JP2011153795A - Absorption type refrigerating machine - Google Patents

Absorption type refrigerating machine Download PDF

Info

Publication number
JP2011153795A
JP2011153795A JP2010016845A JP2010016845A JP2011153795A JP 2011153795 A JP2011153795 A JP 2011153795A JP 2010016845 A JP2010016845 A JP 2010016845A JP 2010016845 A JP2010016845 A JP 2010016845A JP 2011153795 A JP2011153795 A JP 2011153795A
Authority
JP
Japan
Prior art keywords
heat source
regenerator
temperature
hot water
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010016845A
Other languages
Japanese (ja)
Other versions
JP5405335B2 (en
Inventor
Shinichi Uekago
伸一 上篭
Masashi Izumi
雅士 泉
Hideaki Oana
秀明 小穴
Hideki Funai
秀樹 府内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010016845A priority Critical patent/JP5405335B2/en
Priority to KR1020100100170A priority patent/KR101171596B1/en
Priority to CN2010105357055A priority patent/CN102141319B/en
Publication of JP2011153795A publication Critical patent/JP2011153795A/en
Application granted granted Critical
Publication of JP5405335B2 publication Critical patent/JP5405335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/001Crystallization prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption type refrigerating machine avoiding crystallization of an absorbing solution. <P>SOLUTION: The absorption type refrigerating machine 100 includes a low heat source regenerator 9, a high-temperature regenerator 5, a low-temperature regenerator 6, an evaporator 1, a condenser 7 and an absorber 2, forms a circulation passage of the absorbing solution and a refrigerant by interconnecting these devices by piping, and can perform a single effect operation for heating the absorbing solution by using warm water supplied to the low heat source regenerator 9 as a heat source and a single/double effect operation or a double effect operation for heating the absorbing solution by using a heating means 4 disposed in the high-temperature regenerator 5 as a heat source. A warm water control valve 28 is provided in a low heat source supply pipe 16 supplying warm water serving as a heat source to the low heat source regenerator 9. The absorption type refrigerating machine further includes a warm water control means 50 measuring the frequency of operation of the heating means 4 when the temperature of the high-temperature regenerator 5 is a predetermined temperature or lower and fully closing the warm water control valve 28 when the measurement frequency reaches predetermined frequency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、温水等を熱源とする低熱源再生器を備える吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator having a low heat source regenerator using hot water or the like as a heat source.

従来、低熱源再生器、低熱源凝縮器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機が知られている(例えば、特許文献1参照)。この吸収式冷凍機では、冷媒が吸収液に吸収された稀吸収液は、吸収器から低熱源再生器に供給され、低熱源再生器に接続される熱源発生装置(例えば太陽熱温水器やコージェネレーション装置)の排熱によって加熱濃縮されて稀中間吸収液となる。稀中間吸収液は、高温再生器内の液面高さが低くなると作動する中間吸収液ポンプによって低熱源再生器から高温再生器に供給され、高温再生器が備えるバーナ等の加熱手段によって加熱濃縮されて濃中間吸収液となる。高温再生器での加熱を継続し、高温再生器内の圧力が高くなると、高温再生器と低温再生器との間の圧力差によって、高温再生器内の濃中間吸収液が中間吸収液管を通って低温再生器に流れる。   Conventionally, a low heat source regenerator, a low heat source condenser, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber are provided, and these are connected by piping to form an absorption liquid and refrigerant circulation path, respectively. A type refrigerator is known (see, for example, Patent Document 1). In this absorption chiller, the rare absorption liquid in which the refrigerant is absorbed by the absorption liquid is supplied from the absorber to the low heat source regenerator and connected to the low heat source regenerator (for example, a solar water heater or a cogeneration system). It is heated and concentrated by the exhaust heat of the device, and becomes a rare intermediate absorbing liquid. The rare intermediate absorption liquid is supplied from the low heat source regenerator to the high temperature regenerator by the intermediate absorption liquid pump that operates when the liquid level in the high temperature regenerator becomes low, and is heated and concentrated by heating means such as a burner provided in the high temperature regenerator. As a result, a concentrated intermediate absorbing solution is obtained. If heating in the high-temperature regenerator is continued and the pressure in the high-temperature regenerator increases, the concentrated intermediate absorption liquid in the high-temperature regenerator will cause the intermediate absorption liquid pipe to reach the intermediate absorption liquid tube due to the pressure difference between the high-temperature regenerator and the low-temperature regenerator. Flows through to the low temperature regenerator.

特開2006−343042号公報JP 2006-343042 A

ところで、熱負荷の負荷が小さく、冷却水温度の変動が激しい場合には、ブラインの出口温度の変動が激しくなる。
上記従来の構成では、加熱手段は、熱負荷(例えば空気調和装置)に供給するブラインの出口温度に応じて制御されるため、ブラインの出口温度の変動が激しい場合には、加熱手段の発停が繰り返される。短時間で加熱手段の発停が繰り返されると、高温再生器内の圧力が高くならず、高温再生器内の濃中間吸収液が低温再生器に流れなくなるので、中間吸収液ポンプが運転されず、稀中間吸収液が高温再生器に十分に供給されなくなる。したがって、高温再生器内の濃中間吸収液が濃縮され続け、その結果、高温再生器や中間吸収液管内の吸収液が結晶するおそれがある。
本発明は、上述した事情に鑑みてなされたものであり、吸収液の結晶化を回避する吸収式冷凍機を提供することを目的とする。
By the way, when the heat load is small and the cooling water temperature fluctuates significantly, the brine outlet temperature fluctuates greatly.
In the above-described conventional configuration, the heating means is controlled according to the outlet temperature of the brine supplied to the heat load (for example, the air conditioner). Is repeated. If the heating means is repeated on and off in a short time, the pressure in the high temperature regenerator will not increase and the concentrated intermediate absorption liquid in the high temperature regenerator will not flow to the low temperature regenerator, so the intermediate absorption liquid pump will not operate. The rare intermediate absorbing liquid is not sufficiently supplied to the high temperature regenerator. Therefore, the concentrated intermediate absorption liquid in the high-temperature regenerator continues to be concentrated, and as a result, the absorption liquid in the high-temperature regenerator and the intermediate absorption liquid pipe may be crystallized.
This invention is made | formed in view of the situation mentioned above, and it aims at providing the absorption refrigerator which avoids crystallization of an absorption liquid.

上記目的を達成するために、本発明は、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の温度が所定温度以下のときに、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の温度が所定温度以上になったときに、前記温水制御弁の全閉を解除してもよい。
In order to achieve the above object, the present invention comprises a low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber, and these are connected by piping to circulate the absorption liquid and refrigerant. A single effect operation in which the absorbing liquid is heated using hot water supplied to the low heat source regenerator as a heat source, and a single double effect operation in which the absorbing liquid is heated using a heating means provided in the high temperature regenerator as a heat source. Alternatively, in an absorption chiller configured to be capable of double-effect operation, a hot water control valve is provided in a low heat source supply pipe for supplying hot water as a heat source to the low heat source regenerator, and the temperature of the high temperature regenerator is predetermined. When the temperature is equal to or lower than the temperature, the number of times that the heating means is operated is measured, and when the number of times reaches the predetermined number, the hot water control means for fully closing the hot water control valve is provided.
The said structure WHEREIN: The said warm water control means may cancel | release the full closure of the said warm water control valve, when the temperature of the said high temperature regenerator becomes more than predetermined temperature after fully closing the said warm water control valve.

また、本発明は、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の加熱時間が所定時間以下のとき、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の加熱時間が所定時間以上になる加熱が生じときに、前記温水制御弁の全閉を解除してもよい。
The present invention also includes a low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber, and these are connected to form a circulation path for the absorbing liquid and the refrigerant, A single effect operation in which the absorbing liquid is heated using hot water supplied to the low heat source regenerator as a heat source, and a single double effect operation or a dual effect operation in which the absorbing liquid is heated using a heating means provided in the high temperature regenerator as a heat source; In the absorption refrigerator configured to be capable of providing a hot water control valve in a low heat source supply pipe for supplying hot water as a heat source to the low heat source regenerator, and when the heating time of the high temperature regenerator is a predetermined time or less, The system is characterized by comprising hot water control means for measuring the number of times the heating means is operated and fully closing the hot water control valve when the number of times reaches a predetermined number.
In the above configuration, the hot water control means cancels the full closure of the hot water control valve when heating occurs in which the heating time of the high temperature regenerator exceeds a predetermined time after the hot water control valve is fully closed. Also good.

また、本発明は、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を下回るときに、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を上回ったときに、前記温水制御弁の全閉を解除してもよい。
The present invention also includes a low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber, and these are connected to form a circulation path for the absorbing liquid and the refrigerant, A single effect operation in which the absorbing liquid is heated using hot water supplied to the low heat source regenerator as a heat source, and a single double effect operation or a dual effect operation in which the absorbing liquid is heated using a heating means provided in the high temperature regenerator as a heat source; In the absorption refrigerator configured to be capable of heating, a hot water control valve is provided in a low heat source supply pipe for supplying hot water as a heat source to the low heat source regenerator, and the difference between the intermediate absorption liquid temperature and the intermediate absorption liquid crystal temperature Is provided with a hot water control means for fully closing the hot water control valve when the temperature falls below a predetermined temperature difference.
In the above configuration, the hot water control means, after fully closing the hot water control valve, when the difference between the intermediate absorbent temperature and the intermediate absorbent crystal temperature exceeds a predetermined temperature difference, Closing may be released.

本発明によれば、熱源となる温水を低熱源再生器に供給する低熱源供給管に温水制御弁を設け、高温再生器の温度が所定温度以下のときに、加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、温水制御弁を全閉する温水制御手段を備えるため、高温再生器での加熱量が増加して高温再生器内の圧力が上昇し、濃中間吸収液が高温再生器から流れて高温再生器の液面が下がるので、稀中間吸収液が高温再生器に供給され、吸収液の結晶化を回避できる。   According to the present invention, a hot water control valve is provided in a low heat source supply pipe for supplying hot water as a heat source to the low heat source regenerator, and the number of times the heating means is operated when the temperature of the high temperature regenerator is lower than a predetermined temperature is measured. However, when the number of times of measurement reaches a predetermined number of times, since the hot water control means for fully closing the hot water control valve is provided, the amount of heating in the high temperature regenerator increases and the pressure in the high temperature regenerator increases, Since the absorption liquid flows from the high temperature regenerator and the liquid level of the high temperature regenerator is lowered, the rare intermediate absorption liquid is supplied to the high temperature regenerator, and crystallization of the absorption liquid can be avoided.

