JP2006125698A - Absorptive and adsorptive heat pump device - Google Patents

Absorptive and adsorptive heat pump device Download PDF

Info

Publication number
JP2006125698A
JP2006125698A JP2004312657A JP2004312657A JP2006125698A JP 2006125698 A JP2006125698 A JP 2006125698A JP 2004312657 A JP2004312657 A JP 2004312657A JP 2004312657 A JP2004312657 A JP 2004312657A JP 2006125698 A JP2006125698 A JP 2006125698A
Authority
JP
Japan
Prior art keywords
temperature
heat pump
heat
outside air
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004312657A
Other languages
Japanese (ja)
Inventor
Mitsuharu Matsubara
光治 松原
Atsuya Tajima
敦也 田島
Yuji Ozawa
裕治 小沢
Hideo Kawaguchi
秀夫 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2004312657A priority Critical patent/JP2006125698A/en
Publication of JP2006125698A publication Critical patent/JP2006125698A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously take out the water of medium temperature by using the same system even in intermediate seasons such as spring and autumn when an outside air temperature is lowered and in winter, and to contribute to energy saving. <P>SOLUTION: In this absorption heat pump device comprising an absorption heat pump 10 using water as a refrigerant, an outdoor heat exchanger 60 exchanging the heat with the outside air, a switching valve for switching the operation, and an outside air temperature sensor 62 for measuring the outside air temperature, a control means is mounted to implement the heat pump operation for creating the heated water when a temperature measured by the outside air temperature sensor 62 is higher than a set temperature T, and to implement a boiler operation for creating the heated water H2 when the temperature measured by the outside air temperature sensor 62 is lower than the set temperature T. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、温度の違いによる水等の冷媒の相変化を用いて加熱や冷却を行い、効率的にエネルギーの利用を図るものである。   In the present invention, heating and cooling are performed by using a phase change of a refrigerant such as water due to a difference in temperature to efficiently use energy.

従来から吸収・吸着式ヒートポンプを利用した熱サイクルシステムは、多岐にわたった分野で利用され、冷暖房装置や給湯器など、身近な機器にも応用されている一般的な技術である。特にエネルギー資源の乏しい日本国内では、従来からエネルギーの有効活用という点でさまざまな技術が開発されてきたが、近年さらに環境問題を踏まえた省エネルギー化が求められている。吸収・吸着式ヒートポンプの利用はそういった問題を解決しうる技術の一端であり、吸収・吸着式ヒートポンプを利用した暖房装置、給湯装置等の普及と共に、吸収・吸着式ヒートポンプ自体の更なる効率化が求められている。   BACKGROUND ART Conventionally, a heat cycle system using an absorption / adsorption heat pump is a general technique that has been used in various fields and applied to familiar devices such as a cooling / heating device and a water heater. Particularly in Japan, where energy resources are scarce, various technologies have been developed in the past for effective use of energy. In recent years, however, further energy saving has been demanded based on environmental issues. The use of absorption / adsorption heat pumps is one of the technologies that can solve such problems. With the widespread use of heating and water heaters using absorption / adsorption-type heat pumps, the efficiency of absorption / adsorption-type heat pumps themselves will increase. It has been demanded.

現在、様々な方式の吸収式ヒートポンプや吸着式ヒートポンプを利用した装置が存在するが、大型のデパートやビル空調等、中規模の建物や設備に用いる冷房・給湯用の温水を出力するには、吸収式ヒートポンプが有効であり、従来、以下に示すようなものが用いられてきた。
図7は水を冷媒とする吸収式ヒートポンプ装置を示した図である。以下、これを従来技術1として説明する。
図7に示す吸収式ヒートポンプ装置の構成は、再生器11、吸収器21、凝縮器31、蒸発器41、溶液熱交換器50、室外熱交換器60を備えている。また、臭化リチウム溶液S10と冷媒水S11をその容器の中に保持し、吸収材、冷媒として使用している。
この吸収式ヒートポンプ装置に用いられている吸収材と冷媒の組み合わせは、吸収材である臭化リチウムが化学的に安定かつ無害であることと、冷媒である水の蒸発潜熱が大きいこと、この種のシステムでは冷媒COPが最大であるという特徴を有しており、利便性が高く、広く用いられている。
Currently, there are devices that use various types of absorption heat pumps and adsorption heat pumps, but in order to output hot water for cooling and hot water supply used for medium-sized buildings and facilities such as large department stores and building air conditioning, Absorption heat pumps are effective, and the following have been used conventionally.
FIG. 7 is a view showing an absorption heat pump apparatus using water as a refrigerant. Hereinafter, this will be described as Conventional Technology 1.
The configuration of the absorption heat pump apparatus shown in FIG. 7 includes a regenerator 11, an absorber 21, a condenser 31, an evaporator 41, a solution heat exchanger 50, and an outdoor heat exchanger 60. Further, the lithium bromide solution S10 and the refrigerant water S11 are held in the container and used as an absorbent and a refrigerant.
The combination of the absorbent and the refrigerant used in this absorption heat pump device is that the lithium bromide as the absorbent is chemically stable and harmless, and the latent heat of vaporization of the water as the refrigerant is large. This system has the feature that the refrigerant COP is maximum, is highly convenient, and is widely used.

その配管経路は、高温熱源入口E10に接続される配管P35は、再生器11に備えられる第1熱交換器12を介して配管P36に接続され、配管P36は高温熱源出口E11に接続され、その内部を高温熱源H1が通過する。
室外熱交換器60に接続される配管P19は蒸発器41に備えられる第4熱交換器42を介して配管P20に接続され、配管P20は室外熱交換器60に接続され、その内部を低温熱源H3が通過する。
温水入口E12を備える配管P23は、吸収器21に備えられる第2熱交換器22を介して配管P26に接続され、配管P26は凝縮器31に備えられる第3熱交換器32を介して配管P27に接続され温水出口E13に繋がり、その内部を温水H2が通過する。
As for the piping path, the piping P35 connected to the high temperature heat source inlet E10 is connected to the piping P36 via the first heat exchanger 12 provided in the regenerator 11, and the piping P36 is connected to the high temperature heat source outlet E11. The high temperature heat source H1 passes through the inside.
The pipe P19 connected to the outdoor heat exchanger 60 is connected to the pipe P20 via the fourth heat exchanger 42 provided in the evaporator 41, the pipe P20 is connected to the outdoor heat exchanger 60, and the inside thereof is connected to the low-temperature heat source. H3 passes.
The pipe P23 including the hot water inlet E12 is connected to the pipe P26 via the second heat exchanger 22 provided in the absorber 21, and the pipe P26 is connected to the pipe P27 via the third heat exchanger 32 provided in the condenser 31. Connected to the hot water outlet E13, through which the hot water H2 passes.

再生器11の上方に備える配管P12は凝縮器31の上方に接続され、冷媒蒸気を通過させる。
再生器11の下方に備える配管P13は溶液熱交換器50を介して配管P14に接続され、配管P14は吸収器21に備えられた第1散布管23に接続される。第1散布管23は第2熱交換器22に臭化リチウム溶液S10を滴下する目的で設置されている。
吸収器21の下方に備える配管P15は溶液ポンプ51を介して配管P10に接続され、配管P10は溶液熱交換器50を介して配管P11に接続され、配管P11は再生器11の上方に接続される。
凝縮器31の下方に接続された配管P47は蒸発器41の上方に接続される。
蒸発器41の上方に接続された配管P31は吸収器21の上方に接続される。
蒸発器41の下方に接続された配管P32は冷媒ポンプ52を介して配管P33に接続され、配管P33は第2散布管43に接続される。第2散布管43は第4熱交換器42に冷媒水S11を滴下する目的で設置されている。
A pipe P12 provided above the regenerator 11 is connected above the condenser 31 and allows the refrigerant vapor to pass therethrough.
The pipe P13 provided below the regenerator 11 is connected to the pipe P14 via the solution heat exchanger 50, and the pipe P14 is connected to the first spray pipe 23 provided in the absorber 21. The first spray tube 23 is installed for the purpose of dropping the lithium bromide solution S10 into the second heat exchanger 22.
The pipe P15 provided below the absorber 21 is connected to the pipe P10 via the solution pump 51, the pipe P10 is connected to the pipe P11 via the solution heat exchanger 50, and the pipe P11 is connected above the regenerator 11. The
A pipe P47 connected to the lower side of the condenser 31 is connected to the upper side of the evaporator 41.
A pipe P31 connected above the evaporator 41 is connected above the absorber 21.
The pipe P32 connected to the lower side of the evaporator 41 is connected to the pipe P33 via the refrigerant pump 52, and the pipe P33 is connected to the second spray pipe 43. The second spray pipe 43 is installed for the purpose of dripping the coolant water S11 into the fourth heat exchanger 42.

このように接続される事で、冷媒水S11が気体から液体へ、液体から気体へと相変位するときの温度と圧力の関係によって、温水H2を取り出す事ができる。
具体的には、第1熱交換器12に高温熱源入口E10から85〜90℃の高温熱源H1が投入されると、再生器11内にある臭化リチウム溶液S10は、第1熱交換器12から熱を取り出すことにより、臭化リチウム溶液S10内に溶け込んだ冷媒水S11を蒸発させ、高温で高濃度の臭化リチウム溶液S10となる。高温で高濃度となった臭化リチウム溶液S10は配管P13を通って、溶液熱交換器50と配管P14を通過し、吸収器21に備えられた第1散布管23より第2熱交換器22に滴下される。
第2熱交換器22には、温水入口E12から投入される40〜45℃の温水H2が通過しているので、第1散布管23より滴下された第2熱交換器22付近の高濃度の臭化リチウム溶液S10は、蒸発器41から供給される蒸気を吸って希釈されると同時に、温水H2に熱を放出する。吸収器21に溜まった希釈された臭化リチウム溶液S10は、配管P15に接続された溶液ポンプ51により、配管P10、溶液熱交換器50、配管P11を通過して、再生器11に供給される。
By connecting in this way, the hot water H2 can be taken out by the relationship between temperature and pressure when the refrigerant water S11 undergoes phase displacement from gas to liquid and from liquid to gas.
Specifically, when the high-temperature heat source H1 of 85 to 90 ° C. is input to the first heat exchanger 12 from the high-temperature heat source inlet E10, the lithium bromide solution S10 in the regenerator 11 is changed to the first heat exchanger 12. By extracting heat from the refrigerant water, the refrigerant water S11 dissolved in the lithium bromide solution S10 is evaporated to become a high concentration lithium bromide solution S10 at a high temperature. The lithium bromide solution S10 having a high concentration at high temperature passes through the pipe P13, passes through the solution heat exchanger 50 and the pipe P14, and passes through the second heat exchanger 22 from the first spray pipe 23 provided in the absorber 21. It is dripped.
Since the 40-45 degreeC warm water H2 thrown in from the warm water inlet E12 has passed through the 2nd heat exchanger 22, the high concentration of the 2nd heat exchanger 22 vicinity dripped from the 1st distribution pipe 23 is high. The lithium bromide solution S10 is diluted by sucking the vapor supplied from the evaporator 41, and at the same time releases heat to the hot water H2. The diluted lithium bromide solution S10 accumulated in the absorber 21 is supplied to the regenerator 11 through the pipe P10, the solution heat exchanger 50, and the pipe P11 by the solution pump 51 connected to the pipe P15. .

第3熱交換器32を備える凝縮器31では、再生器11から供給される蒸気が第3熱交換器32によって熱を奪われる事で凝縮して冷媒水S11となり、第3熱交換器32を通過する温水H2に更に熱を与える。
第4熱交換器42内には室外熱交換器60から供給される15〜30℃の低温熱源H3が通過しており、配管P47を通過して蒸発器41に供給される凝縮した冷媒水S11は、低温熱源H3より熱を奪って蒸発する。蒸発器41に溜まった冷媒水S11は、冷媒ポンプ52によって、配管P32、配管P33を通過して、第2散布管43より、第4熱交換器42上に滴下され、内部を通過する液体の冷却を行う。
このようにして、運転を続ける事で、50℃程度の温水H2を作り出す事が可能になる。
In the condenser 31 including the third heat exchanger 32, the steam supplied from the regenerator 11 is condensed by being deprived of heat by the third heat exchanger 32 to become the refrigerant water S <b> 11. Further heat is applied to the passing warm water H2.
A low temperature heat source H3 of 15 to 30 ° C. supplied from the outdoor heat exchanger 60 passes through the fourth heat exchanger 42, and the condensed refrigerant water S11 supplied to the evaporator 41 through the pipe P47. Evaporates by taking heat from the low-temperature heat source H3. The refrigerant water S11 accumulated in the evaporator 41 passes through the piping P32 and the piping P33 by the refrigerant pump 52, is dripped onto the fourth heat exchanger 42 from the second spray pipe 43, and the liquid passing through the inside thereof Cool down.
In this way, it is possible to produce hot water H2 of about 50 ° C. by continuing the operation.

