JP4606255B2 - Operation method of single double effect absorption refrigerator - Google Patents

Operation method of single double effect absorption refrigerator Download PDF

Info

Publication number
JP4606255B2
JP4606255B2 JP2005169728A JP2005169728A JP4606255B2 JP 4606255 B2 JP4606255 B2 JP 4606255B2 JP 2005169728 A JP2005169728 A JP 2005169728A JP 2005169728 A JP2005169728 A JP 2005169728A JP 4606255 B2 JP4606255 B2 JP 4606255B2
Authority
JP
Japan
Prior art keywords
regenerator
temperature
low
heat source
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005169728A
Other languages
Japanese (ja)
Other versions
JP2006343042A (en
Inventor
伸一 上篭
俊之 星野
秀明 小穴
裕一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005169728A priority Critical patent/JP4606255B2/en
Priority to CNB2006100676077A priority patent/CN100410597C/en
Priority to KR1020060028388A priority patent/KR100716706B1/en
Publication of JP2006343042A publication Critical patent/JP2006343042A/en
Application granted granted Critical
Publication of JP4606255B2 publication Critical patent/JP4606255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

本発明は、一重二重効用吸収冷凍機(吸収冷温水機を含む)の運転方法に係わるものである。   The present invention relates to a method for operating a single double-effect absorption refrigerator (including an absorption chiller / heater).

この種の吸収冷凍機としては、例えば図6に示したようにガスバーナ4で生成する燃焼熱を熱源として吸収液を加熱し冷媒を蒸発分離する高温再生器5、その高温再生器5から供給される冷媒蒸気を熱源として吸収液を加熱し冷媒を蒸発分離する二重効用再生器の低温再生器6、その低温再生器6に並設され、低温再生器6から供給される冷媒蒸気を凝縮する二重効用凝縮器の凝縮器7、コージェネレーション装置などから低熱源供給管16を介して供給される、例えば80℃程度の比較的低温度の温排水を熱源として吸収液を加熱し冷媒を蒸発分離する一重効用再生器の低熱源再生器9、その低熱源再生器9に並設され、低熱源再生器9から供給される冷媒蒸気を凝縮する一重効用凝縮器の凝縮器10、凝縮器7および凝縮器10から供給される冷媒液を蒸発させる蒸発器1、その蒸発器1で蒸発した冷媒蒸気を低温再生器6から供給される濃吸収液に吸収させる吸収器2、稀吸収液ポンプP1、中間吸収液ポンプP2、冷媒ポンプP3などを備えた一重二重効用の吸収冷凍機100Xが周知である(例えば、特許文献1参照。)。   As this type of absorption refrigerator, for example, as shown in FIG. 6, a high-temperature regenerator 5 that heats the absorption liquid by using combustion heat generated in the gas burner 4 as a heat source and evaporates and separates the refrigerant is supplied from the high-temperature regenerator 5. The low-temperature regenerator 6 is a double-effect regenerator that heats the absorption liquid by using the refrigerant vapor as a heat source to evaporate and separate the refrigerant, and the refrigerant vapor supplied from the low-temperature regenerator 6 is condensed in parallel with the low-temperature regenerator The absorption liquid is heated by using, for example, a relatively low-temperature hot waste water of about 80 ° C. supplied from the condenser 7 of the double-effect condenser, the cogeneration device, etc., through the low heat source supply pipe 16 to evaporate the refrigerant. A low heat source regenerator 9 of a single effect regenerator to be separated, a condenser 10 of a single effect condenser which is provided in parallel to the low heat source regenerator 9 and condenses the refrigerant vapor supplied from the low heat source regenerator 9, a condenser 7 And supplied from condenser 10 An evaporator 1 for evaporating the refrigerant liquid to be evaporated, an absorber 2 for absorbing the refrigerant vapor evaporated in the evaporator 1 by the concentrated absorbent supplied from the low temperature regenerator 6, a rare absorbent pump P1, an intermediate absorbent pump P2, A single double-effect absorption refrigerator 100X including a refrigerant pump P3 and the like is well known (for example, see Patent Document 1).

なお、図中3は蒸発器1と吸収器2とを収納した蒸発器吸収器胴、8は低温再生器6と凝縮器7とを収納した低温再生器凝縮器胴、11は低熱源再生器9と凝縮器10とを収納した低熱源再生器凝縮器胴、12は低温熱交換器、13は高温熱交換器、14は図示しない熱負荷に冷熱または温熱を循環供給して冷暖房などを行うための冷水または温水が内部を流れる冷/温水管、15は冷却水管である。   In the figure, 3 is an evaporator absorber cylinder containing the evaporator 1 and the absorber 2, 8 is a low temperature regenerator condenser cylinder containing the low temperature regenerator 6 and the condenser 7, and 11 is a low heat source regenerator. 9 is a low heat source regenerator condenser body containing the condenser 9 and the condenser 10, 12 is a low-temperature heat exchanger, 13 is a high-temperature heat exchanger, and 14 is a cooling / heating device that circulates and supplies cold heat or heat to a heat load (not shown). A cold / hot water pipe through which cold water or hot water flows, 15 is a cooling water pipe.

上記構成の吸収冷凍機100Xにおいては、図示しないコージェネレーション装置などの他の設備から低熱源供給管16を介して低熱源再生器9に供給される温排水を優先的に使用して、全体の省エネ効果を上げることが期待される。   In the absorption refrigerator 100X having the above-described configuration, the hot waste water supplied to the low heat source regenerator 9 from other equipment such as a cogeneration device (not shown) via the low heat source supply pipe 16 is preferentially used, It is expected to increase the energy saving effect.

そのため、蒸発器1で冷却し、冷/温水管14を介して熱負荷に循環供給する冷水の蒸発器出口温度が設定温度以下まで低下すると、ガスバーナ4への燃料供給を停止し、低熱源供給管16を介して供給される温排水のみを熱源として運転されるようになっていた。
特開平6−341729号公報
Therefore, when the evaporator outlet temperature cooled by the evaporator 1 and circulated to the heat load via the cold / hot water pipe 14 falls below the set temperature, the fuel supply to the gas burner 4 is stopped and the low heat source supplied Only the warm waste water supplied through the pipe 16 is operated as a heat source.
JP-A-6-341729

しかし、上記従来の制御方法では、コージェネレーション装置などの他の設備から供給される排熱の優先的使用は可能であるが、高燃焼から一気に燃焼停止状態になることもあり、熱負荷に供給する冷水の蒸発器出口温度が大きくハンチングする恐れがあった。   However, in the above conventional control method, it is possible to preferentially use the exhaust heat supplied from other equipment such as a cogeneration system, but the combustion may be stopped at once from high combustion, and it is supplied to the heat load. There was a risk of hunting due to a large evaporator outlet temperature.

