JPH06341729A - Controlling method for operation of single-double effect absorption refrigerating machine - Google Patents

Controlling method for operation of single-double effect absorption refrigerating machine

Info

Publication number
JPH06341729A
JPH06341729A JP13068693A JP13068693A JPH06341729A JP H06341729 A JPH06341729 A JP H06341729A JP 13068693 A JP13068693 A JP 13068693A JP 13068693 A JP13068693 A JP 13068693A JP H06341729 A JPH06341729 A JP H06341729A
Authority
JP
Japan
Prior art keywords
regenerator
low
heat source
condenser
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13068693A
Other languages
Japanese (ja)
Other versions
JP3363518B2 (en
Inventor
Takeo Ishikawa
豪夫 石河
Masayuki Daino
正之 大能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13068693A priority Critical patent/JP3363518B2/en
Publication of JPH06341729A publication Critical patent/JPH06341729A/en
Application granted granted Critical
Publication of JP3363518B2 publication Critical patent/JP3363518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve a coefficient of performance of a single-double effect absorption refrigerating machine at the time of a single effect operation. CONSTITUTION:At the time of a low-load operation when a sufficient quantity of heat for a load is obtained from hot waste water flowing through a low-heat source supply piping 29 when cold water is supplied with on-off valves 19V, 21V, 25V and 28V closed, both of the operation of an intermediate absorption liquid pump P2 and the operation of a high-temperature regenerator 4 are stopped. In a frequency converter 11, the frequency of a power supplied to a rare absorption liquid pump P1 is converted to be increased when the temperature of a solution discharged to an intermediate absorption liquid piping 15 from a low-heat source regenerator 9 is high and to be decreased when it is low, and thereby the number of revolutions of the rare absorption liquid pump P1 is controlled. Therefore circulation of a rare absorption liquid lessens at the time of a low load and, accordingly, the amount of evaporation of a refrigerant is reduced. Consequently, a sensible heat loss is reduced and a coefficient of performance is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収冷凍機に関し、特に
低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器
胴を備えた一重二重効用吸収冷凍機の運転制御の方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to a method for controlling the operation of a single double-effect absorption refrigerating machine having a low heat source regenerator condenser barrel containing a low heat source regenerator and a condenser. .

【0002】[0002]

【従来の技術】例えば特開平4−260760号公報に
は、蒸発器と吸収器を収納した蒸発器吸収器胴、低温再
生器と凝縮器を収納した低温再生器凝縮器胴、温廃水な
どを低温熱源とする低熱源再生器と凝縮器を収納した低
熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温
熱交換器、稀吸収液ポンプおよび中間吸収液ポンプを配
管接続して一重二重効用吸収冷凍機とする技術が開示さ
れている。
2. Description of the Related Art For example, in Japanese Unexamined Patent Publication (Kokai) No. 4-260760, an evaporator absorber cylinder containing an evaporator and an absorber, a low temperature regenerator condenser cylinder containing a low temperature regenerator and a condenser, warm waste water, etc. Low heat source regenerator as low temperature heat source and low heat source regenerator containing condenser Condenser body, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, rare absorbent pump and intermediate absorbent pump connected by piping A technique for making a single-double-effect absorption refrigerator is disclosed.

【0003】[0003]

【発明が解決しようとする課題】上記一重二重効用吸収
冷凍機においては、稀吸収液ポンプ、すなわち吸収器と
低熱源再生器とを接続している配管部に設置され、吸収
器から稀吸収液を低熱源再生器に送るためのポンプは、
冷凍機を起動してから停止する間中、定格運転、すなわ
ち一定の回転数で運転されるように設けられている。
In the above single-double-effect absorption refrigerator, the rare-absorption liquid pump, that is, the pipe portion connecting the absorber and the low heat source regenerator, is installed to absorb the rare absorption from the absorber. The pump for sending the liquid to the low heat source regenerator is
It is provided so that the refrigerator is operated at a rated speed, that is, at a constant rotation speed, while the refrigerator is started and then stopped.

【0004】このため、従来の収冷凍機においては、負
荷が小さく、低熱源再生器を運転するだけで十分なとき
や、低熱源再生器と高温再生器の併用運転を行ってい
て、負荷が減少して高温再生器の火が消えたようなとき
にも、定格の最大流量の溶液が低温再生器に循環するこ
とから、顕熱ロスが大きく、したがって成績係数が低下
すると云った問題点があり、この点の解決が課題となっ
ていた。
Therefore, in the conventional refrigerator / cooler, the load is small and it is sufficient to operate the low heat source regenerator, or when the low heat source regenerator and the high temperature regenerator are operated together, the load is reduced. Even when the temperature of the high temperature regenerator is extinguished due to the decrease, the solution with the maximum rated flow rate circulates in the low temperature regenerator, resulting in a large sensible heat loss and thus a decrease in the coefficient of performance. There was a problem to solve this point.

【0005】[0005]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するため、蒸発器と吸収器とを収納した蒸発
器吸収器胴、低温再生器と凝縮器とを収納した低温再生
器凝縮器胴、温廃水などを低温熱源とする低熱源再生器
と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生
器、低温熱交換器、高温熱交換器、稀吸収液ポンプおよ
び中間吸収液ポンプを配管接続した一重二重効用吸収冷
凍機において、
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention solves the above-mentioned problems of the prior art by means of an evaporator absorber body containing an evaporator and an absorber, and a low temperature regenerator containing a low temperature regenerator and a condenser. Low heat source regenerator containing a condenser body and a low heat source regenerator that uses hot wastewater as a low temperature heat source, and a condenser body, a high temperature regenerator, a low temperature heat exchanger, a high temperature heat exchanger, a rare absorbent pump, and In a single-double-effect absorption refrigerator with an intermediate absorbent pump connected by piping,

【0006】低負荷時に、低熱源再生器と高温再生器と
を接続している配管部に設置された中間吸収液ポンプの
運転と、高温再生器の運転を共に停止し、吸収器と低熱
源再生器とを接続している配管部に設置された稀吸収液
ポンプの回転数を、低熱源再生器から吐出した溶液の温
度に基づいて制御するようにしたものであり、
At the time of low load, both the operation of the intermediate absorbent pump installed in the pipe section connecting the low heat source regenerator and the high temperature regenerator and the operation of the high temperature regenerator are stopped, and the absorber and the low heat source are The number of revolutions of the rare absorbent pump installed in the pipe part connecting to the regenerator is controlled based on the temperature of the solution discharged from the low heat source regenerator.