従来技術1に示すような一重効用のヒートポンプ装置は、その運転効率が理論的にはCOP=1.5程度となり、高い省エネルギー性を有している。従来技術1では、説明を簡略化するために一重効用と呼ばれるシステムを紹介したが、システム内で熱を再利用する二重効用と呼ばれるシステムによれば、更に高い運転効率が得られる。
また、上述したように、吸収材である臭化リチウムが化学的に安定かつ無害であることと、冷媒である水の蒸発潜熱が大きいこと、この種のシステムでは冷媒COPが最大であること等の高い利便性を有している。
しかし、従来技術1のシステムでは、水を冷媒として用いているが故に、冷媒蒸発温度を0℃以下になるような条件での運転ができず、外気温が5℃以下になると熱回収が出来なくなるという問題点もある。従って、春季、秋季の夜間や、冬季に外気から熱回収をすることができない。冷媒に添加剤を用いて若干冷媒蒸発温度を下げる事も可能ではあるが、現状では十分なレベルまで低下するとはいえない。このため、春季や秋季の夜間や、冬季には従来技術1のシステムを運用し、給湯や暖房に利用するといった目的には使用が困難である。
The single-effect heat pump apparatus as shown in the prior art 1 theoretically has an operating efficiency of about COP = 1.5, and has high energy saving performance. In prior art 1, in order to simplify explanation, a system called single effect was introduced. However, according to a system called double effect in which heat is reused in the system, higher operating efficiency can be obtained.
Further, as described above, the lithium bromide as the absorbent material is chemically stable and harmless, the latent heat of vaporization of the water as the refrigerant is large, the refrigerant COP is the maximum in this type of system, etc. It has a high convenience.
However, since the system of Prior Art 1 uses water as the refrigerant, it cannot be operated under conditions where the refrigerant evaporation temperature is 0 ° C. or lower, and heat recovery is possible when the outside air temperature is 5 ° C. or lower. There is also the problem of disappearing. Therefore, heat cannot be recovered from the outside air during the spring, autumn nights, and winter. Although it is possible to slightly lower the refrigerant evaporation temperature by using an additive for the refrigerant, it cannot be said that it is lowered to a sufficient level at present. For this reason, it is difficult to use the system of the prior art 1 for the purpose of operating the hot water supply or heating at night in spring or autumn, or in winter.

そこで、外気温にあまり左右されない方法としては、図8に示すような、水を冷媒とする吸収式ヒートポンプのボイラー運転をする事も考えられる。以下、これを従来技術2として説明する。
図8の構成は図7と殆ど変わらないので、説明は省略する。
図8の配管経路についても、図7とほぼ変わらないが、一部使用しない。よって、違う部分の説明を以下に行う。
温水を循環する系統である配管P23、第2熱交換器22、配管P26、第3熱交換器32、配管P27が接続する経路は使用しないので、図示しないバルブ等を閉めて流体の行き来が無い状態にする。
低温熱源入口E14を備える配管P19は、蒸発器41に備えられる第4熱交換器42を介して配管P20に接続され、配管P20は低温熱源出口E15に接続され、内部に温水H2が通過する。
このように接続される事で、再生器11と蒸発器41だけで運転を行い、蒸発器41を凝縮器として使用する事で、第1熱交換器12に投入された85℃〜90℃の高温熱源H1は第1熱交換器12から熱を取り出すことにより、冷媒水S11を蒸発させ、高温の臭化リチウム溶液S10の濃溶液を作り、低温熱源入口E14から温水H2を投入し、第4熱交換器42で冷媒蒸気を凝縮する事で、低温熱源出口E15より温度を得た温水H2を取り出す事が可能になる。
このようなボイラー運転を行った場合、低温熱源からの吸熱を行う蒸発過程を経ないので、外気温等の心配は不要である。ただし、その運転効率は、最大でもCOP=1.0を越える事はない。
Therefore, as a method that is not greatly influenced by the outside air temperature, it is conceivable to perform boiler operation of an absorption heat pump using water as a refrigerant as shown in FIG. Hereinafter, this will be described as Conventional Technology 2.
The configuration of FIG. 8 is almost the same as that of FIG.
The piping path in FIG. 8 is not substantially different from that in FIG. Therefore, the different part will be described below.
Since the path connecting the pipe P23, the second heat exchanger 22, the pipe P26, the third heat exchanger 32, and the pipe P27, which is a system for circulating hot water, is not used, a valve (not shown) is closed to prevent the flow of fluid. Put it in a state.
The pipe P19 provided with the low temperature heat source inlet E14 is connected to the pipe P20 via the fourth heat exchanger 42 provided in the evaporator 41, the pipe P20 is connected to the low temperature heat source outlet E15, and the hot water H2 passes through the inside.
By being connected in this way, operation is performed only with the regenerator 11 and the evaporator 41, and by using the evaporator 41 as a condenser, the temperature of 85 ° C. to 90 ° C. supplied to the first heat exchanger 12 is increased. The high-temperature heat source H1 takes out heat from the first heat exchanger 12, evaporates the refrigerant water S11, creates a concentrated solution of the high-temperature lithium bromide solution S10, inputs the hot water H2 from the low-temperature heat source inlet E14, By condensing the refrigerant vapor with the heat exchanger 42, it is possible to take out the hot water H2 whose temperature has been obtained from the low-temperature heat source outlet E15.
When such a boiler operation is performed, there is no need to worry about the outside air temperature or the like because it does not go through an evaporation process that absorbs heat from a low-temperature heat source. However, the operating efficiency does not exceed COP = 1.0 even at the maximum.

これらの点を解決する方法としては、凝固点が0℃以下の物質を冷媒とする方法がある。
図9のヒートポンプは、凝固点が0℃以下の物質を冷媒であるTFE(トリフルオロエタノール)を用い、その吸収材にNMP(N−メチル−2−ピロリドン)を用いている。
図8は凝固点が0℃以下の物質を冷媒とする吸収式ヒートポンプを示した図である。以下、これを従来技術3とする。
図9の構成及び配管経路は、図7と同じである。ただし、冷媒としてTFEと、吸収材としてNMPを使用している点で異なる。これにより、四季を通じて外気を取り込んで熱交換に使用しても冷媒が凍る事は無い。また、運転効率も、基本的には従来技術同様の方式であるので、連続的に運転できればCOP=1.3程度の良好な運転効率が得られる。
しかしながら、外気温が低くなるとそれに伴い冷媒の温度も低くなるため、室外熱交換器の周りが結露し凍結に至るため運転ができなくなる。従って運転を続けるためには定期的にデフロスト運転を行い、室外熱交換器の周りに付着した霜を溶かしてやる必要があり、そのデフロスト運転中の20〜30分間は温水H2の出力ができなくなるといった問題がある。また、冷媒や吸収材の材料自体が高価であることにより、量産機には向かないという問題もある。
編集「団法人日本冷凍空調学会」、書名「炎で冷やした半世紀」、発行年月日「平成14年3月20日発行」
As a method for solving these points, there is a method in which a material having a freezing point of 0 ° C. or lower is used as a refrigerant.
The heat pump in FIG. 9 uses TFE (trifluoroethanol) as a refrigerant for a substance having a freezing point of 0 ° C. or lower, and NMP (N-methyl-2-pyrrolidone) as an absorbent.
FIG. 8 is a view showing an absorption heat pump using a substance having a freezing point of 0 ° C. or lower as a refrigerant. Hereinafter, this is referred to as Conventional Technology 3.
The configuration and piping path in FIG. 9 are the same as those in FIG. However, it is different in that TFE is used as a refrigerant and NMP is used as an absorbent. Thereby, even if outside air is taken in and used for heat exchange through the four seasons, the refrigerant will not freeze. Further, since the operation efficiency is basically the same as that of the prior art, a good operation efficiency of about COP = 1.3 can be obtained if continuous operation is possible.
However, when the outside air temperature becomes low, the temperature of the refrigerant also becomes low. Accordingly, the surroundings of the outdoor heat exchanger are condensed and freezes, so that the operation cannot be performed. Therefore, in order to continue the operation, it is necessary to periodically perform the defrost operation to melt the frost adhering to the outdoor heat exchanger, and the hot water H2 cannot be output for 20 to 30 minutes during the defrost operation. There is a problem. Moreover, since the material of the refrigerant and the absorbent material itself is expensive, there is a problem that it is not suitable for mass production machines.
Edited by “Japan Society of Refrigeration and Air Conditioning”, book title “Half-Century Cooled by Flame”, Date of Publication “March 20, 2002”

上記の通り、従来技術1においては、冷媒に水、吸収材に臭化リチウムを用いているため、腐食に注意を払えば取り扱いが容易であるが、冷媒が0℃以下で凍結してしまうので、外気温度が5℃以下程度になると、低温熱源からの熱回収ができなくなるという問題がある。
また、従来技術2においては、ボイラー運転にて温水を出力するため、外気温に左右されないが、その特性上、運転効率は1を超えることは無い。通常、ボイラー運転の運転効率は0.8〜0.87程度である。
また、従来技術3においては、凝固点が0℃以下の物質を冷媒としているために、0℃以下の低温熱源から熱回収ができるが、外気温が低くなると室外熱交換器の表面に露や霜が付き、熱交換ができなくなるためにデフロスト運転が必要となり、その間30分程度は温水出力ができない。
As described above, in the prior art 1, since water is used as the refrigerant and lithium bromide is used as the absorbent, it is easy to handle if attention is given to corrosion, but the refrigerant freezes at 0 ° C. or lower. When the outside air temperature is about 5 ° C. or less, there is a problem that heat cannot be recovered from the low-temperature heat source.
Moreover, in the prior art 2, since warm water is output by boiler operation, it is not influenced by external temperature, but the operating efficiency does not exceed 1 on the characteristic. Usually, the operation efficiency of boiler operation is about 0.8 to 0.87.
In the prior art 3, since a substance having a freezing point of 0 ° C. or lower is used as a refrigerant, heat can be recovered from a low-temperature heat source of 0 ° C. or lower. However, when the outside air temperature decreases, dew and frost are formed on the surface of the outdoor heat exchanger. Since the heat exchange cannot be performed, a defrost operation is required, and during that time, the hot water cannot be output for about 30 minutes.

本発明は、上記問題点を解決するためになされたものであり、外気温の低下する春季、秋季等の中間期や、冬季でも同じシステムを用いて連続的に中温水を取り出してやると同時に、省エネルギーに貢献することを目的としたものである。     The present invention has been made to solve the above-mentioned problems, and at the same time, the middle temperature water is continuously taken out using the same system even in the intermediate period such as spring and autumn when the outside air temperature decreases and in winter. The purpose is to contribute to energy saving.

上記の問題を解決するために、本発明の吸収・吸着式ヒートポンプ装置は次の構成を有している。
(1)水を冷媒とする吸収式ヒートポンプと、外気と熱交換をする室外熱交換器と、運転を切り替えるための切替弁と、外気温を測定する外気温度センサとを備えた吸収式ヒートポンプ装置において、前記外気温度センサが測定した温度が設定温度以上では、前記吸収式ヒートポンプに備える第1熱交換器が再生過程を、第2熱交換器が吸収過程を、第3熱交換器が凝縮過程を、第4熱交換器が蒸発過程を行うことで熱交換をして温水を作り出すヒートポンプ運転を行い、前記外気温度センサが測定した温度が前記設定温度未満では、前記吸収式ヒートポンプに備える前記第1熱交換器が再生過程を、前記第4熱交換器が凝縮過程を行う事で熱交換をして温水を作り出すボイラー運転を行うように切り替える制御手段を有することを特徴とする。
In order to solve the above problems, the absorption / adsorption type heat pump apparatus of the present invention has the following configuration.
(1) Absorption heat pump apparatus comprising an absorption heat pump using water as a refrigerant, an outdoor heat exchanger for exchanging heat with the outside air, a switching valve for switching operation, and an outside air temperature sensor for measuring the outside air temperature. If the temperature measured by the outside air temperature sensor is equal to or higher than the set temperature, the first heat exchanger provided in the absorption heat pump performs the regeneration process, the second heat exchanger performs the absorption process, and the third heat exchanger performs the condensation process. The fourth heat exchanger performs a heat pump operation for exchanging heat by performing an evaporation process to produce hot water. When the temperature measured by the outside air temperature sensor is less than the set temperature, the absorption heat pump is provided with the second heat exchanger. It is characterized by comprising control means for switching so that one heat exchanger performs a regeneration process, and the fourth heat exchanger performs a condensation process so as to perform a boiler operation for exchanging heat and generating hot water. .

