JP2010266170A - Absorption-type refrigerating machine - Google Patents

Absorption-type refrigerating machine Download PDF

Info

Publication number
JP2010266170A
JP2010266170A JP2009119600A JP2009119600A JP2010266170A JP 2010266170 A JP2010266170 A JP 2010266170A JP 2009119600 A JP2009119600 A JP 2009119600A JP 2009119600 A JP2009119600 A JP 2009119600A JP 2010266170 A JP2010266170 A JP 2010266170A
Authority
JP
Japan
Prior art keywords
effect operation
regenerator
absorption liquid
absorption
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009119600A
Other languages
Japanese (ja)
Inventor
Kazutaka Irakai
数恭 伊良皆
Shinichi Uekago
伸一 上篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009119600A priority Critical patent/JP2010266170A/en
Priority to CN2010101496330A priority patent/CN101893345B/en
Publication of JP2010266170A publication Critical patent/JP2010266170A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption type refrigerating machine capable of stabilizing a temperature of brine circulated and supplied to a heat load from an evaporator. <P>SOLUTION: In the absorption type refrigerating machine including a low heat source regenerator 9, a high-temperature regenerator 5, a low-temperature regenerator 6, the evaporator 1, a first condenser 7, a second condenser 10 and an absorber 2 forming a circulation passage of an absorbing liquid and a refrigerant by connecting them by piping, and capable of performing a single effect operation for heating the absorbing liquid while applying warm water supplied to the low heat source regenerator 9 as a heat source, and a single/double effect operation or a double effect operation for heating the absorbing liquid while using a gas burner 4 disposed in the high-temperature regenerator 5 as a heat source, an intermediate absorbing liquid reservoir 5C of the high-temperature regenerator 5 and a concentrated absorbing liquid pipe 25 from the low-temperature regenerator 6 to the absorber 2 are connected by an absorbing liquid supply pipe 27 with a supply opening/closing valve V2 interposed therebetween. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、温水等を熱源とする低熱源再生器を備える吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator having a low heat source regenerator using hot water or the like as a heat source.

一般に、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機が知られている(例えば、特許文献1参照)。この種の吸収式冷凍機では、低熱源再生器に供給される温水を熱源として吸収液を加熱再生する一重効用運転と、当該吸収液を高温再生器が備えるガスバーナを熱源として加熱再生する一重二重効用運転、二重効用運転とを選択して運転可能に構成されている。
特公平03−8465号公報
In general, an absorption refrigeration machine having a low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser and an absorber, which are connected to each other to form a circulation path for an absorbing liquid and a refrigerant, is known. (For example, refer to Patent Document 1). In this type of absorption refrigerator, a single-effect operation in which the absorbing liquid is heated and regenerated using hot water supplied to the low heat source regenerator as a heat source, and a single double operation in which the absorbing liquid is heated and regenerated using a gas burner provided in the high-temperature regenerator as a heat source. It is configured to be able to operate by selecting a heavy effect operation and a double effect operation.
Japanese Patent Publication No. 03-8465

ところで、例えば、一重効用運転から一重二重効用運転もしくは二重効用運転に移行する場合、ガス加熱運転ではガスバーナのパージ動作等を要するため、運転開始からバーナに着火するまでタイムラグが生じる。このため、運転開始直後の吸収液は高温再生器及び低温再生器で加熱再生が十分に行われず、さらに、高温再生器から吐出された吸収液が循環経路内に残存する濃度の低い吸収液と混合することにより、吸収器に供給される吸収液の濃度が低下する。このため、吸収器で吸収液に吸収される冷媒量が変動することにより、蒸発器での冷媒の蒸発量が変動し、蒸発器から熱負荷に循環供給するブラインの温度が変動するおそれがあった。   By the way, for example, when shifting from a single-effect operation to a single-double-effect operation or a double-effect operation, a gas lag purge operation or the like is required in the gas heating operation, and therefore a time lag occurs from the start of operation to the ignition of the burner. For this reason, the absorption liquid immediately after the start of operation is not sufficiently regenerated by heating in the high temperature regenerator and the low temperature regenerator, and the absorption liquid discharged from the high temperature regenerator remains in the circulation path and has a low concentration. By mixing, the density | concentration of the absorption liquid supplied to an absorber falls. For this reason, there is a possibility that the amount of refrigerant evaporated in the evaporator fluctuates due to fluctuations in the amount of refrigerant absorbed by the absorber in the absorber, and the temperature of the brine that is circulated from the evaporator to the heat load may fluctuate. It was.

本発明は、上述した事情に鑑みてなされたものであり、蒸発器から熱負荷に循環供給するブライン温度の安定化を図った吸収式冷凍機を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an absorption refrigerator that stabilizes the brine temperature that is circulated from an evaporator to a heat load.

上記課題を解決するため、本発明は、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、前記高温再生器の中間吸収液溜り、もしくは、この中間吸収液溜りから前記低温再生器に至る中間吸収液管と前記低温再生器から前記吸収器に至る濃吸収液管とを開閉弁が介在する吸収液供給管により接続したことを特徴とする。   In order to solve the above-mentioned problems, the present invention comprises a low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser and an absorber, and these are connected by piping to provide a circulation path for the absorbing liquid and the refrigerant, respectively. A single effect operation in which the absorbing liquid is heated using hot water supplied to the low heat source regenerator as a heat source, and a single double effect operation or double effect in which the absorbing liquid is heated using the heating means provided in the high temperature regenerator as a heat source. In the absorption chiller configured to be operable, the intermediate absorption liquid reservoir of the high temperature regenerator, or the intermediate absorption liquid pipe extending from the intermediate absorption liquid reservoir to the low temperature regenerator and the absorption from the low temperature regenerator It is characterized in that it is connected to a concentrated absorption liquid pipe leading to a vessel by an absorption liquid supply pipe with an on-off valve interposed.

この構成によれば、高温再生器の中間吸収液溜り、もしくは、この中間吸収液溜りから低温再生器に至る中間吸収液配管と低温再生器から吸収器に至る濃吸収液管とを開閉弁が介在する吸収液供給管により接続したため、例えば、一重効用運転から一重二重効用運転もしくは二重効用運転に移行する際に、開閉弁を開放することにより、高温再生器内の高濃度の吸収液を、吸収液供給管を通じて、直ちに吸収器に供給することができる。このため、吸収器に供給される吸収液の濃度の低下が防止され、この濃度低下に伴う蒸発量の低下が抑制できるため、蒸発器での熱交換が十分に行われ、ブライン温度を安定させることができる。   According to this configuration, the on-off valve connects the intermediate absorption liquid reservoir of the high temperature regenerator or the intermediate absorption liquid pipe extending from the intermediate absorption liquid reservoir to the low temperature regenerator and the concentrated absorption liquid pipe extending from the low temperature regenerator to the absorber. Because it is connected by an intervening absorption liquid supply pipe, for example, when shifting from single-effect operation to single-double-effect operation or double-effect operation, the high-concentration absorption liquid in the high-temperature regenerator is opened by opening the on-off valve. Can be immediately supplied to the absorber through the absorption liquid supply pipe. For this reason, since the fall of the density | concentration of the absorption liquid supplied to an absorber is prevented and the fall of the evaporation amount accompanying this density fall can be suppressed, heat exchange with an evaporator is fully performed and the brine temperature is stabilized. be able to.

この構成において、前記一重効用運転から前記一重二重効用運転もしくは前記二重効用運転に移行する際に、前記開閉弁を開放する構成としても良い。   In this configuration, the on-off valve may be opened when shifting from the single effect operation to the single double effect operation or the double effect operation.