【0007】高負荷時に、吸収器と低熱源再生器とを接
続している配管部に設置された稀吸収液ポンプを定格運
転し、低熱源再生器と高温再生器とを接続している配管
部に設置された中間吸収液ポンプの回転数を、高温再生
器の溶液温度と、吸収器に流入している冷却水の入口温
度とに基づいて制御するようにしたものであり、
When the load is high, the rare absorbent pump installed in the pipe section connecting the absorber and the low heat source regenerator is operated under rated operation, and the pipe connecting the low heat source regenerator and the high temperature regenerator is connected. The rotation speed of the intermediate absorption liquid pump installed in the section is controlled based on the solution temperature of the high temperature regenerator and the inlet temperature of the cooling water flowing into the absorber,

【0008】高負荷時に、高温再生器への燃料供給量
と、低熱源再生器への低温熱源供給量とを、蒸発器から
吐出して冷水の温度に基づいて、それぞれ独立に制御す
るようにしたものである。
When the load is high, the fuel supply amount to the high temperature regenerator and the low temperature heat source supply amount to the low heat source regenerator are independently controlled based on the temperature of the cold water discharged from the evaporator. It was done.

【0009】[0009]

【作用】低熱源再生器に流入する温廃水などの低温熱源
から、負荷に対して十分な熱量が得られるときには、中
間吸収液ポンプの運転と、高温再生器の運転を共に停止
し、稀吸収液ポンプの回転数を、低熱源再生器から吐出
した溶液の温度に基づいて制御する一重効用運転を行う
ので、稀吸収液の循環が減少し、これによって冷媒の蒸
発量が減少するので、顕熱ロスが減少し、成績係数が向
上する。
[Function] When a sufficient amount of heat for the load can be obtained from a low temperature heat source such as hot wastewater flowing into the low heat source regenerator, both the operation of the intermediate absorbent pump and the operation of the high temperature regenerator are stopped, resulting in rare absorption. Since the single-effect operation is performed in which the rotation speed of the liquid pump is controlled based on the temperature of the solution discharged from the low heat source regenerator, the circulation of the rare absorption liquid is reduced, and the evaporation amount of the refrigerant is reduced. Heat loss is reduced and the coefficient of performance is improved.

【0010】一方、負荷が大きいときには、低熱源再生
器の運転に加えて、高温再生器と中間吸収液ポンプとを
起動し、一重二重効用の運転を行うので、高い冷凍能力
が得られる。
On the other hand, when the load is large, in addition to the operation of the low heat source regenerator, the high temperature regenerator and the intermediate absorbent pump are started to perform the single double effect operation, so that a high refrigerating capacity can be obtained.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいてさ
らに詳細に説明する。図1は例えば冷媒に水、吸収液
(溶液)に臭化リチウム(LiBr)溶液を用いた一重
二重効用吸収冷凍機の概略構成図であり、1は蒸発器、
2は吸収器、3は蒸発器1と吸収器2とを収納した蒸発
器吸収器胴(以下、下胴と云う)、4は例えばガスバー
ナ5を備え、これが生成する火炎によって加熱される高
温再生器、6は低温再生器、7は低温再生器6のための
凝縮器(以下、第1凝縮器と云う)、8は低温再生器6
と第1凝縮器7とを収納した低温再生器凝縮器胴(以
下、第1上胴と云う)、9は例えば80℃前後の温廃水
を低温熱源とする低熱源再生器、10は低熱源再生器9
のための凝縮器(以下、第2凝縮器と云う)、11は低
熱源再生器9と第2凝縮器10とを収納した低熱源再生
器凝縮器胴(以下、第2上胴と云う)、12は低温熱交
換器、13は高温熱交換器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a single-double-effect absorption refrigerator using, for example, water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid (solution), and 1 is an evaporator,
Reference numeral 2 is an absorber, 3 is an evaporator absorber shell (hereinafter, referred to as a lower shell) accommodating the evaporator 1 and the absorber 2, 4 is, for example, a gas burner 5, and high temperature regeneration is performed by a flame generated by the gas burner 5. , 6 is a low temperature regenerator, 7 is a condenser for the low temperature regenerator 6 (hereinafter referred to as the first condenser), 8 is a low temperature regenerator 6
A low temperature regenerator condenser body (hereinafter, referred to as a first upper body) accommodating a first condenser 7 and a low heat source regenerator 9 that uses, for example, warm waste water of about 80 ° C. as a low temperature heat source, and 10 is a low heat source. Regenerator 9
A condenser (hereinafter, referred to as a second condenser) 11 for storing a low heat source regenerator 9 and a second condenser 10, and a low heat source regenerator condenser cylinder (hereinafter, referred to as a second upper cylinder). , 12 are low temperature heat exchangers, and 13 are high temperature heat exchangers.

【0012】2Aは吸収器2の下部に形成された稀吸収
液溜りであり、この稀吸収液溜り2Aと低熱源再生器9
の気相部とは、途中に稀吸収液ポンプP1を備えた稀吸
収液配管14により配管接続されている。また、低熱源
再生器9の下部に形成された中間吸収液溜り9Aと高温
再生器4の気相部とは、途中に中間吸収液ポンプP2を
備えた中間吸収液配管15によって配管接続されてい
る。
Reference numeral 2A denotes a rare absorbent pool formed in the lower portion of the absorber 2. The rare absorbent pool 2A and the low heat source regenerator 9 are provided.
The gas phase part is connected by a dilute absorbent pipe 14 equipped with a dilute absorbent pump P1 on the way. Further, the intermediate absorbent pool 9A formed in the lower portion of the low heat source regenerator 9 and the gas phase portion of the high temperature regenerator 4 are connected by an intermediate absorbent pipe 15 equipped with an intermediate absorbent pump P2. There is.

【0013】4Aは高温再生器4に形成された中間吸収
液溜りであり、この中間吸収液溜り4Aと低温再生器6
の気相部とは、中間吸収液配管16によって配管接続さ
れている。また、低温再生器6の下部に形成された濃吸
収液溜り6Aと吸収器2の気相部に設けられた濃吸収液
散布装置2Bとは、濃吸収液管17A・17Bからなる
濃吸収液配管17によって配管接続されている。
Reference numeral 4A denotes an intermediate absorption liquid pool formed in the high temperature regenerator 4, and the intermediate absorption liquid pool 4A and the low temperature regenerator 6 are provided.
The gas phase part is connected by a pipe 16 for an intermediate absorbing liquid. Further, the concentrated absorbent pool 6A formed in the lower part of the low temperature regenerator 6 and the concentrated absorbent spraying device 2B provided in the gas phase part of the absorber 2 are the concentrated absorbent pipes 17A and 17B. The pipe 17 is connected to the pipe.

