JP3086594B2 - Single double effect absorption refrigerator - Google Patents

Single double effect absorption refrigerator

Info

Publication number
JP3086594B2
JP3086594B2 JP06188278A JP18827894A JP3086594B2 JP 3086594 B2 JP3086594 B2 JP 3086594B2 JP 06188278 A JP06188278 A JP 06188278A JP 18827894 A JP18827894 A JP 18827894A JP 3086594 B2 JP3086594 B2 JP 3086594B2
Authority
JP
Japan
Prior art keywords
temperature
heat source
low
regenerator
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06188278A
Other languages
Japanese (ja)
Other versions
JPH0854153A (en
Inventor
豪夫 石河
雅彦 池森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06188278A priority Critical patent/JP3086594B2/en
Publication of JPH0854153A publication Critical patent/JPH0854153A/en
Application granted granted Critical
Publication of JP3086594B2 publication Critical patent/JP3086594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に低熱源再生器及び凝縮器を収納した低熱源再生器凝縮
器胴を備えた一重二重効用吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator, and more particularly to a single-double effect absorption refrigerator having a low heat source regenerator and a low heat source regenerator condenser body containing a condenser.

【0002】[0002]

【従来の技術】例えば、特開平4ー260760号公報
には、蒸発器と吸収器とを収納した蒸発器吸収器胴、低
温再生器と凝縮器とを収納した低温再生器凝縮器胴、温
廃水などを低温熱源とする低熱源再生器と凝縮器とを収
納した低熱源再生器凝縮器胴、高温再生器を配管接続し
て吸収液及び冷媒の循環路を形成した一重二重効用吸収
式冷凍機が開示されている。
2. Description of the Related Art For example, Japanese Unexamined Patent Publication No. 4-260760 discloses an evaporator absorber body containing an evaporator and an absorber, a low-temperature regenerator condenser body containing a low-temperature regenerator and a condenser, and a temperature controller. A low-heat-source regenerator housing a condenser with a low-heat-source regenerator that uses wastewater as a low-temperature heat source and a condenser body, and a single-double-effect absorption type in which a high-temperature regenerator is connected by piping to form a circulation path for the absorbent and refrigerant. A refrigerator is disclosed.

【0003】また、一重二重効用吸収式冷凍機の制御方
法としては、例えば特願平5―130686号等があ
る。これらの制御は、蒸発器から取り出す冷水の出口温
度を一定に保つための制御である。このため、低熱源再
生器で仕事をして戻って行く低温熱源の温度が冷水負荷
が大きくなるほど低下する傾向があった。このため、例
えば発電機などの冷却水を低温熱源として用いる場合に
は、発電機へ戻る低温熱源の温度が大きく低下すると、
結露が発生して発電機にトラブルが起こる虞がある。従
って、図5に示したように、温度センサーS1と制御器
C1と流量制御弁(三方弁)29Eとを設け、冷水出口
温度に応じて低熱源熱交換器29Bへの流量を制御する
とともに、設備側で低温熱源の戻り温度が一定になるよ
うに温度センサーS5と制御器C4と流量制御弁(三方
弁)29Fとを設け、低熱源供給管29Aから供給さ
れ、低熱源熱交換器29Bを通って放熱し、低熱源戻し
管29Cを通って戻って行く低温熱源の戻り温度が一定
になるように制御している。
As a method of controlling a single-double-effect absorption refrigerator, there is, for example, Japanese Patent Application No. 5-130686. These controls are for keeping the outlet temperature of the cold water taken out of the evaporator constant. For this reason, there is a tendency that the temperature of the low-temperature heat source that returns after working with the low-heat-source regenerator decreases as the load of the chilled water increases. For this reason, for example, when using cooling water such as a generator as a low-temperature heat source, when the temperature of the low-temperature heat source returning to the generator is significantly reduced,
There is a possibility that dew condensation will occur and a trouble will occur in the generator. Therefore, as shown in FIG. 5, a temperature sensor S1, a controller C1, and a flow control valve (three-way valve) 29E are provided to control the flow to the low heat source heat exchanger 29B according to the chilled water outlet temperature. A temperature sensor S5, a controller C4, and a flow control valve (three-way valve) 29F are provided on the equipment side so that the return temperature of the low-temperature heat source becomes constant. The temperature sensor S5 is supplied from a low-heat-source supply pipe 29A, and the low-heat-source heat exchanger 29B is provided. The temperature is controlled so that the return temperature of the low-temperature heat source returning through the low-heat-source return pipe 29C becomes constant.