(2)水を冷媒とする吸着式ヒートポンプと、追い焚き用ボイラーと、外気と熱交換をする室外熱交換器と、運転を切り替えるための切替弁と、外気温を測定する外気温度センサとを備えた吸着式ヒートポンプ装置において、前記外気温度センサが測定した温度が設定温度以上では、前記吸着式ヒートポンプが、脱離、吸着、凝縮、蒸発を行うことで熱交換をして温水を作り出し、前記追い焚き用ボイラーが、温水を更に過熱してヒートポンプ運転を行う第1運転条件と、前記外気温度センサが測定した温度が前記設定温度未満では、前記追い焚き用ボイラーで温水を作り出すボイラー運転を行う第2運転条件と、前記吸着式ヒートポンプに対して、前記切替弁を切り替えることによって、前記第1運転条件と、前記第2運転状態とを、前記設定温度によって切り替える制御手段を有することを特徴とする。 (2) An adsorption heat pump using water as a refrigerant, a reheating boiler, an outdoor heat exchanger for exchanging heat with the outside air, a switching valve for switching operation, and an outside temperature sensor for measuring the outside temperature In the adsorption heat pump device provided, if the temperature measured by the outside air temperature sensor is equal to or higher than a set temperature, the adsorption heat pump performs heat exchange by performing desorption, adsorption, condensation, and evaporation to produce hot water, When the reheating boiler further heats the hot water to perform the heat pump operation, and when the temperature measured by the outside air temperature sensor is lower than the set temperature, the reheating boiler performs the boiler operation for generating hot water. By switching the switching valve for the second operating condition and the adsorption heat pump, the first operating condition and the second operating state are Characterized in that it has a control means for switching the constant temperature.

(3)(1)に記載する吸収式ヒートポンプ装置において、前記設定温度が5〜10℃内の一定の温度である事を特徴とする。
(4)(2)に記載する吸着式ヒートポンプ装置において、前記設定温度が5〜10℃内の一定の温度である事を特徴とする。
(3) The absorption heat pump device described in (1) is characterized in that the set temperature is a constant temperature within 5 to 10 ° C.
(4) In the adsorption heat pump apparatus described in (2), the set temperature is a constant temperature within 5 to 10 ° C.

上記構成を有する吸収・吸着式暖房装置の作用効果について説明する。
本発明の(1)の水を冷媒とする吸収式ヒートポンプと、外気と熱交換をする室外熱交換器と、運転を切り替えるための切替弁と、外気温を測定する外気温度センサとを備えた吸収式ヒートポンプ装置において、前記外気温度センサが測定した温度が設定温度以上では、前記吸収式ヒートポンプに備える第1熱交換器が再生過程を、第2熱交換器が吸収過程を、第3熱交換器が凝縮過程を、第4熱交換器が蒸発過程を行うことで熱交換をして温水を作り出すヒートポンプ運転を行い、前記外気温度センサが測定した温度が前記設定温度未満では、前記吸収式ヒートポンプに備える前記第1熱交換器が再生過程を、前記第4熱交換器が凝縮過程を行う事で熱交換をして温水を作り出すボイラー運転を行うように切り替える制御手段を有することを特徴とするので、デフロスト運転の必要が無く、外気温によらずに、連続的に50〜55℃程度の温水が供給でき、春季、秋季の中間期においては、COP=1.2〜1.3程度のボイラー運転のみの場合よりも高い効率で運転が可能である。
The effect of the absorption / adsorption heating device having the above-described configuration will be described.
The absorption heat pump using water as a refrigerant of (1) of the present invention, an outdoor heat exchanger for exchanging heat with the outside air, a switching valve for switching operation, and an outside temperature sensor for measuring the outside temperature are provided. In the absorption heat pump apparatus, when the temperature measured by the outside air temperature sensor is equal to or higher than a set temperature, the first heat exchanger provided in the absorption heat pump performs the regeneration process, the second heat exchanger performs the absorption process, and the third heat exchange. The heat pump is operated to produce heat by exchanging heat by performing a condensation process in the vessel and an evaporation process in the fourth heat exchanger, and if the temperature measured by the outside air temperature sensor is less than the set temperature, the absorption heat pump The first heat exchanger with which the first heat exchanger is provided has a control means for switching to perform a boiler operation for exchanging heat and generating hot water by performing a regeneration process and the fourth heat exchanger performing a condensation process. Since it is a characteristic, it is not necessary to perform defrost operation, and hot water of about 50 to 55 ° C. can be continuously supplied regardless of the outside air temperature, and COP = 1.2 to 1. Operation is possible with higher efficiency than in the case of only about 3 boiler operation.

本発明の(2)の水を冷媒とする吸着式ヒートポンプと、追い焚き用ボイラーと、外気と熱交換をする室外熱交換器と、運転を切り替えるための切替弁と、外気温を測定する外気温度センサとを備えた吸着式ヒートポンプ装置において、前記外気温度センサが測定した温度が設定温度以上では、前記吸着式ヒートポンプが、脱離、吸着、凝縮、蒸発を行うことで熱交換をして温水を作り出し、前記追い焚き用ボイラーが、温水を更に過熱してヒートポンプ運転を行う第1運転条件と、前記外気温度センサが測定した温度が前記設定温度未満では、前記追い焚き用ボイラーで温水を作り出すボイラー運転を行う第2運転条件と、前記吸着式ヒートポンプに対して、前記切替弁を切り替えることによって、前記第1運転条件と、前記第2運転状態とを、前記設定温度によって切り替える制御手段を有することを特徴とするので、デフロスト運転の必要が無く、外気温によらずに、連続的に50〜55℃程度の温水が供給でき、春季、秋季の中間期においては、COP=1.2〜1.3程度のボイラー運転のみの場合よりも高い効率で運転が可能である。   The adsorption heat pump using water as a refrigerant of (2) of the present invention, a reheating boiler, an outdoor heat exchanger for exchanging heat with the outside air, a switching valve for switching operation, and the outside air for measuring the outside air temperature In an adsorption heat pump apparatus having a temperature sensor, when the temperature measured by the outside air temperature sensor is equal to or higher than a set temperature, the adsorption heat pump performs heat exchange by performing desorption, adsorption, condensation, and evaporation to The reheating boiler produces hot water in the reheating boiler if the reheating boiler further heats the hot water to perform the heat pump operation and the temperature measured by the outside air temperature sensor is lower than the set temperature. The second operating condition for performing boiler operation and the first operating condition and the second operating state by switching the switching valve for the adsorption heat pump. Is controlled by the set temperature, so that there is no need for defrosting operation, and hot water of about 50 to 55 ° C. can be continuously supplied regardless of the outside air temperature. In the intermediate period, operation can be performed with higher efficiency than in the case of only boiler operation with COP = 1.2 to 1.3.

本発明の(3)の、(1)に記載する吸収式ヒートポンプ装置において、前記設定温度が5〜10℃内の一定の温度である事を特徴とするので、外気温が5℃未満になった場合にはボイラー運転を行うので、冷媒としている水が凍結する事が無く、外気温が10℃より高い温度になった場合にはヒートポンプ運転を行うので、効率の良い運転ができ、春季、秋季等の中間期には平均してCOP=1.2〜1.3程度の熱効率で連続的に温水を供給する事ができる。
本発明の(4)の、(2)に記載する吸着式ヒートポンプ装置において、前記設定温度が5〜10℃内の一定の温度である事を特徴とするので、外気温が5℃未満になった場合にはボイラー運転を行うので、冷媒としている水が凍結する事が無く、外気温が10℃より高い温度になった場合にはヒートポンプ運転を行うので、効率の良い運転ができ、春季、秋季等の中間期には平均してCOP=1.2〜1.3程度の熱効率で連続的に温水を供給する事ができる。
In the absorption heat pump apparatus according to (1) of (3) of the present invention, the set temperature is a constant temperature within 5 to 10 ° C., so the outside air temperature is less than 5 ° C. In this case, since the boiler operation is performed, the water used as the refrigerant does not freeze, and the heat pump operation is performed when the outside air temperature is higher than 10 ° C. In the intermediate period such as autumn, it is possible to supply hot water continuously with an average thermal efficiency of COP = 1.2 to 1.3.
In the adsorption heat pump apparatus according to (2) of (4) of the present invention, the set temperature is a constant temperature within 5 to 10 ° C., so the outside air temperature is less than 5 ° C. In this case, since the boiler operation is performed, the water used as the refrigerant does not freeze, and the heat pump operation is performed when the outside air temperature is higher than 10 ° C. In the intermediate period such as autumn, it is possible to supply hot water continuously with an average thermal efficiency of COP = 1.2 to 1.3.

以下、本発明に係る吸収式ヒートポンプ装置について、具現化した1形態をあげ、図面に基づいて詳細に説明する。
図1、図2は本発明の請求項1に係る発明の実施例(以下、実施例1という)の構成図である。図1は実施例1の吸収式ヒートポンプ装置のヒートポンプ運転について説明した構成図である。また、図2は実施例2の吸収式ヒートポンプ装置のボイラー運転について説明した構成図である。これら図1と図2は構成が同じで、その配管経路が異なる。
実施例1の運転フローについては図4にフローチャートにて示し、実施例1の制御構成に関しては図5にブロック図で示している。以下にその説明する。
まず、図1及び図2の構成を説明する。
図1及び図2は、実施例1の吸収式ヒートポンプ装置の構成及び流路が示されており、熱交換をして温水を作る吸収式ヒートポンプ10と、外気と熱交換を行い低温熱源H3に熱を供給する室外熱交換器60と、図1の流路と図2の流路を切り替えるための第1流路切替弁V10と、第2流路切替弁V11と、第3流路切替弁V12を備えている。
また、吸収式ヒートポンプ10は、4つの耐圧容器である、再生器11と、吸収器21と、凝縮器31と、蒸発器41を備え、また、内部を通過する臭化リチウム溶液S10を冷却するための溶液熱交換器50とを備えている。
また、再生器11は第1熱交換器12を備え、吸収器21は第2熱交換器22を備えて、その内部に吸収材である臭化リチウム溶液S10を有している。また、凝縮器31は第3熱交換器32を備え、蒸発器41は第4熱交換器42を備えて、その内部に冷媒である冷媒水S11を有している。
DESCRIPTION OF EMBODIMENTS Hereinafter, an absorption heat pump device according to the present invention will be described in detail with reference to the drawings, taking one embodied form.
1 and 2 are configuration diagrams of an embodiment of the invention according to claim 1 of the present invention (hereinafter referred to as embodiment 1). FIG. 1 is a configuration diagram illustrating the heat pump operation of the absorption heat pump apparatus according to the first embodiment. FIG. 2 is a configuration diagram illustrating boiler operation of the absorption heat pump apparatus according to the second embodiment. These FIG. 1 and FIG. 2 are the same structures, and the piping path | routes differ.
The operation flow of the first embodiment is shown in a flowchart in FIG. 4, and the control configuration of the first embodiment is shown in a block diagram in FIG. This will be described below.
First, the configuration of FIGS. 1 and 2 will be described.
FIGS. 1 and 2 show the configuration and flow path of the absorption heat pump device of the first embodiment. The absorption heat pump 10 that exchanges heat to produce hot water, and the low temperature heat source H3 that exchanges heat with the outside air. An outdoor heat exchanger 60 for supplying heat, a first flow path switching valve V10 for switching the flow path of FIG. 1 and the flow path of FIG. 2, a second flow path switching valve V11, and a third flow path switching valve V12 is provided.
Further, the absorption heat pump 10 includes a regenerator 11, an absorber 21, a condenser 31, and an evaporator 41, which are four pressure-resistant containers, and cools the lithium bromide solution S10 that passes through the inside. And a solution heat exchanger 50.
The regenerator 11 includes a first heat exchanger 12, the absorber 21 includes a second heat exchanger 22, and has a lithium bromide solution S10 that is an absorbent material therein. In addition, the condenser 31 includes a third heat exchanger 32, and the evaporator 41 includes a fourth heat exchanger 42, and has refrigerant water S11 as a refrigerant therein.