【0014】また、中間吸収液ポンプP2の吸込側の中
間吸収液管15Aと低温熱交換器12の上流側の濃吸収
液管17Aとは、吸収液管18により接続されている。
そして、この吸収液管18は第1上胴8よりも低いレベ
ルに設置され、第2上胴内の圧力と第1上胴8内の圧力
の間に差が生じた場合でも、各胴間をUシールできるよ
うになっている。
An intermediate absorption liquid pipe 15A on the suction side of the intermediate absorption liquid pump P2 and a concentrated absorption liquid pipe 17A on the upstream side of the low temperature heat exchanger 12 are connected by an absorption liquid pipe 18.
The absorbing liquid pipe 18 is installed at a level lower than that of the first upper body 8, and even if there is a difference between the pressure in the second upper body and the pressure in the first upper body 8, the space between the bodies is reduced. Can be U-sealed.

【0015】また、高温熱交換器13の上流側の中間吸
収液管16Aと吸収器2とは、開閉弁19Vを途中に備
えた中間吸収液配管19により配管接続されている。こ
の開閉弁19Vは冷水供給時に閉じられ、温水供給時に
開放される。
Further, the intermediate absorption liquid pipe 16A on the upstream side of the high temperature heat exchanger 13 and the absorber 2 are connected by an intermediate absorption liquid pipe 19 having an opening / closing valve 19V in the middle thereof. The on-off valve 19V is closed when cold water is supplied and opened when hot water is supplied.

【0016】20は高温再生器4の気相部から第1上胴
8に至る冷媒蒸気配管であり、低温再生器6の内部を経
由して第1凝縮器7の底部に開口している。21は途中
に開閉弁21Vを備えて、低温再生器6手前の冷媒蒸気
管20Aと吸収器2の気相部とを連通する冷媒蒸気配管
であり、この開閉弁21Vは冷水供給時に閉じられ、温
水供給時に開放される。
Reference numeral 20 denotes a refrigerant vapor pipe extending from the gas phase portion of the high temperature regenerator 4 to the first upper body 8, and opens at the bottom of the first condenser 7 via the inside of the low temperature regenerator 6. Reference numeral 21 denotes a refrigerant vapor pipe which is provided with an on-off valve 21V on the way and connects the refrigerant vapor pipe 20A in front of the low-temperature regenerator 6 and the gas phase portion of the absorber 2 to each other. The on-off valve 21V is closed when cold water is supplied, It is opened when hot water is supplied.

【0017】22は第1凝縮器7の底部と蒸発器1の気
相部とを配管接続する第1冷媒液配管であり、この第1
冷媒液配管22にUシール部22Aが形成されている。
また、23は第2凝縮器10の底部と第1冷媒液配管2
2のUシール部22Aとを配管接続する第2冷媒液配管
である、このため、この第2冷媒液配管23にも、第1
冷媒液配管22との接続部にUシール部23Aが形成さ
れることになる。
Reference numeral 22 is a first refrigerant liquid pipe for connecting the bottom portion of the first condenser 7 and the vapor phase portion of the evaporator 1 by piping.
A U-seal portion 22A is formed in the refrigerant liquid pipe 22.
Further, 23 is the bottom of the second condenser 10 and the first refrigerant liquid pipe 2
It is the second refrigerant liquid pipe that connects the second U seal portion 22A with the pipe. Therefore, the second refrigerant liquid pipe 23 also has the first
The U-seal portion 23A is formed at the connection portion with the refrigerant liquid pipe 22.

【0018】24は蒸発器1の冷媒液溜り1Aと冷媒散
布装置1Bとを配管接続する冷媒液循環配管であり、こ
の冷媒液循環配管24の途中に冷媒液ポンプP3が設け
られている。また、25は冷媒液溜り1Aと稀吸収液溜
り2Aとの間に配管接続された冷媒液ドレン配管であ
り、この冷媒液ドレン配管25の途中に開閉弁25Vが
設けられている。
Reference numeral 24 is a refrigerant liquid circulation pipe for connecting the refrigerant liquid reservoir 1A of the evaporator 1 and the refrigerant dispersion device 1B, and a refrigerant liquid pump P3 is provided in the middle of the refrigerant liquid circulation pipe 24. Reference numeral 25 denotes a refrigerant liquid drain pipe connected between the refrigerant liquid reservoir 1A and the rare absorption liquid reservoir 2A, and an opening / closing valve 25V is provided in the refrigerant liquid drain pipe 25.

【0019】26は冷温水管26A・冷温水熱交換器2
6B・冷温水管26Cからなる冷温水配管である。ま
た、27は冷却水配管であり、この冷却水配管27は冷
却塔(図示せず)から吸収器熱交換器27A・第1凝縮
器熱交換器27B・第2凝縮器熱交換器27Cを経て冷
却塔に還流する冷却水の循環路を形成している。
Reference numeral 26 denotes a cold / hot water pipe 26A and a cold / hot water heat exchanger 2
6B is a cold / hot water pipe consisting of a hot / cold water pipe 26C. Further, 27 is a cooling water pipe, and this cooling water pipe 27 passes from a cooling tower (not shown) through an absorber heat exchanger 27A, a first condenser heat exchanger 27B, and a second condenser heat exchanger 27C. A circulation path for cooling water that returns to the cooling tower is formed.

【0020】第1凝縮器熱交換器27Bから第2凝縮器
熱交換器27Cに至る冷却水管27Dと冷温水配管26
の冷温水管26Cとは、途中に開閉弁28Vを備えた冷
却水配管28によって配管接続され、この開閉弁28V
は温水供給時で、かつ、冷却水配管27に冷却水を貯溜
するときに開放される。
A cooling water pipe 27D and a cold / hot water pipe 26 extending from the first condenser heat exchanger 27B to the second condenser heat exchanger 27C.
The cold / hot water pipe 26C is connected by a cooling water pipe 28 having an opening / closing valve 28V in the middle thereof.
Is opened when hot water is supplied and when the cooling water is stored in the cooling water pipe 27.

【0021】29は80℃程度の温廃水を低温熱源とし
て低熱源再生器9に供給するための低熱源供給配管であ
り、低熱源水管29A・低熱源熱交換器29B・低熱源
水管29C・側路管29D・三方弁である流量制御弁2
9Eから構成されている。
Reference numeral 29 is a low heat source supply pipe for supplying the waste heat water of about 80 ° C. to the low heat source regenerator 9 as a low temperature heat source. The low heat source water pipe 29A, the low heat source heat exchanger 29B, the low heat source water pipe 29C, and the side. Flow pipe 29D, flow control valve 2 which is a three-way valve
It is composed of 9E.