また、前記一重二重効用運転もしくは前記二重効用運転から前記一重効用運転に移行する際に、前記低熱源再生器から前記高温再生器への吸収液の供給を停止する構成としても良い。この構成によれば、低熱源再生器から高温再生器への濃度の低い吸収液の供給を防止できるため、一重効用運転中における高温再生器内の吸収液を所定濃度よりも高い濃度に保持することができ、例えば、一重効用運転から一重二重効用運転もしくは二重効用運転に移行する際に、開閉弁を開放するだけで、高温再生器内の高濃度の吸収液を直ちに吸収器に供給することができる。   Further, the supply of the absorbing liquid from the low heat source regenerator to the high temperature regenerator may be stopped when shifting from the single double effect operation or the double effect operation to the single effect operation. According to this configuration, since it is possible to prevent the supply of the low concentration absorbent from the low heat source regenerator to the high temperature regenerator, the absorbent in the high temperature regenerator during the single effect operation is maintained at a concentration higher than a predetermined concentration. For example, when shifting from single-effect operation to single-double-effect operation or double-effect operation, the high-concentration absorbent in the high-temperature regenerator is immediately supplied to the absorber simply by opening the on-off valve. can do.

また、前記一重効用運転の運転中に、定期的または不定期に、前記ガスバーナを着火する構成としても良い。この構成によれば、高温再生器内での吸収液の温度低下を抑えることにより、この吸収液の結晶化が防止されるため、一重効用運転中における高温再生器内の吸収液を所定濃度よりも高い濃度に保持することができる。このため、例えば、一重効用運転から一重二重効用運転もしくは二重効用運転に移行する際に、開閉弁を開放するだけで、高温再生器内の高濃度の吸収液を直ちに吸収器に供給することができる。   Further, the gas burner may be ignited regularly or irregularly during the single-effect operation. According to this configuration, since the crystallization of the absorption liquid is prevented by suppressing the temperature drop of the absorption liquid in the high temperature regenerator, the absorption liquid in the high temperature regenerator during the single effect operation is more than a predetermined concentration. Can be maintained at a high concentration. For this reason, for example, when shifting from single-effect operation to single-double-effect operation or double-effect operation, the high-concentration absorbent in the high-temperature regenerator is immediately supplied to the absorber simply by opening the on-off valve. be able to.

また、前記中間吸収液溜り内の吸収液の液面高さを検知する液面検知センサを備え、この液面検知センサが検知した液面高さが所定の高さ以上の時に、前記前記開閉弁を開放する構成としても良い。この構成によれば、例えば、高温再生器内に貯留される際の液面高さを予め規定しておくことにより、開閉弁が開放された際に供給されるオーバーフロー量を簡単に算出できるため、高温再生器から吸収器へ吸収液を供給する際の制御を容易に行うことができる。   In addition, a liquid level detection sensor for detecting a liquid level height of the absorbing liquid in the intermediate absorption liquid reservoir is provided, and when the liquid level detected by the liquid level detection sensor is equal to or higher than a predetermined height, the opening and closing is performed. It is good also as a structure which opens a valve. According to this configuration, for example, the amount of overflow supplied when the on-off valve is opened can be easily calculated by predefining the liquid level height when stored in the high-temperature regenerator. In addition, it is possible to easily perform control when supplying the absorbing liquid from the high temperature regenerator to the absorber.

本発明によれば、高温再生器の中間吸収液溜り、もしくは、この中間吸収液溜りから低温再生器に至る中間吸収液配管と低温再生器から吸収器に至る濃吸収液管とを開閉弁が介在する吸収液供給管により接続したため、例えば、一重効用運転から一重二重効用運転もしくは二重効用運転に移行する際に、開閉弁を開放することにより、高温再生器内の高濃度の吸収液を、吸収液供給管を通じて、直ちに吸収器に供給することができる。このため、吸収器に供給される吸収液の濃度の低下が防止され、この濃度低下に伴う蒸発量の低下が抑制できるため、蒸発器での熱交換が十分に行われ、ブライン温度を安定させることができる。   According to the present invention, the on-off valve connects the intermediate absorption liquid reservoir of the high temperature regenerator or the intermediate absorption liquid pipe extending from the intermediate absorption liquid reservoir to the low temperature regenerator and the concentrated absorption liquid pipe extending from the low temperature regenerator to the absorber. Because it is connected by an intervening absorption liquid supply pipe, for example, when shifting from single-effect operation to single-double-effect operation or double-effect operation, the high-concentration absorption liquid in the high-temperature regenerator is opened by opening the on-off valve. Can be immediately supplied to the absorber through the absorption liquid supply pipe. For this reason, since the fall of the density | concentration of the absorption liquid supplied to an absorber is prevented and the fall of the evaporation amount accompanying this density fall can be suppressed, heat exchange with an evaporator is fully performed and the brine temperature is stabilized. be able to.

以下、図面を参照して本発明の一実施形態を説明する。
図1は、本実施形態にかかる吸収式冷温水機(吸収式冷凍機)100の概略構成図である。吸収式冷温水機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した一重二重効用型の吸収式冷温水機である。
吸収式冷温水機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ(加熱手段)4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された第1凝縮器7と、これら低温再生器6及び第1凝縮器7を収納した低温再生器凝縮器胴8と、他の設備から供給される温水などを熱源とする低熱源再生器9と、この低熱源再生器9に並設された第2凝縮器10と、これら低熱源再生器9及び第2凝縮器10を収納した低熱源再生器凝縮器胴11と、低温熱交換器12と、高温熱交換器13と、稀吸収液ポンプP1と、中間吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜26及び冷媒管31〜36などを介して配管接続されている。
また、符号14は、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば空気調和装置)に循環供給するための冷/温水管であり、この冷/温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。符号15は、吸収器2、第1凝縮器7及び第2凝縮器10に順次冷却水を流通させるための冷却水管であり、この冷却水管15の一部に形成された各伝熱管15A、15B、15Cがそれぞれ吸収器2、第1凝縮器7及び第2凝縮器10内に配置されている。また、符号16は、図示しない熱源発生装置(例えば太陽熱温水器やコージェネレーション装置)で生成された比較的低温(例えば約80℃程度)の温水を、低熱源再生器9に循環供給するための低熱源供給管である。この低熱源供給管16は、低熱源再生器9内に配置される伝熱管16Aと、この伝熱管16Aに並列に接続されるバイパス管16Bと、伝熱管16Aに供給する温水の流量を調整するために切り替えられる三方弁28とを備える。符号50は、吸収式冷温水機100全体の制御を司る制御装置である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an absorption chiller / heater (absorption refrigerator) 100 according to the present embodiment. The absorption chiller / heater 100 is a single double-effect absorption chiller / heater using water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorbent.
As shown in FIG. 1, the absorption chiller / heater 100 includes an evaporator 1, an absorber 2 provided in parallel with the evaporator 1, and an evaporator absorber body that houses the evaporator 1 and the absorber 2. 3, a high-temperature regenerator 5 having a gas burner (heating means) 4, a low-temperature regenerator 6, a first condenser 7 arranged in parallel with the low-temperature regenerator 6, the low-temperature regenerator 6 and the first condensation A low-temperature regenerator condenser body 8 in which the regenerator 7 is housed, a low heat source regenerator 9 using hot water supplied from other equipment as a heat source, and a second condenser 10 arranged in parallel to the low heat source regenerator 9. A low heat source regenerator condenser body 11 containing the low heat source regenerator 9 and the second condenser 10, a low temperature heat exchanger 12, a high temperature heat exchanger 13, a rare absorbent pump P1, and an intermediate absorption. The liquid pump P2 and the refrigerant pump P3 are provided, and each of these devices includes the absorption liquid pipes 21 to 26 and the refrigerant pipes 31 to 31. Connected by piping via a 6.
Reference numeral 14 denotes a cold / hot water pipe for circulatingly supplying brine heat exchanged with the refrigerant in the evaporator 1 to a heat load (not shown) (for example, an air conditioner). A heat transfer tube 14 </ b> A formed in the section is arranged in the evaporator 1. Reference numeral 15 denotes a cooling water pipe for sequentially flowing cooling water through the absorber 2, the first condenser 7 and the second condenser 10, and each heat transfer pipe 15 </ b> A, 15 </ b> B formed in a part of the cooling water pipe 15. , 15C are arranged in the absorber 2, the first condenser 7 and the second condenser 10, respectively. Reference numeral 16 is for circulating and supplying relatively low temperature (eg, about 80 ° C.) hot water generated by a heat source generator (not shown) (eg, a solar water heater or a cogeneration device) to the low heat source regenerator 9. This is a low heat source supply pipe. The low heat source supply pipe 16 adjusts the flow rate of hot water supplied to the heat transfer pipe 16A, a heat transfer pipe 16A disposed in the low heat source regenerator 9, a bypass pipe 16B connected in parallel to the heat transfer pipe 16A, and the heat transfer pipe 16A. And a three-way valve 28 that can be switched for this purpose. Reference numeral 50 denotes a control device that controls the absorption chiller / heater 100 as a whole.

吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、稀吸収液ポンプP1を有する稀吸収液管21の一端が接続され、この稀吸収液管21の他端、すなわち、稀吸収液ポンプP1の下流側は低温熱交換器12を経由した後、低熱源再生器9内の上部に形成された気層部9Aに開口している。   The absorber 2 has a function of absorbing the refrigerant vapor evaporated in the evaporator 1 into the absorption liquid and maintaining the pressure in the evaporator absorber body 3 in a high vacuum state. Under the absorber 2, a rare absorption liquid reservoir 2A is formed in which the diluted absorption liquid diluted by absorbing the refrigerant vapor is accumulated. The rare absorption liquid reservoir 2A has a rare absorption liquid pump P1. One end of the liquid pipe 21 is connected, and the other end of the rare absorbent liquid pipe 21, that is, the downstream side of the rare absorbent liquid pump P1 is formed in the upper part in the low heat source regenerator 9 after passing through the low temperature heat exchanger 12. The gas layer 9A is opened.

低熱源再生器9の下部には、稀吸収液管21を通じて供給された吸収液が溜る吸収液溜り9Bが形成され、この吸収液溜り9Bには低熱源供給管16の一部に形成された伝熱管16Aが配置されている。この低熱源供給管16に温水を流通させることにより、上記伝熱管16Aを介して、吸収液を加熱再生、すなわち、吸収液中の冷媒を蒸発させてこの吸収液を濃縮することができる。
また、吸収液溜り9Bには、中間吸収液ポンプP2を有する第1中間吸収液管22の一端が接続され、この第1中間吸収液管22の他端、すなわち、中間吸収液ポンプP2の下流側は高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口している。
In the lower part of the low heat source regenerator 9, there is formed an absorption liquid reservoir 9B in which the absorption liquid supplied through the rare absorption liquid pipe 21 is accumulated. The absorption liquid reservoir 9B is formed in a part of the low heat source supply pipe 16. A heat transfer tube 16A is arranged. By circulating hot water through the low heat source supply pipe 16, the absorption liquid can be heated and regenerated through the heat transfer pipe 16A, that is, the refrigerant in the absorption liquid can be evaporated to concentrate the absorption liquid.
One end of a first intermediate absorption liquid pipe 22 having an intermediate absorption liquid pump P2 is connected to the absorption liquid reservoir 9B, and the other end of the first intermediate absorption liquid pipe 22, that is, downstream of the intermediate absorption liquid pump P2. After passing through the high-temperature heat exchanger 13, the side opens to the gas layer part 5 </ b> B located above the heat exchange part 5 </ b> A formed in the high-temperature regenerator 5.

高温再生器5は、ガスバーナ4の火炎を熱源として熱交換部5Aに溜った吸収液を加熱再生するものであり、熱交換部5Aの側方には、この熱交換部5Aで加熱再生された後に当該熱交換部5Aから流出した中間吸収液が溜る中間吸収液溜り5Cが形成されている。この中間吸収液溜り5Cの下端には、第2中間吸収液管(中間吸収液管)23の一端が接続され、この第2中間吸収液管23の他端は低温再生器6内の上部に形成された気層部6Aに開口している。また、第2中間吸収液管23の中間吸収液溜り5C側には高温熱交換器13が設けられている。この高温熱交換器13は、中間吸収液溜り5Cから流出した高温の中間吸収液の温熱で第1中間吸収液管22を流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。また、第2中間吸収液管23の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管24により接続されている。   The high-temperature regenerator 5 heats and regenerates the absorption liquid accumulated in the heat exchange unit 5A using the flame of the gas burner 4 as a heat source, and the heat exchange unit 5A is heated and regenerated on the side of the heat exchange unit 5A. An intermediate absorbing liquid reservoir 5C is formed in which the intermediate absorbing liquid flowing out from the heat exchange section 5A later accumulates. One end of a second intermediate absorption liquid pipe (intermediate absorption liquid pipe) 23 is connected to the lower end of the intermediate absorption liquid reservoir 5C, and the other end of the second intermediate absorption liquid pipe 23 is connected to the upper part in the low temperature regenerator 6. An opening is formed in the formed gas layer portion 6A. A high-temperature heat exchanger 13 is provided on the second intermediate absorption liquid pipe 23 on the intermediate absorption liquid reservoir 5C side. The high-temperature heat exchanger 13 heats the absorption liquid flowing through the first intermediate absorption liquid pipe 22 with the heat of the high-temperature intermediate absorption liquid flowing out from the intermediate absorption liquid reservoir 5C, and the gas burner 4 in the high-temperature regenerator 5 is heated. It aims to reduce fuel consumption. Further, the upstream side of the second intermediate absorption liquid pipe 23 at the high temperature heat exchanger 13 and the absorber 2 are connected by an absorption liquid pipe 24 with an on-off valve V1 interposed therebetween.

低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、気層部6Aの下方に形成された吸収液溜り6Bに溜った吸収液を加熱再生するものであり、吸収液溜り6Bには、高温再生器5の上端部から第1凝縮器7の底部への延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、上記伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Bに溜った吸収液に伝達され、この吸収液が更に濃縮される。
低温再生器6の吸収液溜り6Bの下端には、濃吸収液管25の一端が接続され、この濃吸収液管25の他端には、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。濃吸収液管25には低温熱交換器12が設けられている。この低温熱交換器12は、低温再生器6の吸収液溜り6Bから流出した濃吸収液の温熱で稀吸収液管21を流れる稀吸収液を加熱するものである。また、濃吸収液管25の低温熱交換器12上流側と、第1中間吸収液管22の中間吸収液ポンプP2上流側とは、バイパス管26により接続されており、この中間吸収液ポンプP2の運転が停止している場合には、低熱源再生器9の吸収液溜り9Bから流出した吸収液は、第1中間吸収液管22、バイパス管26、低温熱交換器12及び濃吸収液管25を通じて、吸収器2内に供給される。
The low-temperature regenerator 6 uses the refrigerant vapor separated by the high-temperature regenerator 5 as a heat source to heat and regenerate the absorption liquid stored in the absorption liquid reservoir 6B formed below the gas layer portion 6A. In 6B, a heat transfer tube 31A formed in a part of the refrigerant tube 31 extending from the upper end of the high temperature regenerator 5 to the bottom of the first condenser 7 is arranged. By circulating the refrigerant vapor through the refrigerant pipe 31, the heat of the refrigerant vapor is transmitted to the absorption liquid stored in the absorption liquid reservoir 6B via the heat transfer pipe 31A, and the absorption liquid is further concentrated.
One end of a concentrated absorption liquid pipe 25 is connected to the lower end of the absorption liquid reservoir 6B of the low-temperature regenerator 6, and the other end of the concentrated absorption liquid pipe 25 is provided at the upper part of the gas layer portion 2B of the absorber 2. It is connected to the liquid spreader 2C. The concentrated absorption liquid pipe 25 is provided with a low-temperature heat exchanger 12. The low-temperature heat exchanger 12 heats the rare absorbent flowing through the rare absorbent pipe 21 with the warm heat of the concentrated absorbent flowing out from the absorbent reservoir 6B of the low-temperature regenerator 6. The upstream side of the low-temperature heat exchanger 12 of the concentrated absorbent pipe 25 and the upstream side of the intermediate absorbent pump P2 of the first intermediate absorbent pipe 22 are connected by a bypass pipe 26, and this intermediate absorbent pump P2 When the operation is stopped, the absorption liquid flowing out from the absorption liquid reservoir 9B of the low heat source regenerator 9 is the first intermediate absorption liquid pipe 22, the bypass pipe 26, the low temperature heat exchanger 12, and the concentrated absorption liquid pipe. 25 and supplied into the absorber 2.