第1の実施の形態に係る吸収式冷温水機を示す概略構成図である。It is a schematic block diagram which shows the absorption type cold / hot water machine which concerns on 1st Embodiment. 第1結晶回避処理を示すフローチャートである。It is a flowchart which shows a 1st crystal | crystallization avoidance process. 第2の実施の形態に係る吸収式冷温水機を示す概略構成図である。It is a schematic block diagram which shows the absorption type cold / hot water machine which concerns on 2nd Embodiment. 第2結晶回避処理を示すフローチャートである。It is a flowchart which shows a 2nd crystal | crystallization avoidance process. 第3の実施の形態に係る吸収式冷温水機を示す概略構成図である。It is a schematic block diagram which shows the absorption type cold / hot water machine which concerns on 3rd Embodiment. 第3結晶回避処理を示すフローチャートである。It is a flowchart which shows a 3rd crystal | crystallization avoidance process.

以下、図面を参照して本発明の実施の形態について説明する。
〔第1の実施の形態〕
図1は、第1の実施の形態に係る吸収式冷温水機(吸収式冷凍機)の概略構成図である。
吸収式冷温水機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した一重二重効用型の吸収式冷温水機である。吸収式冷温水機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ(加熱手段)4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6及び凝縮器7を収納した低温再生器凝縮器胴8と、他の設備から供給される温水などを熱源とする低熱源再生器9と、この低熱源再生器9に並設された低熱源凝縮器10と、これら低熱源再生器9及び低熱源凝縮器10を収納した低熱源再生器凝縮器胴11と、低温熱交換器12と、高温熱交換器13と、稀吸収液ポンプP1と、中間吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜26及び冷媒管31〜36などを介して配管接続されている。
低温再生器凝縮器胴8は蒸発器吸収器胴3や高温再生器5より高い位置に配置され、低熱源再生器凝縮器胴11は低温再生器凝縮器胴8より高い位置に配置されている。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic configuration diagram of an absorption chiller / heater (absorption refrigeration machine) according to a first embodiment.
The absorption chiller / heater 100 is a single double-effect absorption chiller / heater using water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorbent. As shown in FIG. 1, the absorption chiller / heater 100 includes an evaporator 1, an absorber 2 provided in parallel with the evaporator 1, and an evaporator absorber body that houses the evaporator 1 and the absorber 2. 3, a high-temperature regenerator 5 having a gas burner (heating means) 4, a low-temperature regenerator 6, a condenser 7 arranged in parallel with the low-temperature regenerator 6, and the low-temperature regenerator 6 and the condenser 7 are accommodated. The low-temperature regenerator condenser body 8, the low heat source regenerator 9 using hot water supplied from other equipment as a heat source, the low heat source condenser 10 arranged in parallel to the low heat source regenerator 9, A low heat source regenerator condenser body 11 containing a heat source regenerator 9 and a low heat source condenser 10, a low temperature heat exchanger 12, a high temperature heat exchanger 13, a rare absorbent pump P1, and an intermediate absorbent pump P2. The refrigerant pump P3, and each of these devices has absorption liquid pipes 21 to 26 and refrigerant pipes 31 to 36. Connected by piping through etc..
The low temperature regenerator condenser cylinder 8 is arranged at a position higher than the evaporator absorber cylinder 3 and the high temperature regenerator 5, and the low heat source regenerator condenser cylinder 11 is arranged at a position higher than the low temperature regenerator condenser cylinder 8. .

また、符号14は、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば空気調和装置)に循環供給するための冷/温水管であり、この冷/温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。また、冷/温水管14の伝熱管14A下流側には、当該冷/温水管14内を流通するブラインの温度を計測する温度センサ61が設けられている。符号15は、吸収器2、凝縮器7及び低熱源凝縮器10に順次冷却水を流通させるための冷却水管であり、この冷却水管15の一部に形成された各伝熱管15A、15B、15Cがそれぞれ吸収器2、凝縮器7及び低熱源凝縮器10内に配置されている。また、符号16は、図示しない熱源発生装置(例えば太陽熱温水器やコージェネレーション装置)で生成された比較的低温(例えば約80℃程度)の温水を、低熱源再生器9に循環供給するための低熱源供給管である。この低熱源供給管16は、低熱源再生器9内に配置される伝熱管16Aと、この伝熱管16Aに並列に接続されるバイパス管16Bと、伝熱管16Aに供給する温水の流量を調整するために切り替えられる三方弁(温水制御弁)28とを備える。符号50は、吸収式冷温水機100全体の制御を司る制御装置(温水制御手段)である。上記温度センサ61は、計測したブラインの温度を制御装置50に出力する。   Reference numeral 14 denotes a cold / hot water pipe for circulatingly supplying brine heat exchanged with the refrigerant in the evaporator 1 to a heat load (not shown) (for example, an air conditioner). A heat transfer tube 14 </ b> A formed in the section is arranged in the evaporator 1. Further, a temperature sensor 61 for measuring the temperature of the brine flowing through the cold / hot water pipe 14 is provided on the downstream side of the heat transfer pipe 14 </ b> A of the cold / hot water pipe 14. Reference numeral 15 denotes a cooling water pipe for sequentially circulating cooling water to the absorber 2, the condenser 7 and the low heat source condenser 10, and each heat transfer pipe 15 </ b> A, 15 </ b> B, 15 </ b> C formed in a part of the cooling water pipe 15. Are disposed in the absorber 2, the condenser 7, and the low heat source condenser 10, respectively. Reference numeral 16 is for circulating and supplying relatively low temperature (eg, about 80 ° C.) hot water generated by a heat source generator (not shown) (eg, a solar water heater or a cogeneration device) to the low heat source regenerator 9. This is a low heat source supply pipe. The low heat source supply pipe 16 adjusts the flow rate of hot water supplied to the heat transfer pipe 16A, a heat transfer pipe 16A disposed in the low heat source regenerator 9, a bypass pipe 16B connected in parallel to the heat transfer pipe 16A, and the heat transfer pipe 16A. And a three-way valve (hot water control valve) 28 that can be switched for this purpose. Reference numeral 50 denotes a control device (hot water control means) that controls the absorption chiller / heater 100 as a whole. The temperature sensor 61 outputs the measured brine temperature to the control device 50.

吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、稀吸収液ポンプP1を有する稀吸収液管21の一端が接続され、この稀吸収液管21の他端、すなわち、稀吸収液ポンプP1の下流側は低温熱交換器12を経由した後、低熱源再生器9内の上部に形成された気層部9Aに開口している。   The absorber 2 has a function of absorbing the refrigerant vapor evaporated in the evaporator 1 into the absorption liquid and maintaining the pressure in the evaporator absorber body 3 in a high vacuum state. Under the absorber 2, a rare absorbing liquid reservoir 2A is formed in which the diluted absorbing liquid diluted by absorbing the refrigerant vapor is accumulated. The rare absorbing liquid reservoir 2A has a rare absorbing liquid pump P1. One end of the liquid pipe 21 is connected, and the other end of the rare absorbent liquid pipe 21, that is, the downstream side of the rare absorbent liquid pump P1 is formed in the upper part in the low heat source regenerator 9 after passing through the low temperature heat exchanger 12. The gas layer 9A is opened.

低熱源再生器9の下部には、稀吸収液管21を通じて供給された吸収液が溜る吸収液溜り9Bが形成され、この吸収液溜り9Bには低熱源供給管16の一部に形成された伝熱管16Aが配置されている。この低熱源供給管16に温水を流通させることにより、上記伝熱管16Aを介して、吸収液を加熱再生、すなわち、吸収液中の冷媒を蒸発させてこの吸収液を濃縮することができる。
また、吸収液溜り9Bには、中間吸収液ポンプP2を有する第1中間吸収液管22の一端が接続され、この第1中間吸収液管22の他端、すなわち、中間吸収液ポンプP2の下流側は高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口している。
In the lower part of the low heat source regenerator 9, there is formed an absorption liquid reservoir 9B in which the absorption liquid supplied through the rare absorption liquid pipe 21 is accumulated. The absorption liquid reservoir 9B is formed in a part of the low heat source supply pipe 16. A heat transfer tube 16A is arranged. By circulating hot water through the low heat source supply pipe 16, the absorption liquid can be heated and regenerated through the heat transfer pipe 16A, that is, the refrigerant in the absorption liquid can be evaporated to concentrate the absorption liquid.
One end of a first intermediate absorption liquid pipe 22 having an intermediate absorption liquid pump P2 is connected to the absorption liquid reservoir 9B, and the other end of the first intermediate absorption liquid pipe 22, that is, downstream of the intermediate absorption liquid pump P2. After passing through the high-temperature heat exchanger 13, the side opens to the gas layer part 5 </ b> B located above the heat exchange part 5 </ b> A formed in the high-temperature regenerator 5.

高温再生器5の下部には、例えば都市ガス等の燃料に点火する点火器4Aと、燃料量を制御して熱源量を可変にする燃料制御弁4Bとを備えるガスバーナ4が収容されている。ガスバーナ4は、制御装置50が出力した燃焼信号を受信すると、ガスを燃焼させる。高温再生器5には、ガスバーナ4の上方に当該ガスバーナ4の火炎を熱源として吸収液を加熱再生する熱交換部5Aが形成されている。この熱交換部5Aには、ガスバーナ4で燃焼された排気ガスが流通する排気経路17が接続され、熱交換部5Aの側方には、この熱交換部5Aで加熱再生された後に当該熱交換部5Aから流出した中間吸収液が溜る中間吸収液溜り5Cが形成されている。中間吸収液溜り5Cには、この中間吸収液溜り5Cに溜った吸収液の液面を検知する液面電極(液面検知センサ)51が設けられている。液面電極51は、中間吸収液溜り5C内に貯留された吸収液の液面高さが、液面電極51の下端部よりも高い所定位置になったことを検知すると、その検知結果を制御装置50に出力する。   A gas burner 4 including an igniter 4A that ignites fuel such as city gas and a fuel control valve 4B that controls the amount of fuel to change the amount of heat source is accommodated in the lower portion of the high-temperature regenerator 5. When the gas burner 4 receives the combustion signal output from the control device 50, the gas burner 4 burns the gas. The high-temperature regenerator 5 is formed with a heat exchanging unit 5 </ b> A that heats and regenerates the absorbing liquid using the flame of the gas burner 4 as a heat source above the gas burner 4. An exhaust path 17 through which exhaust gas combusted by the gas burner 4 circulates is connected to the heat exchanging section 5A, and the heat exchanging section 5A is connected to the side of the heat exchanging section 5A after being heated and regenerated by the heat exchanging section 5A. An intermediate absorption liquid reservoir 5C is formed in which the intermediate absorption liquid flowing out from the portion 5A is accumulated. The intermediate absorption liquid reservoir 5C is provided with a liquid level electrode (liquid level detection sensor) 51 for detecting the liquid level of the absorption liquid stored in the intermediate absorption liquid reservoir 5C. When the liquid level electrode 51 detects that the liquid level of the absorbing liquid stored in the intermediate absorbing liquid reservoir 5C is higher than the lower end of the liquid level electrode 51, the liquid level electrode 51 controls the detection result. Output to the device 50.