【0004】なお、図5において1は蒸発器、2は吸収
器、4は高温再生器、6は低温再生器、9は低熱源再生
器、7と10とは凝縮器、12は低温熱交換器、13は
高温熱交換器であり、P1は稀吸収液ポンプ、P2は中
間吸収液ポンプ、P3は冷媒液ポンプ、C1、C2、C
3及びC4は制御器である。
In FIG. 5, 1 is an evaporator, 2 is an absorber, 4 is a high temperature regenerator, 6 is a low temperature regenerator, 9 is a low heat source regenerator, 7 and 10 are condensers, and 12 is low temperature heat exchange. , 13 is a high-temperature heat exchanger, P1 is a rare absorbing liquid pump, P2 is an intermediate absorbing liquid pump, P3 is a refrigerant liquid pump, C1, C2, C
3 and C4 are controllers.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の一
重二重効用吸収式冷凍機においては、低温熱源の供給量
を制御するために、高価な三方弁などの弁が二重に必要
になると云った問題点があり、コスト削減の観点からこ
の問題点の解決が課題とされていた。
In the conventional single-double-effect absorption refrigerator described above, in order to control the supply amount of the low-temperature heat source, valves such as expensive three-way valves are required in duplicate. Therefore, there is a problem to be solved from the viewpoint of cost reduction.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1に記載の発明によれば、蒸発器と
吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮
器とを収納した低温再生器凝縮器胴、温廃水などを低温
熱源とする低熱源再生器と凝縮器とを収納した低熱源再
生器凝縮器胴、高温再生器を配管接続して吸収液及び冷
媒の循環路を形成し、低温熱源の供給管と戻し管とを連
通するように三方弁を設け、蒸発器から取り出す冷水の
出口温度に基づいて高温再生器の加熱量を制御するとと
もに、冷水の出口温度に基づいて三方弁を制御し、か
つ、低温熱源の戻り温度が所定温度以下になった時に、
三方弁制御用の冷水出口温度の設定値を高める制御器を
設けた一重二重効用吸収式冷凍機を提供するものであ
る。
According to the first aspect of the present invention, there is provided an evaporator absorber body containing an evaporator and an absorber, and a low-temperature regenerator. Low-temperature regenerator condenser body containing condenser, low-heat-source regenerator condenser body containing low-temperature heat source that uses hot wastewater as low-temperature heat source and condenser And forming a circulation path of the refrigerant, providing a three-way valve so as to communicate the supply pipe and the return pipe of the low-temperature heat source, while controlling the heating amount of the high-temperature regenerator based on the outlet temperature of the cold water taken out from the evaporator, The three-way valve is controlled based on the outlet temperature of the chilled water, and when the return temperature of the low-temperature heat source falls below a predetermined temperature,
An object of the present invention is to provide a single double effect absorption refrigerator provided with a controller for increasing a set value of a chilled water outlet temperature for controlling a three-way valve.