本実施形態では、高温再生器5の中間吸収液溜り5Cには、この中間吸収液溜り5Cに溜った吸収液の液面を検知する液面センサ(液面検知センサ)51が設けられている。また、この液面センサ51の下端部と略同じ高さ位置となる中間吸収液溜り5Cの側面部52には、吸収液供給管27の一端が接続され、この吸収液供給管27の他端は、供給開閉弁(開閉弁)V2を介して、濃吸収液管25の低温熱交換器12と濃液散布器2Cとの間の接続部25Aに接続されている。供給開閉弁V2は、制御装置50の制御の下、ガスバーナ4に着火している状態で、中間吸収液溜り5C内の吸収液の液面高さが上昇して所定高さ以上となった場合、すなわち、液面センサ51が吸収液に接触している際に開放され、吸収液の液面高さが降下して液面センサ51が吸収液から離間すると閉塞するように制御される。
また、吸収液供給管27は、中間吸収液溜り5Cに接続される第1水平部27Aと、濃吸収液管25に接続される第2水平部27Bと、これら第1水平部27A及び第2水平部27B間に設けられて下方で湾曲するUシール部27Cとを備える。第2水平部27Bは、第1水平部27A、すなわち、液面センサ51の下端位置よりも高さHだけ低い位置に設けられ、この高さHに相当するヘッド差によって、中間吸収液溜り5Cから濃吸収液管25に吸収液が供給されるようになっている。
また、吸収液供給管27は、低温熱交換器12の下流側で濃吸収液管25に接続されているため、高温再生器5から吸収液供給管27を流通して吸収器2内に吸収液を供給する配管経路の圧力損失を低減し、第1水平部27Aと第2水平部27Bとのヘッド差を小さくすることができる。
Uシール部27Cは、蒸発器吸収器胴3及び高温再生器5よりも低い高さ位置に設置されており、蒸発器吸収器胴3内の圧力と高温再生器5内の圧力との間に差が生じた場合でも、蒸発器吸収器胴3と高温再生器5との間をシールできるようになっている。
In the present embodiment, the intermediate absorption liquid reservoir 5C of the high-temperature regenerator 5 is provided with a liquid level sensor (liquid level detection sensor) 51 for detecting the liquid level of the absorption liquid accumulated in the intermediate absorption liquid reservoir 5C. . Further, one end of the absorbing liquid supply pipe 27 is connected to the side surface part 52 of the intermediate absorbing liquid reservoir 5C which is at substantially the same height as the lower end part of the liquid level sensor 51, and the other end of the absorbing liquid supply pipe 27 is connected. Is connected to a connecting portion 25A between the low-temperature heat exchanger 12 of the concentrated absorbent liquid pipe 25 and the concentrated liquid spreader 2C via a supply open / close valve (open / close valve) V2. When the supply on-off valve V2 is ignited by the gas burner 4 under the control of the control device 50, the liquid level of the absorbing liquid in the intermediate absorbing liquid reservoir 5C rises to become a predetermined height or more. That is, it is controlled so that it opens when the liquid level sensor 51 is in contact with the absorbing liquid and closes when the liquid level of the absorbing liquid is lowered and the liquid level sensor 51 is separated from the absorbing liquid.
The absorbing liquid supply pipe 27 includes a first horizontal part 27A connected to the intermediate absorbing liquid reservoir 5C, a second horizontal part 27B connected to the concentrated absorbing liquid pipe 25, the first horizontal part 27A and the second horizontal part 27A. U seal part 27C which is provided between horizontal parts 27B and curves below. The second horizontal portion 27B is provided at a position lower by a height H than the first horizontal portion 27A, that is, the lower end position of the liquid level sensor 51. Due to the head difference corresponding to the height H, the intermediate absorbing liquid reservoir 5C is provided. From this, the absorbent is supplied to the concentrated absorbent pipe 25.
Further, since the absorbent supply pipe 27 is connected to the concentrated absorbent liquid pipe 25 on the downstream side of the low-temperature heat exchanger 12, the absorbent supply pipe 27 circulates from the high-temperature regenerator 5 through the absorbent supply pipe 27 and is absorbed into the absorber 2. It is possible to reduce the pressure loss of the piping path for supplying the liquid, and to reduce the head difference between the first horizontal portion 27A and the second horizontal portion 27B.
The U seal portion 27 </ b> C is installed at a lower position than the evaporator absorber cylinder 3 and the high temperature regenerator 5, and between the pressure in the evaporator absorber cylinder 3 and the pressure in the high temperature regenerator 5. Even when a difference occurs, the gap between the evaporator absorber body 3 and the high temperature regenerator 5 can be sealed.

上述のように、高温再生器5の気層部5Bと第1凝縮器7の底部とは、低温再生器6の吸収液溜り6Bに配管された伝熱管31Aを経由する冷媒管31により接続され、この冷媒管31の伝熱管31A上流側と吸収器2の気層部2Bとは開閉弁V3が介在する冷媒管32により接続されている。
また、第1凝縮器7の底部と蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続され、その冷媒管33のUシール部33Aと第2凝縮器10の底部側とが冷媒管34により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在するに冷媒管35により接続されている。この冷媒管35の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは開閉弁V4が介在する冷媒管36により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V5が介在する連通管37により接続されている。
As described above, the gas layer 5B of the high-temperature regenerator 5 and the bottom of the first condenser 7 are connected by the refrigerant pipe 31 that passes through the heat transfer pipe 31A piped to the absorption liquid reservoir 6B of the low-temperature regenerator 6. The upstream side of the heat transfer pipe 31A of the refrigerant pipe 31 and the gas layer portion 2B of the absorber 2 are connected by a refrigerant pipe 32 having an on-off valve V3 interposed therebetween.
Further, the bottom portion of the first condenser 7 and the gas layer portion 1A of the evaporator 1 are connected by a refrigerant pipe 33 in which a U seal portion 33A is interposed, and the U seal portion 33A of the refrigerant pipe 33 and the second condenser 10 are connected. The bottom side is connected by a refrigerant pipe 34. A refrigerant liquid reservoir 1B in which liquefied refrigerant accumulates is formed below the evaporator 1, and the refrigerant liquid reservoir 1B and the spreader 1C disposed above the gas layer portion 1A of the evaporator 1 are refrigerant pumps P3. Are connected by a refrigerant pipe 35. The refrigerant pipe 35 is connected to the downstream side of the refrigerant pump P3 and the absorbing liquid reservoir 2A of the absorber 2 through a refrigerant pipe 36 with an on-off valve V4 interposed therebetween. Further, the outlet side of the heat transfer pipe 14A of the cold / hot water pipe 14 and the outlet side of the heat transfer pipe 15B of the cooling water pipe 15 are connected by a communication pipe 37 with an on-off valve V5 interposed therebetween.