そして、各圧力容器同士は、以下のように配管によって接続されている。
再生器11の上方に備える配管P12は凝縮器31の上方に接続され、冷媒蒸気を通過させる。
再生器11の下方に備える配管P13は溶液熱交換器50を介して配管P14に接続され、配管P14は吸収器21に備えられた第1散布管23に接続される。第1散布管23は第2熱交換器22に臭化リチウム溶液S10を滴下する目的で設置されている。
吸収器21の下方に備える配管P15は溶液ポンプ51を介して配管P10に接続され、配管P10は溶液熱交換器50を介して配管P11に接続され、配管P11は再生器11の上方に接続される。
凝縮器31の下方に接続された配管P47は蒸発器41の上方に接続される。
蒸発器41の上方に接続された配管P31は吸収器21の上方に接続される。
蒸発器41の下方に接続された配管P32は冷媒ポンプ52を介して配管P33に接続され、配管P33は第2散布管43に接続される。第2散布管43は第4熱交換器42に冷媒水S11を滴下する目的で設置されている。
And each pressure vessel is connected by piping as follows.
A pipe P12 provided above the regenerator 11 is connected above the condenser 31 and allows the refrigerant vapor to pass therethrough.
The pipe P13 provided below the regenerator 11 is connected to the pipe P14 via the solution heat exchanger 50, and the pipe P14 is connected to the first spray pipe 23 provided in the absorber 21. The first spray tube 23 is installed for the purpose of dropping the lithium bromide solution S10 into the second heat exchanger 22.
The pipe P15 provided below the absorber 21 is connected to the pipe P10 via the solution pump 51, the pipe P10 is connected to the pipe P11 via the solution heat exchanger 50, and the pipe P11 is connected above the regenerator 11. The
A pipe P47 connected to the lower side of the condenser 31 is connected to the upper side of the evaporator 41.
A pipe P31 connected above the evaporator 41 is connected above the absorber 21.
The pipe P32 connected to the lower side of the evaporator 41 is connected to the pipe P33 via the refrigerant pump 52, and the pipe P33 is connected to the second spray pipe 43. The second spray pipe 43 is installed for the purpose of dripping the coolant water S11 into the fourth heat exchanger 42.

これらの機器を有する吸収式ヒートポンプ装置は、以下に説明する図5のブロック図に示されるように接続され、制御される。
実施例1の吸収式ヒートポンプ装置の制御における構成は、熱交換をして温水を供給する吸収式ヒートポンプ10と、高温熱源用ボイラー70と、吸収式ヒートポンプ10の制御を行う熱源機運転制御盤20、運転状態等によって流路切り替えの制御を行う切替制御装置30と、低温熱源の温度を監視するための熱源温度センサ61と、ヒートポンプ運転とボイラー運転を切り替えるために外気温を監視する外気温度センサ62を備える。
吸収式ヒートポンプ10と熱源機運転制御盤20、熱源機運転制御盤20と切替制御装置30、熱源機運転制御盤20と高温熱源用ボイラー70とは双方向に信号のやり取りができるように接続される。
熱源温度センサ61、外気温度センサ62は切替制御装置30に入力信号を送る事ができるように接続される。
第1流路切替弁V10、第2流路切替弁V11、第3流路切替弁V12、は切替制御装置30の信号で動作できるように接続される。
室外熱交換器60は切替制御装置30と双方向に信号のやり取りができるように接続される。
The absorption heat pump apparatus having these devices is connected and controlled as shown in a block diagram of FIG. 5 described below.
The configuration in the control of the absorption heat pump apparatus of the first embodiment includes an absorption heat pump 10 that exchanges heat and supplies hot water, a high-temperature heat source boiler 70, and a heat source machine operation control panel 20 that controls the absorption heat pump 10. , A switching control device 30 that controls flow path switching according to an operating state, a heat source temperature sensor 61 for monitoring the temperature of a low-temperature heat source, and an outside air temperature sensor that monitors the outside air temperature for switching between heat pump operation and boiler operation 62.
The absorption heat pump 10 and the heat source unit operation control panel 20, the heat source unit operation control panel 20 and the switching control device 30, and the heat source unit operation control panel 20 and the high-temperature heat source boiler 70 are connected so that signals can be exchanged in both directions. The
The heat source temperature sensor 61 and the outside air temperature sensor 62 are connected so that an input signal can be sent to the switching control device 30.
The first flow path switching valve V <b> 10, the second flow path switching valve V <b> 11, and the third flow path switching valve V <b> 12 are connected so as to be operable by a signal from the switching control device 30.
The outdoor heat exchanger 60 is connected to the switching control device 30 so that signals can be exchanged in both directions.

次に、図1の吸収式ヒートポンプ装置が、第1運転状態であるヒートポンプ運転を行う場合の配管経路を、以下に説明する。
高温熱源入口E10に接続される配管P35は、再生器11に備えられる第1熱交換器12を介して配管P36に接続され、配管P36は高温熱源出口E11に接続され、その内部を高温熱源H1が通過する。
温水入口E12に接続される、配管P23は第3流路切替弁V12を介して配管P25に接続され、配管P25は第2熱交換器22を介して配管P26に接続され、配管P26は第3熱交換器32を介して配管P27に接続され、配管P27は温水出口E13に接続され、その内部を温水H2が通過する。
室外熱交換器60に接続される、配管P33は第1流路切替弁V10を介して配管P18に接続され、配管P18は熱源ポンプ53を介して配管P19に接続され、配管P19は第4熱交換器42を介して配管P20に接続され、配管P20は第2流路切替弁V11を介して配管P34は室外熱交換器60を介して配管P33に接続され、内部を通過する液体の冷却を行う。
Next, the piping path when the absorption heat pump apparatus of FIG. 1 performs the heat pump operation which is the first operation state will be described below.
The pipe P35 connected to the high temperature heat source inlet E10 is connected to the pipe P36 via the first heat exchanger 12 provided in the regenerator 11, and the pipe P36 is connected to the high temperature heat source outlet E11, and the inside thereof is connected to the high temperature heat source H1. Pass through.
The pipe P23 connected to the hot water inlet E12 is connected to the pipe P25 via the third flow path switching valve V12, the pipe P25 is connected to the pipe P26 via the second heat exchanger 22, and the pipe P26 is the third one. It is connected to the pipe P27 via the heat exchanger 32, the pipe P27 is connected to the hot water outlet E13, and the hot water H2 passes through the inside thereof.
The pipe P33 connected to the outdoor heat exchanger 60 is connected to the pipe P18 via the first flow path switching valve V10, the pipe P18 is connected to the pipe P19 via the heat source pump 53, and the pipe P19 is the fourth heat. The pipe P20 is connected to the pipe P20 via the exchanger 42, the pipe P20 is connected to the pipe P33 via the outdoor heat exchanger 60, and the liquid passing through the inside is cooled. Do.

次に、図2の吸収式ヒートポンプ装置が、第2運転状態であるボイラー運転を行う場合の配管経路を、以下に説明する。
高温熱源H1の通過経路は図1と同様である。
温水入口E12に接続される、配管P23は第3流路切替弁V12を介して配管P29に接続され、配管P29は第1流路切替弁V10を介して配管P18に接続され、配管P18は熱源ポンプ53を介して配管P19に接続され、配管P19は第4熱交換器42を介して配管P20に接続され、配管P20は第2流路切替弁V11を介して配管P30に接続され、配管P30は配管P27に接続され、配管P27は温水出口E13に接続されて、内部に温水H2が通過する。
Next, the piping path when the absorption heat pump apparatus of FIG. 2 performs the boiler operation which is the second operation state will be described below.
The passage route of the high-temperature heat source H1 is the same as that in FIG.
The pipe P23 connected to the hot water inlet E12 is connected to the pipe P29 via the third flow path switching valve V12, the pipe P29 is connected to the pipe P18 via the first flow path switching valve V10, and the pipe P18 is a heat source. The pipe P19 is connected to the pipe P19 via the pump 53, the pipe P19 is connected to the pipe P20 via the fourth heat exchanger 42, the pipe P20 is connected to the pipe P30 via the second flow path switching valve V11, and the pipe P30. Is connected to the pipe P27, the pipe P27 is connected to the hot water outlet E13, and the hot water H2 passes inside.

これらの、図1、図2に示される吸収式ヒートポンプ装置は、外気温度センサ62によって測定される外気温度によって、ヒートポンプ運転と、ボイラー運転とに切り替えられる。次に、それぞれの運転について説明する。
運転状態は外気温度センサ62で測定される外気温度によって切り替え、外気温度が設定温度Tになってから一定時間経過しても同じ状態であった場合、運転状態を切り替える。
設定温度Tはおおよそ5〜10℃の間であり、ここでは設定温度Tを7℃としておく。これはヒートポンプ運転と、ボイラー運転のそれぞれの運転効率の良い温度で運転するための境界値で、経験上7℃程度が良いと判断しているためである。
外気温度が設定温度T以上の時、第1流路切替弁V10乃至第3流路切替弁V12を操作して図1に示す流路に切り替えヒートポンプ運転を行う。
外気温度が設定温度T未満の時、第1流路切替弁V10乃至第3流路切替弁V12を操作して図2に示す流路に切り替えボイラー運転を行う。
These absorption heat pump apparatuses shown in FIGS. 1 and 2 are switched between a heat pump operation and a boiler operation depending on the outside air temperature measured by the outside air temperature sensor 62. Next, each operation will be described.
The operation state is switched according to the outside air temperature measured by the outside air temperature sensor 62, and the operation state is switched when the outside air temperature remains in the same state even after a predetermined time has elapsed after reaching the set temperature T.
The set temperature T is approximately between 5 and 10 ° C., and here the set temperature T is set to 7 ° C. This is a boundary value for operating at a temperature with good operating efficiency in each of the heat pump operation and the boiler operation, and it is determined from experience that about 7 ° C. is good.
When the outside air temperature is equal to or higher than the set temperature T, the first flow path switching valve V10 to the third flow path switching valve V12 are operated to switch to the flow path shown in FIG.
When the outside air temperature is lower than the set temperature T, the first flow path switching valve V10 to the third flow path switching valve V12 are operated to switch to the flow path shown in FIG.

実際の制御側の運転の流れを図4に基づいて説明する。
図4は自動モードの運転のフローである。各ステップ(以下、Sと略記する)の順に説明してゆく。
まず、運転開始してから、S1で外気温のチェックを行う指令を外気温度センサ62に出力する。S2で外気温度センサ62からのデータと設定温度T1(7〜9℃)とを比較して、気温が設定温度T1より高い場合(S2:Yes)、外気の熱を取り込んでの運転が可能であるとして、S3のヒートポンプ運転へ移行する。
S4では、各流路切替弁を作動させ、図1に示すヒートポンプ運転用の流路になるように設定する。各流路切替弁の切替完了後、S8にて低温熱源となる流体を流路内で循環させるために熱源ポンプ53を作動させる。
The actual operation flow on the control side will be described with reference to FIG.
FIG. 4 is an operation flow in the automatic mode. Each step (hereinafter abbreviated as S) will be described in this order.
First, after the operation is started, a command for checking the outside air temperature is output to the outside air temperature sensor 62 in S1. In S2, the data from the outside air temperature sensor 62 is compared with the set temperature T1 (7 to 9 ° C.), and when the air temperature is higher than the set temperature T1 (S2: Yes), the operation with taking in the heat of the outside air is possible. As there is, it shifts to the heat pump operation of S3.
In S4, each flow path switching valve is operated and set so as to be a heat pump operation flow path shown in FIG. After completing the switching of each flow path switching valve, the heat source pump 53 is operated in order to circulate a fluid as a low-temperature heat source in the flow path in S8.