【0022】C1はメインの制御器であり、この制御器
C1は温度センサT1が計測する、冷温水熱交換器26
Bで熱交換して冷温水管26Cを流れている冷温水の温
度に基づいて、低熱源供給配管29の流量制御弁29E
の開度を制御し、低熱源再生器9に供給する温廃水の量
を調節することで、低熱源再生器9における冷媒の再生
能力を制御すると共に、制御器C2・C3に前記温度デ
ータを与え、ガスバーナ5に供給するガス流量の制御
と、中間吸収液ポンプP2の起動/停止制御と、稀吸収
液ポンプP1の定格運転指示とを実行する。
C1 is a main controller, and this controller C1 is a cold / hot water heat exchanger 26 measured by a temperature sensor T1.
The flow control valve 29E of the low heat source supply pipe 29 is based on the temperature of the hot / cold water flowing through the cold / hot water pipe 26C after heat exchange with B.
By controlling the opening degree of the low heat source regenerator 9 and adjusting the amount of warm waste water supplied to the low heat source regenerator 9, the refrigerant regeneration capacity in the low heat source regenerator 9 is controlled, and the temperature data is stored in the controllers C2 and C3. The control of the flow rate of the gas supplied to the gas burner 5, the start / stop control of the intermediate absorption liquid pump P2, and the rated operation instruction of the rare absorption liquid pump P1 are executed.

【0023】制御器C2は制御器C1から得た冷温水の
温度情報に基づいて、前記したガスバーナ5に供給する
ガス流量の制御と、中間吸収液ポンプP2の起動/停止
制御を行う他に、温度センサT2が計測する冷却水配管
27を流れて吸収器2に流入している冷却水の温度と、
温度センサT3が計測する高温再生器4内の溶液温度と
に基づいて、中間吸収液ポンプP2に供給する電力の周
波数を、周波数変換器I2によって変換する機能をも果
たすようになっている。
The controller C2 controls the flow rate of the gas supplied to the gas burner 5 and controls the start / stop of the intermediate absorbent pump P2 based on the temperature information of the cold / hot water obtained from the controller C1. The temperature of the cooling water flowing in the absorber 2 flowing through the cooling water pipe 27 measured by the temperature sensor T2,
Based on the temperature of the solution in the high temperature regenerator 4 measured by the temperature sensor T3, the frequency converter I2 also has a function of converting the frequency of the electric power supplied to the intermediate absorption liquid pump P2.

【0024】C3は稀吸収液ポンプP1の運転を制御す
る制御器であり、この制御器C3は制御器C1からの温
度情報に基づいて稀吸収液ポンプP1の前記定格運転を
指示する他、この定格運転が指示されていないときに
は、温度センサT4が計測する低熱源再生器9から中間
吸収液配管15に吐出している中間吸収液の温度に基づ
いて、稀吸収液ポンプP1に供給する電力の周波数を、
周波数変換器I1によって変換するようになっている。
C3 is a controller for controlling the operation of the lean absorbent pump P1, and this controller C3 instructs the rated operation of the lean absorbent pump P1 based on the temperature information from the controller C1. When the rated operation is not instructed, the electric power supplied to the dilute absorbent pump P1 is determined based on the temperature of the intermediate absorbent that is discharged from the low heat source regenerator 9 to the intermediate absorbent pipe 15 measured by the temperature sensor T4. Frequency
The frequency is converted by the frequency converter I1.

【0025】(イ)一重効用運転制御 上記構成の吸収冷凍機において、負荷に冷水を供給する
ときで、低熱源供給配管29の温廃水から負荷に対して
十分な熱量が得られている場合に行う、一重効用冷水供
給運転の制御について説明すると、この冷水供給時には
開閉弁19V・21V・25V・28Vを閉じている。
そして、温度センサT1が計測する冷水の温度に基づい
て、制御器C1が制御弁29Eの開度を制御し、低熱源
熱交換器29Bを流れる温排水の流量を調整する。この
とき、温度センサT1が計測した冷水温度は所定の温度
以下であるので、制御器C1はこの温度情報を制御器C
2・C3に送信する。
(B) Single-effect operation control In the absorption refrigerator having the above-mentioned structure, when cold water is supplied to the load and sufficient heat is obtained for the load from the warm wastewater of the low heat source supply pipe 29. The control of the single effect cold water supply operation to be performed will be described. At the time of this cold water supply, the on-off valves 19V, 21V, 25V and 28V are closed.
Then, the controller C1 controls the opening degree of the control valve 29E based on the temperature of the cold water measured by the temperature sensor T1 to adjust the flow rate of the warm waste water flowing through the low heat source heat exchanger 29B. At this time, since the cold water temperature measured by the temperature sensor T1 is equal to or lower than the predetermined temperature, the controller C1 outputs this temperature information to the controller C.
2. Send to C3.

【0026】制御器C2は、制御器C1から得た冷温水
管26Cを流れている冷水の温度が所定温度以下である
との温度情報に基づいて、ガスバーナ5へのガス供給は
行わず、中間吸収液ポンプP2の起動も指示しない。
The controller C2 does not supply the gas to the gas burner 5 on the basis of the temperature information that the temperature of the cold water flowing through the cold / hot water pipe 26C obtained from the controller C1 is equal to or lower than a predetermined temperature, and does not perform the intermediate absorption. It also does not instruct activation of the liquid pump P2.

【0027】一方、制御器C3は制御器C1から得た、
冷水温度が所定の温度以下であるとの前記温度情報に基
づいて、稀吸収液ポンプP1の定格運転を指示するので
はなく、温度センサT4が計測する中間吸収液の温度に
基づいて、稀吸収液ポンプP1に供給する電力の周波数
を、周波数変換装置I1において例えば図2のように制
御し、稀吸収液ポンプP1の回転数を制御する。
On the other hand, the controller C3 is obtained from the controller C1.
Based on the temperature information that the cold water temperature is lower than or equal to a predetermined temperature, the rare absorption is not performed based on the temperature of the intermediate absorption liquid measured by the temperature sensor T4, instead of instructing the rated operation of the rare absorption liquid pump P1. The frequency of the electric power supplied to the liquid pump P1 is controlled in the frequency converter I1 as shown in FIG. 2, for example, to control the rotation speed of the dilute absorption liquid pump P1.