次に動作について説明する。
冷房等の冷却運転時においては、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度が所定の設定温度、例えば7℃になるように吸収式冷温水機100に投入される熱量が制御装置50により制御される。
具体的には、制御装置50は、例えば、熱負荷が大きく、且つ、低熱源供給管16を介して低熱源再生器9に供給する温水の温度が所定温度(例えば85℃)に達している時には、低熱源供給管16から低熱源再生器9に温水を定格量供給すると共に、全てのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させる一重二重効用運転を行い、温度センサS1が計測するブラインの温度が所定の7℃となるようにガスバーナ4の火力を制御する。
Next, the operation will be described.
During cooling operation such as cooling, the temperature at the outlet side of the evaporator 1 of brine (for example, cold water) circulated and supplied to a heat load (not shown) via the cold / hot water pipe 14 is set to a predetermined set temperature, for example, 7 ° C. The amount of heat input to the absorption chiller / heater 100 is controlled by the controller 50.
Specifically, for example, the control device 50 has a large heat load, and the temperature of hot water supplied to the low heat source regenerator 9 via the low heat source supply pipe 16 reaches a predetermined temperature (for example, 85 ° C.). Sometimes, a rated amount of hot water is supplied from the low heat source supply pipe 16 to the low heat source regenerator 9, all pumps P1 to P3 are started, and a single double effect operation is performed in which gas is burned in the gas burner 4. The heating power of the gas burner 4 is controlled so that the brine temperature measured by the sensor S1 is a predetermined 7 ° C.

この場合、吸収器2から稀吸収液管21を介して稀吸収液ポンプP1により低熱源再生器9に搬送された稀吸収液は、この低熱源再生器9内の吸収液溜り9Bにおいて、低熱源供給管16から供給される温水により伝熱管16Aの管壁を介して加熱されることにより、稀吸収液中の冷媒が蒸発分離される。   In this case, the rare absorption liquid conveyed from the absorber 2 to the low heat source regenerator 9 by the rare absorption liquid pump P1 through the rare absorption liquid pipe 21 is low in the absorption liquid reservoir 9B in the low heat source regenerator 9. When the hot water supplied from the heat source supply pipe 16 is heated through the pipe wall of the heat transfer pipe 16A, the refrigerant in the rare absorbent is evaporated and separated.

冷媒を蒸発分離して吸収液濃度が高くなった中間吸収液は、第1中間吸収液管22の中間吸収液ポンプP2により高温熱交換器13を経由して加熱され高温再生器5に送られる。高温再生器5に搬送された中間吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この中間吸収液中の冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した中間吸収液は、高温熱交換器13を経由して低温再生器6へ送られる。
そして、中間吸収液は低温再生器6において、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。
The intermediate absorption liquid whose absorption liquid concentration has been increased by evaporating and separating the refrigerant is heated by the intermediate absorption liquid pump P2 of the first intermediate absorption liquid pipe 22 via the high temperature heat exchanger 13 and sent to the high temperature regenerator 5. . Since the intermediate absorption liquid conveyed to the high temperature regenerator 5 is heated by the flame by the gas burner 4 and the high temperature combustion gas in the high temperature regenerator 5, the refrigerant in the intermediate absorption liquid evaporates and separates. The intermediate absorbing liquid whose concentration has been increased by evaporating and separating the refrigerant in the high temperature regenerator 5 is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13.
Then, the intermediate absorption liquid is heated by the high-temperature refrigerant vapor supplied from the high-temperature regenerator 5 through the refrigerant pipe 31 and flowing into the heat transfer pipe 31A in the low-temperature regenerator 6, and the refrigerant is further separated to further increase the concentration. Thus, this concentrated absorbent is sent to the absorber 2 via the low-temperature heat exchanger 12, and is sprayed from above the concentrated sprayer 2C.

一方、低熱源再生器9で分離生成した冷媒は第2凝縮器10に入って凝縮し、低温再生器6で分離生成した冷媒は第1凝縮器7に入って凝縮する。そして、第1凝縮器7で生成された冷媒液は冷媒管33を、第2凝縮器10で凝縮生成した冷媒液は冷媒管34を経由して蒸発器1に入り、冷媒ポンプP3の運転により揚液されて散布器1Cから冷/温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって低熱源再生器9に搬送される循環を繰り返す。
On the other hand, the refrigerant separated and generated by the low heat source regenerator 9 enters the second condenser 10 and condenses, and the refrigerant separated and generated by the low temperature regenerator 6 enters the first condenser 7 and condenses. The refrigerant liquid generated by the first condenser 7 enters the evaporator 1 through the refrigerant pipe 33, and the refrigerant liquid condensed and generated by the second condenser 10 enters the evaporator 1 via the refrigerant pipe 34, and the refrigerant pump P3 is operated. The liquid is pumped and sprayed from the spreader 1 </ b> C onto the heat transfer tube 14 </ b> A of the cold / hot water tube 14.
The refrigerant liquid sprayed on the heat transfer tube 14A evaporates by removing vaporization heat from the brine passing through the inside of the heat transfer tube 14A, so that the brine passing through the inside of the heat transfer tube 14A is cooled, and the brine thus lowered in temperature is A cooling operation such as cooling is performed by supplying the heat load from the cold / hot water pipe 14.
Then, the refrigerant evaporated in the evaporator 1 enters the absorber 2, is absorbed by the concentrated absorbent supplied from the low temperature regenerator 6 and sprayed from above, and accumulates in the rare absorbent reservoir 2A of the absorber 2, The circulation conveyed to the low heat source regenerator 9 by the absorption liquid pump P1 is repeated.

一重二重効用運転時においては、温度センサS1が計測する温度が所定の7℃になるように、ガスバーナ4による加熱量、具体的にはガスバーナ4に供給するガス量が制御装置50により制御される。そして、ガスバーナ4による加熱量を最小にしても、温度センサS1が所定の7℃より低い温度を計測すると、制御装置50は、ガスの燃焼を止めてガスバーナ4による加熱を停止して一重効用運転に移行する。この場合、制御装置50は、高温再生器5の中間吸収液溜り5C内に貯留された吸収液の液面高さが、液面センサ51の下端部よりも高い所定位置となるまで中間吸収液ポンプP2を運転し、この所定位置に至った時に、中間吸収液ポンプP2の運転を停止する。   During the single double effect operation, the amount of heating by the gas burner 4, specifically the amount of gas supplied to the gas burner 4, is controlled by the control device 50 so that the temperature measured by the temperature sensor S 1 becomes a predetermined 7 ° C. The And even if the amount of heating by the gas burner 4 is minimized, when the temperature sensor S1 measures a temperature lower than the predetermined 7 ° C., the control device 50 stops the combustion of the gas and stops the heating by the gas burner 4 to perform the single effect operation. Migrate to In this case, the control device 50 determines that the intermediate absorbing liquid until the liquid level of the absorbing liquid stored in the intermediate absorbing liquid reservoir 5C of the high temperature regenerator 5 reaches a predetermined position higher than the lower end of the liquid level sensor 51. When the pump P2 is operated and reaches the predetermined position, the operation of the intermediate absorbent pump P2 is stopped.