一方、S2で外気温度センサ62のデータと設定温度T1の温度以下であった場合(S2:No)、外気の熱を取り込んで運転する事は困難であるとして、S6にてボイラー運転に移行、各切替弁を作動させ、S7にて図2に示すボイラー運転用の流路になるようにする。各流路切替弁の切替完了後、S8に合流し、熱源ポンプ53を作動させる。
S10では高温熱源用の高温熱源用ボイラー70の着火準備を行う。ここでは、プロテクトリレーを介して着火・燃焼確認を行い高温熱源用の高温熱源用ボイラー70の着火を行う。なお、高温熱源用ボイラー70を用いずに他の排熱を高温熱源に用いる場合には、ここでその準備作業を完了する。
ここまでのステップで起動運転準備が終了する。
On the other hand, if the temperature of the outside air temperature sensor 62 is equal to or lower than the set temperature T1 in S2 (S2: No), it is difficult to operate by taking in the heat of the outside air, and the operation shifts to boiler operation in S6. Each switching valve is operated so that the flow path for boiler operation shown in FIG. 2 is obtained in S7. After completion of switching of each flow path switching valve, the flow is merged to S8 and the heat source pump 53 is operated.
In S10, the high temperature heat source boiler 70 for ignition is prepared for ignition. Here, the ignition / combustion confirmation is performed via the protection relay, and the high-temperature heat source boiler 70 for the high-temperature heat source is ignited. When other exhaust heat is used for the high-temperature heat source without using the high-temperature heat source boiler 70, the preparation work is completed here.
The start operation preparation is completed by the steps so far.

次に、S11にてシステムにおける異常検出を行う。再生器の温度やインターロック関係の保護回路の確認等が行われる。なお、実際のシステムでは、常時これらの異常はモニターして異常が発生すれば異常停止を速やかに行う事になるが、フローの関係上図4では、ここでチェックを行うように表している。
ここで問題があれば(S11:Yes)、S23の停止処理に、問題が無ければ(S11:No)、S12の運転状態のチェックに進む。
S12にてヒートポンプ運転を行っているかどうかをチェックし、ヒートポンプ運転中であれば(S13:Yes)、S13にて外気温度を外気温度センサ62にて確認する。
S14にて、外気温が設定温度T2(7℃)未満である状態が30分以上維持されているかをチェックする。なお、ここでは30分以上と設定してあるが、各種条件により時間の設定の変更が可能であるものとする。そして、外気温が設定温度T2未満である状態が30分以上維持される場合、外部からのヒートポンプによる熱の取り入れができない状態と判断して(S14:Yes)、S22にてボイラー運転に切り替える。一方、外気温が設定温度T2以上であるか、外気温が設定温度T2未満である状態が30分以上続いていない場合は(S14:No)S15に進む。
S15にて冷温水器温調WTの判定として、温水入口E12及び温水出口E13に設置した温度計にて温水出入口温度を確認し、設定温度(55℃)以上であれば(S15:NG)、S16の温調停止処理に入る。ここでは、内部温度の異常上昇を避け、温水出口E13での温水H2温度を一定に保つために、高温熱源H1の供給を停止する。本フローでは高温熱源用ボイラー70から熱供給を行っているため、高温熱源用ボイラー70の燃焼を停止する。
一方S15にて、設定温度(52℃)以下であると判断した場合(S15:OK)には、S17に進み、熱源温度センサで低温熱源H3の水の実際の温度の確認を行い、S18にて設定温度T3(8〜10℃)以上かどうかを判断する。設定温度T3以上であった場合は(S18:Yes)、S19にて室外熱交換器60の運転を開始し、その後S11に戻る。そうでない場合は(S18:No)直接S11に戻る。
なお、S12にてボイラー運転と判断した場合(S12:No)、S20にて冷温水器温調WTの判定として、温水入口E12及び温水出口E13に設置した温度計にて温水出入口温度を確認し、設定温度以上(55℃)であれば(S20:NG)、S21にて温調停止処理に入る。ここでは、内部温度の異常上昇を避けるために、高温熱源H1の供給を停止する。本フローでは高温熱源用ボイラー70から熱供給を行っているため、高温熱源用ボイラー70の燃焼を停止する。
S20にて設定温度以下(52℃)であれば(S20:OK)、S11に戻る。
また、S14にて外気温が設定温度T2未満である状態が30分以上維持されている(S14:Yes)と判断した場合は、S22に進み、ヒートポンプ運転からボイラー運転に切り替える準備を行う。その後、S6に戻り、ボイラー運転に入る。
Next, abnormality detection in the system is performed in S11. Confirmation of the temperature of the regenerator and protection circuit related to interlock is performed. In an actual system, these abnormalities are constantly monitored, and if an abnormality occurs, the abnormal stop is promptly performed. However, because of the flow, FIG. 4 shows that the check is performed here.
If there is a problem here (S11: Yes), if there is no problem in the stop process of S23 (S11: No), it will progress to the check of the operation state of S12.
It is checked whether the heat pump operation is performed in S12. If the heat pump operation is being performed (S13: Yes), the outside air temperature sensor 62 confirms the outside air temperature in S13.
In S14, it is checked whether or not the state where the outside air temperature is lower than the set temperature T2 (7 ° C.) is maintained for 30 minutes or more. Here, it is set as 30 minutes or more, but it is assumed that the time setting can be changed according to various conditions. Then, when the state where the outside air temperature is lower than the set temperature T2 is maintained for 30 minutes or more, it is determined that heat cannot be taken from the outside by the heat pump (S14: Yes), and the boiler operation is switched at S22. On the other hand, if the outside air temperature is equal to or higher than the set temperature T2 or the outside air temperature is less than the set temperature T2 does not continue for 30 minutes or longer (S14: No), the process proceeds to S15.
As a determination of the chiller / heater temperature control WT in S15, the hot water inlet / outlet temperature is confirmed with thermometers installed at the hot water inlet E12 and the hot water outlet E13, and if it is equal to or higher than the set temperature (55 ° C.) (S15: NG), The temperature control stop process of S16 is entered. Here, the supply of the high-temperature heat source H1 is stopped in order to avoid an abnormal rise in the internal temperature and keep the temperature of the hot water H2 at the hot water outlet E13 constant. In this flow, since heat is supplied from the high-temperature heat source boiler 70, the combustion of the high-temperature heat source boiler 70 is stopped.
On the other hand, if it is determined in S15 that the temperature is equal to or lower than the set temperature (52 ° C.) (S15: OK), the process proceeds to S17, where the actual temperature of the water in the low-temperature heat source H3 is confirmed by the heat source temperature sensor, and in S18 To determine whether the temperature is equal to or higher than the set temperature T3 (8 to 10 ° C.). When the temperature is equal to or higher than the set temperature T3 (S18: Yes), the operation of the outdoor heat exchanger 60 is started in S19, and then the process returns to S11. Otherwise (S18: No), the process directly returns to S11.
When it is determined that the boiler operation is performed in S12 (S12: No), the temperature of the hot water outlet E12 and the temperature of the hot water outlet E13 are confirmed by the thermometers installed in the hot water outlet E12 and the hot water outlet E13 as the determination of the temperature control WT in S20. If the temperature is equal to or higher than the set temperature (55 ° C.) (S20: NG), the temperature adjustment stop process is started in S21. Here, in order to avoid an abnormal increase in the internal temperature, the supply of the high-temperature heat source H1 is stopped. In this flow, since heat is supplied from the high-temperature heat source boiler 70, the combustion of the high-temperature heat source boiler 70 is stopped.
If it is below setting temperature (52 degreeC) in S20 (S20: OK), it will return to S11.
If it is determined in S14 that the outside air temperature is lower than the set temperature T2 for 30 minutes or longer (S14: Yes), the process proceeds to S22, and preparation for switching from the heat pump operation to the boiler operation is performed. Then, it returns to S6 and starts boiler operation.

以上、大まかな制御の流れを説明したので、これに基づいて、次に実施例1の吸収式ヒートポンプ装置の作動形態について以下に説明を行う。
ヒートポンプ運転については以下の通りである。
(1)第1熱交換器12に高温熱源出口E11から85〜90℃の高温熱源H1が投入されると、再生器11内にある臭化リチウム溶液S10は、第1熱交換器12から熱を取り出すことにより、臭化リチウム溶液S10内に溶け込んだ冷媒水S11を蒸発させ、高温で高濃度の臭化リチウム溶液S10となる。高温で高濃度となった臭化リチウム溶液S10は配管P13を通って、溶液熱交換器50と配管P14を通過し、吸収器21に備えられた第1散布管23より第2熱交換器22に滴下される。
(2)第2熱交換器22には温水入口E12から投入される40〜45℃の温水H2が通過しているので、第1散布管23より滴下された第2熱交換器22付近の高濃度の臭化リチウム溶液S10は、蒸発器41から供給される蒸気を吸って希釈される同時に、温水H2に熱を放出する。吸収器21に溜まった臭化リチウム溶液S10は、溶液ポンプ51により、配管P15、溶液熱交換器50、配管P11を通過して、再生器11に供給される。
The rough control flow has been described above. Based on this, the operation mode of the absorption heat pump apparatus according to the first embodiment will be described below.
The heat pump operation is as follows.
(1) When the high-temperature heat source H1 of 85 to 90 ° C. is input to the first heat exchanger 12 from the high-temperature heat source outlet E11, the lithium bromide solution S10 in the regenerator 11 is heated from the first heat exchanger 12. As a result, the refrigerant water S11 dissolved in the lithium bromide solution S10 is evaporated to become a high concentration lithium bromide solution S10 at a high temperature. The lithium bromide solution S10 having a high concentration at high temperature passes through the pipe P13, passes through the solution heat exchanger 50 and the pipe P14, and passes through the second heat exchanger 22 from the first spray pipe 23 provided in the absorber 21. It is dripped.
(2) Since the 40-45 degreeC warm water H2 thrown in from the warm water inlet E12 has passed through the 2nd heat exchanger 22, the height of the 2nd heat exchanger 22 vicinity dripped from the 1st spray pipe 23 is passed. The lithium bromide solution S10 having a concentration is diluted by sucking the vapor supplied from the evaporator 41, and at the same time releases heat to the hot water H2. The lithium bromide solution S10 accumulated in the absorber 21 is supplied to the regenerator 11 by the solution pump 51 through the pipe P15, the solution heat exchanger 50, and the pipe P11.

(3)第3熱交換器32を備える凝縮器31では、再生器11から供給される蒸気が第3熱交換器32によって熱を奪われる事で凝縮して冷媒水S11となり、温水H2に更に熱を与える。
(4)第4熱交換器42内には室外熱交換器60から供給される15〜30℃の低温熱源H3が通過しており、配管P47を通過して蒸発器41に供給される凝縮した冷媒水S11は、低温熱源H3より熱を奪って蒸発する。蒸発器41に溜まった冷媒水S11は、冷媒ポンプ52によって、配管P32、配管P33を通過して、第2散布管43より、第4熱交換器42上に滴下され、内部を通過する液体の冷却を行う。
(3) In the condenser 31 including the third heat exchanger 32, the steam supplied from the regenerator 11 is condensed by depriving of heat by the third heat exchanger 32 to become the refrigerant water S11, and further into the hot water H2. Give heat.
(4) A low temperature heat source H3 of 15 to 30 ° C. supplied from the outdoor heat exchanger 60 passes through the fourth heat exchanger 42, and is condensed through the pipe P47 and supplied to the evaporator 41. The refrigerant water S11 evaporates by taking heat from the low-temperature heat source H3. The refrigerant water S11 accumulated in the evaporator 41 passes through the piping P32 and the piping P33 by the refrigerant pump 52, is dripped onto the fourth heat exchanger 42 from the second spray pipe 43, and the liquid passing through the inside thereof Cool down.

