through the solar heat collector 11 to the heat storage tank 12 again. Among these, the flow path from the heat storage tank 12 to the solar heat collector 11 is referred to as a first heat collection flow path 13a, and the flow path from the solar heat collector 11 to the heat storage tank 12 is referred to as a second heat collection flow path 13b.
 集熱ポンプ14は、集熱流路13のうち第1集熱流路13aに設けられており、蓄熱槽12から太陽熱集熱器11を経て再度蓄熱槽12に熱媒を循環させる動力源となるものである。 The heat collection pump 14 is provided in the first heat collection flow path 13a of the heat collection flow path 13, and serves as a power source for circulating the heat medium from the heat storage tank 12 through the solar heat collector 11 to the heat storage tank 12 again. It is.
 このような第1システム10では、集熱ポンプ14が動作することにより、集熱流路13を熱媒が循環する。熱媒は太陽熱集熱器11によって加熱され、第2集熱流路13bを通じて蓄熱槽12に至り、蓄熱槽12において貯められることとなる。 In such a first system 10, the heat medium circulates through the heat collecting flow path 13 by operating the heat collecting pump 14. The heat medium is heated by the solar heat collector 11, reaches the heat storage tank 12 through the second heat collection flow path 13 b, and is stored in the heat storage tank 12.
 第2システム20は、蓄熱槽12に貯められている熱媒を吸収式冷温水機21に供給するものであって、吸収式冷温水機21と、熱媒流路22と、熱媒ポンプ(第2ポンプ)23とを備えている。 The second system 20 supplies the heat medium stored in the heat storage tank 12 to the absorption chiller / heater 21, and includes an absorption chiller / heater 21, a heat medium flow path 22, a heat medium pump ( A second pump) 23.
 吸収式冷温水機21は、再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷媒を冷却するものである。 The absorption chiller / heater 21 heats the dilute solution in the regenerator and cools the refrigerant by the circulation cycle of the regenerator, the condenser, the evaporator, and the absorber.
 図2は、吸収式冷温水機21の一例を示す概略構成図である。具体的に、再生器101は、例えば冷媒となる水(以下、冷媒が蒸気化したものを冷媒蒸気と称し、冷媒が液化したものを液冷媒と称する)と、吸収液となる臭化リチウム(LiBr)とが混合された希溶液(吸収液の濃度が低い溶液)を加熱するものである。この再生器101には熱媒流路22を構成する配管が配置されており、熱媒流路22上に希溶液が散布され加熱される。再生器101は、この加熱により希溶液から蒸気を放出させることにより、冷媒蒸気と濃溶液(吸収液の濃度が高い溶液)とを生成する。 FIG. 2 is a schematic configuration diagram showing an example of the absorption chiller / heater 21. Specifically, the regenerator 101 includes, for example, water serving as a refrigerant (hereinafter, the refrigerant vaporized is referred to as refrigerant vapor, and the refrigerant liquefied is referred to as liquid refrigerant), and lithium bromide (absorbent liquid) ( A dilute solution (solution having a low concentration of the absorbing solution) mixed with LiBr) is heated. The regenerator 101 is provided with piping constituting the heat medium flow path 22, and a dilute solution is sprayed on the heat medium flow path 22 and heated. The regenerator 101 generates a refrigerant vapor and a concentrated solution (a solution having a high concentration of absorption liquid) by releasing the vapor from the dilute solution by this heating.
 凝縮器102は、再生器101から供給された冷媒蒸気を液化させるものである。この凝縮器102内には、第1冷水伝熱管102aが挿通されている。第1冷水伝熱管102aには冷却塔などから冷却水が供給されており、蒸発した冷媒蒸気は第1冷水伝熱管102a内の冷却水によって液化する。さらに、凝縮器102にて液化した液冷媒は蒸発器103に供給される。 The condenser 102 liquefies the refrigerant vapor supplied from the regenerator 101. A first cold water heat transfer tube 102a is inserted into the condenser 102. Cooling water is supplied to the first cold water heat transfer tube 102a from a cooling tower or the like, and the evaporated refrigerant vapor is liquefied by the cooling water in the first cold water heat transfer tube 102a. Further, the liquid refrigerant liquefied by the condenser 102 is supplied to the evaporator 103.
 蒸発器103は、液冷媒を蒸発させるものである。この蒸発器103内には、室内機等に接続される第2冷水伝熱管103aが設けられている。この第2冷水伝熱管103aは、例えば室内機と接続されており、室内機による冷却によって暖められた水が流れている。また、蒸発器103内は、真空状態となっている。このため、冷媒である水の蒸発温度は約5℃となる。よって、第2冷水伝熱管103a上に散布された液冷媒は第2冷水伝熱管103aの温度によって蒸発することとなる。また、第2冷水伝熱管103a内の水は、液冷媒の蒸発によって温度が奪われる。これにより、第2冷水伝熱管103aの水は冷水(冷温液の一例)として室内機に供給され、室内機は冷水を利用して冷風を室内に供給することとなる。 The evaporator 103 evaporates the liquid refrigerant. In this evaporator 103, the 2nd cold water heat exchanger tube 103a connected to an indoor unit etc. is provided. The second cold water heat transfer tube 103a is connected to, for example, an indoor unit, and water warmed by cooling by the indoor unit flows. Further, the inside of the evaporator 103 is in a vacuum state. For this reason, the evaporation temperature of water as a refrigerant is about 5 ° C. Therefore, the liquid refrigerant spread on the second cold water heat transfer tube 103a evaporates depending on the temperature of the second cold water heat transfer tube 103a. Further, the temperature of the water in the second cold water heat transfer tube 103a is deprived of the temperature by evaporation of the liquid refrigerant. Thereby, the water of the 2nd cold water heat exchanger tube 103a is supplied to an indoor unit as cold water (an example of cold / warm liquid), and an indoor unit will supply cold air indoors using cold water.