一重効用運転における吸収液は、低熱源供給管16から供給される温水により低熱源再生器9において加熱されて冷媒を蒸発分離する。そして、吸収液濃度が高くなった吸収液は、バイパス管26、低温熱交換器12を経由して吸収器2に戻される。
一方、低熱源再生器9で分離生成した冷媒蒸気は第2凝縮器10に入って凝縮し、冷媒管34を経由して蒸発器1に流入する。蒸発器1内に流入した冷媒液は、冷媒ポンプP3の運転により散布器1Cから冷/温水管14の伝熱管14Aの上に散布され、伝熱管14A内を通るブラインから熱を奪って蒸発し、吸収器2に入って上方から散布される吸収液に吸収される循環が行われる。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
The absorption liquid in the single effect operation is heated in the low heat source regenerator 9 by hot water supplied from the low heat source supply pipe 16 to evaporate and separate the refrigerant. Then, the absorption liquid whose absorption liquid concentration has increased is returned to the absorber 2 via the bypass pipe 26 and the low-temperature heat exchanger 12.
On the other hand, the refrigerant vapor separated and generated by the low heat source regenerator 9 enters the second condenser 10 and condenses, and flows into the evaporator 1 through the refrigerant pipe 34. The refrigerant liquid flowing into the evaporator 1 is sprayed from the sprayer 1C onto the heat transfer pipe 14A of the cold / hot water pipe 14 by the operation of the refrigerant pump P3, and evaporates by taking heat from the brine passing through the heat transfer pipe 14A. Then, circulation is performed which is absorbed into the absorbing liquid sprayed from above by entering the absorber 2. Note that the heat generated when the absorbing liquid absorbs the refrigerant is cooled by the heat transfer pipe 15 </ b> A of the cooling water pipe 15 disposed in the absorber 2.

ここで、制御装置50は、一重効用運転中に、高温再生器5の中間吸収液溜り5C内に貯留された吸収液の温度を計測し、この温度が所定温度よりも低下した場合には、ガスバーナ4に着火して当該吸収液温度を所定温度以上に保持するように制御する。なお、吸収液の温度によらず、定期的にガスバーナ4に着火しても良い。   Here, the control device 50 measures the temperature of the absorbent stored in the intermediate absorbent reservoir 5C of the high-temperature regenerator 5 during the single effect operation, and when this temperature falls below a predetermined temperature, Control is performed so that the gas burner 4 is ignited and the temperature of the absorbing liquid is maintained at a predetermined temperature or higher. In addition, you may ignite the gas burner 4 regularly irrespective of the temperature of absorption liquid.

一重効用運転時においては、温度センサS1が計測する温度が所定の7℃になるように、低熱源再生器9における加熱量、具体的には低熱源供給管16から伝熱管16Aに取り込む温水の量、すなわち三方弁28の開度が制御装置50により制御される。
そして、低熱源供給管16を流れる温水の全量が伝熱管16Aに流れるように三方弁28を操作しても、温度センサS1が所定温度の7℃以下の温度を計測しない時には、上記のようにガスバーナ4でガスを燃焼させ、高温再生器5における吸収液の加熱再生と冷媒蒸気の生成とを再開して一重二重効用運転に戻る。
During the single effect operation, the amount of heat in the low heat source regenerator 9, specifically, hot water taken into the heat transfer tube 16A from the low heat source supply pipe 16 so that the temperature measured by the temperature sensor S1 is a predetermined 7 ° C. The amount, that is, the opening degree of the three-way valve 28 is controlled by the control device 50.
And even if the three-way valve 28 is operated so that the entire amount of hot water flowing through the low heat source supply pipe 16 flows into the heat transfer pipe 16A, when the temperature sensor S1 does not measure a temperature of 7 ° C. or less, the temperature is as described above. The gas is burned by the gas burner 4, the heating regeneration of the absorbing liquid and the generation of the refrigerant vapor in the high temperature regenerator 5 are resumed, and the single double effect operation is resumed.

また、一重効用運転時において、熱負荷は大きいが、低熱源供給管16を介して低熱源再生器9に供給する温水の温度が所定の85℃以下に低下した時(例えば、天候不順等により太陽熱温水器から供給される温水温度が安定しない時)には、低熱源供給管16から低熱源再生器9に温水が供給されないように三方弁28を切り替えると共に、全てのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させる二重効用運転を行う。この場合も、温度センサS1が計測するブラインの温度が所定温度の7℃となるように、ガスバーナ4の火力が制御装置50により制御される。
この二重効用運転では、吸収器2の稀吸収液溜り2Aにある稀吸収液は稀吸収液ポンプP1により低熱源再生器9に搬送されて吸収液溜り9Bに貯留されるが、伝熱管16Aには熱源としての温水は供給されていない。このため、低熱源再生器9に搬送された稀吸収液は、加熱されることなく中間吸収液ポンプP2の運転により高温熱交換器13を経由して高温再生器5に搬送され、その後は一重二重効用運転と同様に循環しながら加熱されて、高温再生器5と低温再生器6とで吸収液の濃縮再生と冷媒の分離生成とがなされる。この二重効用運転時に、低熱源再生器9に供給する温水の温度が所定の85℃に達した時には、冷却負荷の大きさに応じて、一重二重効用運転または一重効用運転が行われる。
Further, during the single effect operation, although the heat load is large, the temperature of the hot water supplied to the low heat source regenerator 9 through the low heat source supply pipe 16 is lowered to a predetermined 85 ° C. or less (for example, due to bad weather etc.) When the temperature of the hot water supplied from the solar water heater is not stable), the three-way valve 28 is switched so that the hot water is not supplied from the low heat source supply pipe 16 to the low heat source regenerator 9, and all the pumps P1 to P3 are activated. In addition, a double-effect operation in which gas is burned in the gas burner 4 is performed. Also in this case, the heating power of the gas burner 4 is controlled by the control device 50 so that the temperature of the brine measured by the temperature sensor S1 becomes a predetermined temperature of 7 ° C.
In this double effect operation, the rare absorbent in the rare absorbent reservoir 2A of the absorber 2 is conveyed to the low heat source regenerator 9 by the rare absorbent pump P1 and stored in the absorbent reservoir 9B. Is not supplied with hot water as a heat source. For this reason, the rare absorption liquid conveyed to the low heat source regenerator 9 is conveyed to the high temperature regenerator 5 via the high temperature heat exchanger 13 by the operation of the intermediate absorption liquid pump P2 without being heated, and thereafter the single absorption liquid is single-layered. In the same manner as in the double effect operation, the refrigerant is heated while being circulated, and the high temperature regenerator 5 and the low temperature regenerator 6 concentrate and regenerate the absorption liquid and separate and produce the refrigerant. During this double effect operation, when the temperature of the hot water supplied to the low heat source regenerator 9 reaches a predetermined 85 ° C., a single double effect operation or a single effect operation is performed according to the size of the cooling load.

本構成では、一重効用運転から二重効用運転または一重二重効用運転に移行する場合、制御装置50は、吸収液供給管27に設けられた供給開閉弁V2が開放される。これにより、吸収液供給管27を通じて、高温再生器5の中間吸収液溜り5C内の高濃度の吸収液を直ちに吸収器2に供給することができるため、吸収器2に供給される吸収液の濃度の低下が防止され、この濃度低下に伴う蒸発量の低下が抑制できるため、蒸発器1での熱交換が十分に行われ、ブライン温度を安定させることができる。
さらに、供給開閉弁V2は、液面センサ51が検知した液面高さが所定の高さ以上の時に開放するように制御されるため、高温再生器5の中間吸収液溜り5C内に貯留される際の液面高さを予め規定しておけば、供給開閉弁V2が開放された際の供給量(オーバーフロー量)を簡単に算出できるため、高温再生器5の中間吸収液溜り5Cから吸収器2へ吸収液を供給する際の制御を容易に行うことができる。
In this configuration, when shifting from the single-effect operation to the double-effect operation or the single-double-effect operation, the control device 50 opens the supply opening / closing valve V2 provided in the absorption liquid supply pipe 27. Thereby, since the high concentration absorption liquid in the intermediate absorption liquid reservoir 5C of the high temperature regenerator 5 can be immediately supplied to the absorber 2 through the absorption liquid supply pipe 27, the absorption liquid supplied to the absorber 2 can be reduced. Since the decrease in the concentration is prevented and the decrease in the evaporation amount due to the decrease in the concentration can be suppressed, the heat exchange in the evaporator 1 is sufficiently performed and the brine temperature can be stabilized.
Furthermore, since the supply on-off valve V2 is controlled to be opened when the liquid level detected by the liquid level sensor 51 is equal to or higher than a predetermined level, the supply on-off valve V2 is stored in the intermediate absorption liquid reservoir 5C of the high-temperature regenerator 5. If the liquid level height is determined in advance, the supply amount (overflow amount) when the supply on-off valve V2 is opened can be easily calculated. Therefore, absorption from the intermediate absorption liquid reservoir 5C of the high-temperature regenerator 5 is possible. Control when supplying the absorbing liquid to the vessel 2 can be easily performed.