したがって、省エネ運転が可能に温排水の使用を優先するが、熱負荷に循環供給する冷水の出口温度が大きく変動しないようにする必要があり、その解決が課題となっていた。   Accordingly, priority is given to the use of hot wastewater so that energy-saving operation is possible, but it is necessary to prevent the outlet temperature of the cold water circulated and supplied to the heat load from fluctuating greatly, and the solution has been a problem.

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、他設備から供給される温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、吸収液加熱用バーナを備えた高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、吸収液ポンプなどを配管接続して構成された一重二重効用吸収冷凍機において、前記バーナに供給する燃料の量を調整する燃料制御弁の弁開度が、蒸発器で蒸発する冷媒に熱を奪われ、冷却されて蒸発器から吐出した冷水の出口温度を変数とする比例演算により求めた弁開度と、前記冷水の出口温度を変数とするPID演算により求めた弁開度とを比較し、より小さい弁開度を選択して前記バーナの火力を制御するとともに、燃料制御弁の全閉操作後の、高温再生器温度の低下または時間の経過に伴って、高温再生器への吸収液の循環供給量が漸減されるように制御する、ことを主要な特徴とする冷凍機である。 An evaporator absorber cylinder containing an evaporator and an absorber, a low-temperature regenerator condenser cylinder containing a low-temperature regenerator and a condenser, a low heat source regenerator using hot waste water supplied from other facilities as a heat source, and Low heat source regenerator housing the condenser, condenser body, high temperature regenerator with absorption liquid heating burner, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. In the single double-effect absorption refrigerator, the valve opening degree of the fuel control valve for adjusting the amount of fuel supplied to the burner is deprived of heat by the refrigerant evaporating in the evaporator, cooled and discharged from the evaporator The valve opening obtained by proportional calculation with the cold water outlet temperature as a variable is compared with the valve opening obtained by PID calculation with the cold water outlet temperature as a variable, and a smaller valve opening is selected. It controls the heating power of the burner, the total closing of the fuel control valve After, with the passage of decreased or time of the high-temperature regenerator temperature is controlled to circulate the supply amount of the absorbing liquid to the high-temperature regenerator is gradually reduced, a refrigerating machine for mainly characterized in that.

本発明によれば、燃焼量の急激な変動がなくなったため、温度変動の小さい冷水を熱負荷に供給することができる。また、燃料制御弁の開弁操作が、温排水の流量を制御する弁の開度が100%の全開のときに限定されるようにした請求項2の発明においては、他の設備から供給される排熱を最大限利用した運転が可能になる。   According to the present invention, since the rapid fluctuation of the combustion amount is eliminated, cold water having a small temperature fluctuation can be supplied to the heat load. In addition, in the invention of claim 2, the opening operation of the fuel control valve is limited to when the opening degree of the valve for controlling the flow rate of the hot waste water is 100% fully open. Operation that makes full use of exhaust heat is possible.

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、他設備から供給される温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、吸収液加熱用バーナを備えた高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、吸収液ポンプなどを配管接続して構成された一重二重効用吸収冷凍機において、前記バーナに供給する燃料の量を調整する燃料制御弁の弁開度が、蒸発器で蒸発する冷媒に熱を奪われ、冷却されて蒸発器から吐出した冷水の出口温度を変数とする比例演算により求めた弁開度と、前記冷水の出口温度を変数とするPID演算により求めた弁開度とを比較し、より小さい弁開度を選択して前記バーナの火力を制御するものであり、燃料制御弁の開弁操作は、他設備から供給される温排水の流量を制御する弁の開度が100%の全開のときに限定してなされるように、また、燃料制御弁の全閉操作後の、高温再生器温度の低下または時間の経過に伴って、高温再生器への吸収液の循環供給量を漸減するようにした。   An evaporator absorber cylinder containing an evaporator and an absorber, a low-temperature regenerator condenser cylinder containing a low-temperature regenerator and a condenser, a low heat source regenerator using hot waste water supplied from other facilities as a heat source, and Low heat source regenerator housing the condenser, condenser body, high temperature regenerator with absorption liquid heating burner, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. In the single double-effect absorption refrigerator, the valve opening degree of the fuel control valve for adjusting the amount of fuel supplied to the burner is deprived of heat by the refrigerant evaporating in the evaporator, cooled and discharged from the evaporator The valve opening obtained by proportional calculation with the cold water outlet temperature as a variable is compared with the valve opening obtained by PID calculation with the cold water outlet temperature as a variable, and a smaller valve opening is selected. Controls the burner thermal power, and opens the fuel control valve The operation is limited to when the opening of the valve that controls the flow rate of hot waste water supplied from other equipment is fully open, and the high temperature regeneration after the fuel control valve is fully closed. The circulating supply amount of the absorption liquid to the high-temperature regenerator was gradually decreased as the temperature of the reactor decreased or as time passed.

以下、本発明の一実施例を図1〜図4に基づいて詳細に説明する。なお、理解を容易にするためこれらの図においても、前記図6において説明した部分と同様の機能を有する部分には同一の符号を付し、理解を妨げない範囲で説明を省略した。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. In order to facilitate understanding, in these drawings also, parts having the same functions as those described in FIG. 6 are given the same reference numerals, and descriptions thereof are omitted in a range that does not hinder understanding.

図1に例示した本発明の吸収冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した一重二重効用の吸収式冷温水機であり、蒸発器1と吸収器2とを収納した蒸発器吸収器胴3、吸収液加熱手段としてのガスバーナ4を備えた高温再生器5、低温再生器6、低温再生器6に並設された凝縮器7、低温再生器6と凝縮器7とを収納した低温再生器凝縮器胴8、他の設備から供給される温排水などを熱源とする低熱源再生器9、低熱源再生器9に並設された凝縮器10、低熱源再生器9と凝縮器10とを収納した低熱源再生器凝縮器胴11、低温熱交換器12、高温熱交換器13、稀吸収液ポンプP1、中間吸収液ポンプP2、冷媒ポンプP3、三方弁V1、燃料制御弁V2、開閉弁V3〜V7などを備えており、それらは図示したように吸収液管21〜26、冷媒管31〜35などを介して配管接続されている。また、符号14は図示しない熱負荷に冷水または温水を循環供給するための冷/温水管、15は冷却水管、16は低熱源供給管、17は燃料供給管、18は均圧管、Cは制御器である。   The absorption refrigerator 100 of the present invention illustrated in FIG. 1 is a single double-effect absorption chiller / heater using water as a refrigerant and an aqueous lithium bromide (LiBr) solution as an absorption liquid. An evaporator body 3 containing the regenerator 2, a high-temperature regenerator 5 having a gas burner 4 as absorption liquid heating means, a low-temperature regenerator 6, a condenser 7 arranged in parallel with the low-temperature regenerator 6, a low-temperature regenerator 6 and a condenser 7, a low-temperature regenerator condenser body 8, a low heat source regenerator 9 that uses hot wastewater supplied from other equipment as a heat source, and a condenser 10 that is arranged in parallel with the low heat source regenerator 9. The low heat source regenerator 9 and the condenser 10 containing the low heat source regenerator condenser body 11, the low temperature heat exchanger 12, the high temperature heat exchanger 13, the rare absorption liquid pump P1, the intermediate absorption liquid pump P2, and the refrigerant pump P3 , Three-way valve V1, fuel control valve V2, on-off valves V3 to V7, etc. Et absorption liquid pipe 21 through 26 as shown, and connected by piping via a refrigerant pipe 31 to 35. Reference numeral 14 is a cold / hot water pipe for circulating and supplying cold water or hot water to a heat load (not shown), 15 is a cooling water pipe, 16 is a low heat source supply pipe, 17 is a fuel supply pipe, 18 is a pressure equalizing pipe, and C is a control. It is a vessel.