実施例1の吸収式ヒートポンプ装置のボイラー運転については以下の通りである。
(1)第1熱交換器12に高温熱源出口E11から85〜90℃の高温熱源H1が投入されると、再生器11内にある溶液は、第1熱交換器12から熱を取り出すことにより、溶液内に溶け込んだ冷媒水S11を蒸発させ、高温で高濃度の臭化リチウム溶液S10となる。臭化リチウム溶液S10は配管P13を通って、溶液熱交換器50と配管P14を通過し、吸収器21に備えられた第1散布管23より第2熱交換器22に滴下される。
(2)第4熱交換器42内には温水入口E12から供給される40〜45℃の温水H2が通過しており、再生器11から蒸発器41に供給される蒸気は、温水H2に熱を与えて凝縮する。なお、凝縮した冷媒水S11は、図示しない配管によって、再生器11に運ばれる.
The boiler operation of the absorption heat pump apparatus of Example 1 is as follows.
(1) When 85-90 degreeC high temperature heat source H1 is thrown into the 1st heat exchanger 12 from high temperature heat source exit E11, the solution in the regenerator 11 takes out heat from the 1st heat exchanger 12. Then, the refrigerant water S11 dissolved in the solution is evaporated to become a high-concentration lithium bromide solution S10 at a high temperature. The lithium bromide solution S <b> 10 passes through the pipe P <b> 13, passes through the solution heat exchanger 50 and the pipe P <b> 14, and is dropped onto the second heat exchanger 22 from the first spray pipe 23 provided in the absorber 21.
(2) Hot water H2 of 40 to 45 ° C. supplied from the hot water inlet E12 passes through the fourth heat exchanger 42, and the steam supplied from the regenerator 11 to the evaporator 41 is heated to the hot water H2. To condense. The condensed refrigerant water S11 is carried to the regenerator 11 by a pipe (not shown).

このように、運転状態を図4に従って切り替えながら運転を連続的に続ける事で、春季、秋季等の中間期においても効率の良い熱交換が行え、トータルのCOPの向上に結びつく。
図6は、従来技術1の吸収式ヒートポンプ装置の運転効率L1と、従来技術2の吸収式ヒートポンプのボイラー運転の運転効率L2と、実施例1の吸収式ヒートポンプ装置の運転効率L3を模式的に示したグラフである。
従来技術1の吸収式ヒートポンプ装置の運転効率L1は5℃未満付近になると、冷媒水S11の凍結によって、運転が続けられなくなる。また、従来技術2の吸収式ヒートポンプのボイラー運転の運転効率L2では、常に1以下の運転効率となる。一方、実施例1の吸収式ヒートポンプ装置の運転効率L3は、設定温度Tでボイラー運転とヒートポンプ運転を切り替える事で、一連続運転を行う事が可能となる。
特にその効力を発揮する、春や秋といった寒暖の差のある時期で、外気温により最適な運転モードに切り替えて運転を行うので、平均を取るとCOP=1.2〜1.3程度の効率の良い運転が連続的に行なえる。
Thus, by continuously operating while switching the operating state according to FIG. 4, efficient heat exchange can be performed even in the intermediate period such as spring and autumn, leading to an improvement in total COP.
FIG. 6 schematically shows the operating efficiency L1 of the absorption heat pump device of the prior art 1, the operating efficiency L2 of the boiler operation of the absorption heat pump of the conventional technology 2, and the operating efficiency L3 of the absorption heat pump device of the first embodiment. It is the shown graph.
When the operating efficiency L1 of the absorption heat pump device of the prior art 1 is less than 5 ° C., the operation cannot be continued due to the freezing of the refrigerant water S11. Moreover, in the operation efficiency L2 of the boiler operation of the absorption heat pump of the conventional technique 2, the operation efficiency is always 1 or less. On the other hand, the operation efficiency L3 of the absorption heat pump device of the first embodiment can be performed continuously by switching between the boiler operation and the heat pump operation at the set temperature T.
In particular, at the time when there is a difference in temperature, such as spring or autumn, where the effect is effective, the operation is switched to the optimum operation mode depending on the outside temperature, so the average efficiency is about COP = 1.2 to 1.3 Can be operated continuously.

次に請求項2に係る発明の実施形態(以下、実施例2という)について説明する。
実施例1で示したような運転の形態は、吸着式ヒートポンプを用いても行う事が可能である。図3に吸着式ヒートポンプを用いた実施例2の説明をする。
図3は給湯用の吸着式ヒートポンプ装置であり、吸着式ヒートポンプ80と、室外熱交換器60と、第4流路切替弁V13と、熱回収機85と、追い焚き用ボイラー90と、貯湯槽95と、温水ポンプ54とを備えている。
吸着式ヒートポンプ80は、室外熱交換器60から供給される低温熱源H3と、高温熱源入口E10より供給される高温熱源H1と、貯湯槽95から供給される温水H2を熱交換して、温水H2に熱をくみ上げる働きをする。その内部には第1熱交換器15と、第2熱交換器25と、第3熱交換器45を備えており、吸着剤としてシリカゲルS12、冷媒として冷媒水S11を用いている。
室外熱交換器60は、第3熱交換器45に接続され、低温熱源H3を供給する。
熱回収機85は、第4熱交換器35と第5熱交換器16を備え、高温熱源H1と温水H2の2段階目の熱交換を行い温水H2にさらに熱をくみ上げる。
追い焚き用ボイラー90では、運転の切替によって、温水H2の追い焚きを行う。
貯湯槽95では、吸着式ヒートポンプ80や、熱回収機85、追い焚き用ボイラー90にて暖められた温水H2を蓄え、給水口E16と給湯口E17と接続している。
これらの機器を有する吸着式ヒートポンプ装置は、上記した図7のブロック図の説明に示したものとほぼ同様に接続され制御される。
Next, an embodiment of the invention according to claim 2 (hereinafter referred to as Example 2) will be described.
The mode of operation as shown in Example 1 can also be performed using an adsorption heat pump. FIG. 3 illustrates Example 2 using an adsorption heat pump.
FIG. 3 shows an adsorption heat pump device for hot water supply, an adsorption heat pump 80, an outdoor heat exchanger 60, a fourth flow path switching valve V13, a heat recovery device 85, a reheating boiler 90, and a hot water storage tank. 95 and a hot water pump 54.
The adsorption heat pump 80 exchanges heat between the low-temperature heat source H3 supplied from the outdoor heat exchanger 60, the high-temperature heat source H1 supplied from the high-temperature heat source inlet E10, and the hot water H2 supplied from the hot water storage tank 95 to obtain hot water H2. It works to pump up heat. Inside, a first heat exchanger 15, a second heat exchanger 25, and a third heat exchanger 45 are provided, and silica gel S12 is used as an adsorbent and refrigerant water S11 is used as a refrigerant.
The outdoor heat exchanger 60 is connected to the third heat exchanger 45 and supplies a low-temperature heat source H3.
The heat recovery machine 85 includes the fourth heat exchanger 35 and the fifth heat exchanger 16, and performs heat exchange at the second stage of the high-temperature heat source H1 and the hot water H2 to further heat up the hot water H2.
The reheating boiler 90 retreats the hot water H2 by switching the operation.
In the hot water storage tank 95, hot water H2 warmed by the adsorption heat pump 80, the heat recovery machine 85, and the reheating boiler 90 is stored, and is connected to the water supply port E16 and the hot water supply port E17.
The adsorption heat pump apparatus having these devices is connected and controlled in substantially the same manner as that shown in the block diagram of FIG.

次に、図3に示す実施例2の吸着式ヒートポンプ装置の配管経路を、以下に説明する。
高温熱源入口E10に接続される配管P50は、吸着式ヒートポンプ80に備えられる第1熱交換器15を介して配管P51に接続され、配管P51は熱回収機85に備えられる第5熱交換器16を介して配管P52に接続され、配管P52は高温熱源出口E11に接続され、その内部を高温熱源H1が通過する。
貯湯槽95に備えられる温水入口E12は、配管P55に接続され、配管P55は温水ポンプ54を介して配管P56に接続され、配管P56は第2熱交換器25を介して配管P57に接続され、配管P57は第4流路切替弁V13を介して配管P59に接続され、配管P59は熱回収機85に備えられる第4熱交換器35を介して配管P60に接続され、配管P60は追い焚き用ボイラー90を介して配管P61に接続され、配管P61は貯湯槽95に備えられる温水出口E13に接続し、内部を温水H2が通過する。この流路を通る場合はヒートポンプ運転を行う。なお、配管P56は配管P58に分岐し、配管P58は第4流路切替弁V13を介して配管P59に合流して、流路切替により、その内部を温水H2が通過する。この流路を通る場合はボイラー運転を行う。
給湯は、貯湯槽95から配管P54に接続される給湯口E17より供給され、使用した分を給水口E16より配管P53を介して貯湯槽95に給水され、貯湯槽95に蓄えられる温水H2の水位を保つ。
Next, the piping path of the adsorption heat pump apparatus of Example 2 shown in FIG. 3 will be described below.
The pipe P50 connected to the high temperature heat source inlet E10 is connected to the pipe P51 through the first heat exchanger 15 provided in the adsorption heat pump 80, and the pipe P51 is provided in the heat recovery machine 85. The pipe P52 is connected to the high temperature heat source outlet E11 through which the high temperature heat source H1 passes.
A hot water inlet E12 provided in the hot water storage tank 95 is connected to the pipe P55, the pipe P55 is connected to the pipe P56 via the hot water pump 54, and the pipe P56 is connected to the pipe P57 via the second heat exchanger 25, The pipe P57 is connected to the pipe P59 via the fourth flow path switching valve V13, the pipe P59 is connected to the pipe P60 via the fourth heat exchanger 35 provided in the heat recovery machine 85, and the pipe P60 is for reheating. It is connected to the pipe P61 via the boiler 90, the pipe P61 is connected to a hot water outlet E13 provided in the hot water storage tank 95, and the hot water H2 passes through the inside. When passing through this flow path, heat pump operation is performed. The pipe P56 branches to the pipe P58, the pipe P58 merges with the pipe P59 via the fourth flow path switching valve V13, and the hot water H2 passes through the inside by switching the flow path. When passing through this flow path, boiler operation is performed.
Hot water is supplied from a hot water tank 95 through a hot water supply port E17 connected to the pipe P54, and the used water is supplied from the water supply port E16 to the hot water tank 95 through the pipe P53. Keep.

この構成における吸着式ヒートポンプ装置の動作は、基本的には実施例1で説明した吸収式ヒートポンプ装置と同様で、外気温度センサ62によって外気温度よってヒートポンプ運転と、ボイラー運転という2つの運転状態を変化させるところに特徴がある。以下にその運転状態を説明する。
運転状態は外気温度センサ62で測定される外気温度によって切り替え、外気温度が設定温度Tになってから一定時間経過しても同じ状態であった場合、運転状態を切り替える。設定温度Tはおおよそ5〜10℃の間であり、ここでは設定温度Tを7℃としておく。これはヒートポンプ運転と、ボイラー運転のそれぞれの効率の良い温度で運転するための境界値で、経験上7℃程度が良いと判断しているためである。
外気温度が設定温度T以上の時、第4流路切替弁V13を操作してヒートポンプ運転を行う。
外気温度が設定温度T未満の時、第4流路切替弁V13を操作して流路を切り替え、ボイラー運転を行う。
なお、図3の構成の制御側の運転の流れは図4と同様であり、実施例1にて説明しているので省略する。
The operation of the adsorption heat pump apparatus in this configuration is basically the same as that of the absorption heat pump apparatus described in the first embodiment, and the two operating states of the heat pump operation and the boiler operation are changed by the outside air temperature sensor 62 depending on the outside air temperature. There is a feature in making it. The operation state will be described below.
The operation state is switched according to the outside air temperature measured by the outside air temperature sensor 62, and the operation state is switched when the outside air temperature remains in the same state even after a predetermined time has elapsed after reaching the set temperature T. The set temperature T is approximately between 5 and 10 ° C., and here the set temperature T is set to 7 ° C. This is because it is a boundary value for operating at efficient temperatures of the heat pump operation and the boiler operation, and it is determined from experience that about 7 ° C. is good.
When the outside air temperature is equal to or higher than the set temperature T, the fourth flow path switching valve V13 is operated to perform the heat pump operation.
When the outside air temperature is lower than the set temperature T, the fourth flow path switching valve V13 is operated to switch the flow path, and the boiler operation is performed.
The operation flow on the control side in the configuration of FIG. 3 is the same as that of FIG.