また、二重効用運転または一重二重効用運転から一重効用運転に移行する際に、低熱源再生器9から高温再生器5への吸収液の供給を停止するため、低熱源再生器9から高温再生器5への濃度の低い吸収液の供給を防止できる。このため、温水単独運転中における高温再生器5内の吸収液を所定濃度よりも高い濃度に保持することができ、例えば、一重効用運転から二重効用運転に移行する際に、供給開閉弁V2を開放するだけで、高温再生器5の中間吸収液溜り5C内の高濃度の吸収液を直ちに吸収器2に供給することができる。   Further, when the transition from the double effect operation or the single double effect operation to the single effect operation is performed, the supply of the absorbing liquid from the low heat source regenerator 9 to the high temperature regenerator 5 is stopped. Supply of the low concentration absorbent to the regenerator 5 can be prevented. For this reason, the absorption liquid in the high temperature regenerator 5 during the hot water single operation can be maintained at a concentration higher than a predetermined concentration. For example, when shifting from the single effect operation to the double effect operation, the supply opening / closing valve V2 The high concentration absorbent in the intermediate absorbent reservoir 5C of the high temperature regenerator 5 can be immediately supplied to the absorber 2 simply by opening the.

また、一重効用運転中に、高温再生器5の中間吸収液溜り5C内に貯留された吸収液の温度が所定温度よりも低下した場合には、制御装置50はガスバーナ4を着火するため、高温再生器5内での吸収液の温度低下を抑えることにより、この吸収液の結晶化が防止される。このため、一重効用運転中における高温再生器5内の吸収液を所定濃度よりも高い濃度に保持することができる。このため、例えば、一重効用運転から二重効用運転に移行する際に、供給開閉弁V2を開放するだけで、高温再生器5の中間吸収液溜り5C内の高濃度の吸収液を直ちに吸収器2に供給することができる。   In addition, when the temperature of the absorbent stored in the intermediate absorbent reservoir 5C of the high-temperature regenerator 5 falls below a predetermined temperature during the single-effect operation, the control device 50 ignites the gas burner 4, so By suppressing the temperature drop of the absorbent in the regenerator 5, crystallization of the absorbent is prevented. For this reason, the absorption liquid in the high temperature regenerator 5 during the single effect operation can be maintained at a concentration higher than a predetermined concentration. Therefore, for example, when shifting from the single effect operation to the double effect operation, the high concentration absorbent in the intermediate absorbent reservoir 5C of the high temperature regenerator 5 can be immediately absorbed by simply opening the supply on-off valve V2. 2 can be supplied.

上記した実施形態は本発明を適用した一態様を示すものであって、本発明は上記実施形態に限定されない。例えば、上記した実施形態では、吸収液供給管27の一端は中間吸収液溜り5Cの側面部52に接続され、吸収液供給管27の他端は供給開閉弁V2を介して、濃吸収液管25の低温熱交換器12と濃液散布器2Cとの間の接続部25Aに接続されている構成としたが、これに限るものではなく、図2に示すように、吸収液供給管27の一端を、第2中間吸収液管23における中間吸収液溜り5Cと高温熱交換器13との間に設けられた接続部23Aに接続しても良い。
この構成では、吸収液供給管27の第1水平部27Aは、第2水平部27Bよりも下方に位置するが、中間吸収液溜り5Cに溜った吸収液の液面高さ(液面センサ51の下端位置)は、第2水平部27Bよりも高さHだけ高く設けられるため、この高さHに相当するヘッド差によって、中間吸収液溜り5Cから濃吸収液管25に吸収液が供給される。
The above-described embodiment shows one aspect to which the present invention is applied, and the present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, one end of the absorption liquid supply pipe 27 is connected to the side surface portion 52 of the intermediate absorption liquid reservoir 5C, and the other end of the absorption liquid supply pipe 27 is connected to the concentrated absorption liquid pipe via the supply opening / closing valve V2. Although it was set as the structure connected to the connection part 25A between 25 low-temperature heat exchangers 12 and the concentrated liquid spreader 2C, it is not restricted to this, As shown in FIG. One end may be connected to a connection portion 23 </ b> A provided between the intermediate absorbent reservoir 5 </ b> C and the high-temperature heat exchanger 13 in the second intermediate absorbent pipe 23.
In this configuration, the first horizontal portion 27A of the absorption liquid supply pipe 27 is positioned below the second horizontal portion 27B, but the liquid level height (liquid level sensor 51) of the absorption liquid accumulated in the intermediate absorption liquid reservoir 5C. The lower end position) is provided by a height H higher than the second horizontal portion 27B, so that the absorbing liquid is supplied from the intermediate absorbing liquid reservoir 5C to the concentrated absorbing liquid pipe 25 by the head difference corresponding to the height H. The

また、図3に示すように、吸収液供給管27の他端を供給開閉弁V2を介して、濃吸収液管25における低温再生器6と低温熱交換器12との間に設けられた接続部25Bに接続しても良い。この構成によれば、低温熱交換器12の上流側で、吸収液供給管27を流通する高温の吸収液と、低温再生器6から流出した吸収液とを混合することができるため、低温熱交換器12において、稀吸収液管21を流れる吸収液に多くの熱量を与えることができる。更に、図4に示すように、吸収液供給管27の一端を第2中間吸収液管23の上記接続部23Aに接続し、吸収液供給管27の他端を供給開閉弁V2を介して、濃吸収液管25の上記接続部25Bに接続しても良い。
また、上記した実施形態では、高温再生器5にて吸収液を加熱する加熱手段として燃料ガスを燃焼させて加熱を行うガスバーナ4を備える構成について説明したが、これに限るものではなく、灯油やA重油を燃焼させるバーナを備える構成や、蒸気や排気ガス等の温熱を用いて加熱する構成としてもよい。
Further, as shown in FIG. 3, the other end of the absorbing liquid supply pipe 27 is connected between the low temperature regenerator 6 and the low temperature heat exchanger 12 in the concentrated absorbing liquid pipe 25 via a supply opening / closing valve V2. You may connect to the part 25B. According to this configuration, the high-temperature absorption liquid flowing through the absorption liquid supply pipe 27 and the absorption liquid flowing out from the low-temperature regenerator 6 can be mixed on the upstream side of the low-temperature heat exchanger 12. In the exchanger 12, a large amount of heat can be given to the absorbent flowing through the rare absorbent pipe 21. Further, as shown in FIG. 4, one end of the absorption liquid supply pipe 27 is connected to the connecting portion 23A of the second intermediate absorption liquid pipe 23, and the other end of the absorption liquid supply pipe 27 is connected via the supply opening / closing valve V2. You may connect to the said connection part 25B of the thick absorption liquid pipe | tube 25. FIG.
Further, in the above-described embodiment, the configuration including the gas burner 4 that performs heating by burning the fuel gas as the heating unit that heats the absorbing liquid in the high-temperature regenerator 5 has been described. It is good also as a structure provided with the burner which burns A heavy oil, or the structure heated using warm heat, such as a vapor | steam and exhaust gas.