【0028】すなわち、例えば温度センサT4が計測し
た中間吸収液の温度が80℃以上のときには定格の60
Hzで運転し、70℃以下のときには定格の半分の周波
数30Hzで運転し、70〜80℃の間のときには温度
に比例する周波数で運転することにより、負荷が小さい
ときには稀吸収液の循環が減少し、これによって冷媒の
蒸発量も減少するため、顕熱ロスが減少し、成績係数が
向上する。
That is, for example, when the temperature of the intermediate absorption liquid measured by the temperature sensor T4 is 80 ° C. or higher, the rated value is 60.
When the load is small, the circulation of the rare absorbing liquid is reduced by operating at a frequency of 30 Hz, which is half the rated voltage when the temperature is 70 ° C or less, and at a frequency proportional to the temperature when the temperature is between 70 and 80 ° C. As a result, the evaporation amount of the refrigerant is also reduced, so that the sensible heat loss is reduced and the coefficient of performance is improved.

【0029】なお、冷媒と溶液の流れ方自体は従来周知
であるが、簡単に説明すると、低熱源再生器9で冷媒を
分離して濃度が上昇した中間吸収液は中間吸収液管15
A・吸収液管18・濃吸収液管17A・低温熱交換器1
2・濃吸収液管17Bを経て濃吸収液散布装置2Bから
吸収器熱交換器27Aに散布される。
It should be noted that the flow of the refrigerant and the solution itself is well known in the prior art. Briefly, however, the intermediate absorption liquid whose concentration is increased by separating the refrigerant in the low heat source regenerator 9 has an intermediate absorption liquid pipe 15
Absorption liquid pipe 18, concentrated absorption liquid pipe 17A, low temperature heat exchanger 1
2. It is sprayed from the concentrated absorbent spray device 2B to the absorber heat exchanger 27A via the concentrated absorbent pipe 17B.

【0030】低熱源再生器9で分離した冷媒は、第2凝
縮器10に流入して冷却され凝縮する。そして、冷媒液
は第2冷媒液配管23を流下し、Uシール部23A・2
2Aに溜る。Uシール部23A・22Aに溜った冷媒液
は溢れて蒸発器1に流入する。Uシール部23Aから第
1冷媒液配管22に流入した冷媒液は自己蒸発し、蒸気
圧力により第1冷媒液配管22および第1上胴8の内部
圧力は上昇する。
The refrigerant separated in the low heat source regenerator 9 flows into the second condenser 10 to be cooled and condensed. Then, the refrigerant liquid flows down the second refrigerant liquid pipe 23, and the U seal portion 23A.
Collect in 2A. The refrigerant liquid accumulated in the U seal portions 23A and 22A overflows and flows into the evaporator 1. The refrigerant liquid that has flowed into the first refrigerant liquid pipe 22 from the U-seal portion 23A self-evaporates, and the internal pressure of the first refrigerant liquid pipe 22 and the first upper body 8 rises due to the vapor pressure.

【0031】蒸発器1の冷媒液溜り1Aに溜った冷媒液
は、冷媒液循環配管24の冷媒液ポンプP3の運転によ
り、冷媒散布装置1Bから冷温水熱交換器26Bに散布
される。そして、冷媒液が気化する際の潜熱によって冷
却された冷水が冷温水熱交換器26B・冷温水管26C
から負荷に供給される。蒸発器1で気化した冷媒は吸収
器2へ流れ、濃吸収液散布装置2Bから散布される濃吸
収液に吸収される。
The refrigerant liquid accumulated in the refrigerant liquid reservoir 1A of the evaporator 1 is sprayed from the refrigerant spraying device 1B to the cold / hot water heat exchanger 26B by the operation of the refrigerant liquid pump P3 of the refrigerant liquid circulation pipe 24. Then, the cold water cooled by the latent heat when the refrigerant liquid is vaporized is cooled / hot water heat exchanger 26B / cooled / hot water pipe 26C.
Supplied to the load from. The refrigerant vaporized in the evaporator 1 flows to the absorber 2 and is absorbed by the concentrated absorbent spread from the concentrated absorbent dispersion device 2B.

【0032】(ロ)一重二重併用運転制御 冷水負荷が大きく、温度センサT1が計測した冷温水管
26Cを流れている冷水の温度上昇に合わせて低熱源熱
交換器29Bに供給する温廃水の流量を増加させても、
温度センサT1が計測する前記冷水温度が設定温度まで
低下しなくなった場合は、制御器C1から送信される冷
水の温度情報に基づいて、制御器C2は中間吸収液ポン
プP2の起動を指示すると共に、ガスバーナ5の点火を
指示し、且つガスバーナ5に供給するガス流量を前記温
度情報に基づいて制御する。
(B) Single-duplex combination operation control The flow rate of the hot waste water supplied to the low heat source heat exchanger 29B in accordance with the temperature rise of the cold water flowing through the cold / hot water pipe 26C measured by the temperature sensor T1 due to the large load of the cold water. Even if you increase
When the cold water temperature measured by the temperature sensor T1 does not drop to the set temperature, the controller C2 instructs the intermediate absorbent pump P2 to start based on the cold water temperature information transmitted from the controller C1. , Instructing the ignition of the gas burner 5 and controlling the gas flow rate supplied to the gas burner 5 based on the temperature information.

【0033】さらに、制御器C2は温度センサT2が計
測する冷却水の温度と、温度センサT3が計測する高温
再生器4内の溶液温度に基づいて、中間吸収液ポンプP
2に供給する電力の周波数を、周波数変換装置I2にお
いて例えば図3のように制御し、中間吸収液ポンプP2
の回転数を制御する。
Further, the controller C2, based on the temperature of the cooling water measured by the temperature sensor T2 and the temperature of the solution in the high temperature regenerator 4 measured by the temperature sensor T3, determines the intermediate absorption liquid pump P.
The frequency of the electric power supplied to 2 is controlled in the frequency converter I2 as shown in FIG.
Control the rotation speed of.

【0034】すなわち、定格周波数が60Hzである場
合は、最低周波数を例えば定格の半分以下の28Hzと
し、この間で温度センサT2が計測する冷却水の温度が
低いほど、温度センサT3が計測する高温再生器4内の
溶液温度が高いほど、周波数を上げるように変換し、中
間吸収液ポンプP2の回転数を高める制御を行う。
That is, when the rated frequency is 60 Hz, the lowest frequency is, for example, 28 Hz which is less than half of the rated value, and the lower the temperature of the cooling water measured by the temperature sensor T2 during this period, the higher the temperature regeneration measured by the temperature sensor T3. The higher the temperature of the solution in the vessel 4, the higher the frequency of the conversion, and the conversion is performed so that the rotation speed of the intermediate absorption liquid pump P2 is increased.