 吸収器104は、蒸発器103において蒸発した冷媒を吸収するものである。この吸収器104内には再生器101から濃溶液が供給され、蒸発した冷媒は濃溶液によって吸収され、希溶液が生成される。また、吸収器104には、第3冷水伝熱管104aが挿通されている。第3冷水伝熱管104aには冷却水が流れており、濃溶液の冷媒の吸収により生じる吸収熱は、第3冷水伝熱管104aの冷却水により除去される。なお、この第3冷水伝熱管104aは、第1冷水伝熱管102aと接続されている。また、吸収器104は、冷媒の吸収により濃度が低下した希溶液をポンプ104bによって再生器101に供給する。 The absorber 104 absorbs the refrigerant evaporated in the evaporator 103. A concentrated solution is supplied from the regenerator 101 into the absorber 104, and the evaporated refrigerant is absorbed by the concentrated solution to generate a diluted solution. The absorber 104 is inserted with a third cold water heat transfer tube 104a. The cooling water flows through the third cold water heat transfer tube 104a, and the absorbed heat generated by the absorption of the refrigerant of the concentrated solution is removed by the cooling water of the third cold water heat transfer tube 104a. The third cold water heat transfer tube 104a is connected to the first cold water heat transfer tube 102a. Moreover, the absorber 104 supplies the regenerator 101 with the dilute solution whose density | concentration fell by absorption of the refrigerant | coolant by the pump 104b.
 なお、上記では冷房運転を説明したが、吸収式冷温水機21は暖房運転も可能である。ここで、暖房運転を行う場合には、図示しない切替弁を切り替えることとなる。そして、切替弁を切り替えた場合には第2冷水伝熱管103aには温水(冷温液の一例)が流れ、室内機にて温水をもとに暖房効果が得られることとなる。 In addition, although cooling operation was demonstrated above, the absorption-type cold / hot water machine 21 can also perform heating operation. Here, when heating operation is performed, a switching valve (not shown) is switched. When the switching valve is switched, hot water (an example of cold / warm liquid) flows through the second cold water heat transfer tube 103a, and a heating effect is obtained in the indoor unit based on the hot water.
 また、上記において第2冷水伝熱管103aは室内機に接続されているが、これ限らず、工業用の冷却装置等と接続されていてもよい。 In the above description, the second cold water heat transfer tube 103a is connected to the indoor unit. However, the second cold water heat transfer tube 103a may be connected to an industrial cooling device or the like.
 再度図1を参照する。熱媒流路22は、蓄熱槽12から吸収式冷温水機21の再生器101を経て再度蓄熱槽12に熱媒を循環させる配管である。このうち、蓄熱槽12から吸収式冷温水機21の再生器101に向かう流路を第1熱媒流路22aと称し、吸収式冷温水機21の再生器101から蓄熱槽12に向かう流路を第2熱媒流路22bと称する。 Refer to Fig. 1 again. The heat medium flow path 22 is a pipe that circulates the heat medium from the heat storage tank 12 through the regenerator 101 of the absorption chiller / heater 21 to the heat storage tank 12 again. Among these, the flow path from the heat storage tank 12 toward the regenerator 101 of the absorption chiller / heater 21 is referred to as a first heat medium flow path 22 a, and the flow path from the regenerator 101 of the absorption chiller / heater 21 to the heat storage tank 12. Is referred to as a second heat medium flow path 22b.
 熱媒ポンプ23は、熱媒流路22のうち第1熱媒流路22aに設けられており、蓄熱槽12から吸収式冷温水機21の再生器101を経て再度蓄熱槽12に熱媒を循環させる動力源となるものである。 The heat medium pump 23 is provided in the first heat medium flow path 22 a of the heat medium flow path 22, and passes the heat medium from the heat storage tank 12 to the heat storage tank 12 again through the regenerator 101 of the absorption chiller / heater 21. It becomes a power source to circulate.
 さらに、本実施形態において吸収式冷温水システム1は、切替弁31と、バイパス流路32と、集熱器温度センサ(第1温度センサ)33と、蓄熱槽温度センサ(第2温度センサ)34と、逆止弁35と、システムコントローラ(制御手段)36とを備えている。 Further, in the present embodiment, the absorption chilled / hot water system 1 includes a switching valve 31, a bypass channel 32, a collector temperature sensor (first temperature sensor) 33, and a heat storage tank temperature sensor (second temperature sensor) 34. And a check valve 35 and a system controller (control means) 36.
 切替弁31は、太陽熱集熱器11から蓄熱槽12までの流路、すなわち第2集熱流路13b上に設けられた三方弁である。バイパス流路32は、蓄熱槽12から吸収式冷温水機21に熱媒を供給する流路、すなわち第1熱媒流路22aと、切替弁31を接続する配管である。切替弁31はシステムコントローラ36によって制御され、太陽熱集熱器11によって加熱された熱媒を第2集熱流路13bのみを通じて蓄熱槽12に供給させたり、バイパス流路32を通じて蓄熱槽12を介することなく吸収式冷温水機21の再生器101に供給したりする。 The switching valve 31 is a three-way valve provided on the flow path from the solar heat collector 11 to the heat storage tank 12, that is, on the second heat collection flow path 13b. The bypass flow path 32 is a flow path for supplying a heat medium from the heat storage tank 12 to the absorption chiller / heater 21, that is, a pipe connecting the first heat medium flow path 22 a and the switching valve 31. The switching valve 31 is controlled by the system controller 36 to supply the heat medium heated by the solar heat collector 11 to the heat storage tank 12 only through the second heat collection flow path 13b or through the heat storage tank 12 through the bypass flow path 32. Without being supplied to the regenerator 101 of the absorption chiller / heater 21.