中間吸収液溜り5Cの下端には、第2中間吸収液管(中間吸収液管)23の一端が接続され、この第2中間吸収液管23の他端は低温再生器6内の上部に形成された気層部6Aに開口している。また、第2中間吸収液管23の中間吸収液溜り5C側には高温熱交換器13が設けられている。この高温熱交換器13は、中間吸収液溜り5Cから流出した高温の中間吸収液の温熱で第1中間吸収液管22を流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。また、第2中間吸収液管23の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管24により接続されている。   One end of a second intermediate absorption liquid pipe (intermediate absorption liquid pipe) 23 is connected to the lower end of the intermediate absorption liquid reservoir 5C, and the other end of the second intermediate absorption liquid pipe 23 is formed in the upper portion of the low temperature regenerator 6. The gas layer 6A is opened. In addition, a high temperature heat exchanger 13 is provided on the intermediate absorbing liquid reservoir 5 </ b> C side of the second intermediate absorbing liquid pipe 23. The high-temperature heat exchanger 13 heats the absorption liquid flowing through the first intermediate absorption liquid pipe 22 with the heat of the high-temperature intermediate absorption liquid flowing out from the intermediate absorption liquid reservoir 5C, and the gas burner 4 in the high-temperature regenerator 5 is heated. It aims to reduce fuel consumption. Further, the upstream side of the second intermediate absorption liquid pipe 23 at the high temperature heat exchanger 13 and the absorber 2 are connected by an absorption liquid pipe 24 with an on-off valve V1 interposed therebetween.

低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、気層部6Aの下方に形成された吸収液溜り6Bに溜った吸収液を加熱再生するものであり、吸収液溜り6Bには、高温再生器5の上端部から凝縮器7の底部への延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、上記伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Bに溜った吸収液に伝達され、この吸収液が更に濃縮される。   The low-temperature regenerator 6 uses the refrigerant vapor separated by the high-temperature regenerator 5 as a heat source to heat and regenerate the absorption liquid stored in the absorption liquid reservoir 6B formed below the gas layer portion 6A. In 6B, a heat transfer tube 31A formed in a part of the refrigerant tube 31 extending from the upper end of the high temperature regenerator 5 to the bottom of the condenser 7 is disposed. By circulating the refrigerant vapor through the refrigerant pipe 31, the heat of the refrigerant vapor is transmitted to the absorption liquid stored in the absorption liquid reservoir 6B via the heat transfer pipe 31A, and the absorption liquid is further concentrated.

低温再生器6の吸収液溜り6Bの下端には、濃吸収液管25の一端が接続され、この濃吸収液管25の他端には、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。濃吸収液管25には低温熱交換器12が設けられている。この低温熱交換器12は、低温再生器6の吸収液溜り6Bから流出した濃吸収液の温熱で稀吸収液管21を流れる稀吸収液を加熱するものである。また、濃吸収液管25の低温熱交換器12上流側と、第1中間吸収液管22の中間吸収液ポンプP2上流側とは、バイパス管26により接続されており、この中間吸収液ポンプP2の運転が停止している場合には、低熱源再生器9の吸収液溜り9Bから流出した吸収液は、第1中間吸収液管22、バイパス管26、低温熱交換器12及び濃吸収液管25を通じて、吸収器2内に供給される。   One end of a concentrated absorption liquid pipe 25 is connected to the lower end of the absorption liquid reservoir 6B of the low-temperature regenerator 6, and the other end of the concentrated absorption liquid pipe 25 is provided at the upper part of the gas layer portion 2B of the absorber 2. It is connected to the liquid spreader 2C. The concentrated absorption liquid pipe 25 is provided with a low-temperature heat exchanger 12. The low-temperature heat exchanger 12 heats the rare absorbent flowing through the rare absorbent pipe 21 with the warm heat of the concentrated absorbent flowing out from the absorbent reservoir 6B of the low-temperature regenerator 6. The upstream side of the low-temperature heat exchanger 12 of the concentrated absorbent pipe 25 and the upstream side of the intermediate absorbent pump P2 of the first intermediate absorbent pipe 22 are connected by a bypass pipe 26, and this intermediate absorbent pump P2 When the operation is stopped, the absorption liquid flowing out from the absorption liquid reservoir 9B of the low heat source regenerator 9 is the first intermediate absorption liquid pipe 22, the bypass pipe 26, the low temperature heat exchanger 12, and the concentrated absorption liquid pipe. 25 and supplied into the absorber 2.

上述のように、高温再生器5の気層部5Bと凝縮器7の底部とは、低温再生器6の吸収液溜り6Bに配管された伝熱管31Aを経由する冷媒管31により接続され、この冷媒管31の伝熱管31A上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。
また、凝縮器7の底部と蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続され、その冷媒管33のUシール部33Aと低熱源凝縮器10の底部側とが冷媒管34により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在するに冷媒管35により接続されている。この冷媒管35の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは開閉弁V3が介在する冷媒管36により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V4が介在する連通管37により接続されている。
As described above, the gas layer portion 5B of the high temperature regenerator 5 and the bottom portion of the condenser 7 are connected by the refrigerant pipe 31 via the heat transfer pipe 31A piped to the absorption liquid reservoir 6B of the low temperature regenerator 6. The heat transfer pipe 31A upstream side of the refrigerant pipe 31 and the gas layer portion 2B of the absorber 2 are connected by a refrigerant pipe 32 having an on-off valve V2.
Further, the bottom portion of the condenser 7 and the gas layer portion 1A of the evaporator 1 are connected by a refrigerant pipe 33 with a U seal portion 33A interposed therebetween. The U seal portion 33A of the refrigerant pipe 33 and the bottom side of the low heat source condenser 10 Are connected by a refrigerant pipe 34. A refrigerant liquid reservoir 1B in which liquefied refrigerant accumulates is formed below the evaporator 1, and the refrigerant liquid reservoir 1B and the spreader 1C disposed above the gas layer portion 1A of the evaporator 1 are refrigerant pumps P3. Are connected by a refrigerant pipe 35. The refrigerant pipe 35 is connected to the downstream side of the refrigerant pump P3 and the absorbing liquid reservoir 2A of the absorber 2 through a refrigerant pipe 36 with an on-off valve V3 interposed therebetween. Further, the outlet side of the heat transfer pipe 14A of the cold / hot water pipe 14 and the outlet side of the heat transfer pipe 15B of the cooling water pipe 15 are connected by a communication pipe 37 having an on-off valve V4 interposed therebetween.

次に動作について説明する。
冷房等の冷却運転時においては、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度(温度センサ61にて計測される温度)が所定の設定温度、例えば7℃になるように吸収式冷温水機100に投入される熱量が制御装置50により制御される。
具体的には、制御装置50は、例えば、熱負荷が大きく、且つ、低熱源供給管16を介して低熱源再生器9に供給する温水の温度が所定温度(例えば85℃)に達している時には、低熱源供給管16から低熱源再生器9に温水を定格量供給すると共に、全てのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させる一重二重効用運転を行い、温度センサ61が計測する温度が所定の7℃となるようにガスバーナ4の火力を制御する。
Next, the operation will be described.
During a cooling operation such as cooling, the evaporator 1 outlet side temperature (temperature measured by the temperature sensor 61) of brine (for example, cold water) circulated and supplied to a heat load (not shown) via the cold / hot water pipe 14 is set. The amount of heat input to the absorption chiller / heater 100 is controlled by the controller 50 so as to reach a predetermined set temperature, for example, 7 ° C.
Specifically, for example, the control device 50 has a large heat load, and the temperature of hot water supplied to the low heat source regenerator 9 via the low heat source supply pipe 16 reaches a predetermined temperature (for example, 85 ° C.). Sometimes, a rated amount of hot water is supplied from the low heat source supply pipe 16 to the low heat source regenerator 9, all pumps P1 to P3 are started, and a single double effect operation is performed in which gas is burned in the gas burner 4. The heating power of the gas burner 4 is controlled so that the temperature measured by the sensor 61 is a predetermined 7 ° C.

この場合、吸収器2から稀吸収液管21を介して稀吸収液ポンプP1により低熱源再生器9に搬送された稀吸収液は、この低熱源再生器9内の吸収液溜り9Bにおいて、低熱源供給管16から供給される温水により伝熱管16Aの管壁を介して加熱されることにより、稀吸収液中の冷媒が蒸発分離される。   In this case, the rare absorption liquid conveyed from the absorber 2 to the low heat source regenerator 9 by the rare absorption liquid pump P1 through the rare absorption liquid pipe 21 is low in the absorption liquid reservoir 9B in the low heat source regenerator 9. When the hot water supplied from the heat source supply pipe 16 is heated through the pipe wall of the heat transfer pipe 16A, the refrigerant in the rare absorbent is evaporated and separated.

冷媒を蒸発分離して吸収液濃度が高くなった稀中間吸収液は、第1中間吸収液管22の中間吸収液ポンプP2により高温熱交換器13を経由して加熱され高温再生器5に送られる。なお、制御装置50は、高温再生器5の中間吸収液溜り5C内に貯留された吸収液の液面高さが、液面電極51の下端部よりも高い所定位置となるまで中間吸収液ポンプP2を運転し、この所定位置に至った時に、中間吸収液ポンプP2の運転を停止する。高温再生器5に搬送された稀中間吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この稀中間吸収液中の冷媒が蒸発分離する。このとき、高温再生器5内の圧力は加熱によって高くなっているので、高温再生器5で冷媒を蒸発分離して濃度が上昇した濃中間吸収液は、高温再生器5と低温再生器6との間の液面差と圧力差によって定まる流量で、高温熱交換器13を経由して低温再生器6へ送られる。
そして、濃中間吸収液は低温再生器6において、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。
The rare intermediate absorbent whose concentration has been increased by evaporating and separating the refrigerant is heated by the intermediate absorbent pump P2 of the first intermediate absorbent pipe 22 via the high temperature heat exchanger 13 and sent to the high temperature regenerator 5. It is done. Note that the control device 50 determines that the intermediate absorption liquid pump until the liquid level of the absorption liquid stored in the intermediate absorption liquid reservoir 5C of the high-temperature regenerator 5 reaches a predetermined position higher than the lower end of the liquid level electrode 51. When P2 is operated and this predetermined position is reached, the operation of the intermediate absorbent pump P2 is stopped. Since the rare intermediate absorption liquid conveyed to the high temperature regenerator 5 is heated by the flame by the gas burner 4 and the high-temperature combustion gas in the high temperature regenerator 5, the refrigerant in the rare intermediate absorption liquid evaporates and separates. At this time, since the pressure in the high-temperature regenerator 5 is increased by heating, the concentrated intermediate absorption liquid whose concentration has been increased by evaporating and separating the refrigerant in the high-temperature regenerator 5 is obtained from the high-temperature regenerator 5 and the low-temperature regenerator 6. Is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13 at a flow rate determined by the liquid level difference and the pressure difference.
The concentrated intermediate absorption liquid is heated in the low-temperature regenerator 6 by the high-temperature refrigerant vapor supplied from the high-temperature regenerator 5 through the refrigerant pipe 31 and flowing into the heat transfer pipe 31A, and the refrigerant is further separated to further increase the concentration. The concentrated absorbent is sent to the absorber 2 via the low-temperature heat exchanger 12, and is sprayed from above the concentrated liquid spreader 2C.