本実施形態にかかる吸収式冷温水機の概略構成図である。It is a schematic block diagram of the absorption-type cold / hot water machine concerning this embodiment. 吸収冷温水機の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of an absorption cold / hot water machine. 吸収冷温水機の別の変形例を示す概略構成図である。It is a schematic block diagram which shows another modification of an absorption cold / hot water machine. 吸収冷温水機の別の変形例を示す概略構成図である。It is a schematic block diagram which shows another modification of an absorption cold / hot water machine.

1 蒸発器
2 吸収器
4 ガスバーナ(加熱手段)
5 高温再生器
5C 中間吸収液溜り
6 低温再生器
7 第1凝縮器
9 低熱源再生器
10 第2凝縮器
11 低熱源再生器凝縮器胴
12 低温熱交換器
13 高温熱交換器
14 冷/温水管
15 冷却水管
16 低熱源供給管
23 第2中間吸収液管(中間吸収液管)
25 濃吸収液管
27 吸収液供給管
27A 第1水平部
27B 第2水平部
27C Uシール部
50 制御装置
51 液面センサ(液面検知センサ)
52 側面部
100 吸収式冷温水機(吸収式冷凍機)
P2 中間吸収液ポンプ
V2 供給開閉弁(開閉弁)
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 4 Gas burner (heating means)
DESCRIPTION OF SYMBOLS 5 High temperature regenerator 5C Intermediate absorption liquid pool 6 Low temperature regenerator 7 1st condenser 9 Low heat source regenerator 10 2nd condenser 11 Low heat source regenerator condenser body 12 Low temperature heat exchanger 13 High temperature heat exchanger 14 Cold / hot water Pipe 15 Cooling water pipe 16 Low heat source supply pipe 23 Second intermediate absorption liquid pipe (intermediate absorption liquid pipe)
25 Concentrated Absorbing Liquid Pipe 27 Absorbing Liquid Supply Pipe 27A First Horizontal Part 27B Second Horizontal Part 27C U Seal Part 50 Controller 51 Liquid Level Sensor (Liquid Level Detection Sensor)
52 Side 100 Absorption chiller / heater (absorption refrigerator)
P2 Intermediate absorption pump V2 Supply on / off valve (open / close valve)

Claims (5)

低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、
前記高温再生器の中間吸収液溜り、もしくは、この中間吸収液溜りから前記低温再生器に至る中間吸収液管と前記低温再生器から前記吸収器に至る濃吸収液管とを開閉弁が介在する吸収液供給管により接続したことを特徴とする吸収式冷凍機。
A low heat source regenerator, a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser, and an absorber are provided, and these are connected by piping to form a circulation path for absorbing liquid and refrigerant, respectively, and supplied to the low heat source regenerator Absorption refrigeration configured to enable a single effect operation in which the absorption liquid is heated using hot water as a heat source and a single double effect operation or a double effect operation in which the absorption liquid is heated using a heating means provided in the high-temperature regenerator as a heat source. In the machine
An on-off valve is interposed between the intermediate absorption liquid reservoir of the high temperature regenerator, or an intermediate absorption liquid pipe extending from the intermediate absorption liquid reservoir to the low temperature regenerator and a concentrated absorption liquid pipe extending from the low temperature regenerator to the absorber. An absorption refrigerator which is connected by an absorption liquid supply pipe.
前記一重効用運転から前記一重二重効用運転もしくは前記二重効用運転に移行する際に、前記開閉弁を開放することを特徴とする請求項1に記載の吸収式冷凍機。   2. The absorption refrigerator according to claim 1, wherein the on-off valve is opened when shifting from the single effect operation to the single double effect operation or the double effect operation. 前記一重二重効用運転もしくは前記二重効用運転から前記一重効用運転に移行する際に、前記低熱源再生器から前記高温再生器への吸収液の供給を停止することを特徴とする請求項1または2に記載の吸収式冷凍機。   The supply of the absorbing liquid from the low heat source regenerator to the high temperature regenerator is stopped when shifting from the single double effect operation or the double effect operation to the single effect operation. Or the absorption refrigerator according to 2. 前記一重効用運転の運転中、定期的または不定期に、前記ガスバーナを着火することを特徴とする請求項1乃至3のいずれかに記載の吸収式冷凍機。   The absorption refrigerator according to any one of claims 1 to 3, wherein the gas burner is ignited regularly or irregularly during the operation of the single-effect operation. 前記中間吸収液溜り内の吸収液の液面高さを検知する液面検知センサを備え、この液面検知センサが検知した液面高さが所定の高さ以上の時に、前記前記開閉弁を開放することを特徴とする請求項1乃至4のいずれかに記載の吸収式冷凍機。   A liquid level detection sensor for detecting a liquid level height of the absorbing liquid in the intermediate absorbing liquid reservoir, and when the liquid level detected by the liquid level detection sensor is equal to or higher than a predetermined height, The absorption refrigerator according to any one of claims 1 to 4, wherein the absorption refrigerator is opened.
JP2009119600A 2009-05-18 2009-05-18 Absorption-type refrigerating machine Pending JP2010266170A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009119600A JP2010266170A (en) 2009-05-18 2009-05-18 Absorption-type refrigerating machine
CN2010101496330A CN101893345B (en) 2009-05-18 2010-03-26 Absorption-type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119600A JP2010266170A (en) 2009-05-18 2009-05-18 Absorption-type refrigerating machine

Publications (1)

Publication Number Publication Date
JP2010266170A true JP2010266170A (en) 2010-11-25

Family

ID=43102616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119600A Pending JP2010266170A (en) 2009-05-18 2009-05-18 Absorption-type refrigerating machine

Country Status (2)

Country Link
JP (1) JP2010266170A (en)
CN (1) CN101893345B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048958A (en) * 2013-08-30 2015-03-16 パナソニックIpマネジメント株式会社 Absorption type refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6632951B2 (en) * 2016-09-23 2020-01-22 株式会社日立製作所 Absorption refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4190712C1 (en) * 1990-04-10 1998-04-09 Kawaju Reinetsu Kogyo K K Controlling absorption refrigerating machine
JP2538424B2 (en) * 1991-02-14 1996-09-25 三洋電機株式会社 Single-double-effect absorption refrigerator
JP2002357370A (en) * 2001-05-31 2002-12-13 Sanyo Electric Co Ltd Control method of absorption refrigerating machine
JP4179799B2 (en) * 2002-05-24 2008-11-12 三洋電機株式会社 Absorption refrigerator
JP4606255B2 (en) * 2005-06-09 2011-01-05 三洋電機株式会社 Operation method of single double effect absorption refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048958A (en) * 2013-08-30 2015-03-16 パナソニックIpマネジメント株式会社 Absorption type refrigerator

Also Published As

Publication number Publication date
CN101893345B (en) 2012-07-18
CN101893345A (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP2011075180A (en) Absorption type refrigerating machine
JP6434730B2 (en) Absorption heat source machine
JP5405335B2 (en) Absorption refrigerator
JP5384072B2 (en) Absorption type water heater
JP2010266170A (en) Absorption-type refrigerating machine
JP5575519B2 (en) Absorption refrigerator
JP6754981B2 (en) Absorption chiller
JP6264636B2 (en) Absorption refrigerator
JP2010276252A (en) Absorption type refrigerating machine
JP2006125698A (en) Absorptive and adsorptive heat pump device
JP3883894B2 (en) Absorption refrigerator
JP6789846B2 (en) Absorption chiller
JP4315854B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP2010276244A (en) Absorption type water chiller/heater
JP5967407B2 (en) Absorption type water heater
JP4632633B2 (en) Absorption heat pump device
JP4326478B2 (en) Single double-effect absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP5456368B2 (en) Absorption refrigerator
JP7054855B2 (en) Absorption chiller
JP6765056B2 (en) Absorption chiller
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP2017125653A (en) Absorption type refrigerator
JP2011033261A (en) Absorption type refrigerating machine