 集熱器温度センサ33は、太陽熱集熱器11からの熱媒の温度を検出するものであって、熱媒温度に応じた信号をシステムコントローラ36に送信するものである。蓄熱槽温度センサ34は、蓄熱槽12内の熱媒の温度を検出するものであって、熱媒温度に応じた信号をシステムコントローラ36に送信するものである。 The heat collector temperature sensor 33 detects the temperature of the heat medium from the solar heat collector 11, and transmits a signal corresponding to the heat medium temperature to the system controller 36. The heat storage tank temperature sensor 34 detects the temperature of the heat medium in the heat storage tank 12 and transmits a signal corresponding to the heat medium temperature to the system controller 36.
 逆止弁35は、第1熱媒流路22aとバイパス流路32との接続点Aよりも上流側、かつ、熱媒ポンプ23よりも下流側に設けられて熱媒の逆流を防止するものである。 The check valve 35 is provided upstream of the connection point A between the first heat medium flow path 22a and the bypass flow path 32 and downstream of the heat medium pump 23 to prevent the back flow of the heat medium. It is.
 システムコントローラ36は、CPU(Central Processing Unit)を備え、集熱器温度センサ33により検出される熱媒温度と、蓄熱槽温度センサ34により検出される熱媒温度とに応じて、切替弁31を制御するものである。 The system controller 36 includes a CPU (Central Processing Unit), and switches the switching valve 31 according to the heat medium temperature detected by the heat collector temperature sensor 33 and the heat medium temperature detected by the heat storage tank temperature sensor 34. It is something to control.
 システムコントローラ36は、集熱器温度センサ33により検出された熱媒温度が蓄熱槽温度センサ34により検出された熱媒温度よりも所定温度以上高い場合に、切替弁31を制御してバイパス流路32を通じて太陽熱集熱器11からの熱媒を吸収式冷温水機21の再生器101に供給させる。これにより、太陽熱集熱器11からの熱媒が蓄熱槽12からの熱媒よりも高温となる状況において、太陽熱集熱器11から直接吸収式冷温水機21に熱媒を供給することとなり、吸収式冷温水機21においてより効率の良い運転を行わせることとなる。 The system controller 36 controls the switching valve 31 to control the bypass flow path when the heat medium temperature detected by the heat collector temperature sensor 33 is higher than the heat medium temperature detected by the heat storage tank temperature sensor 34 by a predetermined temperature or more. The heat medium from the solar heat collector 11 is supplied to the regenerator 101 of the absorption chiller / heater 21 through 32. Thereby, in a situation where the heat medium from the solar heat collector 11 is at a higher temperature than the heat medium from the heat storage tank 12, the heat medium is supplied directly from the solar heat collector 11 to the absorption chiller / heater 21. The absorption chiller / heater 21 is allowed to perform more efficient operation.
 また、システムコントローラ36は、集熱器温度センサ33により検出された熱媒温度が蓄熱槽温度センサ34により検出された熱媒温度以下である場合、切替弁31を制御して太陽熱集熱器11からの熱媒を蓄熱槽12に供給させる。よって、日射環境が悪く、太陽熱集熱器11からの熱媒の温度が蓄熱槽12からの熱媒の温度以下となる状況においては、太陽熱集熱器11から直接吸収式冷温水機21に熱媒を供給させることなく、効率が低下してしまう事態を防止することとなる。 Further, the system controller 36 controls the switching valve 31 to control the solar heat collector 11 when the heat medium temperature detected by the heat collector temperature sensor 33 is equal to or lower than the heat medium temperature detected by the heat storage tank temperature sensor 34. The heat medium from is supplied to the heat storage tank 12. Therefore, in a situation where the solar radiation environment is bad and the temperature of the heat medium from the solar heat collector 11 is equal to or lower than the temperature of the heat medium from the heat storage tank 12, heat is directly applied to the absorption chiller / heater 21 from the solar heat collector 11. The situation where efficiency falls without supplying a medium is prevented.
 なお、システムコントローラ36は、集熱器温度センサ33により検出された熱媒温度が蓄熱槽温度センサ34により検出された熱媒温度よりも所定温度以上高くなく、且つ、集熱器温度センサ33により検出された熱媒温度が蓄熱槽温度センサ34により検出された熱媒温度以下でない場合、切替弁31を現在の状態で維持する。すなわち、切替弁31の制御には、温度ヒステリシスを設けることとなり、頻繁に切替弁31が切り替わってしまうことを防止することとなる。 The system controller 36 is configured so that the heat medium temperature detected by the heat collector temperature sensor 33 is not higher than the heat medium temperature detected by the heat storage tank temperature sensor 34 by a predetermined temperature and the heat collector temperature sensor 33 When the detected heat medium temperature is not lower than the heat medium temperature detected by the heat storage tank temperature sensor 34, the switching valve 31 is maintained in the current state. That is, temperature hysteresis is provided in the control of the switching valve 31, and the switching valve 31 is prevented from frequently switching.
 また、システムコントローラ36は、バイパス流路32を通じて太陽熱集熱器11からの熱媒を吸収式冷温水機21の再生器101に供給する場合、熱媒ポンプ23を動作させず、集熱ポンプ14を動作させる。これにより、2つのポンプ14,23のうち一方のみを動作させて、太陽熱集熱器11からの熱媒を吸収式冷温水機21の再生器101に供給することとなる。 Further, when the system controller 36 supplies the heat medium from the solar heat collector 11 to the regenerator 101 of the absorption chiller / heater 21 through the bypass flow path 32, the system controller 36 does not operate the heat medium pump 23, and the heat collection pump 14. To work. Thereby, only one of the two pumps 14 and 23 is operated, and the heat medium from the solar heat collector 11 is supplied to the regenerator 101 of the absorption chiller / heater 21.