一方、低熱源再生器9で分離生成した冷媒は低熱源凝縮器10に入って凝縮し、低温再生器6で分離生成した冷媒は凝縮器7に入って凝縮する。そして、凝縮器7で生成された冷媒液は冷媒管33を、低熱源凝縮器10で凝縮生成した冷媒液は冷媒管34を経由して蒸発器1に入り、冷媒ポンプP3の運転により揚液されて散布器1Cから冷/温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって低熱源再生器9に搬送される循環を繰り返す。
On the other hand, the refrigerant separated and generated by the low heat source regenerator 9 enters the low heat source condenser 10 and condenses, and the refrigerant separated and generated by the low temperature regenerator 6 enters the condenser 7 and condenses. The refrigerant liquid generated by the condenser 7 enters the evaporator 1 through the refrigerant pipe 33 and the refrigerant liquid condensed and generated by the low heat source condenser 10 via the refrigerant pipe 34, and is pumped by the operation of the refrigerant pump P3. Then, it is sprayed on the heat transfer tube 14A of the cold / hot water tube 14 from the sprayer 1C.
The refrigerant liquid sprayed on the heat transfer tube 14A evaporates by removing vaporization heat from the brine passing through the inside of the heat transfer tube 14A, so that the brine passing through the inside of the heat transfer tube 14A is cooled, and the brine thus lowered in temperature is A cooling operation such as cooling is performed by supplying the heat load from the cold / hot water pipe 14.
Then, the refrigerant evaporated in the evaporator 1 enters the absorber 2, is absorbed by the concentrated absorbent supplied from the low temperature regenerator 6 and sprayed from above, and accumulates in the rare absorbent reservoir 2A of the absorber 2, The circulation conveyed to the low heat source regenerator 9 by the absorption liquid pump P1 is repeated.

一重二重効用運転時においては、温度センサ61が計測する温度が所定の7℃になるように、ガスバーナ4による加熱量、具体的にはガスバーナ4に供給するガス量が制御装置50により制御される。そして、ガスバーナ4による加熱量を最小にしても、温度センサ61が所定の7℃より低い温度を計測すると、制御装置50は、ガスの燃焼を止めてガスバーナ4による加熱を停止して一重効用運転に移行する。   During the single double effect operation, the amount of heating by the gas burner 4, specifically, the amount of gas supplied to the gas burner 4 is controlled by the controller 50 so that the temperature measured by the temperature sensor 61 becomes a predetermined 7 ° C. The And even if the amount of heating by the gas burner 4 is minimized, when the temperature sensor 61 measures a temperature lower than a predetermined 7 ° C., the control device 50 stops the combustion of the gas and stops the heating by the gas burner 4 to perform the single effect operation. Migrate to

一重効用運転における吸収液は、低熱源供給管16から供給される温水により低熱源再生器9において加熱されて冷媒を蒸発分離する。そして、吸収液濃度が高くなった吸収液は、バイパス管26、低温熱交換器12を経由して吸収器2に戻される。
一方、低熱源再生器9で分離生成した冷媒蒸気は低熱源凝縮器10に入って凝縮し、冷媒管34を経由して蒸発器1に流入する。蒸発器1内に流入した冷媒液は、冷媒ポンプP3の運転により散布器1Cから冷/温水管14の伝熱管14Aの上に散布され、伝熱管14A内を通るブラインから熱を奪って蒸発し、吸収器2に入って上方から散布される吸収液に吸収される循環が行われる。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
The absorption liquid in the single effect operation is heated in the low heat source regenerator 9 by hot water supplied from the low heat source supply pipe 16 to evaporate and separate the refrigerant. Then, the absorption liquid whose absorption liquid concentration has increased is returned to the absorber 2 via the bypass pipe 26 and the low-temperature heat exchanger 12.
On the other hand, the refrigerant vapor separated and generated by the low heat source regenerator 9 enters the low heat source condenser 10 and condenses, and flows into the evaporator 1 via the refrigerant pipe 34. The refrigerant liquid flowing into the evaporator 1 is sprayed from the sprayer 1C onto the heat transfer pipe 14A of the cold / hot water pipe 14 by the operation of the refrigerant pump P3, and evaporates by taking heat from the brine passing through the heat transfer pipe 14A. Then, circulation is performed which is absorbed into the absorbing liquid sprayed from above by entering the absorber 2. Note that the heat generated when the absorbing liquid absorbs the refrigerant is cooled by the heat transfer pipe 15 </ b> A of the cooling water pipe 15 disposed in the absorber 2.

一重効用運転時においては、温度センサ61が計測する温度が所定の7℃になるように、低熱源再生器9における加熱量、具体的には低熱源供給管16から伝熱管16Aに取り込む温水の量、すなわち三方弁28の開度が制御装置50により制御される。
そして、低熱源供給管16を流れる温水の全量が伝熱管16Aに流れるように三方弁28を操作しても、温度センサ61が所定温度の7℃以下の温度を計測しない時には、上記のようにガスバーナ4でガスを燃焼させ、高温再生器5における吸収液の加熱再生と冷媒蒸気の生成とを再開して一重二重効用運転に戻る。
During the single effect operation, the amount of heating in the low heat source regenerator 9, specifically, hot water taken into the heat transfer pipe 16 </ b> A from the low heat source supply pipe 16 so that the temperature measured by the temperature sensor 61 becomes a predetermined 7 ° C. The amount, that is, the opening degree of the three-way valve 28 is controlled by the control device 50.
And even if the three-way valve 28 is operated so that the whole amount of hot water flowing through the low heat source supply pipe 16 flows into the heat transfer pipe 16A, when the temperature sensor 61 does not measure a temperature of 7 ° C. or less, the temperature is as described above. The gas is burned by the gas burner 4, the heating regeneration of the absorbing liquid and the generation of the refrigerant vapor in the high temperature regenerator 5 are resumed, and the single double effect operation is resumed.

また、一重効用運転時において、熱負荷は大きいが、低熱源供給管16を介して低熱源再生器9に供給する温水の温度が所定の85℃以下に低下した時(例えば、天候不順等により太陽熱温水器から供給される温水温度が安定しない時)には、低熱源供給管16から低熱源再生器9に温水が供給されないように三方弁28を切り替えると共に、全てのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させる二重効用運転を行う。この場合も、温度センサ61が計測するブラインの温度が所定温度の7℃となるように、ガスバーナ4の火力が制御装置50により制御される。   Further, during the single effect operation, although the heat load is large, the temperature of the hot water supplied to the low heat source regenerator 9 through the low heat source supply pipe 16 is lowered to a predetermined 85 ° C. or less (for example, due to bad weather etc.) When the temperature of the hot water supplied from the solar water heater is not stable), the three-way valve 28 is switched so that the hot water is not supplied from the low heat source supply pipe 16 to the low heat source regenerator 9, and all the pumps P1 to P3 are activated. In addition, a double-effect operation in which gas is burned in the gas burner 4 is performed. Also in this case, the heating power of the gas burner 4 is controlled by the control device 50 so that the temperature of the brine measured by the temperature sensor 61 becomes a predetermined temperature of 7 ° C.

この二重効用運転では、吸収器2の稀吸収液溜り2Aにある稀吸収液は稀吸収液ポンプP1により低熱源再生器9に搬送されて吸収液溜り9Bに貯留されるが、伝熱管16Aには熱源としての温水は供給されていない。このため、低熱源再生器9に搬送された稀吸収液は、加熱されることなく中間吸収液ポンプP2の運転により高温熱交換器13を経由して高温再生器5に搬送され、その後は一重二重効用運転と同様に循環しながら加熱されて、高温再生器5と低温再生器6とで吸収液の濃縮再生と冷媒の分離生成とがなされる。この二重効用運転時に、低熱源再生器9に供給する温水の温度が所定の85℃に達した時には、冷却負荷の大きさに応じて、一重二重効用運転または一重効用運転が行われる。   In this double effect operation, the rare absorbent in the rare absorbent reservoir 2A of the absorber 2 is conveyed to the low heat source regenerator 9 by the rare absorbent pump P1 and stored in the absorbent reservoir 9B. Is not supplied with hot water as a heat source. For this reason, the rare absorption liquid conveyed to the low heat source regenerator 9 is conveyed to the high temperature regenerator 5 via the high temperature heat exchanger 13 by the operation of the intermediate absorption liquid pump P2 without being heated, and thereafter the single absorption liquid is single-layered. In the same manner as in the double effect operation, the refrigerant is heated while being circulated, and the high temperature regenerator 5 and the low temperature regenerator 6 concentrate and regenerate the absorption liquid and separate and produce the refrigerant. During this double effect operation, when the temperature of the hot water supplied to the low heat source regenerator 9 reaches a predetermined 85 ° C., a single double effect operation or a single effect operation is performed according to the size of the cooling load.

吸収式冷温水機100では、熱負荷の負荷が小さく、冷却水温度の変動が激しい場合には、ブラインの出口温度の変動が激しくなる。ガスバーナ4は、温度センサ61が計測するブラインの温度に応じて制御されるため、ブラインの出口温度の変動が激しい場合には、ガスバーナ4の燃焼/消火が繰り返される。短時間でガスバーナ4の燃焼/消火が繰り返されると、高温再生器5内の圧力が高くならず、高温再生器5内の濃中間吸収液が低温再生器6に流れなくなるので、中間吸収液ポンプP2が運転されず、稀中間吸収液が高温再生器5に十分に供給されなくなる。これにより、高温再生器5内の濃中間吸収液が濃縮され続け、その結果、高温再生器5や第2中間吸収液管23内の濃中間吸収液が結晶するおそれがある。   In the absorption chiller / heater 100, when the heat load is small and the cooling water temperature fluctuates significantly, the brine outlet temperature fluctuates greatly. Since the gas burner 4 is controlled according to the temperature of the brine measured by the temperature sensor 61, the combustion / extinguishing of the gas burner 4 is repeated when the fluctuation of the outlet temperature of the brine is severe. If combustion / extinguishing of the gas burner 4 is repeated in a short time, the pressure in the high-temperature regenerator 5 does not increase, and the concentrated intermediate absorbent in the high-temperature regenerator 5 does not flow to the low-temperature regenerator 6. P2 is not operated, and the rare intermediate absorbing liquid is not sufficiently supplied to the high temperature regenerator 5. As a result, the concentrated intermediate absorbent in the high temperature regenerator 5 continues to be concentrated, and as a result, the concentrated intermediate absorbent in the high temperature regenerator 5 and the second intermediate absorbent pipe 23 may crystallize.