【0035】一方、制御器C3は制御器C1から得た、
冷水温度が所定温度にまで低下していないとの前記温度
情報に基づいて、稀吸収液ポンプ1の定格運転を開始
し、これにより装置全体として、吸収器2・低熱源再生
器9・高温再生器4・高温熱交換器13・低温再生器6
・低温熱交換器12・第1凝縮器7・第2凝縮器10・
蒸発器1による、冷凍サイクルが構成されるので、冷温
水負荷の増大にも速やかに対応することができる。
On the other hand, the controller C3 is obtained from the controller C1.
Based on the temperature information that the cold water temperature has not dropped to the predetermined temperature, the rated operation of the diluted absorbent pump 1 is started, and as a whole, the absorber 2, the low heat source regenerator 9, and the high temperature regeneration are performed. Vessel 4, high temperature heat exchanger 13, low temperature regenerator 6
-Low temperature heat exchanger 12-First condenser 7-Second condenser 10-
Since the refrigeration cycle is configured by the evaporator 1, it is possible to quickly cope with an increase in the cold / hot water load.

【0036】この場合、低熱源再生器9の中間吸収液は
中間吸収液ポンプP2によって高温再生器4へ送られ、
ここで加熱されて冷媒が蒸発分離する。高温再生器4で
濃度が上昇した中間吸収液は、従来の二重効用吸収冷凍
機と同様に高温熱交換器13を経て低温再生器6へ送ら
れる。そして、中間吸収液は低温再生器6において、冷
媒蒸気配管20によって送られてくる冷媒蒸気によって
加熱され、さらに冷媒が分離して濃度が一段と高くな
り、この濃吸収液が低温熱交換器12を経て吸収器2へ
送られ、濃吸収液散布装置2Bから散布される。
In this case, the intermediate absorption liquid of the low heat source regenerator 9 is sent to the high temperature regenerator 4 by the intermediate absorption liquid pump P2,
It is heated here and the refrigerant evaporates and separates. The intermediate absorption liquid whose concentration has increased in the high temperature regenerator 4 is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13 as in the conventional double effect absorption refrigerator. Then, the intermediate absorbent is heated in the low temperature regenerator 6 by the refrigerant vapor sent through the refrigerant vapor pipe 20, and the refrigerant is further separated to have a higher concentration, and the concentrated absorbent passes through the low temperature heat exchanger 12. After that, it is sent to the absorber 2 and sprayed from the concentrated absorbent dispersion device 2B.

【0037】また、低熱源再生器9で分離した冷媒は第
2凝縮器10で凝縮し、低温再生器6で分離した冷媒は
第1凝縮器7で凝縮する。そして、冷媒液が第1凝縮器
7および第2凝縮器10から第1冷媒液配管22および
第2冷媒液配管23を経て蒸発器1へ流れ、冷媒散布装
置1Bから散布される。
The refrigerant separated in the low heat source regenerator 9 is condensed in the second condenser 10, and the refrigerant separated in the low temperature regenerator 6 is condensed in the first condenser 7. Then, the refrigerant liquid flows from the first condenser 7 and the second condenser 10 to the evaporator 1 via the first refrigerant liquid pipe 22 and the second refrigerant liquid pipe 23, and is sprayed from the refrigerant spraying device 1B.

【0038】そして、冷温水熱交換器26Bで冷却され
た冷水が、冷温水管26Cによって負荷に供給される。
また、蒸発器1で気化した冷媒は吸収器2へ流れ、濃吸
収液散布装置2Bから散布される濃吸収液に吸収され
る。
The cold water cooled by the cold / hot water heat exchanger 26B is supplied to the load by the cold / hot water pipe 26C.
Further, the refrigerant vaporized in the evaporator 1 flows to the absorber 2 and is absorbed by the concentrated absorbent spread from the concentrated absorbent dispersion device 2B.

【0039】負荷に温水を供給する場合には、開閉弁1
9V・21V・25V・28Vを開き、高温再生器4で
発生した高温の冷媒蒸気が冷媒蒸気管20A、冷媒蒸気
配管21を経て下胴3へ流れる。そして、冷媒蒸気によ
って冷温水熱交換器26Bを流れる温水が加熱され、冷
温水管26Cを介して負荷に供給される。また、冷温水
熱交換器26Bに接触して凝縮し、冷媒液溜り1Aに溜
った冷媒液は冷媒液ドレン配管25を経て稀吸収液溜り
2Aへ流れる。
When supplying hot water to the load, the on-off valve 1
9V, 21V, 25V and 28V are opened, and the high temperature refrigerant vapor generated in the high temperature regenerator 4 flows to the lower body 3 through the refrigerant vapor pipe 20A and the refrigerant vapor pipe 21. The hot water flowing through the cold / hot water heat exchanger 26B is heated by the refrigerant vapor and supplied to the load via the cold / hot water pipe 26C. Further, the refrigerant liquid that has contacted with the cold / hot water heat exchanger 26B and is condensed and accumulated in the refrigerant liquid pool 1A flows into the rare absorption liquid pool 2A through the refrigerant liquid drain pipe 25.

【0040】なお、本発明は上記実施例に限定されるも
のではないので、特許請求の範囲に記載の趣旨から逸脱
しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above-mentioned embodiments, various modifications can be made without departing from the spirit of the claims.

【0041】例えば、制御器C1・C2・C3は、本発
明の理解を助けるため実施例においては個別に設けてあ
るが、実際の装置では1個のチップに制御回路を書き込
んだマイコンなどで形成することはもちろん可能であ
る。
For example, the controllers C1, C2, and C3 are individually provided in the embodiment to facilitate understanding of the present invention, but in an actual device, they are formed by a microcomputer in which a control circuit is written in one chip. Of course it is possible.

【0042】また、一つの温度センサT1が計測する冷
温水温度に基づいて、流量制御弁29Eの開度制御・稀
吸収液ポンプP1の定格運転指示・中間吸収液ポンプP
2の起動/停止・ガスバーナ5に供給するガス量の制御
を行うようにしているが、各機器に対応した温度センサ
を設置した構成とすることもできる。
Further, based on the cold / hot water temperature measured by one temperature sensor T1, the opening control of the flow control valve 29E, the rated operation instruction of the rare absorbent pump P1, and the intermediate absorbent pump P are performed.
Although the starting / stopping of No. 2 and the control of the gas amount supplied to the gas burner 5 are performed, a temperature sensor corresponding to each device may be installed.