実施例2のヒートポンプ運転については以下の通りである。
(1)吸着式ヒートポンプ80において、第1熱交換器15に、85℃程度の高温の熱媒体(以下、高温熱源H1と称する)を通じる。第1熱交換器15に高温熱源H1を通じると、第1熱交換器15に備えられた冷媒水S11が吸着された状態のシリカゲルS12が、第1熱交換器12から熱を得る。それによって、シリカゲルS12に吸着されていた冷媒水S11が脱離する。
(2)同時に、第2熱交換器25に、40℃程度の中温度の水(段階によって20℃〜50℃程度まで変化する。以下、〜℃程度の温水H2と称する)を通じる。第2熱交換器25に25℃程度の温水H2を通じると、第2熱交換器25が周囲の熱を奪い、冷媒水S11を凝縮させる。この過程を経た結果、第2熱交換器25より45℃程度の温水H2が得られる。
The heat pump operation of Example 2 is as follows.
(1) In the adsorption heat pump 80, a high-temperature heat medium (hereinafter referred to as a high-temperature heat source H1) of about 85 ° C. is passed through the first heat exchanger 15. When the high-temperature heat source H <b> 1 is passed through the first heat exchanger 15, the silica gel S <b> 12 in the state where the refrigerant water S <b> 11 provided in the first heat exchanger 15 is adsorbed obtains heat from the first heat exchanger 12. Thereby, the coolant water S11 adsorbed on the silica gel S12 is desorbed.
(2) At the same time, the medium temperature water of about 40 ° C. (which changes from about 20 ° C. to about 50 ° C. depending on the stage, hereinafter referred to as hot water H 2 of about − ° C.) is passed through the second heat exchanger 25. When hot water H2 of about 25 ° C. is passed through the second heat exchanger 25, the second heat exchanger 25 takes away ambient heat and condenses the refrigerant water S11. As a result of this process, warm water H2 of about 45 ° C. is obtained from the second heat exchanger 25.

(3)同時に、第3熱交換器45に10℃程度の熱源(以下、低温熱源H3と称する)を通じる。第3熱交換器45に低温熱源H3を通じると、周囲の冷媒水S11が、低温熱源H3から熱を得て蒸発する。この過程を経た結果、第3熱交換器45より、45℃程度の温水H2が得られる。
(4)吸着式ヒートポンプ80を出た温水H2は、熱回収機85を通過することで更に熱を得る。熱回収機85に備えられた、高温熱源H1の通過する第5熱交換器16と、温水H2の通過する第4熱交換器35で熱交換を行うので、第4熱交換器35を通過する温水H2は高温熱源H1より熱を得て、50℃程度の温水H2となる。
(5)その後、必要に応じて給湯機用ボイラー90にて追い焚きを行い、貯湯槽95に供給される。
(3) At the same time, a heat source of about 10 ° C. (hereinafter referred to as a low-temperature heat source H3) is passed through the third heat exchanger 45. When the low temperature heat source H3 is passed through the third heat exchanger 45, the surrounding refrigerant water S11 gains heat from the low temperature heat source H3 and evaporates. As a result of this process, warm water H2 of about 45 ° C. is obtained from the third heat exchanger 45.
(4) The hot water H <b> 2 that has exited the adsorption heat pump 80 passes through the heat recovery machine 85 to obtain further heat. Since heat exchange is performed by the fifth heat exchanger 16 provided in the heat recovery machine 85 through which the high temperature heat source H1 passes and the fourth heat exchanger 35 through which the hot water H2 passes, the fourth heat exchanger 35 is passed. The warm water H2 obtains heat from the high temperature heat source H1 and becomes warm water H2 of about 50 ° C.
(5) Then, if necessary, the boiler 90 is reheated and supplied to the hot water tank 95.

実施例2のボイラー運転については以下の通りである。
(1)温水入口E12を出た温水H2は、温水ポンプ54、第4流路切替弁V13を通過して、直接熱回収機85に供給され、高温熱源H1の供給される第5熱交換器16から第4熱交換器35を介して熱をくみ上げ、温水H2は熱を得る。
(2)その後、必要に応じて給湯機用ボイラー90で追い焚きを行い、貯湯槽95に供給される。
このような運転状態を図4に従って切り替えながら運転を連続的に続ける事で、ボイラー単体で運転するよりも効率の良い熱交換が行え、強いてはCOPの向上に結びつく。
特にその効力を発揮するのが、春や秋といった、寒暖の差のある時期で、外気温により最適な運転モードに切り替えて運転を行うので、効率の良い運転が連続的に行なえる。
The boiler operation of Example 2 is as follows.
(1) The 5th heat exchanger from which warm water H2 which came out of warm water inlet E12 passes hot water pump 54 and 4th channel change-over valve V13, is directly supplied to heat recovery machine 85, and is supplied with high temperature heat source H1. The heat is pumped from 16 through the fourth heat exchanger 35, and the hot water H2 obtains heat.
(2) Then, if necessary, the boiler 90 is reheated and supplied to the hot water tank 95.
Continuing the operation while switching such an operation state according to FIG. 4 makes it possible to exchange heat more efficiently than the operation of a single boiler, leading to an improvement in COP.
In particular, it is effective when it is switched to the optimal operation mode according to the outside air temperature in the seasons such as spring and autumn when there is a difference in temperature, so that efficient operation can be performed continuously.

以上、本発明の吸収・吸着式ヒートポンプ装置の実施形態について説明したが、本発明は以上の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲でさまざまな変更が可能である。
例えば、実施例1では吸収剤に臭化リチウム溶液を使用しているが、本発明はこれに限定されるものではなく、フロン系等の吸収剤を用いても良い。また、実施例2では、吸着剤にシリカゲルを使用しているが、本発明はこれに限定されるものではなく、活性炭、ゼオライト、酸化アルミナ等を用いても良い。
また、実施例1及び実施例2では、高温熱源、低温熱源、温水にそれぞれ温度を設定してあるが、これは説明の便宜上、通常用いられる形態から引用した代表的な数値を設定しただけに過ぎず、実際に使用条件及び環境によって左右される場合もある他、吸収式ヒートポンプについて、再生、吸収、凝縮、蒸発、または吸着式ヒートポンプについて脱離−凝縮、蒸発−吸着が行われ得る他の温度に設定することを妨げない。
また、実施例1及び実施例2及び図6では、説明をするにあたり運転切替のための設定温度を7℃としているが、構築するシステムの特性等によっても最適切替温度は異なる事も考えられ、切替によって運転効率を向上させる事が目的であるので、本発明の趣旨を逸脱しない範囲で変更が可能である。
As mentioned above, although embodiment of the absorption and adsorption heat pump apparatus of this invention was described, this invention is not limited to the above embodiment, A various change is possible in the range which does not deviate from the meaning.
For example, in Example 1, a lithium bromide solution is used as the absorbent, but the present invention is not limited to this, and a fluorocarbon-based absorbent may be used. In Example 2, silica gel is used as the adsorbent, but the present invention is not limited to this, and activated carbon, zeolite, alumina oxide, or the like may be used.
Moreover, in Example 1 and Example 2, although the temperature is set to the high-temperature heat source, the low-temperature heat source, and the hot water, respectively, for the convenience of explanation, this is merely a set of representative numerical values quoted from the form that is normally used. However, it may actually depend on the use conditions and environment, and for absorption heat pumps, regeneration, absorption, condensation, evaporation, or adsorption heat pumps can be desorbed-condensed and evaporated-adsorbed. Does not interfere with setting temperature.
Moreover, in Example 1 and Example 2 and FIG. 6, the set temperature for operation switching is set to 7 ° C. in the description, but the optimum switching temperature may be different depending on the characteristics of the system to be constructed, Since the purpose is to improve the driving efficiency by switching, changes can be made without departing from the spirit of the present invention.

このように、
(1)水を冷媒とする吸収式ヒートポンプ10と、外気と熱交換をする室外熱交換器60と、運転を切り替えるための第1流路切替弁V10乃至第3流路切替弁V12と、外気温を測定する外気温度センサ62とを備えた吸収式ヒートポンプ装置において、外気温度センサ62が測定した温度が設定温度T以上では、吸収式ヒートポンプ10に備える第1熱交換器12が再生過程を、第2熱交換器22が吸収過程を、第3熱交換器32が凝縮過程を、第4熱交換器42が蒸発過程を行うことで熱交換をして温水H2を作り出すヒートポンプ運転を行う第1運転条件と、外気温度センサ62が測定した温度が設定温度T未満では、吸収式ヒートポンプ10に備える第1熱交換器12が再生過程を、第4熱交換器42が凝縮過程を行う事で熱交換をして温水を作り出すボイラー運転を行う第2運転条件と、吸収式ヒートポンプ10に対して、第1流路切替弁V10乃至第3流路切替弁V12を切り替えることによって、第1運転条件と、第2運転条件とを、設定温度Tによって切り替える制御手段を有することを特徴とするので、デフロスト運転の必要が無く、外気温によらずに、連続的に50〜55℃程度の温水が供給でき、春季、秋季の中間期においては、COP=1.2〜1.3程度のボイラー運転のみの場合よりも高い効率で運転が可能である。
in this way,
(1) An absorption heat pump 10 that uses water as a refrigerant, an outdoor heat exchanger 60 that exchanges heat with outside air, a first flow path switching valve V10 to a third flow path switching valve V12 for switching operation, In an absorption heat pump device including an outside air temperature sensor 62 that measures the air temperature, when the temperature measured by the outside air temperature sensor 62 is equal to or higher than the set temperature T, the first heat exchanger 12 included in the absorption heat pump 10 performs the regeneration process. The second heat exchanger 22 performs an absorption process, the third heat exchanger 32 performs a condensation process, and the fourth heat exchanger 42 performs an evaporation process. If the operating conditions and the temperature measured by the outside air temperature sensor 62 are lower than the set temperature T, the first heat exchanger 12 provided in the absorption heat pump 10 performs a regeneration process, and the fourth heat exchanger 42 performs a condensation process to generate heat. Exchange The first operating condition by switching the first flow path switching valve V10 to the third flow path switching valve V12 with respect to the absorption heat pump 10, the second operating condition for performing the boiler operation to produce hot water, and the first Since it has a control means for switching between two operating conditions according to the set temperature T, there is no need for defrost operation, and hot water of about 50 to 55 ° C. can be continuously supplied without depending on the outside air temperature, In the middle of spring and autumn, operation is possible with higher efficiency than in the case of only boiler operation with COP = 1.2 to 1.3.

(2)水を冷媒とする吸着式ヒートポンプ80と、追い焚き用ボイラー90と、外気と熱交換をする室外熱交換器60と、運転を切り替えるための第4流路切替弁V13と、外気温を測定する外気温度センサ62とを備えた吸着式ヒートポンプ装置において、外気温度センサ62が測定した温度が設定温度T以上では、吸着式ヒートポンプ80が、脱離、吸着、凝縮、蒸発を行うことで熱交換をして温水H2を作り出し、追い焚き用ボイラー90が、温水H2を更に過熱してヒートポンプ運転を行う第1運転条件と、外気温度センサ62が測定した温度が設定温度T未満では、追い焚き用ボイラー90で温水H2を作り出すボイラー運転を行う第2運転条件と、吸着式ヒートポンプ80に対して、第4流路切替弁V13を切り替えることによって、第1運転条件と、第2運転状態とを、設定温度Tによって切り替える制御手段を有することを特徴とするので、デフロスト運転の必要が無く、外気温によらずに、連続的に50〜55℃程度の温水が供給でき、春季、秋季の中間期においては、COP=1.2〜1.3程度のボイラー運転のみの場合よりも高い効率で運転が可能である。 (2) Adsorption heat pump 80 using water as a refrigerant, reheating boiler 90, outdoor heat exchanger 60 for exchanging heat with the outside air, a fourth flow path switching valve V13 for switching operation, and the outside air temperature In an adsorption heat pump device having an outside air temperature sensor 62 that measures the temperature, the adsorption heat pump 80 performs desorption, adsorption, condensation, and evaporation when the temperature measured by the outside air temperature sensor 62 is equal to or higher than the set temperature T. Heat is exchanged to produce hot water H2, and the reheating boiler 90 further heats the hot water H2 to perform the heat pump operation and the temperature measured by the outside air temperature sensor 62 is less than the set temperature T. By switching the fourth flow path switching valve V13 with respect to the second operating condition for performing the boiler operation for generating the hot water H2 with the fired boiler 90 and the adsorption heat pump 80. The control means for switching between the first operating condition and the second operating state according to the set temperature T is provided, so that there is no need for defrost operation, and 50 to Hot water of about 55 ° C. can be supplied, and in the middle of spring and autumn, operation can be performed with higher efficiency than in the case of only boiler operation of COP = 1.2 to 1.3.