高温再生器5内の圧力と高温再生器5の温度との間には相対関係があるため、本実施の形態では、高温再生器5の温度を計測する温度センサ62が設けられている。この温度センサ62は計測した高温再生器5の温度を制御装置50に出力し、制御装置50は温度センサ62が計測した高温再生器5の温度及びガスバーナ4の燃焼回数(計測回数)に応じて三方弁28を制御する第1結晶回避処理を実行する。
なお、温度センサ61が計測するブラインの温度、及び、低熱源供給管16で供給される温水の温度に応じて三方弁28が制御される処理を通常処理とする。
Since there is a relative relationship between the pressure in the high temperature regenerator 5 and the temperature of the high temperature regenerator 5, a temperature sensor 62 for measuring the temperature of the high temperature regenerator 5 is provided in the present embodiment. The temperature sensor 62 outputs the measured temperature of the high-temperature regenerator 5 to the control device 50, and the control device 50 corresponds to the temperature of the high-temperature regenerator 5 measured by the temperature sensor 62 and the number of combustions (measurement times) of the gas burner 4. A first crystal avoidance process for controlling the three-way valve 28 is executed.
The process in which the three-way valve 28 is controlled according to the temperature of the brine measured by the temperature sensor 61 and the temperature of the hot water supplied through the low heat source supply pipe 16 is referred to as a normal process.

以下、図2を参照して、第1結晶回避処理を説明する。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第1結晶回避処理を実行する。第1結晶回避処理では、制御装置50は、まず、燃焼回数Nを初期状態の0に設定し(ステップS1)、温度センサ62が計測した高温再生器5の温度(高温再生器温度T)が第1温度(所定温度)T1以下か否か判別する(ステップS2)。第1温度T1は、高温再生器5の圧力が低下し、高温再生器5内の濃中間吸収液が低温再生器6に流れにくくなるときの高温再生器5の温度であり、予め実験等によって取得されている。
Hereinafter, the first crystal avoidance process will be described with reference to FIG.
When the cooling operation of the absorption chiller / heater 100 is started, the controller 50 executes the first crystal avoidance process. In the first crystal avoidance process, the controller 50 first sets the number of combustion N to 0 in the initial state (step S1), and the temperature of the high temperature regenerator 5 (high temperature regenerator temperature T) measured by the temperature sensor 62 is set. It is determined whether or not the temperature is a first temperature (predetermined temperature) T1 (step S2). The first temperature T1 is the temperature of the high temperature regenerator 5 when the pressure of the high temperature regenerator 5 decreases and the concentrated intermediate absorption liquid in the high temperature regenerator 5 becomes difficult to flow into the low temperature regenerator 6, and is previously determined by experiments or the like. Has been acquired.

高温再生器温度Tが第1温度T1以下の場合(ステップS2:YES)、制御装置50は、燃焼信号がONであるか否か判別し(ステップS3)、燃焼信号がOFFの場合(ステップS3:NO)、ステップS2の処理を繰り返す。燃焼信号がONの場合(ステップS3:YES)、制御装置50は、現在の燃焼回数Nに「1」を加えた値(N+1)を新たな燃焼回数Nとして設定し(N=N+1)(ステップS4)、設定した燃焼回数Nが所定回数N1以上か否か判別する(ステップ5)。ここで、所定回数N1は、高温再生器温度Tが第1温度T1以下の状態で、高温再生器5内の濃中間吸収液が低温再生器6に流れなくなる程度まで高温再生器5内の圧力が低下しているときに、高温再生器5や第2中間吸収液管23内の濃中間吸収液が結晶するおそれがあるときの燃焼回数であり、予め実験等によって取得されている。   When the high temperature regenerator temperature T is equal to or lower than the first temperature T1 (step S2: YES), the control device 50 determines whether or not the combustion signal is ON (step S3), and when the combustion signal is OFF (step S3). : NO), the process of step S2 is repeated. When the combustion signal is ON (step S3: YES), the control device 50 sets a value (N + 1) obtained by adding “1” to the current combustion number N as a new combustion number N (N = N + 1) (step S4), it is determined whether or not the set number of combustions N is equal to or greater than a predetermined number N1 (step 5). Here, the predetermined number of times N1 is the pressure in the high temperature regenerator 5 until the concentrated intermediate absorbent in the high temperature regenerator 5 does not flow to the low temperature regenerator 6 when the high temperature regenerator temperature T is equal to or lower than the first temperature T1. Is the number of times of combustion when the concentrated intermediate absorbent in the high-temperature regenerator 5 and the second intermediate absorbent pipe 23 may crystallize, and is obtained in advance through experiments or the like.

燃焼回数Nが所定回数N1より少ない場合(ステップS5:NO)、制御装置50は、処理をステップS2に戻す。
一方、燃焼回数Nが所定回数N1以上の場合(ステップS5:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS6)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。
When the number of combustion N is smaller than the predetermined number N1 (step S5: NO), the control device 50 returns the process to step S2.
On the other hand, when the combustion frequency N is equal to or greater than the predetermined frequency N1 (step S5: YES), the control device 50 determines that there is a possibility that the absorption liquid in the high temperature regenerator 5 or the second intermediate absorption liquid pipe 23 may crystallize, The three-way valve 28 is forcibly fully closed (step S6). As a result, a double-effect operation in which gas is burned by the gas burner 4 is performed, and the pressure in the high-temperature regenerator 5 is increased. From 5, the concentrated intermediate absorbent flows into the low temperature regenerator 6. As a result, the intermediate absorbent pump P2 is operated and the rare intermediate absorbent is supplied to the high-temperature regenerator 5, so that the concentrated intermediate absorbent is prevented from being excessively concentrated, and crystals of the absorbent are avoided. The

そして、制御装置50は、三方弁28を全閉にしたまま、処理をステップS2に戻し、高温再生器温度Tが第1温度T1より高くなるまで(ステップS2:NO)、ステップS2〜S6の処理を繰り返す。
高温再生器温度Tが第1温度T1より高くなると(ステップS2:NO)、制御装置50は、高温再生器温度Tが第2温度(所定温度)T2以上か否か判別する(ステップS7)。第2温度T2は、高温再生器5の加熱が継続して行われ、高温再生器5内の圧力が上昇して、高温再生器5内の濃中間吸収液が低温再生器6に十分に流れるときの高温再生器5の温度であり、予め実験等によって取得されている。なお、第2温度T2は、第1温度T1より高く設定される。
Then, the control device 50 returns the process to step S2 with the three-way valve 28 fully closed until the high temperature regenerator temperature T becomes higher than the first temperature T1 (step S2: NO). Repeat the process.
When the high temperature regenerator temperature T becomes higher than the first temperature T1 (step S2: NO), the control device 50 determines whether or not the high temperature regenerator temperature T is equal to or higher than the second temperature (predetermined temperature) T2 (step S7). In the second temperature T2, the high temperature regenerator 5 is continuously heated, the pressure in the high temperature regenerator 5 rises, and the concentrated intermediate absorption liquid in the high temperature regenerator 5 flows sufficiently to the low temperature regenerator 6. Is the temperature of the high-temperature regenerator 5 at the time, and has been obtained in advance by experiments or the like. The second temperature T2 is set higher than the first temperature T1.

高温再生器温度Tが第2温度T2を下回る場合(ステップS7:NO)、制御装置50は、処理をステップS2に戻す。
一方、高温再生器温度Tが第2温度T2以上の場合(ステップS7:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS1に戻す(ステップS8)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
このように、第1結晶回避処理では、温度センサ62が計測した高温再生器温度T及びガスバーナ4の燃焼回数Nに応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサを設ける必要がないので、第1結晶回避処理を実行することによるコストアップを抑えることができる。
When the high temperature regenerator temperature T is lower than the second temperature T2 (step S7: NO), the control device 50 returns the process to step S2.
On the other hand, when the high temperature regenerator temperature T is equal to or higher than the second temperature T2 (step S7: YES), the controller 50 has no fear that the absorption liquid in the high temperature regenerator 5 or the second intermediate absorption liquid pipe 23 is crystallized. Judgment is made, the fully closed state of the three-way valve 28 is released, and the process returns to step S1 (step S8). As a result, the control of the three-way valve 28 is returned to the normal processing, so that the exhaust heat of a heat source generator (not shown) can be used effectively.
Thus, in the first crystal avoidance process, the three-way valve 28 is controlled in accordance with the high temperature regenerator temperature T measured by the temperature sensor 62 and the number of combustions N of the gas burner 4, so that the pressure in the high temperature regenerator 5 is detected. Since it is not necessary to provide a pressure sensor, an increase in cost due to the execution of the first crystal avoidance process can be suppressed.

以上説明したように、本実施の形態によれば、熱源となる温水を低熱源再生器9に供給する低熱源供給管16に三方弁28を設け、高温再生器温度Tが第1温度T1以下のときに、高温再生器5を加熱するガスバーナ4が作動した回数を計測し、この燃焼回数Nが所定回数N1に至った場合、三方弁28を全閉する制御装置50を備えるため、高温再生器5での加熱量が増加して高温再生器5内の圧力が上昇し、濃中間吸収液が高温再生器5から低温再生器6に流れて高温再生器5の液面が下がるので、稀中間吸収液が高温再生器5に供給され、その結果、濃中間吸収液が過度に濃縮することを防止でき、吸収液の結晶化を回避できる。   As described above, according to the present embodiment, the three-way valve 28 is provided in the low heat source supply pipe 16 that supplies the hot water serving as the heat source to the low heat source regenerator 9, and the high temperature regenerator temperature T is equal to or lower than the first temperature T1. In this case, the number of times the gas burner 4 for heating the high temperature regenerator 5 is actuated is measured, and when the combustion number N reaches a predetermined number N1, the controller 50 is provided to fully close the three-way valve 28. Since the amount of heating in the regenerator 5 increases and the pressure in the high temperature regenerator 5 increases, the concentrated intermediate absorption liquid flows from the high temperature regenerator 5 to the low temperature regenerator 6 and the liquid level of the high temperature regenerator 5 decreases. The intermediate absorbent is supplied to the high-temperature regenerator 5, and as a result, the concentrated intermediate absorbent can be prevented from being excessively concentrated, and crystallization of the absorbent can be avoided.

また、本実施の形態によれば、制御装置50は、三方弁28を全閉してから高温再生器温度Tが第2温度T2以上になったときに、三方弁28の全閉を解除するため、高温再生器5から濃中間吸収液が低温再生器6に流れる程度まで高温再生器5内の圧力が上昇した場合には、三方弁28の全閉が解除されるので、熱源発生装置の排熱を有効利用することができる。   Further, according to the present embodiment, the control device 50 releases the fully closed state of the three-way valve 28 when the high temperature regenerator temperature T becomes equal to or higher than the second temperature T2 after the three-way valve 28 is fully closed. Therefore, when the pressure in the high temperature regenerator 5 rises to such an extent that the concentrated intermediate absorption liquid flows from the high temperature regenerator 5 to the low temperature regenerator 6, the three-way valve 28 is fully closed, so that the heat source generator Waste heat can be used effectively.