 次に、本実施形態に係る吸収式冷温水システム1の切替弁31の制御方法を説明する。図3は、本実施形態に係る吸収式冷温水システム1の制御方法を示すフローチャートである。なお、図3に示す処理は、吸収式冷温水システム1が停止するまで、繰り返し実行される。また、図3においては集熱器温度センサ33により検出された熱媒温度をT1(平均値はT1ave)と示し、蓄熱槽温度センサ34により検出された熱媒温度をT2(平均値はT2ave)と示す。 Next, the control method of the switching valve 31 of the absorption-type cold / hot water system 1 which concerns on this embodiment is demonstrated. FIG. 3 is a flowchart showing a control method of the absorption-type cold / hot water system 1 according to the present embodiment. In addition, the process shown in FIG. 3 is repeatedly performed until the absorption-type cold / hot water system 1 stops. In FIG. 3, the heat medium temperature detected by the heat collector temperature sensor 33 is indicated as T1 (average value is T1 ave ), and the heat medium temperature detected by the heat storage tank temperature sensor 34 is indicated as T2 (average value is T2). ave ).
 まず、図3に示すように、システムコントローラ36は、集熱器温度センサ33により検出された熱媒温度T1が、吸収式冷温水機21に供給すべき適正温度である熱媒許容温度の上限値以上であるかを判断する(S1)。上限値以上であると判断した場合(S1:YES)、システムコントローラ36は、切替弁31を蓄熱槽12側に切り替える(S2)。そして、図3に示す処理は終了する。このとき、両ポンプ14,23は双方が運転状態となっている。 First, as shown in FIG. 3, the system controller 36 sets the upper limit of the allowable heat medium temperature at which the heat medium temperature T1 detected by the collector temperature sensor 33 is an appropriate temperature to be supplied to the absorption chiller / heater 21. It is determined whether the value is greater than or equal to the value (S1). When it judges that it is more than an upper limit (S1: YES), system controller 36 switches changeover valve 31 to the heat storage tank 12 side (S2). Then, the process shown in FIG. 3 ends. At this time, both pumps 14 and 23 are in an operating state.
 一方、集熱器温度センサ33により検出された熱媒温度T1が上限値以上でないと判断した場合(S1:NO)、システムコントローラ36は、集熱器温度センサ33により検出された熱媒温度T1の移動平均温度T1aveが、蓄熱槽温度センサ34により検出された熱媒温度T2の移動平均温度T2aveよりも所定温度ΔT以上高いかを判断する(S3)。 On the other hand, when it is determined that the heat medium temperature T1 detected by the heat collector temperature sensor 33 is not equal to or higher than the upper limit value (S1: NO), the system controller 36 detects the heat medium temperature T1 detected by the heat collector temperature sensor 33. moving average temperature T1 ave of determines whether or higher than a predetermined temperature ΔT than the moving average temperature T2 ave of the heat storage tank temperature sensor 34 the heat transfer medium temperature T2 detected by (S3).
 そして、所定温度ΔT以上高いと判断した場合(S3:YES)、システムコントローラ36は、切替弁31をバイパス流路32側に切り替える(S4)。そして、図3に示す処理は終了する。このとき、集熱ポンプ14は運転状態であるが、熱媒ポンプ23は停止状態となる。 When it is determined that the temperature is higher than the predetermined temperature ΔT (S3: YES), the system controller 36 switches the switching valve 31 to the bypass flow path 32 side (S4). Then, the process shown in FIG. 3 ends. At this time, the heat collecting pump 14 is in an operating state, but the heat medium pump 23 is stopped.
 また、集熱器温度センサ33により検出された熱媒温度T1の移動平均温度T1aveが、蓄熱槽温度センサ34により検出された熱媒温度T2の移動平均温度T2aveよりも所定温度ΔT以上高くないと判断した場合(S3:NO)、システムコントローラ36は、集熱器温度センサ33により検出された熱媒温度T1の移動平均温度T1aveが、蓄熱槽温度センサ34により検出された熱媒温度T2の移動平均温度T2ave以下であるかを判断する(S5)。 The moving average temperature T1 ave of the heat medium temperature T1 detected by the heat collector temperature sensor 33 is higher than the moving average temperature T2 ave of the heat medium temperature T2 detected by the heat storage tank temperature sensor 34 by a predetermined temperature ΔT or more. When it is determined that there is no (S3: NO), the system controller 36 determines that the moving average temperature T1 ave of the heat medium temperature T1 detected by the heat collector temperature sensor 33 is the heat medium temperature detected by the heat storage tank temperature sensor 34. It is judged whether it is below the moving average temperature T2 ave of T2 (S5).
 集熱器温度センサ33により検出された熱媒温度T1の移動平均温度T1aveが、蓄熱槽温度センサ34により検出された熱媒温度T2の移動平均温度T2ave以下であると判断した場合(S5:YES)、システムコントローラ36は、切替弁31を蓄熱槽12側に切り替える(S2)。そして、図3に示す処理は終了する。このとき、両ポンプ14,23は双方が運転状態となる。 When it is determined that the moving average temperature T1 ave of the heat medium temperature T1 detected by the collector temperature sensor 33 is equal to or lower than the moving average temperature T2 ave of the heat medium temperature T2 detected by the heat storage tank temperature sensor 34 (S5) : YES), the system controller 36 switches the switching valve 31 to the heat storage tank 12 side (S2). Then, the process shown in FIG. 3 ends. At this time, both pumps 14 and 23 are in an operating state.