(3)(1)に記載する吸収式ヒートポンプ装置において、設定温度Tが5〜10℃内の一定の温度である事を特徴とするので、外気温が5℃未満になった場合にはボイラー運転を行うので、冷媒としている水が凍結する事が無く、外気温が10℃より高い温度になった場合にはヒートポンプ運転を行うので、効率の良い運転ができ、春季、秋季等の中間期には平均してCOP=1.2〜1.3程度の熱効率で連続的に温水を供給する事ができる。
(4)(2)に記載する吸着式ヒートポンプ装置において、設定温度Tが5〜10℃内の一定の温度である事を特徴とするので、外気温が5℃未満になった場合にはボイラー運転を行うので、冷媒としている水が凍結する事が無く、外気温が10℃より高い温度になった場合にはヒートポンプ運転を行うので、効率の良い運転ができ、春季、秋季等の中間期には平均してCOP=1.2〜1.3程度の熱効率で連続的に温水を供給する事ができる。
(3) The absorption heat pump apparatus described in (1) is characterized in that the set temperature T is a constant temperature within 5 to 10 ° C., so that the boiler when the outside air temperature becomes less than 5 ° C. Since the operation is performed, the water used as the refrigerant does not freeze, and the heat pump operation is performed when the outside air temperature is higher than 10 ° C, so that an efficient operation can be performed, and the intermediate period such as spring, autumn, etc. The hot water can be continuously supplied with a thermal efficiency of about COP = 1.2 to 1.3 on average.
(4) The adsorption heat pump device described in (2) is characterized in that the set temperature T is a constant temperature within 5 to 10 ° C., so that the boiler when the outside air temperature becomes less than 5 ° C. Since the operation is performed, the water used as the refrigerant does not freeze, and the heat pump operation is performed when the outside air temperature is higher than 10 ° C, so that an efficient operation can be performed, and the intermediate period such as spring, autumn, etc. The hot water can be continuously supplied with a thermal efficiency of about COP = 1.2 to 1.3 on average.

請求項1に係る発明の吸収式ヒートポンプ装置がヒートポンプ運転を行う場合の構成図The block diagram in case the absorption heat pump apparatus of the invention which concerns on Claim 1 performs heat pump driving | operation 請求項1に係る発明の吸収式ヒートポンプ装置がボイラー運転を行う場合の構成図The block diagram when the absorption heat pump device of the invention according to claim 1 performs boiler operation 請求項2に係る発明の吸収式ヒートポンプ装置の構成図The block diagram of the absorption heat pump apparatus of the invention concerning Claim 2 請求項1の運転始動時のフローチャートFlow chart at the start of operation according to claim 1 請求項1のブロック図Block diagram of claim 1 請求項1の熱効率グラフThe thermal efficiency graph of claim 1 従来技術1のヒートポンプ運転の構成図Configuration diagram of heat pump operation of prior art 1 従来技術2のボイラー運転の構成図Configuration diagram of boiler operation of prior art 2 従来技術3のヒートポンプ運転の構成図Configuration diagram of heat pump operation of prior art 3

符号の説明Explanation of symbols

10 吸収式ヒートポンプ
11 再生器
12 第1熱交換器
20 熱源機運転制御盤
21 吸収器
22 第2熱交換器
23 第1散布管
30 切替制御装置
31 凝縮器
32 第3熱交換器
41 蒸発器
42 第4熱交換器
43 第2散布管
50 溶液熱交換器
51 溶液ポンプ
52 冷媒ポンプ
53 熱源ポンプ
H1 高温熱源
H2 温水
H3 低温熱源
P10〜P61 配管
S10 臭化リチウム溶液
S11 冷媒水
T1〜T3 設定温度
V10〜V13 第1流路切替弁〜第4流路切替弁
WT 冷温水器温調
DESCRIPTION OF SYMBOLS 10 Absorption-type heat pump 11 Regenerator 12 1st heat exchanger 20 Heat source machine operation control panel 21 Absorber 22 2nd heat exchanger 23 1st spreading pipe 30 Switching control apparatus 31 Condenser 32 3rd heat exchanger 41 Evaporator 42 Fourth heat exchanger 43 Second spray pipe 50 Solution heat exchanger 51 Solution pump 52 Refrigerant pump 53 Heat source pump H1 High temperature heat source H2 Hot water H3 Low temperature heat source P10 to P61 Pipe S10 Lithium bromide solution S11 Refrigerant water T1 to T3 Set temperature V10 ~ V13 1st flow path switching valve ~ 4th flow path switching valve WT

Claims (4)

水を冷媒とする吸収式ヒートポンプと、外気と熱交換をする室外熱交換器と、運転を切り替えるための切替弁と、外気温を測定する外気温度センサとを備えた吸収式ヒートポンプ装置において、
前記外気温度センサが測定した温度が設定温度以上では、前記吸収式ヒートポンプに備える第1熱交換器が再生過程を、第2熱交換器が吸収過程を、第3熱交換器が凝縮過程を、第4熱交換器が蒸発過程を行うことで熱交換をして温水を作り出すヒートポンプ運転を行う第1運転条件と、
前記外気温度センサが測定した温度が前記設定温度未満では、前記吸収式ヒートポンプに備える前記第1熱交換器が再生過程を、前記第4熱交換器が凝縮過程を行う事で熱交換をして温水を作り出すボイラー運転を行う第2運転条件と、
前記吸収式ヒートポンプに対して、前記切替弁を切り替えることによって、前記第1運転条件と、前記第2運転条件とを、前記設定温度によって切り替える制御手段を有することを特徴とする吸収式ヒートポンプ装置。
In an absorption heat pump device comprising an absorption heat pump that uses water as a refrigerant, an outdoor heat exchanger that exchanges heat with outside air, a switching valve that switches operation, and an outside air temperature sensor that measures outside air temperature,
When the temperature measured by the outside air temperature sensor is equal to or higher than a set temperature, the first heat exchanger provided in the absorption heat pump performs a regeneration process, the second heat exchanger performs an absorption process, and the third heat exchanger performs a condensation process. A first operating condition for performing a heat pump operation in which the fourth heat exchanger performs an evaporation process to exchange heat to generate hot water;
If the temperature measured by the outside air temperature sensor is lower than the set temperature, the first heat exchanger provided in the absorption heat pump performs a regeneration process, and the fourth heat exchanger performs a heat exchange by performing a condensation process. A second operating condition for boiler operation to produce hot water;
An absorption heat pump apparatus comprising control means for switching the first operation condition and the second operation condition according to the set temperature by switching the switching valve with respect to the absorption heat pump.
水を冷媒とする吸着式ヒートポンプと、追い焚き用ボイラーと、外気と熱交換をする室外熱交換器と、運転を切り替えるための切替弁と、外気温を測定する外気温度センサとを備えた吸着式ヒートポンプ装置において、
前記外気温度センサが測定した温度が設定温度以上では、前記吸着式ヒートポンプが、脱離、吸着、凝縮、蒸発を行うことで熱交換をして温水を作り出し、前記追い焚き用ボイラーが、温水を更に過熱してヒートポンプ運転を行う第1運転条件と、
前記外気温度センサが測定した温度が前記設定温度未満では、前記追い焚き用ボイラーで温水を作り出すボイラー運転を行う第2運転条件と、
前記吸着式ヒートポンプに対して、前記切替弁を切り替えることによって、前記第1運転条件と、前記第2運転状態とを、前記設定温度によって切り替える制御手段を有することを特徴とする吸着式ヒートポンプ装置。
Adsorption equipped with an adsorption heat pump that uses water as a refrigerant, a reheating boiler, an outdoor heat exchanger that exchanges heat with the outside air, a switching valve that switches operation, and an outside temperature sensor that measures the outside temperature In the type heat pump device,
When the temperature measured by the outside air temperature sensor is equal to or higher than a set temperature, the adsorption heat pump performs heat exchange by desorption, adsorption, condensation, and evaporation to produce hot water, and the reheating boiler generates hot water. A first operating condition for further overheating and heat pump operation;
When the temperature measured by the outside air temperature sensor is lower than the set temperature, a second operating condition for performing a boiler operation for generating hot water with the reheating boiler;
An adsorption heat pump apparatus comprising control means for switching the first operation condition and the second operation state according to the set temperature by switching the switching valve with respect to the adsorption heat pump.
請求項1に記載する吸収式ヒートポンプ装置において、
前記設定温度が5〜10℃内の一定の温度である事を特徴とする吸収式ヒートポンプ装置。
In the absorption heat pump device according to claim 1,
The absorption heat pump device, wherein the set temperature is a constant temperature within 5 to 10 ° C.
請求項2に記載する吸着式ヒートポンプ装置において、
前記設定温度が5〜10℃内の一定の温度である事を特徴とする吸着式ヒートポンプ装置。
In the adsorption heat pump device according to claim 2,
The adsorption heat pump apparatus, wherein the set temperature is a constant temperature within 5 to 10 ° C.
JP2004312657A 2004-10-27 2004-10-27 Absorptive and adsorptive heat pump device Pending JP2006125698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312657A JP2006125698A (en) 2004-10-27 2004-10-27 Absorptive and adsorptive heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312657A JP2006125698A (en) 2004-10-27 2004-10-27 Absorptive and adsorptive heat pump device

Publications (1)

Publication Number Publication Date
JP2006125698A true JP2006125698A (en) 2006-05-18

Family

ID=36720611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312657A Pending JP2006125698A (en) 2004-10-27 2004-10-27 Absorptive and adsorptive heat pump device

Country Status (1)

Country Link
JP (1) JP2006125698A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008582A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type space heating/hot water supplying device
JP2008008581A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Absorption type space heating/hot water supply device
WO2009094897A1 (en) * 2008-01-22 2009-08-06 Qingquan Su Absorptive heat pump system and heating method
CN102322688A (en) * 2011-09-19 2012-01-18 同济大学 Reflux water saving device for water heater
CN108180670A (en) * 2016-12-08 2018-06-19 荏原冷热系统株式会社 Absorption type heat exchange system
CN110220303A (en) * 2019-02-26 2019-09-10 华北电力大学 A kind of low * damage heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008582A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type space heating/hot water supplying device
JP2008008581A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Absorption type space heating/hot water supply device
WO2009094897A1 (en) * 2008-01-22 2009-08-06 Qingquan Su Absorptive heat pump system and heating method
CN102322688A (en) * 2011-09-19 2012-01-18 同济大学 Reflux water saving device for water heater
CN108180670A (en) * 2016-12-08 2018-06-19 荏原冷热系统株式会社 Absorption type heat exchange system
CN108180670B (en) * 2016-12-08 2021-02-12 荏原冷热系统株式会社 Absorption heat exchange system
CN110220303A (en) * 2019-02-26 2019-09-10 华北电力大学 A kind of low * damage heat exchanger
CN110220303B (en) * 2019-02-26 2024-03-29 华北电力大学 Low exergy -loss heat exchanger

Similar Documents

Publication Publication Date Title
JPH10197088A (en) Absorption type cooling and heating apparatus
JP6385044B2 (en) Absorption refrigeration system
JP2011075180A (en) Absorption type refrigerating machine
JP3883838B2 (en) Absorption refrigerator
JP2002147885A (en) Absorption refrigerating machine
JP2006125698A (en) Absorptive and adsorptive heat pump device
KR101045512B1 (en) Low temperature water two-stage absorbtion typerefrigerator
JP2000018762A (en) Absorption refrigerating machine
KR100585352B1 (en) Absorption refrigerator
KR101171596B1 (en) Absorption refrigeration system
JP6754981B2 (en) Absorption chiller
JP2010085006A (en) Absorption type water chiller and heater
KR100585354B1 (en) Absorption refrigerator
JP2018169075A (en) Absorption type refrigerating machine
JP6789846B2 (en) Absorption chiller
JP3883894B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP2010266170A (en) Absorption-type refrigerating machine
JP2001099474A (en) Air conditioner
JP6264636B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP2010276252A (en) Absorption type refrigerating machine
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP2010007907A (en) Air conditioning system
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929