そして、上記構成の吸収冷凍機100の冷房等の冷却運転時においては、冷/温水管14を介して図示しない熱負荷に循環供給される冷水の蒸発器1出口側温度、すなわち冷媒ポンプP3により揚液されて散布器1Aから伝熱管1Bの上に散布された冷媒液が蒸発する際の気化熱により、伝熱管1B内を流れる際に冷却され、蒸発器1から吐出して温度センサS1により計測された冷水の蒸発器出口温度tが所定の設定温度、例えば7℃になるように吸収冷凍機100に投入される熱量が制御器Cにより制御される。   During the cooling operation such as cooling of the absorption refrigerator 100 having the above-described configuration, the temperature of the evaporator 1 at the outlet side of the chilled water circulated and supplied to the heat load (not shown) through the cold / hot water pipe 14, that is, the refrigerant pump P3. The refrigerant liquid that has been pumped up and sprayed from the spreader 1A onto the heat transfer tube 1B is cooled when flowing through the heat transfer tube 1B due to the evaporation heat, and is discharged from the evaporator 1 and discharged by the temperature sensor S1. The controller C controls the amount of heat input to the absorption refrigerator 100 so that the measured cold water evaporator outlet temperature t becomes a predetermined set temperature, for example, 7 ° C.

具体的には、例えば制御器Cの図示しないメモリー部には、ガスバーナ4の燃料制御弁V2の開度を図2に例示したように、前記冷水の出口温度tを変数とする、異なる2方式で先ず演算算出し、その内の小さい開度を選択して調節するための制御プログラムと、ガスバーナ4でガスが燃焼し、高温再生器5において吸収液が加熱されているときには、低熱源供給管16の三方弁V1の低熱源再生器9側開度(低熱源供給管16を流れてきた温排水が低熱源再生器9側に流れる最大流量に対する流量比率。以下、単に三方弁V1の開度と云う。)を100%、すなわち全開し、ガスバーナ4でガスの燃焼がないときには、前記冷水の出口温度tを変数とするそれ自体は従来周知のPID制御により制御するためのプログラムとが格納されている。   More specifically, for example, in the memory unit (not shown) of the controller C, two different systems are used in which the opening temperature of the fuel control valve V2 of the gas burner 4 is set as a variable, as illustrated in FIG. First, the control program for selecting and adjusting a small opening degree of the calculation, and when the gas burns in the gas burner 4 and the absorbing liquid is heated in the high temperature regenerator 5, the low heat source supply pipe 16 three-way valve V1 opening degree on the low heat source regenerator 9 side (flow rate ratio with respect to the maximum flow rate of the warm waste water flowing through the low heat source supply pipe 16 to the low heat source regenerator 9 side. When the gas burner 4 is not fully burned and there is no gas combustion, a program for controlling the outlet temperature t of the cold water as a variable is stored by a conventionally known PID control. Have .

また、制御器Cのメモリー部には、前記冷水の出口温度tに基づいて、ガスバーナ4に接続された燃料供給管17の燃料調整弁V2の上流側に位置する開閉弁V3の開閉を、図3に示したように制御するための制御プログラムも格納されている。   Further, in the memory part of the controller C, the opening / closing of the opening / closing valve V3 located upstream of the fuel regulating valve V2 of the fuel supply pipe 17 connected to the gas burner 4 is shown on the basis of the outlet temperature t of the cold water. A control program for controlling as shown in FIG. 3 is also stored.

したがって、蒸発器1で冷却した冷水を、冷/温水管14を介して熱負荷に循環供給して行う冷房等の冷却運転時においては、制御器Cのメモリー部に格納されている制御プログラムにより、燃料制御弁V2の弁開度は、温度センサS1により計測された冷水の蒸発器1出口側温度tが8℃より高いときには、Vp=Vpid=100%であるので100%に、すなわち全開に調整され、前記冷水の出口温度tが8℃より低く、設定温度の7℃より高いときには、Vpid≦Vp=100%であるので、前記冷水の出口温度tを変数とするPID演算方式により算出した弁開度Vpidに調整し、前記冷水の出口温度tが設定温度の7℃より低く、6℃より高いときには、前記冷水の出口温度tを変数とする比例演算方式により算出した弁開度Vpと、前記冷水の出口温度tを変数とするPID演算方式により算出した弁開度Vpidとを比較し、より小さい方の弁開度に燃料制御弁V2の弁開度を調整し、前記冷水の出口温度tが6℃より低くいときにはVp=Vpid=0%であるので0%に、すなわち全閉にすると共に、開閉弁V3も閉弁される。   Therefore, during the cooling operation such as cooling performed by circulating the cold water cooled by the evaporator 1 to the heat load via the cold / hot water pipe 14, the control program stored in the memory unit of the controller C is used. The opening degree of the fuel control valve V2 is 100% when the evaporator t outlet side temperature t measured by the temperature sensor S1 is higher than 8 ° C., so that Vp = Vpid = 100%. When the chilled water outlet temperature t is lower than 8 ° C. and higher than the set temperature of 7 ° C., Vpid ≦ Vp = 100%, so that the chilled water outlet temperature t is calculated by the PID calculation method. When the chilled water outlet temperature t is lower than the set temperature 7 ° C. and higher than 6 ° C., the valve opening calculated by the proportional calculation method using the chilled water outlet temperature t as a variable is adjusted to the valve opening Vpid. Vp is compared with the valve opening Vpid calculated by the PID calculation method using the outlet temperature t of the cold water as a variable, the valve opening of the fuel control valve V2 is adjusted to a smaller valve opening, and the cold water When the outlet temperature t is lower than 6 ° C., Vp = Vpid = 0%, so that it is 0%, that is, fully closed, and the on-off valve V3 is also closed.

また、制御器Cに格納された前記制御プログラムは、低熱源供給管16を介して低熱源再生器9に供給する温排水の温度が所定温度、例えば85℃を超えているときだけ、前記三方弁V1の弁開度制御が実行されて、低熱源再生器9における温排水による吸収液の加熱がなされるように構成されている。   In addition, the control program stored in the controller C can be used only when the temperature of the hot water supplied to the low heat source regenerator 9 via the low heat source supply pipe 16 exceeds a predetermined temperature, for example, 85 ° C. The valve opening control of the valve V <b> 1 is executed, and the absorption liquid is heated by the warm drainage in the low heat source regenerator 9.