 一方、集熱器温度センサ33により検出された熱媒温度T1の移動平均温度T1aveが、蓄熱槽温度センサ34により検出された熱媒温度T2の移動平均温度T2ave以下でないと判断した場合(S5:NO)、システムコントローラ36は、切替弁31を現在の状態で維持する(S6)。そして、図3に示す処理は終了する。このとき、両ポンプ14,23の状態も維持されることとなる。 On the other hand, when it is determined that the moving average temperature T1 ave of the heat medium temperature T1 detected by the collector temperature sensor 33 is not lower than the moving average temperature T2 ave of the heat medium temperature T2 detected by the heat storage tank temperature sensor 34 ( (S5: NO), the system controller 36 maintains the switching valve 31 in the current state (S6). Then, the process shown in FIG. 3 ends. At this time, the states of both pumps 14 and 23 are also maintained.
 このようにして、本実施形態に係る吸収式冷温水システム1によれば、集熱器温度センサ33により検出された熱媒温度T1が蓄熱槽温度センサ34により検出された熱媒温度T2よりも所定温度ΔT以上高い場合に、切替弁31を制御してバイパス流路32を通じて太陽熱集熱器11からの熱媒を吸収式冷温水機21の再生器101に供給させるため、太陽熱集熱器11からの熱媒が蓄熱槽12からの熱媒よりも高温となる状況において、太陽熱集熱器11から直接吸収式冷温水機21に熱媒を供給することとなり、吸収式冷温水機21においてより効率の良い運転を行うことができる。従って、より運転効率の向上を図ることが可能な吸収式冷温水システム1を提供することができる。 Thus, according to the absorption chilled water system 1 according to the present embodiment, the heat medium temperature T1 detected by the heat collector temperature sensor 33 is higher than the heat medium temperature T2 detected by the heat storage tank temperature sensor 34. In order to supply the heat medium from the solar heat collector 11 to the regenerator 101 of the absorption chiller / heater 21 through the bypass channel 32 by controlling the switching valve 31 when the temperature is higher than the predetermined temperature ΔT, the solar heat collector 11 In a situation where the heat medium from the heat storage tank 12 is hotter than the heat medium from the heat storage tank 12, the heat medium is supplied directly from the solar heat collector 11 to the absorption chiller / heater 21, and the absorption chiller / heater 21 is more Efficient operation can be performed. Therefore, the absorption-type cold / hot water system 1 which can aim at the improvement of operating efficiency more can be provided.
 また、集熱器温度センサ33により検出された熱媒温度T1が蓄熱槽温度センサ34により検出された熱媒温度T2以下である場合、太陽熱集熱器11からの熱媒を蓄熱槽12に供給させる。さらに、集熱器温度センサ33により検出された熱媒温度T1が蓄熱槽温度センサ34により検出された熱媒温度T2よりも所定温度ΔT以上高くなく、且つ、集熱器温度センサ33により検出された熱媒温度T1が蓄熱槽温度センサ34により検出された熱媒温度T2以下でない場合、切替弁31を現在の状態で維持する。このように、切替弁31の制御には、温度ヒステリシスを設けることとなり、頻繁に切替弁31が切り替わってしまうことを防止することができる。 When the heat medium temperature T1 detected by the heat collector temperature sensor 33 is equal to or lower than the heat medium temperature T2 detected by the heat storage tank temperature sensor 34, the heat medium from the solar heat collector 11 is supplied to the heat storage tank 12. Let Further, the heat medium temperature T 1 detected by the heat collector temperature sensor 33 is not higher than the heat medium temperature T 2 detected by the heat storage tank temperature sensor 34 by a predetermined temperature ΔT and is detected by the heat collector temperature sensor 33. If the heat medium temperature T1 is not lower than the heat medium temperature T2 detected by the heat storage tank temperature sensor 34, the switching valve 31 is maintained in the current state. Thus, the control of the switching valve 31 is provided with temperature hysteresis, and it is possible to prevent the switching valve 31 from being frequently switched.
 また、集熱器温度センサ33により検出された熱媒温度T1が、吸収式冷温水機21に供給すべき適正温度である熱媒許容温度の上限値以上である場合、切替弁31を制御して太陽熱集熱器11からの熱媒を蓄熱槽12に供給させる。このため、たとえ集熱器温度センサ33により検出された熱媒温度T1が蓄熱槽温度センサ34により検出された熱媒温度T2よりも所定温度ΔT以上高く、バイパス流路32を通じて太陽熱集熱器11からの熱媒を吸収式冷温水機21の再生器101に供給させている状況であっても、集熱器温度センサ33により検出された熱媒温度T1が熱媒許容温度の上限値以上である場合には、熱媒を蓄熱槽12に供給させることとなる。これにより、再生器101において濃溶液が濃くなりすぎるなど、吸収式冷温水機21にダメージを与えてしまうことを防止することができる。 When the heat medium temperature T1 detected by the heat collector temperature sensor 33 is equal to or higher than the upper limit value of the heat medium allowable temperature that is an appropriate temperature to be supplied to the absorption chiller / heater 21, the control valve 31 is controlled. Then, the heat medium from the solar heat collector 11 is supplied to the heat storage tank 12. Therefore, even if the heat medium temperature T 1 detected by the heat collector temperature sensor 33 is higher than the heat medium temperature T 2 detected by the heat storage tank temperature sensor 34 by a predetermined temperature ΔT or more, the solar heat collector 11 is passed through the bypass passage 32. Even in the situation where the heat medium from is supplied to the regenerator 101 of the absorption chiller / heater 21, the heat medium temperature T1 detected by the heat collector temperature sensor 33 is equal to or higher than the upper limit of the allowable temperature of the heat medium. In some cases, the heat medium is supplied to the heat storage tank 12. Thereby, it is possible to prevent the absorption chiller / heater 21 from being damaged, for example, the concentrated solution becomes too thick in the regenerator 101.