【0043】[0043]

【発明の効果】以上説明したように本発明によれば、低
熱源再生器に流入する温廃水などの低温熱源から、負荷
に対して十分な熱量が得られるときには、中間吸収液ポ
ンプの運転と、高温再生器の運転を共に停止し、稀吸収
液ポンプの回転数を、低熱源再生器から吐出した溶液の
温度に基づいて制御する一重効用運転が行われるので、
稀吸収液の循環が減少し、これによって冷媒の蒸発量が
減少するので、顕熱ロスが減少し、成績係数が向上す
る。
As described above, according to the present invention, when a sufficient amount of heat for a load can be obtained from a low temperature heat source such as warm waste water flowing into a low heat source regenerator, the operation of the intermediate absorbent pump is performed. Since the operation of the high temperature regenerator is stopped together and the number of revolutions of the rare absorbent pump is controlled based on the temperature of the solution discharged from the low heat source regenerator, the single effect operation is performed.
Since the circulation of the rare absorption liquid is reduced, and the evaporation amount of the refrigerant is reduced, the sensible heat loss is reduced and the coefficient of performance is improved.

【0044】一方、負荷が大きいときには、低熱源再生
器の運転に加えて、高温再生器と中間吸収液ポンプとを
起動し、一重二重効用の運転が行なわれるので、高い冷
凍能力が得られるといった顕著な効果を奏するものであ
る。
On the other hand, when the load is large, in addition to the operation of the low heat source regenerator, the high temperature regenerator and the intermediate absorption liquid pump are started to perform the single double effect operation, so that a high refrigerating capacity is obtained. It has a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】一重二重効用吸収冷凍機の概略構成図である。FIG. 1 is a schematic configuration diagram of a single-double-effect absorption refrigerator.

【図2】稀吸収液ポンプの制御例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of control of a rare absorbent pump.

【図3】中間吸収液ポンプの制御例を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an example of control of an intermediate absorbent pump.

【符号の説明】[Explanation of symbols]

1 蒸発器 1A 冷媒液溜り 1B 冷媒散布装置 2 吸収器 2A 稀吸収液溜り 2B 濃吸収液散布装置 3 下胴(蒸発器吸収器胴) 4 高温再生器 4A 中間吸収液溜り 5 ガスバーナ 6 低温再生器 6A 濃吸収液溜り 7 第1凝縮器 8 第1上胴(低温再生器凝縮器胴) 9 低熱源再生器 9A 中間吸収液溜り 10 第2凝縮器 11 第2上胴(低熱源再生器凝縮器胴) 12 低温熱交換器 13 高温熱交換器 14 稀吸収液配管 15 中間吸収液配管 15A 中間吸収液管 16 中間吸収液配管 16A 中間吸収液管 17 濃吸収液配管 17A 濃吸収液管 17B 濃吸収液管 18 吸収液管 19 中間吸収液配管 19V 開閉弁 20 冷媒蒸気配管 20A 冷媒蒸気管 21 冷媒蒸気配管 21V 開閉弁 22 第1冷媒液配管 22A Uシール部 23 第2冷媒液配管 23A Uシール部 24 冷媒液循環配管 25 冷媒液ドレン配管 25V 開閉弁 26 冷温水配管 26A 冷温水管 26B 冷温水熱交換器 26C 冷温水管 27 冷却水配管 27A 吸収器熱交換器 27B 第1凝縮器熱交換器 27C 第2凝縮器熱交換器 27D 冷却水管 28 冷却水配管 28V 開閉弁 29 低熱源供給配管 29A 低熱源水管 29B 低熱源熱交換器 29C 低熱源水管 29D 側路管 29E 流量制御弁 C1 (メイン)制御器 C2 (中間吸収液ポンプ用)制御器 C3 (稀吸収液ポンプ用)制御器 I1・I2 周波数変換装置 P1 稀吸収液ポンプ P2 中間吸収液ポンプ P3 冷媒液ポンプ T1〜T4 温度センサ 1 Evaporator 1A Refrigerant Liquid Reservoir 1B Refrigerant Dispersing Device 2 Absorber 2A Rare Absorbing Liquid Reservoir 2B Concentrated Absorbing Liquid Dispersing Device 3 Lower Body (Evaporator Absorber Body) 4 High Temperature Regenerator 4A Intermediate Absorbing Liquid Reservoir 5 Gas Burner 6 Low Temperature Regenerator 6A Concentrated absorption liquid reservoir 7 1st condenser 8 1st upper body (low temperature regenerator condenser body) 9 Low heat source regenerator 9A Intermediate absorption liquid reservoir 10 2nd condenser 11 2nd upper body (low heat source regenerator condenser) 12) Low-temperature heat exchanger 13 High-temperature heat exchanger 14 Rare absorption liquid pipe 15 Intermediate absorption liquid pipe 15A Intermediate absorption liquid pipe 16 Intermediate absorption liquid pipe 16A Intermediate absorption liquid pipe 17 Concentrated absorption liquid pipe 17A Concentrated absorption liquid pipe 17B Concentrated absorption liquid Liquid pipe 18 Absorbing liquid pipe 19 Intermediate absorbing liquid pipe 19V Open / close valve 20 Refrigerant vapor pipe 20A Refrigerant vapor pipe 21 Refrigerant vapor pipe 21V Open / close valve 22 First refrigerant liquid pipe 22A U seal part 23 Second cold Liquid pipe 23A U seal part 24 Refrigerant liquid circulation pipe 25 Refrigerant liquid drain pipe 25V Open / close valve 26 Cold / hot water pipe 26A Cold / hot water pipe 26B Cold / hot water heat exchanger 26C Cold / hot water pipe 27 Cooling water pipe 27A Absorber heat exchanger 27B First condenser Heat exchanger 27C Second condenser heat exchanger 27D Cooling water pipe 28 Cooling water pipe 28V Open / close valve 29 Low heat source supply pipe 29A Low heat source water pipe 29B Low heat source heat exchanger 29C Low heat source water pipe 29D Side pipe 29E Flow control valve C1 ( Main) Controller C2 (for intermediate absorption liquid pump) Controller C3 (for rare absorption liquid pump) Controller I1, I2 Frequency converter P1 Rare absorption liquid pump P2 Intermediate absorption liquid pump P3 Refrigerant liquid pump T1-T4 Temperature sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器、低
温熱交換器、高温熱交換器、稀吸収液ポンプおよび中間
吸収液ポンプを配管接続した一重二重効用吸収冷凍機に
おいて、低負荷時に、低熱源再生器と高温再生器とを接
続している配管部に設置された中間吸収液ポンプの運転
と、高温再生器の運転を共に停止し、吸収器と低熱源再
生器とを接続している配管部に設置された稀吸収液ポン
プの回転数を、低熱源再生器から吐出した溶液の温度に
基づいて制御することを特徴とする一重二重効用吸収冷
凍機の運転制御方法。
1. An evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot wastewater as a low temperature heat source. A low heat source regenerator containing a condenser, a condenser body, a high temperature regenerator, a low temperature heat exchanger, a high temperature heat exchanger, a single double effect absorption refrigerator with pipe connection of a rare absorption liquid pump and an intermediate absorption liquid pump, When the load is low, both the operation of the intermediate absorbent pump installed in the pipe connecting the low heat source regenerator and the high temperature regenerator and the operation of the high temperature regenerator are stopped, and the absorber and the low heat source regenerator Operation control of single-dual-effect absorption chiller characterized by controlling the number of revolutions of the rare absorbent pump installed in the pipe connecting the Method.
【請求項2】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器、低
温熱交換器、高温熱交換器、稀吸収液ポンプおよび中間
吸収液ポンプを配管接続した一重二重効用吸収冷凍機に
おいて、高負荷時に、吸収器と低熱源再生器とを接続し
ている配管部に設置された稀吸収液ポンプを定格運転
し、低熱源再生器と高温再生器とを接続している配管部
に設置された中間吸収液ポンプの回転数を、高温再生器
の溶液温度と、吸収器に流入している冷却水の入口温度
とに基づいて制御することを特徴とする一重二重効用吸
収冷凍機の運転制御方法。
2. An evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot wastewater as a low temperature heat source. A low heat source regenerator containing a condenser, a condenser body, a high temperature regenerator, a low temperature heat exchanger, a high temperature heat exchanger, a single double effect absorption refrigerator with pipe connection of a rare absorption liquid pump and an intermediate absorption liquid pump, When the load is high, the rare absorbent pump installed in the pipe that connects the absorber and the low heat source regenerator is operated under rated conditions, and installed in the pipe that connects the low heat source regenerator and the high temperature regenerator. The rotation speed of the intermediate absorption liquid pump is controlled based on the solution temperature of the high temperature regenerator and the inlet temperature of the cooling water flowing into the absorber. Operation control method.
【請求項3】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器、低
温熱交換器、高温熱交換器、稀吸収液ポンプおよび中間
吸収液ポンプを配管接続した一重二重効用吸収冷凍機に
おいて、高負荷時に、高温再生器への燃料供給量と、低
熱源再生器への低温熱源供給量とを、蒸発器から吐出し
た冷水の温度に基づいて、それぞれ独立に制御すること
を特徴とする一重二重効用吸収冷凍機の運転制御方法。
3. An evaporator absorber cylinder containing an evaporator and an absorber, a low temperature regenerator condenser cylinder containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot wastewater as a low temperature heat source. A low heat source regenerator containing a condenser, a condenser body, a high temperature regenerator, a low temperature heat exchanger, a high temperature heat exchanger, a single double effect absorption refrigerator with pipe connection of a rare absorption liquid pump and an intermediate absorption liquid pump, At high load, the fuel supply amount to the high temperature regenerator and the low temperature heat source supply amount to the low heat source regenerator are independently controlled based on the temperature of the cold water discharged from the evaporator. Operation control method for double-effect absorption refrigerator.
JP13068693A 1993-06-01 1993-06-01 Operation control method of single double effect absorption refrigerator Expired - Lifetime JP3363518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13068693A JP3363518B2 (en) 1993-06-01 1993-06-01 Operation control method of single double effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13068693A JP3363518B2 (en) 1993-06-01 1993-06-01 Operation control method of single double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH06341729A true JPH06341729A (en) 1994-12-13
JP3363518B2 JP3363518B2 (en) 2003-01-08