〔第2の実施の形態〕
図3は、第2の実施の形態に係る吸収式冷温水機(吸収式冷凍機)を示す概略構成図である。本実施の形態の吸収式冷温水機200は、高温再生器5に温度センサ62を設けておらず、ガスバーナ4の燃焼時間(加熱時間)を測定する計時手段52を備える点で上記した吸収式冷温水機100と構成を異にする。その他の構成は吸収式冷温水機100と同一であるため、同一の符号を付して説明を省略する。
計時手段52は、制御装置50の制御によって、ガスバーナ4の燃焼時間を測定し、その測定結果を制御装置50に出力する。
本実施の形態では、制御装置50は、計時手段52が測定した燃焼時間及びガスバーナ4の燃焼回数(計測回数)に応じて三方弁28を制御する第2結晶回避処理を実行する。
[Second Embodiment]
FIG. 3 is a schematic configuration diagram showing an absorption chiller / heater (absorption refrigerator) according to the second embodiment. The absorption chiller / heater 200 according to the present embodiment is not provided with the temperature sensor 62 in the high-temperature regenerator 5, and is provided with the above-described absorption type in that it includes time measuring means 52 for measuring the combustion time (heating time) of the gas burner 4. The configuration is different from that of the cold / hot water machine 100. Since the other structure is the same as that of the absorption chiller / heater 100, the same reference numerals are given and the description thereof is omitted.
The time measuring means 52 measures the combustion time of the gas burner 4 under the control of the control device 50 and outputs the measurement result to the control device 50.
In the present embodiment, the control device 50 executes the second crystal avoidance process for controlling the three-way valve 28 in accordance with the combustion time measured by the time measuring means 52 and the number of combustion times (measurement number) of the gas burner 4.

以下、図4を参照し、第2結晶回避処理を説明する。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第2結晶回避処理を実行する。第2結晶回避処理では、制御装置50は、まず、燃焼回数Nを初期状態の0に設定し(ステップS11)、計時手段52にガスバーナ4の燃焼時間tを測定させる(ステップS12)。ガスバーナ4の燃焼が終了し、計時手段52から燃焼時間tが制御装置50に出力されると、制御装置50は、計時手段52が測定した燃焼時間tが第1時間(所定時間)t1以下か否か判別する(ステップS13)。第1時間t1は、燃焼時間tが比較的短時間であったことを示す時間であり、予め実験等によって取得されている。
Hereinafter, the second crystal avoidance process will be described with reference to FIG.
When the cooling operation of the absorption chiller / heater 100 is started, the controller 50 executes the second crystal avoidance process. In the second crystal avoidance process, the control device 50 first sets the number of combustions N to 0 in the initial state (step S11), and causes the time measuring means 52 to measure the combustion time t of the gas burner 4 (step S12). When the combustion of the gas burner 4 is completed and the combustion time t is output from the time measuring means 52 to the control device 50, the control device 50 determines whether the combustion time t measured by the time measuring means 52 is equal to or less than the first time (predetermined time) t1. It is determined whether or not (step S13). The first time t1 is a time indicating that the combustion time t is relatively short, and is acquired in advance by an experiment or the like.

燃焼時間tが第1時間t1以下の場合(ステップS13:YES)、制御装置50は、現在の燃焼回数Nに「1」を加えた値(N+1)を新たな燃焼回数Nとして設定し(N=N+1)(ステップS14)、設定した燃焼回数Nが所定回数N2以上か否か判別する(ステップ15)。ここで、所定回数N2は、第1時間t1以下の燃焼が連続し、高温再生器5内の濃中間吸収液が低温再生器6に流れなくなる程度まで高温再生器5内の圧力が低下しているときに、高温再生器5や第2中間吸収液管23内の濃中間吸収液が結晶するおそれがある燃焼回数であり、予め実験等によって取得されている。   When the combustion time t is equal to or shorter than the first time t1 (step S13: YES), the control device 50 sets a value (N + 1) obtained by adding “1” to the current combustion frequency N as a new combustion frequency N (N = N + 1) (step S14), it is determined whether or not the set number of combustions N is equal to or greater than the predetermined number N2 (step 15). Here, the predetermined number of times N2 is such that the combustion in the first time t1 or less continues, and the pressure in the high temperature regenerator 5 decreases to such an extent that the concentrated intermediate absorbent in the high temperature regenerator 5 does not flow into the low temperature regenerator 6. Is the number of times that the concentrated intermediate absorbent in the high-temperature regenerator 5 or the second intermediate absorbent pipe 23 may crystallize, and is obtained in advance through experiments or the like.

燃焼回数Nが所定回数N2より少ない場合(ステップS15:NO)、制御装置50は、処理をステップS12に戻す。
一方、燃焼回数Nが所定回数N2以上の場合(ステップS15:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS16)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。
When the number N of combustion is less than the predetermined number N2 (step S15: NO), the control device 50 returns the process to step S12.
On the other hand, when the combustion frequency N is equal to or greater than the predetermined frequency N2 (step S15: YES), the control device 50 determines that there is a possibility that the absorption liquid in the high temperature regenerator 5 or the second intermediate absorption liquid pipe 23 may be crystallized. The three-way valve 28 is forcibly fully closed (step S16). As a result, a double-effect operation in which gas is burned by the gas burner 4 is performed, and the pressure in the high-temperature regenerator 5 is increased. Therefore, the high-pressure regenerator is caused by the pressure difference between the high-temperature regenerator 5 and the low-temperature regenerator 6. From 5, the concentrated intermediate absorbent flows into the low temperature regenerator 6. As a result, the intermediate absorbent pump P2 is operated and the rare intermediate absorbent is supplied to the high-temperature regenerator 5, so that the concentrated intermediate absorbent is prevented from being excessively concentrated, and crystals of the absorbent are avoided. The

そして、制御装置50は、三方弁28を全閉にしたまま、処理をステップS12に戻し、第1時間t1を超える燃焼時間tが生じるまで(ステップS13:NO)、ステップS12〜S16の処理を繰り返す。
第1時間t1を超える燃焼時間tが生じると(ステップS13:NO)、制御装置50は、その燃焼時間tが第2時間(所定時間)t2以上か否か判別する(ステップS17)。第2時間t2は、高温再生器5の加熱が継続して行われ、高温再生器5内の圧力が上昇して、高温再生器5内の濃中間吸収液が低温再生器6に十分に流れるとき時間であり、予め実験等によって取得されている。なお、第2時間t2は、第1時間t1より高く設定される。
And the control apparatus 50 returns a process to step S12, fully closing the three-way valve 28, and performs the process of step S12-S16 until combustion time t exceeding 1st time t1 arises (step S13: NO). repeat.
When the combustion time t exceeding the first time t1 occurs (step S13: NO), the control device 50 determines whether or not the combustion time t is equal to or longer than the second time (predetermined time) t2 (step S17). During the second time t2, the high temperature regenerator 5 is continuously heated, the pressure in the high temperature regenerator 5 rises, and the concentrated intermediate absorbent in the high temperature regenerator 5 sufficiently flows into the low temperature regenerator 6. It is time, and is acquired in advance by experiments or the like. The second time t2 is set higher than the first time t1.

燃焼時間tが第2時間t2に達していない場合(ステップS17:NO)、制御装置50は、処理をステップS12に戻す。
一方、燃焼時間tが第2時間t2以上の場合(ステップS17:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS11に戻す(ステップS18)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
このように、第2結晶回避処理では、ガスバーナ4の燃焼時間t及び燃焼回数Nに応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサや温度センサを設ける必要がないので、第2結晶回避処理を実行することによるコストアップを抑えることができる。
When the combustion time t has not reached the second time t2 (step S17: NO), the control device 50 returns the process to step S12.
On the other hand, when the combustion time t is equal to or longer than the second time t2 (step S17: YES), the control device 50 determines that there is no possibility that the absorption liquid in the high temperature regenerator 5 or the second intermediate absorption liquid pipe 23 is crystallized. Then, the three-way valve 28 is fully closed, and the process returns to step S11 (step S18). As a result, the control of the three-way valve 28 is returned to the normal processing, so that the exhaust heat of a heat source generator (not shown) can be used effectively.
As described above, in the second crystal avoidance process, the three-way valve 28 is controlled in accordance with the combustion time t and the number of combustion times N of the gas burner 4, so that it is necessary to provide a pressure sensor and a temperature sensor for detecting the pressure in the high temperature regenerator 5. Therefore, the cost increase due to the execution of the second crystal avoidance process can be suppressed.

以上説明したように、本実施の形態によれば、熱源となる温水を低熱源再生器9に供給する低熱源供給管16に三方弁28を設け、高温再生器5の加熱時間tが第1時間t1以下のとき、高温再生器5を加熱するガスバーナ4の燃焼回数を計測し、この燃焼回数Nが所定回数N2に至った場合、三方弁28を全閉する制御装置50を備えるため、高温再生器5での加熱量が増加して高温再生器5内の圧力が上昇し、濃中間吸収液が高温再生器5から低温再生器6に流れて高温再生器5の液面が下がるので、稀中間吸収液が高温再生器5に供給され、その結果、濃中間吸収液が過度に濃縮することを防止でき、吸収液の結晶化を回避できる。   As described above, according to the present embodiment, the three-way valve 28 is provided in the low heat source supply pipe 16 that supplies the hot water as the heat source to the low heat source regenerator 9, and the heating time t of the high temperature regenerator 5 is the first. Since the number of combustions of the gas burner 4 that heats the high-temperature regenerator 5 is measured when the time t1 or less, and the combustion number N reaches a predetermined number N2, the controller 50 is provided to fully close the three-way valve 28. Since the amount of heating in the regenerator 5 increases and the pressure in the high temperature regenerator 5 increases, the concentrated intermediate absorption liquid flows from the high temperature regenerator 5 to the low temperature regenerator 6 and the liquid level of the high temperature regenerator 5 decreases. The rare intermediate absorbing liquid is supplied to the high temperature regenerator 5, and as a result, the concentrated intermediate absorbing liquid can be prevented from being excessively concentrated, and the crystallization of the absorbing liquid can be avoided.

また、本実施の形態によれば、制御装置50は、三方弁28を全閉してから高温再生器5の加熱時間tが第2時間t2以上になったときに、三方弁28の全閉を解除するため、高温再生器5から濃中間吸収液が低温再生器6に流れる程度まで高温再生器5内の圧力が上昇した場合には、三方弁28の全閉が解除されるので、熱源発生装置の排熱を有効利用することができる。   Further, according to the present embodiment, the control device 50 fully closes the three-way valve 28 when the heating time t of the high temperature regenerator 5 becomes the second time t2 or more after the three-way valve 28 is fully closed. When the pressure in the high temperature regenerator 5 rises to such an extent that the concentrated intermediate absorbent flows from the high temperature regenerator 5 to the low temperature regenerator 6, the three-way valve 28 is fully closed. The exhaust heat of the generator can be used effectively.