 また、バイパス流路32を通じて太陽熱集熱器11からの熱媒を吸収式冷温水機21の再生器101に供給する場合、熱媒ポンプ23を動作させず、集熱ポンプ14を動作させるため、2つのポンプ14,23のうち一方のみを動作させることにより、太陽熱集熱器11からの熱媒を吸収式冷温水機21の再生器101に供給することができる。 In addition, when supplying the heat medium from the solar heat collector 11 to the regenerator 101 of the absorption chiller / heater 21 through the bypass channel 32, the heat collector pump 14 is operated without operating the heat medium pump 23. By operating only one of the two pumps 14, 23, the heat medium from the solar heat collector 11 can be supplied to the regenerator 101 of the absorption chiller / heater 21.
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよい。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to the said embodiment, You may add in the range which does not deviate from the meaning of this invention.
 例えば、上記実施形態では吸収式冷温水機21を含む吸収式冷温水システム1を例示したが、特に吸収式冷温水機21に限らず、吸収式冷凍機であってもよい。 For example, in the above-described embodiment, the absorption chiller / hot water system 1 including the absorption chiller / heater 21 is illustrated.
 ここで、上述した本発明に係る吸収式冷温水システムの実施形態の特徴をそれぞれ以下[1]~[4]に簡潔に纏めて列記する。 Here, the features of the embodiment of the above-described absorption-type cold / hot water system according to the present invention will be briefly summarized and listed in the following [1] to [4], respectively.
 [1] 機器からの排熱又はエネルギー源として永続的に利用可能な再生可能エネルギーにより熱媒を加熱する集熱器(太陽熱集熱器11)と、前記集熱器にて加熱された熱媒を導入して蓄熱する蓄熱槽(12)と、前記蓄熱槽から前記集熱器を経て再度前記蓄熱槽に熱媒を循環させる第1ポンプ(集熱ポンプ14)と、を有する第1システム(10)と、
 前記蓄熱槽内の熱媒を導入して再生器(101)における希溶液を加熱し、当該再生器、凝縮器(102)、蒸発器(103)、及び吸収器(104)の循環サイクルによって冷温液を得る吸収式冷温水機(21)と、前記蓄熱槽から前記吸収式冷温水機の前記再生器を経て再度前記蓄熱槽に熱媒を循環させる第2ポンプ(熱媒ポンプ23)と、を有する第2システム(20)と、
 を備えた吸収式冷温水システム(1)であって、
 前記集熱器から前記蓄熱槽までの流路上に設けられた切替弁(31)と、
 前記蓄熱槽から前記吸収式冷温水機に熱媒を供給する流路と前記切替弁とを接続するバイパス流路(32)と、
 前記集熱器からの熱媒の温度を検出する第1温度センサ(集熱器温度センサ33)と、
 前記蓄熱槽内の熱媒の温度を検出する第2温度センサ(蓄熱槽温度センサ34)と、
 前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度よりも所定温度以上高い場合に、前記切替弁を制御して前記バイパス流路を通じて前記集熱器からの熱媒を前記吸収式冷温水機の再生器に供給させる制御手段(システムコントローラ36)と、
 を備える吸収式冷温水システム(1)。
 [2] 前記制御手段は、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度以下である場合、前記切替弁を制御して前記集熱器からの熱媒を前記蓄熱槽に供給させ、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度よりも所定温度以上高くなく、且つ、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度以下でない場合、前記切替弁を現在の状態で維持する
 上記[1]に記載の吸収式冷温水システム(1)。
 [3] 前記制御手段は、前記第1温度センサにより検出された熱媒温度が、前記吸収式冷温水機に供給すべき適正温度である熱媒許容温度の上限値以上である場合、前記切替弁を制御して前記集熱器からの熱媒を前記蓄熱槽に供給させる
 [1]又は[2]のいずれかに記載の吸収式冷温水システム(1)。
 [4] 前記制御手段は、前記バイパス流路を通じて前記集熱器からの熱媒を前記吸収式冷温水機の再生器に供給する場合、前記第2ポンプを動作させず、前記第1ポンプを動作させる
 上記[1]から[3]のいずれかに記載の吸収式冷温水システム(1)。
[1] A heat collector (solar heat collector 11) that heats the heat medium by renewable energy that can be permanently used as exhaust heat from the equipment or as an energy source, and the heat medium heated by the heat collector A first storage system (12), and a first pump (heat collection pump 14) for circulating a heat medium from the heat storage tank to the heat storage tank again through the heat collector. 10) and
A heating medium in the heat storage tank is introduced to heat the dilute solution in the regenerator (101), and the regenerator, the condenser (102), the evaporator (103), and the absorber (104) are cooled by the circulation cycle. An absorption chiller / heater (21) for obtaining a liquid, a second pump (heat medium pump 23) for circulating a heat medium from the heat storage tank to the heat storage tank again through the regenerator of the absorption chiller / heater, A second system (20) having:
An absorption cold / hot water system (1) comprising:
A switching valve (31) provided on the flow path from the heat collector to the heat storage tank;
A bypass passage (32) for connecting a passage for supplying a heat medium from the heat storage tank to the absorption chiller / heater and the switching valve;
A first temperature sensor (heat collector temperature sensor 33) for detecting the temperature of the heat medium from the heat collector;
A second temperature sensor (heat storage tank temperature sensor 34) for detecting the temperature of the heat medium in the heat storage tank;
When the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, the heat collector is controlled through the bypass flow path by controlling the switching valve. Control means (system controller 36) for supplying the heat medium from the refrigerating machine of the absorption chiller / heater,
Absorption type cold / hot water system (1) provided with.