また、前記プログラムは、低熱源再生器9と三方弁V1を経由して還流する温排水の温度が所定温度、例えば70℃以下に低下しないように、低熱源再生器9に流れる温排水の量を制限するようにも構成されている。   In addition, the program stores the amount of hot waste water flowing through the low heat source regenerator 9 so that the temperature of the warm waste water that circulates through the low heat source regenerator 9 and the three-way valve V1 does not drop to a predetermined temperature, for example, 70 ° C. It is also configured to restrict.

したがって、所定の85℃より高い温度の温排水が低熱源供給管16を介して供給されている状態で冷却水管15に冷却水を流しながら冷却運転が開始され、熱負荷が大きいために温度センサS1が計測する冷水の出口温度tが、例えば8℃より高いときには、制御器Cにより燃料供給管17に介在する開閉弁V3が開弁され、燃料制御弁V2は弁開度が100%に、すなわち全開に調整されてガスバーナ4によるガスの燃焼が行われるので、三方弁V1も弁開度が100%の全開に調整されて、吸収冷凍機100には通常運転時における最大熱量が投入される。   Accordingly, a cooling operation is started while flowing cooling water through the cooling water pipe 15 in a state where hot waste water having a temperature higher than a predetermined 85 ° C. is supplied through the low heat source supply pipe 16, and the temperature load is high because the heat load is large. When the outlet temperature t of the cold water measured by S1 is higher than 8 ° C., for example, the controller C opens the on-off valve V3 interposed in the fuel supply pipe 17, and the fuel control valve V2 has a valve opening degree of 100%. That is, since gas is burned by the gas burner 4 after being fully opened, the valve opening degree of the three-way valve V1 is also adjusted to 100%, and the absorption chiller 100 is charged with the maximum amount of heat during normal operation. .

すなわち、この状態では高温再生器5内の吸収液はガスバーナ4により加熱され、低熱源再生器9内の吸収液は低熱源供給管16を介して供給される温排水により加熱される。   That is, in this state, the absorbing liquid in the high temperature regenerator 5 is heated by the gas burner 4, and the absorbing liquid in the low heat source regenerator 9 is heated by the hot waste water supplied through the low heat source supply pipe 16.

このときの吸収液と冷媒の挙動を説明すると、吸収器2から吸収液管21を介して稀吸収液ポンプP1により低熱源再生器凝縮器胴11の低熱源再生器9に搬送された稀吸収液は、コージェネレーション装置などの他の設備から低熱源供給管16を介して供給される温排水により器内で伝熱管9Bの管壁を介して加熱され、冷媒を蒸発分離する。   Explaining the behavior of the absorption liquid and the refrigerant at this time, the rare absorption transferred from the absorber 2 to the low heat source regenerator 9 of the low heat source regenerator condenser body 11 by the rare absorption liquid pump P1 through the absorption liquid pipe 21. The liquid is heated through the tube wall of the heat transfer tube 9B in the vessel by warm wastewater supplied from another facility such as a cogeneration device through the low heat source supply tube 16 to evaporate and separate the refrigerant.

冷媒を蒸発分離して吸収液濃度が高くなった中間吸収液は、吸収液管22の中間吸収液ポンプP2により高温熱交換器13を経由して加熱され高温再生器5に送られる。   The intermediate absorption liquid whose absorption liquid concentration is increased by evaporating and separating the refrigerant is heated via the high temperature heat exchanger 13 by the intermediate absorption liquid pump P2 of the absorption liquid pipe 22 and sent to the high temperature regenerator 5.

高温再生器5に搬送された中間吸収液は、ここでガスバーナ4による火炎および高温の燃焼ガスにより加熱されて冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した中間吸収液は、従来の二重効用吸収冷凍機と同様に高温熱交換器13を経由して低温再生器6へ送られる。   The intermediate absorption liquid conveyed to the high temperature regenerator 5 is heated here by the flame by the gas burner 4 and the high temperature combustion gas, and the refrigerant evaporates and separates. The intermediate absorption liquid whose concentration has been increased by evaporating and separating the refrigerant in the high temperature regenerator 5 is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13 as in the conventional double effect absorption refrigerator.

そして、中間吸収液は低温再生器6において、高温再生器5から冷媒蒸気管31を介して供給されて伝熱管6Aを流れる高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が低温熱交換器12を経由して吸収器2へ送られ、上方の散布器2Aから伝熱管2Bの上に散布される。   Then, the intermediate absorption liquid is heated in the low temperature regenerator 6 by the high temperature refrigerant vapor supplied from the high temperature regenerator 5 via the refrigerant vapor pipe 31 and flowing through the heat transfer pipe 6A, and further the refrigerant is separated to further increase the concentration. Thus, the concentrated absorbent is sent to the absorber 2 via the low-temperature heat exchanger 12, and is spread on the heat transfer tube 2B from the upper spreader 2A.

低熱源再生器9で分離生成した冷媒は、凝縮器10に入り、冷却水管15の内部を流れる冷却水に放熱して凝縮し、低温再生器6で分離生成した冷媒は凝縮器7に入って同様に凝縮する。そして、凝縮器7で生成された冷媒液は冷媒管32を、凝縮器10で凝縮生成した冷媒液は冷媒管33を経由して蒸発器1に入り、冷媒ポンプP3の運転により揚液されて散布器1Aから伝熱管1Bの上に散布される。   The refrigerant separated and generated by the low heat source regenerator 9 enters the condenser 10, dissipates heat and condenses into the cooling water flowing inside the cooling water pipe 15, and the refrigerant separated and generated by the low temperature regenerator 6 enters the condenser 7. Condensates as well. The refrigerant liquid generated in the condenser 7 enters the evaporator 1 through the refrigerant pipe 32 and the refrigerant liquid condensed and generated in the condenser 10 enters the evaporator 1 through the refrigerant pipe 33, and is pumped by the operation of the refrigerant pump P3. It spreads on the heat exchanger tube 1B from the spreader 1A.

伝熱管1Bの上に散布された冷媒液は、伝熱管1Bの内部を流れる水から気化熱を奪って蒸発するので、伝熱管1Bの内部を流れる水は冷却され、こうして生成された冷水が冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。   The refrigerant liquid sprayed on the heat transfer tube 1B takes the heat of vaporization from the water flowing inside the heat transfer tube 1B and evaporates. Therefore, the water flowing inside the heat transfer tube 1B is cooled, and the generated cold water is cooled. / Cooling operation such as cooling is performed by being supplied from the hot water pipe 14 to the heat load.

そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方の散布器2Aから伝熱管2Bの上に散布される濃吸収液に吸収されて、吸収器2の吸収液溜りに溜り、稀吸収液ポンプP1によって低熱源再生器凝縮器胴11の低熱源再生器9に搬送される循環を繰り返す。   Then, the refrigerant evaporated in the evaporator 1 enters the absorber 2 and is absorbed by the concentrated absorbent supplied from the low temperature regenerator 6 and sprayed on the heat transfer pipe 2B from the upper sprayer 2A. The circulation is repeated in the absorption liquid reservoir and conveyed to the low heat source regenerator 9 of the low heat source regenerator condenser body 11 by the rare absorption liquid pump P1.

上記一重二重効用運転の継続により温度センサS1が計測する冷水の出口温度tが低下し、8℃以下、7℃以上になったときには、開閉弁V3は開弁状態が維持され、燃料制御弁V2の弁開度は図2(B)に示すPID演算方式で算出した弁開度Vpidの弁開度に調整されて、冷水の出口温度tが設定温度である7℃に低下する前からガスバーナ4による吸収液の加熱は抑えられるが、ガスバーナ4によるガスの燃焼は継続しているので、三方弁V1は弁開度が100%の全開状態が維持され、低熱源供給管16を介して供給される温排水による吸収液の加熱作用は最大のまま維持される。   When the outlet temperature t of the chilled water measured by the temperature sensor S1 decreases due to the continuation of the single double effect operation and becomes 8 ° C. or lower and 7 ° C. or higher, the on-off valve V3 is maintained in the open state, and the fuel control valve The valve opening degree of V2 is adjusted to the valve opening degree of the valve opening degree Vpid calculated by the PID calculation method shown in FIG. 2B, and the gas burner before the outlet temperature t of the cold water drops to the set temperature of 7 ° C. Although the heating of the absorption liquid by the gas burner 4 is suppressed, the gas combustion by the gas burner 4 is continued. Therefore, the three-way valve V1 is maintained in a fully opened state with a valve opening degree of 100% and is supplied through the low heat source supply pipe 16. The heating action of the absorption liquid by the heated waste water is maintained at the maximum.

高温再生器5における吸収液の加熱を抑えた運転を継続しても、温度センサS1が計測する冷水の出口温度tが設定温度の7℃以下、6℃以上になったときには、燃料制御弁V2の弁開度は図2(A)に示す比例演算方式で算出した弁開度Vpと、図2(B)に示すPID演算方式で算出した弁開度Vpidの内の小さい弁開度に調整して、高温再生器5における加熱は一層抑えられるが、ガスバーナ4によるガスの燃焼は継続しているので、三方弁V1は弁開度が100%の全開状態が維持され、低熱源供給管16を介して供給される温排水による吸収液の加熱作用は最大のまま維持される。   Even if the operation of suppressing the heating of the absorbing liquid in the high-temperature regenerator 5 is continued, when the outlet temperature t of the cold water measured by the temperature sensor S1 becomes 7 ° C. or lower and 6 ° C. or higher of the set temperature, the fuel control valve V2 The valve opening is adjusted to a valve opening Vp calculated by the proportional calculation method shown in FIG. 2A and a smaller valve opening Vpid calculated by the PID calculation method shown in FIG. Thus, although the heating in the high-temperature regenerator 5 is further suppressed, the combustion of the gas by the gas burner 4 continues, so that the three-way valve V1 is maintained in a fully opened state with a valve opening degree of 100%, and the low heat source supply pipe 16 The heating action of the absorbing liquid by the hot waste water supplied via the slag is maintained at the maximum.

そして、高温再生器5における吸収液の加熱を一層抑えていても、前記冷水の出口温度tが所定の6℃より低くなると、燃料制御弁V2の弁開度が0%、すなわち全閉操作されると共に、開閉弁V3が閉弁されてガスバーナ4によるガスの燃焼が停止され、三方弁V1の弁開度が前記冷水の出口温度tを変数としたPID制御により制御されて、吸収液に対する加熱作用が急減することがないので、冷/温水管14を介して熱負荷に循環供給する冷水の温度が安定する。   Even if the heating of the absorbent in the high temperature regenerator 5 is further suppressed, when the outlet temperature t of the cold water becomes lower than a predetermined 6 ° C., the valve opening degree of the fuel control valve V2 is 0%, that is, the valve is fully closed. At the same time, the on-off valve V3 is closed and the combustion of the gas by the gas burner 4 is stopped, and the valve opening degree of the three-way valve V1 is controlled by PID control using the outlet temperature t of the cold water as a variable to heat the absorbing liquid. Since the action does not suddenly decrease, the temperature of the cold water circulated to the heat load via the cold / hot water pipe 14 is stabilized.

なお、ガスバーナ4によるガスの燃焼を停止して高温再生器5における吸収液の加熱を停止したときには、例えば図4に示す関係式から求めた電力の周波数が中間吸収液ポンプP2の図示しないモータに供給されて、中間吸収液ポンプP2の回転数が制御される。   When the combustion of the gas by the gas burner 4 is stopped and the heating of the absorbent in the high temperature regenerator 5 is stopped, for example, the frequency of the electric power obtained from the relational expression shown in FIG. 4 is applied to a motor (not shown) of the intermediate absorbent pump P2. Supplied and the rotational speed of the intermediate absorbent pump P2 is controlled.

すなわち、高温再生器5における吸収液の加熱を停止したときには、冷媒の一部を蒸発分離して高温再生器5から吐出し、温度センサS2により計測された吸収液の高温再生器出口温度Tを変数として設定した関係式から求められる電力の周波数が、中間吸収液ポンプP2の図示しないモータに供給されて、中間吸収液ポンプP2の回転数が制御されるようにも、前記制御プログラムは構成されている。   That is, when the heating of the absorption liquid in the high temperature regenerator 5 is stopped, a part of the refrigerant is evaporated and separated and discharged from the high temperature regenerator 5, and the high temperature regenerator outlet temperature T of the absorption liquid measured by the temperature sensor S2 is set. The control program is configured so that the frequency of electric power obtained from the relational expression set as a variable is supplied to a motor (not shown) of the intermediate absorbent pump P2 to control the rotational speed of the intermediate absorbent pump P2. ing.

したがって、中間吸収液ポンプP2の回転数は、高温再生器5内の吸収液の温度低下に連れて次第に減少し、前記吸収液の出口温度Tが100℃まで低下すると、中間吸収液ポンプP2は最小回転数で回転するので、吸収液循環量の急激な変動が防止できる。   Therefore, the rotational speed of the intermediate absorbent pump P2 gradually decreases as the temperature of the absorbent in the high-temperature regenerator 5 decreases. When the outlet temperature T of the absorbent drops to 100 ° C., the intermediate absorbent pump P2 Since it rotates at the minimum number of revolutions, it is possible to prevent sudden fluctuations in the amount of circulating absorbent liquid.