〔第3の実施の形態〕
図5は、第3の実施の形態に係る吸収式冷温水機(吸収式冷凍機)を示す概略構成図である。本実施の形態の吸収式冷温水機300は、冷媒管31内の液冷媒の温度を計測する温度センサ63と、第2中間吸収液管23内の濃中間吸収液の温度を計測する温度センサ64と、を備える点で上記した吸収式冷温水機100と構成を異にする。その他の構成は吸収式冷温水機100と同一であるため、同一の符号を付して説明を省略する。
[Third Embodiment]
FIG. 5 is a schematic configuration diagram illustrating an absorption chiller / heater (absorption chiller) according to a third embodiment. The absorption chiller / heater 300 according to the present embodiment includes a temperature sensor 63 that measures the temperature of the liquid refrigerant in the refrigerant pipe 31 and a temperature sensor that measures the temperature of the concentrated intermediate absorption liquid in the second intermediate absorption liquid pipe 23. 64 is different from the above-described absorption chiller / heater 100 in that the configuration is different. Since the other structure is the same as that of the absorption chiller / heater 100, the same reference numerals are given and the description thereof is omitted.

温度センサ63は、冷媒管31の低温再生器6出口側に設けられて液冷媒の温度を計測し、その計測結果を制御装置50に出力する。また、温度センサ64は、第2中間吸収液管23の高温熱交換器13出口側に設けられて濃中間吸収液の温度を計測し、その計測結果を制御装置50に出力する。ここで、濃中間吸収液は、第2中間吸収液管23の高温熱交換器13で熱交換して温度が低下するので、高温熱交換器13の下流側で結晶しやすくなる。
本実施の形態では、制御装置50は、温度センサ62,63が計測した温度に基づいて算出した結晶温度と、温度センサ64が計測した濃中間吸収液の温度との温度差に応じて三方弁28を制御する第3結晶回避処理を実行する。
The temperature sensor 63 is provided on the refrigerant pipe 31 on the outlet side of the low temperature regenerator 6, measures the temperature of the liquid refrigerant, and outputs the measurement result to the control device 50. The temperature sensor 64 is provided on the outlet side of the high-temperature heat exchanger 13 of the second intermediate absorption liquid pipe 23, measures the temperature of the concentrated intermediate absorption liquid, and outputs the measurement result to the control device 50. Here, the concentrated intermediate absorption liquid is heat-exchanged by the high-temperature heat exchanger 13 of the second intermediate absorption liquid pipe 23 and the temperature is lowered, so that the concentrated intermediate absorption liquid is easily crystallized downstream of the high-temperature heat exchanger 13.
In the present embodiment, the control device 50 has a three-way valve according to the temperature difference between the crystal temperature calculated based on the temperature measured by the temperature sensors 62 and 63 and the temperature of the concentrated intermediate absorbent measured by the temperature sensor 64. A third crystal avoidance process for controlling 28 is executed.

以下、図6を参照して、第3結晶回避処理を説明する。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第3結晶回避処理を実行する。第3結晶回避処理では、制御装置50は、まず、温度センサ63が計測した液冷媒の温度を予め実験等によって取得された実験式に当てはめて高温再生器5内の圧力を算出し、この高温再生器5内の圧力と、温度センサ62が計測した高温再生器5の温度とを予め記憶してあるデューリング線図に当てはめて、高温再生器5内の濃中間吸収液の濃度(濃中間吸収液濃度X)を算出する(ステップS21)。
Hereinafter, the third crystal avoidance process will be described with reference to FIG.
When the cooling operation of the absorption chiller / heater 100 is started, the controller 50 executes the third crystal avoidance process. In the third crystal avoidance process, the control device 50 first calculates the pressure in the high-temperature regenerator 5 by applying the temperature of the liquid refrigerant measured by the temperature sensor 63 to an empirical formula acquired in advance through experiments or the like. By applying the pressure in the regenerator 5 and the temperature of the high-temperature regenerator 5 measured by the temperature sensor 62 to a previously stored Düring diagram, the concentration of the concentrated intermediate absorbent in the high-temperature regenerator 5 (dense intermediate Absorbent concentration X) is calculated (step S21).

次いで、制御装置50は、算出した濃中間吸収液濃度Xを予め実験等によって取得された実験式に当てはめて結晶温度T0を算出し(ステップS22)、温度センサ64が計測した濃中間吸収液の高温熱交換器13出口側温度(濃中間吸収液温度TC)と、算出した結晶温度T0との温度差ΔT(ΔT=TC−T0)を算出する(ステップS23)。そして、制御装置50は、算出した温度差ΔTが第1温度差(所定温度差)αより低いか否か判別する(ステップS24)。第1温度差αは、濃中間吸収液が結晶化するおそれがある状態を示す温度であり、予め実験等によって取得されている。   Next, the controller 50 calculates the crystal temperature T0 by applying the calculated concentrated intermediate absorbent concentration X to an empirical formula acquired in advance through experiments or the like (step S22), and the concentration of the concentrated intermediate absorbent measured by the temperature sensor 64 is calculated. A temperature difference ΔT (ΔT = TC−T0) between the high-temperature heat exchanger 13 outlet side temperature (concentrated intermediate absorbent temperature TC) and the calculated crystal temperature T0 is calculated (step S23). Then, the control device 50 determines whether or not the calculated temperature difference ΔT is lower than the first temperature difference (predetermined temperature difference) α (step S24). The first temperature difference α is a temperature indicating a state in which the concentrated intermediate absorption liquid may be crystallized, and is acquired in advance by an experiment or the like.

算出した温度差ΔTが第1温度差αより低い場合(ステップS24:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS25)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。   When the calculated temperature difference ΔT is lower than the first temperature difference α (step S24: YES), the control device 50 determines that the absorbing liquid in the high temperature regenerator 5 or the second intermediate absorbing liquid pipe 23 may be crystallized. Then, the three-way valve 28 is forcibly fully closed (step S25). As a result, a double-effect operation in which gas is burned by the gas burner 4 is performed, and the pressure in the high-temperature regenerator 5 is increased. From 5, the concentrated intermediate absorbent flows into the low temperature regenerator 6. As a result, the intermediate absorbent pump P2 is operated and the rare intermediate absorbent is supplied to the high-temperature regenerator 5, so that the concentrated intermediate absorbent is prevented from being excessively concentrated, and crystals of the absorbent are avoided. The

そして、制御装置50は、三方弁28を全閉にしたまま、処理をステップS21に戻し、温度差ΔTが第1温度差α以上になるまで(ステップS24:NO)、ステップS21〜S25の処理を繰り返す。
温度差ΔTが第1温度差α以上になると(ステップS24:NO)、制御装置50は、温度差ΔTが第2温度差(所定温度差)βより高いか否か判別する(ステップS26)。第2温度差βは、濃中間吸収液が結晶化するおそれがない状態を示す温度であり、予め実験等によって取得されている。
Then, the control device 50 returns the process to step S21 with the three-way valve 28 fully closed until the temperature difference ΔT becomes equal to or greater than the first temperature difference α (step S24: NO). repeat.
When the temperature difference ΔT is greater than or equal to the first temperature difference α (step S24: NO), the control device 50 determines whether or not the temperature difference ΔT is higher than the second temperature difference (predetermined temperature difference) β (step S26). The second temperature difference β is a temperature indicating a state in which the concentrated intermediate absorption liquid is not likely to be crystallized, and is acquired in advance by an experiment or the like.

温度差ΔTが第2温度差以下の場合(ステップS26:NO)、制御装置50は、処理をステップS21に戻す。
一方、温度差ΔTが第2温度差より高い場合(ステップS26:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS21に戻す(ステップS27)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
When temperature difference (DELTA) T is below 2nd temperature difference (step S26: NO), the control apparatus 50 returns a process to step S21.
On the other hand, when the temperature difference ΔT is higher than the second temperature difference (step S26: YES), the control device 50 determines that there is no possibility that the absorption liquid in the high temperature regenerator 5 or the second intermediate absorption liquid pipe 23 is crystallized. Then, the three-way valve 28 is fully closed, and the process returns to step S21 (step S27). As a result, the control of the three-way valve 28 is returned to the normal processing, so that the exhaust heat of a heat source generator (not shown) can be used effectively.

このように、第3結晶回避処理では、温度センサ62〜64が計測した温度に応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサを設ける必要がないので、第3結晶回避処理を実行することによるコストアップを抑えることができる。また、温度センサ62,63を用いて濃中間吸収液濃度Xを算出するため、濃中間吸収液の濃度を検出する高価な濃度計を設ける必要がないので、第3結晶回避処理を実行することによるコストアップを抑えることができる。   Thus, in the third crystal avoidance process, since the three-way valve 28 is controlled according to the temperature measured by the temperature sensors 62 to 64, there is no need to provide a pressure sensor for detecting the pressure in the high temperature regenerator 5. Cost increase due to execution of the third crystal avoidance process can be suppressed. Further, since the concentrated intermediate absorbent concentration X is calculated using the temperature sensors 62 and 63, it is not necessary to provide an expensive concentration meter for detecting the concentration of the concentrated intermediate absorbent, and therefore the third crystal avoidance process is executed. The cost increase due to can be suppressed.

以上説明したように、本実施の形態によれば、熱源となる温水を低熱源再生器9に供給する低熱源供給管16に三方弁28を設け、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を下回るときに、三方弁28を全閉する制御装置50を備えるため、高温再生器5での加熱量が増加して高温再生器5内の圧力が上昇し、濃中間吸収液が高温再生器5から低温再生器6に流れて高温再生器5の液面が下がるので、稀中間吸収液が高温再生器5に供給され、その結果、濃中間吸収液が過度に濃縮することを防止でき、吸収液の結晶化を回避できる。   As described above, according to the present embodiment, the three-way valve 28 is provided in the low heat source supply pipe 16 that supplies the hot water as the heat source to the low heat source regenerator 9, and the intermediate absorption liquid temperature and the intermediate absorption liquid crystal temperature are provided. Is provided with a control device 50 that fully closes the three-way valve 28 when the difference is less than a predetermined temperature difference, the amount of heating in the high-temperature regenerator 5 is increased and the pressure in the high-temperature regenerator 5 is increased. Since the intermediate absorption liquid flows from the high temperature regenerator 5 to the low temperature regenerator 6 and the liquid level of the high temperature regenerator 5 is lowered, the rare intermediate absorption liquid is supplied to the high temperature regenerator 5, and as a result, the concentrated intermediate absorption liquid is excessively increased. Concentration can be prevented and crystallization of the absorbing solution can be avoided.