[2] When the heat medium temperature detected by the first temperature sensor is equal to or lower than the heat medium temperature detected by the second temperature sensor, the control unit controls the switching valve to control the heat collector temperature. The heating medium is supplied to the heat storage tank, the heating medium temperature detected by the first temperature sensor is not higher than the heating medium temperature detected by the second temperature sensor, and the first temperature If the heat medium temperature detected by the sensor is not lower than the heat medium temperature detected by the second temperature sensor, the switching valve is maintained in the current state. Absorption type cold / hot water system (1) according to [1] above .
[3] When the heat medium temperature detected by the first temperature sensor is equal to or higher than the upper limit value of the heat medium allowable temperature that is an appropriate temperature to be supplied to the absorption chiller / heater, The absorption cold / hot water system (1) according to any one of [1] or [2], wherein a valve is controlled to supply a heat medium from the heat collector to the heat storage tank.
[4] When the control means supplies the heat medium from the heat collector to the regenerator of the absorption chiller / heater through the bypass channel, the control unit does not operate the second pump, The absorption cold / hot water system (1) according to any one of [1] to [3].
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2013年10月23日出願の日本特許出願(特願2013-219903)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2013-219903) filed on October 23, 2013, the contents of which are incorporated herein by reference.
 本発明によれば、より運転効率の向上を図ることができるという効果を奏する。この効果を奏する本発明は、吸収式冷温水システムに関して有用である。 According to the present invention, there is an effect that the driving efficiency can be further improved. The present invention having this effect is useful for an absorption-type cold / hot water system.
1 吸収式冷温水システム
10 第1システム
11 太陽熱集熱器(集熱器)
12 蓄熱槽
13 集熱流路
14 集熱ポンプ(第1ポンプ)
20 第2システム
21 吸収式冷温水機
22 熱媒流路
23 熱媒ポンプ(第2ポンプ)
31 切替弁
32 バイパス流路
33 集熱器温度センサ(第1温度センサ)
34 蓄熱槽温度センサ(第2温度センサ)
35 逆止弁
36 システムコントローラ(制御手段)
DESCRIPTION OF SYMBOLS 1 Absorption-type cold / hot water system 10 1st system 11 Solar heat collector (heat collector)
12 heat storage tank 13 heat collecting flow path 14 heat collecting pump (first pump)
20 Second system 21 Absorption chiller / heater 22 Heat medium flow path 23 Heat medium pump (second pump)
31 Switching valve 32 Bypass flow path 33 Heat collector temperature sensor (first temperature sensor)
34 Thermal storage tank temperature sensor (second temperature sensor)
35 Check valve 36 System controller (control means)

Claims (4)

  1.  機器からの排熱又はエネルギー源として永続的に利用可能な再生可能エネルギーにより熱媒を加熱する集熱器と、前記集熱器にて加熱された熱媒を導入して蓄熱する蓄熱槽と、前記蓄熱槽から前記集熱器を経て再度前記蓄熱槽に熱媒を循環させる第1ポンプと、を有する第1システムと、
     前記蓄熱槽内の熱媒を導入して再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器、及び吸収器の循環サイクルによって冷温液を得る吸収式冷温水機と、前記蓄熱槽から前記吸収式冷温水機の前記再生器を経て再度前記蓄熱槽に熱媒を循環させる第2ポンプと、を有する第2システムと、
     を備えた吸収式冷温水システムであって、
     前記集熱器から前記蓄熱槽までの流路上に設けられた切替弁と、
     前記蓄熱槽から前記吸収式冷温水機に熱媒を供給する流路と前記切替弁とを接続するバイパス流路と、
     前記集熱器からの熱媒の温度を検出する第1温度センサと、
     前記蓄熱槽内の熱媒の温度を検出する第2温度センサと、
     前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度よりも所定温度以上高い場合に、前記切替弁を制御して前記バイパス流路を通じて前記集熱器からの熱媒を前記吸収式冷温水機の再生器に供給させる制御手段と、
     を備える吸収式冷温水システム。
    A heat collector that heats the heat medium with renewable energy that can be permanently used as exhaust heat or energy source from the device, and a heat storage tank that stores heat by introducing the heat medium heated by the heat collector, A first pump that circulates a heat medium from the heat storage tank to the heat storage tank again through the heat collector, and
    An absorption chiller / heater that introduces a heat medium in the heat storage tank to heat a dilute solution in the regenerator, and obtains a cold / hot liquid by a circulation cycle of the regenerator, condenser, evaporator, and absorber, and the heat storage A second pump having a second pump for circulating a heat medium from the tank to the heat storage tank again through the regenerator of the absorption chiller / heater,
    An absorption-type cold / hot water system comprising:
    A switching valve provided on a flow path from the heat collector to the heat storage tank;
    A bypass flow path connecting the flow path for supplying a heat medium from the heat storage tank to the absorption chiller / heater and the switching valve;
    A first temperature sensor for detecting the temperature of the heat medium from the heat collector;
    A second temperature sensor for detecting the temperature of the heat medium in the heat storage tank;
    When the heat medium temperature detected by the first temperature sensor is higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, the heat collector is controlled through the bypass flow path by controlling the switching valve. Control means for supplying a heat medium from the absorption chiller / heater to the regenerator,
    Absorption type cold / hot water system.
  2.  前記制御手段は、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度以下である場合、前記切替弁を制御して前記集熱器からの熱媒を前記蓄熱槽に供給させ、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度よりも所定温度以上高くなく、且つ、前記第1温度センサにより検出された熱媒温度が前記第2温度センサにより検出された熱媒温度以下でない場合、前記切替弁を現在の状態で維持する
     請求項1に記載の吸収式冷温水システム。
    When the heat medium temperature detected by the first temperature sensor is equal to or lower than the heat medium temperature detected by the second temperature sensor, the control means controls the switching valve to heat the heat medium from the heat collector. Is supplied to the heat storage tank, and the heat medium temperature detected by the first temperature sensor is not higher than the heat medium temperature detected by the second temperature sensor by a predetermined temperature or more, and is detected by the first temperature sensor. The absorption-type cold / hot water system of Claim 1. The said switching valve is maintained in the present state, when the performed heat-medium temperature is not below the heat-medium temperature detected by the said 2nd temperature sensor.