なお、高温再生器5に設けられた図示しない液面検出手段により、所定の高さを超える液面高が検出されたときには、中間吸収液ポンプP2が回転を停止するようにも前記制御プログラムは構成されている。   It should be noted that when the liquid level detection means (not shown) provided in the high-temperature regenerator 5 detects a liquid level height exceeding a predetermined height, the control program also causes the intermediate absorbing liquid pump P2 to stop rotating. It is configured.

そして、ガスバーナ4による吸収液の加熱と中間吸収液ポンプP2の運転が共に停止されたときには、吸収液は低熱源供給管16から供給される温排水により低熱源再生器9においてだけ加熱されて冷媒を蒸発分離する。そして、吸収液濃度が高くなった吸収液は、バイパス管26、低温熱交換器12を経由して吸収器2に戻される。   When both the heating of the absorption liquid by the gas burner 4 and the operation of the intermediate absorption liquid pump P2 are stopped, the absorption liquid is heated only in the low heat source regenerator 9 by the hot waste water supplied from the low heat source supply pipe 16, and the refrigerant Is separated by evaporation. Then, the absorption liquid whose absorption liquid concentration has increased is returned to the absorber 2 via the bypass pipe 26 and the low-temperature heat exchanger 12.

一方、低熱源再生器9で分離生成した冷媒蒸気は凝縮器10に入って凝縮し、冷媒管33を経由して蒸発器1に入り、冷媒ポンプP3の運転により散布器1Aから伝熱管1Bの上に散布され、伝熱管1B内を通る冷水から熱を奪って蒸発し、吸収器2に入って上方から散布される吸収液に吸収されると云った循環が行われる。   On the other hand, the refrigerant vapor separated and generated by the low heat source regenerator 9 enters the condenser 10, condenses, enters the evaporator 1 through the refrigerant pipe 33, and operates from the spreader 1A to the heat transfer pipe 1B by operating the refrigerant pump P3. A circulation is performed in which heat is taken from the cold water passing through the heat transfer tube 1B, evaporated, and absorbed into the absorber 2 and absorbed by the absorbent dispersed from above.

その後、熱負荷が増大して前記冷水の出口温度tが6℃以上、7℃以下となっても、開閉弁V3と燃料制御弁V2は閉弁を継続してガスバーナ4によるガスの燃焼はないので、三方弁V1の弁開度を前記冷水の出口温度tに基づくPID制御が継続され、低熱源供給管16を介して供給する温排水による吸収液の加熱が強められる。   Thereafter, even when the heat load increases and the outlet temperature t of the cold water becomes 6 ° C. or higher and 7 ° C. or lower, the on-off valve V3 and the fuel control valve V2 continue to close and there is no gas combustion by the gas burner 4. Therefore, the PID control based on the valve opening degree of the three-way valve V1 based on the outlet temperature t of the cold water is continued, and the heating of the absorption liquid by the warm waste water supplied through the low heat source supply pipe 16 is strengthened.

さらに、熱負荷が増大して前記冷水の出口温度tが7℃以上、8℃以下となったときには、開閉弁V3が開弁し、燃料制御弁V2の弁開度が図2(A)に示す比例演算方式で算出した弁開度Vpと、図2(B)に示すPID演算方式で算出した弁開度Vpidの内の小さい弁開度に調整されてガスバーナ4によるガスの燃焼が再開されると共に、三方弁V1の弁開度は100%に、すなわち全開にされて低熱源供給管16から供給される温排水を最大限利用する吸収液加熱が再開されるので、吸収液の急加熱が回避され、冷/温水管14を介して熱負荷に循環供給する冷水の温度が安定する。   Further, when the heat load increases and the outlet temperature t of the cold water becomes 7 ° C. or more and 8 ° C. or less, the on-off valve V3 is opened and the valve opening degree of the fuel control valve V2 is shown in FIG. The valve opening degree Vp calculated by the proportional calculation method shown in FIG. 2 and the valve opening degree Vpid calculated by the PID calculation method shown in FIG. At the same time, the opening degree of the three-way valve V1 is set to 100%, that is, the absorption liquid heating is resumed by fully utilizing the warm drainage supplied from the low heat source supply pipe 16 so that the absorption liquid is rapidly heated. Is avoided, and the temperature of the cold water supplied to the heat load through the cold / hot water pipe 14 is stabilized.

そして、熱負荷がさらに増大して前記冷水の出口温度tが8℃以上に上昇したときには、開閉弁V3は開弁が維持され、三方弁V1と燃料制御弁V2の弁開度は共に100%に、すなわち全開に調整されて、吸収冷凍機100への投入熱量が通常運転時における最大熱量に戻される。   When the heat load further increases and the outlet temperature t of the cold water rises to 8 ° C. or higher, the open / close valve V3 is maintained open, and the valve openings of the three-way valve V1 and the fuel control valve V2 are both 100%. In other words, the heat input to the absorption chiller 100 is returned to the maximum heat amount during normal operation.

なお、熱負荷は大きいが、低熱源供給管16を介して低熱源再生器9に供給する温排水の温度が所定の85℃に達していないときと、低熱源再生器9と三方弁V1を経由して還流する温排水の温度が70℃に達していないときには、低熱源供給管16から低熱源再生器9に温排水が供給されないように三方弁V1を切替えると共に、全てのポンプを起動し、且つ、ガスバーナ4においてガスを燃焼させる二重効用運転を行う。この場合も、温度センサS1が計測する冷水の出口温度が所定温度の7℃となるように、ガスバーナ4の火力が制御器Cにより制御される。   Although the heat load is large, when the temperature of the hot wastewater supplied to the low heat source regenerator 9 through the low heat source supply pipe 16 does not reach the predetermined 85 ° C., the low heat source regenerator 9 and the three-way valve V1 are connected. When the temperature of the warm drainage that circulates through has not reached 70 ° C., the three-way valve V1 is switched so that the warm drainage is not supplied from the low heat source supply pipe 16 to the low heat source regenerator 9, and all the pumps are started. And the double effect operation which burns gas in gas burner 4 is performed. Also in this case, the heating power of the gas burner 4 is controlled by the controller C so that the outlet temperature of the cold water measured by the temperature sensor S1 becomes a predetermined temperature of 7 ° C.

この二重効用運転では、吸収器2の吸収液溜りにある稀吸収液は稀吸収液ポンプP1により低熱源再生器9に搬送されるが、伝熱管9Bには熱源としての温排水は供給されていないので、加熱されないまま中間吸収液ポンプP2の運転により高温熱交換器13を経由して高温再生器5に搬送され、その後は前記一重二重効用運転時と同様に循環しながら加熱されて、高温再生器5と低温再生器6とで吸収液の濃縮再生と冷媒の分離生成がなされる。   In this double-effect operation, the rare absorption liquid in the absorption liquid reservoir of the absorber 2 is conveyed to the low heat source regenerator 9 by the rare absorption liquid pump P1, but hot waste water as a heat source is supplied to the heat transfer tube 9B. Since it is not heated, it is transported to the high-temperature regenerator 5 through the high-temperature heat exchanger 13 by the operation of the intermediate absorption liquid pump P2 without being heated, and then heated while being circulated in the same manner as in the single-double effect operation. The high-temperature regenerator 5 and the low-temperature regenerator 6 concentrate and regenerate the absorbing solution and separate and generate the refrigerant.