また、本実施の形態によれば、制御装置50は、三方弁28を全閉してから中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を上回ったときに、三方弁28の全閉を解除するため、高温再生器5から濃中間吸収液が低温再生器6に流れる程度まで高温再生器5内の圧力が上昇した場合には、三方弁28の全閉が解除されるので、熱源発生装置の排熱を有効利用することができる。
なお、第2中間吸収液管23に濃度計を配置し、この濃度計により濃中間吸収液濃度Xを検出するようにしてもよい。
Further, according to the present embodiment, the control device 50 is configured such that when the difference between the intermediate absorption liquid temperature and the intermediate absorption liquid crystal temperature exceeds a predetermined temperature difference after the three-way valve 28 is fully closed, the three-way valve When the pressure in the high-temperature regenerator 5 rises to such an extent that the concentrated intermediate absorbent flows from the high-temperature regenerator 5 to the low-temperature regenerator 6 in order to release the full-close of the three-way valve 28, the full-close of the three-way valve 28 is released Therefore, the exhaust heat of the heat source generator can be used effectively.
Note that a densitometer may be disposed in the second intermediate absorbing liquid tube 23, and the concentrated intermediate absorbing liquid concentration X may be detected by this densitometer.

但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、吸収式冷温水機100は、第1〜3結晶回避処理のうち一の結晶回避処理を実行するものとして説明したが、複数の結晶回避処理を同時に実行するように構成されてもよい。この場合、制御装置50は、1つの結晶回避処理において三方弁28を全閉する判断をした場合、強制的に三方弁28を全閉し、全ての処理結晶回避処理において三方弁28の全閉を解除する判断をした場合に、三方弁28の全閉を解除する。
However, the above embodiment is an aspect of the present invention, and it is needless to say that the embodiment can be appropriately changed without departing from the gist of the present invention.
For example, in the above-described embodiment, the absorption chiller / heater 100 has been described as performing one crystal avoidance process among the first to third crystal avoidance processes, but a plurality of crystal avoidance processes are performed simultaneously. It may be configured. In this case, when the control device 50 determines to fully close the three-way valve 28 in one crystal avoidance process, the control device 50 forcibly fully closes the three-way valve 28 and fully closes the three-way valve 28 in all process crystal avoidance processes. When it is determined to cancel, the three-way valve 28 is fully closed.

また、上記実施の形態では、高温再生器5にて吸収液を加熱する加熱手段として燃料ガスを燃焼させて加熱を行うガスバーナ4を備える構成について説明したが、これに限るものではなく、灯油やA重油を燃焼させるバーナを備える構成や、蒸気や排気ガス等の温熱を用いて加熱する構成としてもよい。   Moreover, although the said embodiment demonstrated the structure provided with the gas burner 4 which burns and burns fuel gas as a heating means which heats absorption liquid in the high temperature regenerator 5, it is not restricted to this, Kerosene or It is good also as a structure provided with the burner which burns A heavy oil, or the structure heated using warm heat, such as a vapor | steam and exhaust gas.

1 蒸発器
2 吸収器
4 ガスバーナ(加熱手段)
5 高温再生器
6 低温再生器
7 凝縮器
9 低熱源再生器
16 低熱源供給管
28 三方弁(温水制御弁)
50 制御装置(温水制御手段)
52 計時手段
61〜64 温度センサ
100,200,300 吸収式冷温水機(吸収式冷凍機)
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 4 Gas burner (heating means)
5 High temperature regenerator 6 Low temperature regenerator 7 Condenser 9 Low heat source regenerator 16 Low heat source supply pipe 28 Three-way valve (hot water control valve)
50 Control device (warm water control means)
52 Timekeeping means 61-64 Temperature sensor 100, 200, 300 Absorption chiller / heater (absorption chiller)

Claims (6)

低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、
熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の温度が所定温度以下のときに、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする吸収式冷凍機。
A low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber are provided and connected to each other to form a circulation path for absorbing liquid and refrigerant, and supplied to the low heat source regenerator. The single-effect operation for heating the absorbing liquid using the heated water as a heat source and the single double-effect operation or the double-effect operation for heating the absorbing liquid using the heating means provided in the high-temperature regenerator as a heat source. In absorption refrigerators,
A hot water control valve is provided in a low heat source supply pipe for supplying hot water as a heat source to the low heat source regenerator, and when the temperature of the high temperature regenerator is equal to or lower than a predetermined temperature, the number of times the heating means is operated is measured. An absorption chiller comprising a hot water control means for fully closing the hot water control valve when the number of times of measurement reaches a predetermined number.
前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の温度が所定温度以上になったときに、前記温水制御弁の全閉を解除することを特徴とする請求項1に記載の吸収式冷凍機。   The hot water control means releases the full closure of the hot water control valve when the temperature of the high temperature regenerator becomes a predetermined temperature or higher after the hot water control valve is fully closed. Absorption type refrigerator as described in 1. 低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、
熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の加熱時間が所定時間以下のとき、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする吸収式冷凍機。
A low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber are provided and connected to each other to form a circulation path for absorbing liquid and refrigerant, and supplied to the low heat source regenerator. The single-effect operation for heating the absorbing liquid using the heated water as a heat source and the single double-effect operation or the double-effect operation for heating the absorbing liquid using the heating means provided in the high-temperature regenerator as a heat source. In absorption refrigerators,
A hot water control valve is provided in a low heat source supply pipe for supplying hot water as a heat source to the low heat source regenerator, and when the heating time of the high temperature regenerator is a predetermined time or less, the number of times the heating means is operated is measured, An absorption chiller comprising a hot water control means for fully closing the hot water control valve when the number of times of measurement reaches a predetermined number.
前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の加熱時間が所定時間以上になる加熱が生じときに、前記温水制御弁の全閉を解除することを特徴とする請求項3に記載の吸収式冷凍機。   The hot water control means releases the full closure of the hot water control valve when heating occurs in which the heating time of the high temperature regenerator exceeds a predetermined time after the hot water control valve is fully closed. The absorption refrigerator according to claim 3. 低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、
熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を下回るときに、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする吸収式冷凍機。
A low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber are provided and connected to each other to form a circulation path for absorbing liquid and refrigerant, and supplied to the low heat source regenerator. The single-effect operation for heating the absorbing liquid using the heated water as a heat source and the single double-effect operation or the double-effect operation for heating the absorbing liquid using the heating means provided in the high-temperature regenerator as a heat source. In absorption refrigerators,
A hot water control valve is provided in a low heat source supply pipe for supplying hot water as a heat source to the low heat source regenerator, and when the difference between the intermediate absorbent temperature and the intermediate absorbent crystal temperature is below a predetermined temperature difference, the hot water control is performed. An absorption refrigerator comprising a hot water control means for fully closing the valve.
前記温水制御手段は、前記温水制御弁を全閉した後に、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を上回ったときに、前記温水制御弁の全閉を解除することを特徴とする請求項5に記載の吸収式冷凍機。   The hot water control means releases the full closure of the hot water control valve when the difference between the intermediate absorption liquid temperature and the intermediate absorption liquid crystal temperature exceeds a predetermined temperature difference after the hot water control valve is fully closed. The absorption refrigerator according to claim 5.
JP2010016845A 2010-01-28 2010-01-28 Absorption refrigerator Expired - Fee Related JP5405335B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010016845A JP5405335B2 (en) 2010-01-28 2010-01-28 Absorption refrigerator
KR1020100100170A KR101171596B1 (en) 2010-01-28 2010-10-14 Absorption refrigeration system
CN2010105357055A CN102141319B (en) 2010-01-28 2010-11-04 Absorption-type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016845A JP5405335B2 (en) 2010-01-28 2010-01-28 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2011153795A true JP2011153795A (en) 2011-08-11
JP5405335B2 JP5405335B2 (en) 2014-02-05

Family

ID=44409001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016845A Expired - Fee Related JP5405335B2 (en) 2010-01-28 2010-01-28 Absorption refrigerator

Country Status (3)

Country Link
JP (1) JP5405335B2 (en)
KR (1) KR101171596B1 (en)
CN (1) CN102141319B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914080A (en) * 2012-10-27 2013-02-06 双良节能系统股份有限公司 Two-stage single-effect and double-effect lithium bromide absorption refrigerating unit with smoke and hot water afterburning

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567091B (en) * 2013-10-25 2017-03-01 矢崎能源系统公司 hot water heating absorption refrigerator
JP2018105603A (en) * 2016-12-28 2018-07-05 荏原冷熱システム株式会社 Absorption refrigerator, control program, and control method of absorption refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312429A (en) * 1992-05-06 1993-11-22 Hitachi Ltd Absorption water cooling/heating apparatus
JPH08121895A (en) * 1994-10-25 1996-05-17 Sanyo Electric Co Ltd Controlling method for absorption refrigerating machine
JP2006343042A (en) * 2005-06-09 2006-12-21 Sanyo Electric Co Ltd Operating method for single/double effect absorption refrigerating machine
JP2009085509A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2114117U (en) * 1991-12-19 1992-08-26 清华大学 Electromechanical integrated controller for sorption refrigeration machine
JP2002295917A (en) * 2001-03-28 2002-10-09 Sanyo Electric Co Ltd Control method for absorption freezer
JP2002357370A (en) 2001-05-31 2002-12-13 Sanyo Electric Co Ltd Control method of absorption refrigerating machine
JP4245134B2 (en) * 2003-01-30 2009-03-25 パナソニック株式会社 Mounting process simulation apparatus and mounting process simulation method
CN101382355B (en) * 2007-09-05 2012-03-14 陈建平 Absorption-type refrigerating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312429A (en) * 1992-05-06 1993-11-22 Hitachi Ltd Absorption water cooling/heating apparatus
JPH08121895A (en) * 1994-10-25 1996-05-17 Sanyo Electric Co Ltd Controlling method for absorption refrigerating machine
JP2006343042A (en) * 2005-06-09 2006-12-21 Sanyo Electric Co Ltd Operating method for single/double effect absorption refrigerating machine
JP2009085509A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914080A (en) * 2012-10-27 2013-02-06 双良节能系统股份有限公司 Two-stage single-effect and double-effect lithium bromide absorption refrigerating unit with smoke and hot water afterburning

Also Published As

Publication number Publication date
JP5405335B2 (en) 2014-02-05
CN102141319A (en) 2011-08-03
KR101171596B1 (en) 2012-08-06
CN102141319B (en) 2013-09-25
KR20110088353A (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP6434730B2 (en) Absorption heat source machine
JP2003279186A (en) Absorption type refrigerator and method for controlling same
JP2002147885A (en) Absorption refrigerating machine
JP5405335B2 (en) Absorption refrigerator
JP5575519B2 (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP6754981B2 (en) Absorption chiller
JP6789846B2 (en) Absorption chiller
JP2010266170A (en) Absorption-type refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP5449862B2 (en) Absorption refrigeration system
JP4090262B2 (en) Absorption refrigerator
JP6264636B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP2010276244A (en) Absorption type water chiller/heater
JP5967407B2 (en) Absorption type water heater
JP6364238B2 (en) Absorption type water heater
JP3851204B2 (en) Absorption refrigerator
JP2010276252A (en) Absorption type refrigerating machine
JP6765056B2 (en) Absorption chiller
JP7054855B2 (en) Absorption chiller
JP4326478B2 (en) Single double-effect absorption refrigerator
JP6789847B2 (en) Absorption chiller
JP2011033261A (en) Absorption type refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

LAPS Cancellation because of no payment of annual fees