  3.  前記制御手段は、前記第1温度センサにより検出された熱媒温度が、前記吸収式冷温水機に供給すべき適正温度である熱媒許容温度の上限値以上である場合、前記切替弁を制御して前記集熱器からの熱媒を前記蓄熱槽に供給させる
     請求項1又は請求項2に記載の吸収式冷温水システム。
    The control means controls the switching valve when the heat medium temperature detected by the first temperature sensor is equal to or higher than an upper limit value of a heat medium allowable temperature that is an appropriate temperature to be supplied to the absorption chiller / heater. The absorption type hot / cold water system according to claim 1, wherein the heat medium from the heat collector is supplied to the heat storage tank.
  4.  前記制御手段は、前記バイパス流路を通じて前記集熱器からの熱媒を前記吸収式冷温水機の再生器に供給する場合、前記第2ポンプを動作させず、前記第1ポンプを動作させる
     請求項1から請求項3のいずれか1項に記載の吸収式冷温水システム。
    The control means operates the first pump without operating the second pump when supplying the heat medium from the heat collector to the regenerator of the absorption chiller / heater through the bypass channel. The absorption-type cold / hot water system of any one of Claims 1-3.
PCT/JP2014/078152 2013-10-23 2014-10-22 Absorption-type hot and cold water system WO2015060369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480058337.6A CN105705883A (en) 2013-10-23 2014-10-22 Absorption-type hot and cold water system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013219903A JP6232251B2 (en) 2013-10-23 2013-10-23 Absorption type hot and cold water system
JP2013-219903 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015060369A1 true WO2015060369A1 (en) 2015-04-30

Family

ID=52992958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078152 WO2015060369A1 (en) 2013-10-23 2014-10-22 Absorption-type hot and cold water system

Country Status (3)

Country Link
JP (1) JP6232251B2 (en)
CN (1) CN105705883A (en)
WO (1) WO2015060369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019983A (en) * 2018-01-23 2018-05-11 华北电力大学 New type solar energy list tank phase-change heat storage absorption heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107435970A (en) * 2016-05-26 2017-12-05 香江科技股份有限公司 A kind of phase-change accumulation energy double evaporators solar heat pump heating system and its control method
JP6689801B2 (en) * 2017-09-13 2020-04-28 矢崎エナジーシステム株式会社 Solar air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664257A (en) * 1979-10-26 1981-06-01 Sanyo Electric Co Absorption water cooler*heater
JPS5855658A (en) * 1981-09-30 1983-04-02 株式会社日立製作所 Absorption type refrigerator utilizing solar heat
JP2010014328A (en) * 2008-07-03 2010-01-21 Tokyo Gas Co Ltd Air conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988721A (en) * 2009-08-04 2011-03-23 泰安市鸿雁科贸有限公司 Novel two-stage absorption solar air conditioning system
CN202083061U (en) * 2011-05-23 2011-12-21 东南大学 Solar absorbing type air conditioning device
CN102494437B (en) * 2011-11-25 2014-01-15 洋浦清江环保有限公司 Cross-season energy-storage cold and heat supplying system
CN103292513B (en) * 2013-05-03 2015-08-26 上海交通大学 Driven by Solar Energy list economic benefits and social benefits coupled mode lithium bromide refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664257A (en) * 1979-10-26 1981-06-01 Sanyo Electric Co Absorption water cooler*heater
JPS5855658A (en) * 1981-09-30 1983-04-02 株式会社日立製作所 Absorption type refrigerator utilizing solar heat
JP2010014328A (en) * 2008-07-03 2010-01-21 Tokyo Gas Co Ltd Air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019983A (en) * 2018-01-23 2018-05-11 华北电力大学 New type solar energy list tank phase-change heat storage absorption heat pump

Also Published As

Publication number Publication date
JP2015081728A (en) 2015-04-27
JP6232251B2 (en) 2017-11-15
CN105705883A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6385044B2 (en) Absorption refrigeration system
CN101737996B (en) Heat pump circulating system and cooling/heating united supply method
JP6689801B2 (en) Solar air conditioning system
JP2014025653A (en) Refrigeration air conditioning method and apparatus
CN106052195B (en) Cooling and heating system
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2016057032A (en) Absorption type refrigeration system
WO2015060369A1 (en) Absorption-type hot and cold water system
KR200445537Y1 (en) Hybrid Absoption Cooling System
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP5902955B2 (en) Absorption type hot and cold water system
JP6871015B2 (en) Absorption refrigeration system
JP2009236369A (en) Absorption chiller/heater
JP3851764B2 (en) Absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP4315854B2 (en) Absorption refrigerator
JP5583435B2 (en) Refrigeration and air conditioning method and apparatus
JP2012141097A (en) Heat source system and control method therefor
JP6132821B2 (en) Absorption refrigeration system
KR20190115694A (en) Hybrid heating system using absorption chiller/heater
JP2012067950A (en) Air conditioning system
JP2003004330A (en) Exhaust heat recovery air conditioner
KR102396955B1 (en) Hybrid absorption chiller system for gas engine generator and method for driving the same
JP2020046128A (en) Absorption refrigerator
JP2016057005A (en) Adsorption type refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855803

Country of ref document: EP

Kind code of ref document: A1