上記構成の本発明の一重二重効用吸収冷凍機100においては、ガスバーナ4における燃焼の停止と再開が、燃料制御弁V2の弁開度が大きい状態でなされないので、蒸発器1から冷/温水管14を介して熱負荷に循環供給する冷水の出口温度が安定する。   In the single double-effect absorption refrigerator 100 of the present invention having the above-described configuration, the combustion in the gas burner 4 is not stopped and restarted in a state where the valve opening of the fuel control valve V2 is large. The outlet temperature of the chilled water supplied to the heat load through the pipe 14 is stabilized.

なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.

例えば、ガスバーナ4による吸収液の加熱を停止したときの中間吸収液ポンプP2の回転は、上記のように制御する他にも、図5に示したように制御することも可能である。   For example, the rotation of the intermediate absorbent pump P2 when the heating of the absorbent by the gas burner 4 is stopped can be controlled as shown in FIG. 5 in addition to the above control.

すなわち、ガスバーナ4による高温再生器5の吸収液の加熱を停止したときには、燃焼停止からの時間の経過と共に減少するように設けた適宜の係数を、燃焼停止時の中間吸収液ポンプP2のモータに供給していた電力周波数に乗算して得られた周波数を中間吸収液ポンプP2のモータに供給して、中間吸収液ポンプP2の回転数を制御するように、制御器Cのメモリー部に格納された制御プログラムは変更されても良い。中間吸収液ポンプP2をこのように制御しても、吸収液循環量の急激な変動は防止できる。   That is, when heating of the absorption liquid of the high-temperature regenerator 5 by the gas burner 4 is stopped, an appropriate coefficient provided so as to decrease with the passage of time from the combustion stop is assigned to the motor of the intermediate absorption liquid pump P2 at the time of combustion stop. The frequency obtained by multiplying the supplied power frequency is supplied to the motor of the intermediate absorbent pump P2 and stored in the memory unit of the controller C so as to control the rotational speed of the intermediate absorbent pump P2. The control program may be changed. Even if the intermediate absorbing liquid pump P2 is controlled in this way, it is possible to prevent a sudden change in the circulating amount of the absorbing liquid.

本発明の吸収冷凍機の構成を示す説明図である。It is explanatory drawing which shows the structure of the absorption refrigerator of this invention. 燃料制御弁の弁開度決定要領を示す説明図である。It is explanatory drawing which shows the valve opening degree determination point of a fuel control valve. 燃料供給管に介在する開閉弁の制御要領を示す説明図である。It is explanatory drawing which shows the control point of the on-off valve interposed in a fuel supply pipe. 中間吸収液ポンプの制御要領を示す説明図である。It is explanatory drawing which shows the control point of an intermediate | middle absorption liquid pump. 中間吸収液ポンプの他の制御要領を示す説明図である。It is explanatory drawing which shows the other control point of an intermediate | middle absorption liquid pump. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.

符号の説明Explanation of symbols

1 蒸発器
2 吸収器
3 蒸発器吸収器胴
4 ガスバーナ
5 高温再生器
6 低温再生器
7 凝縮器
8 低温再生器凝縮器胴
9 低熱源再生器
10 凝縮器
11 低熱源再生器凝縮器胴
12 低温熱交換器
13 高温熱交換器
14 冷/温水管
15 冷却水管
16 低熱源供給管
17 燃料供給管
21〜26 吸収液管
31〜35 冷媒管
C 制御器
P1 稀吸収液ポンプ
P2 中間吸収液ポンプ
P3 冷媒ポンプ
S1 温度センサ
V1 三方弁
V2 燃料制御弁
V3〜V7 開閉弁
100、100X 吸収冷凍機
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 Evaporator absorber cylinder 4 Gas burner 5 High temperature regenerator 6 Low temperature regenerator 7 Condenser 8 Low temperature regenerator condenser cylinder 9 Low heat source regenerator 10 Condenser 11 Low heat source regenerator condenser cylinder 12 Low temperature Heat exchanger 13 High temperature heat exchanger 14 Cold / hot water pipe 15 Cooling water pipe 16 Low heat source supply pipe 17 Fuel supply pipe 21-26 Absorption liquid pipe 31-35 Refrigerant pipe C Controller P1 Rare absorption liquid pump P2 Intermediate absorption liquid pump P3 Refrigerant pump S1 Temperature sensor V1 Three-way valve V2 Fuel control valve V3 to V7 On-off valve 100, 100X Absorption refrigerator

Claims (2)

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、他設備から供給される温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、吸収液加熱用バーナを備えた高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、吸収液ポンプなどを配管接続して構成された一重二重効用吸収冷凍機において、
前記バーナに供給する燃料の量を調整する燃料制御弁の弁開度が、蒸発器で蒸発する冷媒に熱を奪われ、冷却されて蒸発器から吐出した冷水の出口温度を変数とする比例演算により求めた弁開度と、前記冷水の出口温度を変数とするPID演算により求めた弁開度とを比較し、
より小さい弁開度を選択して前記バーナの火力を制御するとともに、
燃料制御弁の全閉操作後の、高温再生器温度の低下または時間の経過に伴って、高温再生器への吸収液の循環供給量が漸減されるように制御する、
ことを特徴とする一重二重効用吸収冷凍機の運転方法。
An evaporator absorber cylinder containing an evaporator and an absorber, a low-temperature regenerator condenser cylinder containing a low-temperature regenerator and a condenser, a low heat source regenerator using hot waste water supplied from other facilities as a heat source, and Low heat source regenerator with a condenser and a condenser body, high temperature regenerator with absorption liquid heating burner, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. In the single double-effect absorption refrigerator,
The valve opening of the fuel control valve that adjusts the amount of fuel supplied to the burner is a proportional calculation with the outlet temperature of the chilled water cooled and discharged from the evaporator as a variable after the heat is taken away by the refrigerant evaporating in the evaporator And the valve opening obtained by PID calculation using the outlet temperature of the cold water as a variable,
Select a smaller valve opening to control the burner thermal power ,
Control so that the circulating supply amount of the absorbing liquid to the high temperature regenerator is gradually reduced as the temperature of the high temperature regenerator decreases or the time elapses after the fuel control valve is fully closed.
A method for operating a single-double-effect absorption refrigerator.
燃料制御弁の開弁操作は、他設備から供給される温排水の流量を制御する弁の開度が100%の全開のときに限定してなされることを特徴とする請求項1記載の一重二重効用吸収冷凍機の運転方法。   2. The single operation according to claim 1, wherein the opening operation of the fuel control valve is performed only when the opening degree of the valve for controlling the flow rate of the hot waste water supplied from other equipment is fully open. Operation method of double effect absorption refrigerator.
JP2005169728A 2005-06-09 2005-06-09 Operation method of single double effect absorption refrigerator Active JP4606255B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005169728A JP4606255B2 (en) 2005-06-09 2005-06-09 Operation method of single double effect absorption refrigerator
CNB2006100676077A CN100410597C (en) 2005-06-09 2006-03-17 Operation method of single or dual uses adsorption type freezing machine
KR1020060028388A KR100716706B1 (en) 2005-06-09 2006-03-29 Operating Method of Single or Double Effect Absorption Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169728A JP4606255B2 (en) 2005-06-09 2005-06-09 Operation method of single double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2006343042A JP2006343042A (en) 2006-12-21
JP4606255B2 true JP4606255B2 (en) 2011-01-05