Family

ID=15040200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13068693A Expired - Lifetime JP3363518B2 (en) 1993-06-01 1993-06-01 Operation control method of single double effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3363518B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162104A (en) * 2004-12-03 2006-06-22 Kawasaki Thermal Engineering Co Ltd Triple effect type absorption cooling and heating machine control method having exhaust heat regenerator and triple effect type absorption cooling and heating machine
JP2006343042A (en) * 2005-06-09 2006-12-21 Sanyo Electric Co Ltd Operating method for single/double effect absorption refrigerating machine
CN100343600C (en) * 2003-06-18 2007-10-17 三洋电机株式会社 Single/double effect absorption refrigerating machine, and its operation control method
KR101137582B1 (en) * 2004-08-30 2012-04-19 산요덴키가부시키가이샤 Single and double effect absorption refrigerator and operation control method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343600C (en) * 2003-06-18 2007-10-17 三洋电机株式会社 Single/double effect absorption refrigerating machine, and its operation control method
KR101137582B1 (en) * 2004-08-30 2012-04-19 산요덴키가부시키가이샤 Single and double effect absorption refrigerator and operation control method therefor
JP2006162104A (en) * 2004-12-03 2006-06-22 Kawasaki Thermal Engineering Co Ltd Triple effect type absorption cooling and heating machine control method having exhaust heat regenerator and triple effect type absorption cooling and heating machine
JP2006343042A (en) * 2005-06-09 2006-12-21 Sanyo Electric Co Ltd Operating method for single/double effect absorption refrigerating machine
CN100410597C (en) * 2005-06-09 2008-08-13 三洋电机株式会社 Operation method of single or dual uses adsorption type freezing machine
JP4606255B2 (en) * 2005-06-09 2011-01-05 三洋電機株式会社 Operation method of single double effect absorption refrigerator

Also Published As

Publication number Publication date
JP3363518B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
KR100732228B1 (en) Hybrid absorption chiller
KR101046059B1 (en) Dual-effect Absorption Chiller in Japan and Its Operation Control Method
JP3363518B2 (en) Operation control method of single double effect absorption refrigerator
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JP3086594B2 (en) Single double effect absorption refrigerator
JP2010266095A (en) Absorption refrigerating machine for single/double effect
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP2777471B2 (en) Absorption chiller / heater controller
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP3837186B2 (en) Absorption refrigerator
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP3813348B2 (en) Absorption refrigerator
JP3236406B2 (en) Absorption refrigerator
JPH04313652A (en) Absorption refrigerating machine
JP2538423B2 (en) Single-double-effect absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JP2858921B2 (en) Control device for absorption refrigerator
JPS6113888Y2 (en)
JP3902912B2 (en) Control device
JPH04302960A (en) Absorption type refrigerating machine
JPH04260760A (en) Single-double effect absorption refrigerator
JPS6223229B2 (en)
JP2001272128A (en) Absorption refrigerating machine
JPH06347124A (en) Absorption type freezer device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121025

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131025

EXPY Cancellation because of completion of term