Family

ID=37509729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169728A Active JP4606255B2 (en) 2005-06-09 2005-06-09 Operation method of single double effect absorption refrigerator

Country Status (3)

Country Link
JP (1) JP4606255B2 (en)
KR (1) KR100716706B1 (en)
CN (1) CN100410597C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008127228A1 (en) * 2007-04-13 2008-10-23 Utc Power Corporation A method and system for rejecting heat in an absorption chiller
JP2010255880A (en) * 2009-04-22 2010-11-11 Sanyo Electric Co Ltd Absorption type system
JP2010266095A (en) * 2009-05-13 2010-11-25 Sanyo Electric Co Ltd Absorption refrigerating machine for single/double effect
JP2010266170A (en) * 2009-05-18 2010-11-25 Sanyo Electric Co Ltd Absorption-type refrigerating machine
JP2010276252A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2011075180A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP5405335B2 (en) * 2010-01-28 2014-02-05 三洋電機株式会社 Absorption refrigerator
IN2015DN00259A (en) 2012-08-01 2015-06-12 Carrier Corp
JP6264636B2 (en) * 2013-08-30 2018-01-24 パナソニックIpマネジメント株式会社 Absorption refrigerator
JP6765056B2 (en) * 2016-11-10 2020-10-07 パナソニックIpマネジメント株式会社 Absorption chiller
JP6896968B2 (en) * 2017-08-21 2021-06-30 荏原冷熱システム株式会社 Absorption heat exchange system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169016A (en) * 1984-02-10 1985-09-02 Youei Seisakusho:Kk Burning control device
JPS60202233A (en) * 1984-03-26 1985-10-12 Youei Seisakusho:Kk Combustion controlling device
JPS62778A (en) * 1985-06-25 1987-01-06 三洋電機株式会社 Single-double effect absorption refrigerator
JPH06341728A (en) * 1993-05-31 1994-12-13 Sanyo Electric Co Ltd Controlling device for absorption type refrigerating machine
JPH06341729A (en) * 1993-06-01 1994-12-13 Sanyo Electric Co Ltd Controlling method for operation of single-double effect absorption refrigerating machine
JPH0712419A (en) * 1993-06-24 1995-01-17 Tokyo Gas Co Ltd Method and device for controlling absorption type refrigerating machine
JP2001221528A (en) * 2000-02-09 2001-08-17 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2001263851A (en) * 2000-03-16 2001-09-26 Sanyo Electric Co Ltd Method for controlling absorption refrigerating machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129170A (en) * 1982-01-29 1983-08-02 株式会社日立製作所 Method of controlling solar-heat utilizing absorption type refrigerator
JPH0384371A (en) * 1989-08-24 1991-04-09 Sanyo Electric Co Ltd Double effective absorption refrigerator
JP2816012B2 (en) * 1990-10-26 1998-10-27 三洋電機株式会社 Control device for absorption refrigerator
JP2538423B2 (en) * 1991-02-08 1996-09-25 三洋電機株式会社 Single-double-effect absorption refrigerator
JPH06237953A (en) * 1993-02-15 1994-08-30 Aprica Kassai Inc Diaper
JPH07324839A (en) * 1994-05-30 1995-12-12 Sanyo Electric Co Ltd Single and double effect absorption hot and chilled water generator
JP3630775B2 (en) * 1995-06-27 2005-03-23 三洋電機株式会社 Heat input control method of absorption refrigerator
JP4148830B2 (en) * 2003-05-09 2008-09-10 三洋電機株式会社 Single double effect absorption refrigerator
JP4287705B2 (en) * 2003-06-18 2009-07-01 東京瓦斯株式会社 Single double effect absorption refrigerator and operation control method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169016A (en) * 1984-02-10 1985-09-02 Youei Seisakusho:Kk Burning control device
JPS60202233A (en) * 1984-03-26 1985-10-12 Youei Seisakusho:Kk Combustion controlling device
JPS62778A (en) * 1985-06-25 1987-01-06 三洋電機株式会社 Single-double effect absorption refrigerator
JPH06341728A (en) * 1993-05-31 1994-12-13 Sanyo Electric Co Ltd Controlling device for absorption type refrigerating machine
JPH06341729A (en) * 1993-06-01 1994-12-13 Sanyo Electric Co Ltd Controlling method for operation of single-double effect absorption refrigerating machine
JPH0712419A (en) * 1993-06-24 1995-01-17 Tokyo Gas Co Ltd Method and device for controlling absorption type refrigerating machine
JP2001221528A (en) * 2000-02-09 2001-08-17 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2001263851A (en) * 2000-03-16 2001-09-26 Sanyo Electric Co Ltd Method for controlling absorption refrigerating machine

Also Published As

Publication number Publication date
KR20060128626A (en) 2006-12-14
CN1877223A (en) 2006-12-13
JP2006343042A (en) 2006-12-21
KR100716706B1 (en) 2007-05-14
CN100410597C (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP4606255B2 (en) Operation method of single double effect absorption refrigerator
KR100448424B1 (en) Control method of absorption refrigerator
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JP4166037B2 (en) Absorption chiller / heater
JP2008025915A (en) Absorption refrigerator system
KR100585352B1 (en) Absorption refrigerator
JP2009058207A (en) Absorption water cooler/heater
JP7054855B2 (en) Absorption chiller
JP6765056B2 (en) Absorption chiller
JP5456368B2 (en) Absorption refrigerator
JP4308076B2 (en) Absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3157349B2 (en) Absorption refrigerator control device
JP4174614B2 (en) Absorption refrigerator
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP2017036856A (en) Waste heat input type absorption chiller heater and waste heat recovery amount control method thereof
JP3434280B2 (en) Absorption refrigerator and its operation method
JP4115020B2 (en) Control method of absorption refrigerator
JP2001263851A (en) Method for controlling absorption refrigerating machine
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2006194469A (en) Single/double effect absorption refrigerating machine, and its operation control method
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JP2011033261A (en) Absorption type refrigerating machine
JP2006084061A (en) Operating method of absorption refrigerating machine
JP2005326089A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R151 Written notification of patent or utility model registration

Ref document number: 4606255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3