【0007】また、請求項2に記載された発明によれ
ば、 蒸発器と吸収器とを収納した蒸発器吸収器胴、低
温再生器と凝縮器とを収納した低温再生器凝縮器胴、温
廃水などを低温熱源とする低熱源再生器と凝縮器とを収
納した低熱源再生器凝縮器胴、高温再生器を配管接続し
て吸収液及び冷媒の循環路を形成し、低温熱源の供給管
と戻し管とを連通するように三方弁を設け、蒸発器から
取り出す冷水の出口温度に基づいて高温再生器の加熱量
を制御するとともに、冷水の出口温度に基づいて三方弁
を制御し、かつ、低温熱源の戻り温度が所定温度より低
下するのに従い、三方弁制御用の冷水出口温度の設定値
を次第に高める制御器を設けた一重二重効用吸収式冷凍
機を提供するものである。
According to the second aspect of the present invention, an evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, A low-heat-source regenerator containing a condenser and a low-heat-source regenerator containing wastewater etc. as a low-temperature heat source, and a high-temperature regenerator connected by piping to form a circulation path for the absorbent and refrigerant, and a supply pipe for the low-temperature heat source A three-way valve is provided so as to communicate with the return pipe, and the heating amount of the high-temperature regenerator is controlled based on the outlet temperature of the cold water taken out from the evaporator, and the three-way valve is controlled based on the outlet temperature of the cold water, and Another object of the present invention is to provide a single-double-effect absorption refrigerator provided with a controller for gradually increasing a set value of a chilled water outlet temperature for controlling a three-way valve as a return temperature of a low-temperature heat source becomes lower than a predetermined temperature.

【0008】さらに、請求項3に記載された発明によれ
ば、 蒸発器と吸収器とを収納した蒸発器吸収器胴、低
温再生器と凝縮器とを収納した低温再生器凝縮器胴、温
廃水などを低温熱源とする低熱源再生器と凝縮器とを収
納した低熱源再生器凝縮器胴、高温再生器を配管接続し
て吸収液及び冷媒の循環路を形成し、低温熱源の供給管
と戻し管とを連通するように三方弁を設け、蒸発器から
取り出す冷水の出口温度に基づいて高温再生器の加熱量
を制御するとともに、冷水の出口温度に基づいて三方弁
を制御し、かつ、低温熱源の戻り温度が所定温度より低
下したときには、この低下に伴い、低温熱源再生器へ流
入する低温熱源の量を減少させる制御器を設けた一重二
重効用吸収式冷凍機を提供するものである。
According to the third aspect of the present invention, an evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, A low-heat-source regenerator containing a condenser and a low-heat-source regenerator containing wastewater etc. as a low-temperature heat source, and a high-temperature regenerator connected by piping to form a circulation path for the absorbent and refrigerant, and a supply pipe for the low-temperature heat source A three-way valve is provided so as to communicate with the return pipe, and the heating amount of the high-temperature regenerator is controlled based on the outlet temperature of the cold water taken out from the evaporator, and the three-way valve is controlled based on the outlet temperature of the cold water, and When the return temperature of the low-temperature heat source falls below a predetermined temperature, a single-double-effect absorption refrigerator provided with a controller for reducing the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator in accordance with the decrease is provided. It is.

【0009】[0009]

【作用】請求項1の発明によれば、蒸発器から取り出す
冷水の出口温度に基づいて高温再生器の加熱量及び三方
弁を制御するので、負荷の変動に対する応答性を向上で
き、低熱源再生器に供給する低温熱源の増減及び負荷の
変動に拘わらず、冷水の出口温度を設定値に維持するこ
とができる。
According to the first aspect of the present invention, the amount of heating of the high-temperature regenerator and the three-way valve are controlled based on the outlet temperature of the cold water taken out of the evaporator. The outlet temperature of the chilled water can be maintained at the set value regardless of the increase / decrease of the low-temperature heat source supplied to the vessel and the fluctuation of the load.

【0010】また、負荷の変動などにより、低温熱源の
戻り温度が低下したときには、冷水の出口温度の設定値
を高め、低温熱源再生器に流入する低温熱源の量を減少
し、低温熱源の戻り温度を所定の温度以上に維持するこ
とができ、発電機の冷却水などを低温熱源にした場合に
も、温度が大幅に低下した低温熱源によって発電機を冷
却する際に結露すると云うようなトラブルを回避するこ
とが可能になる。
When the return temperature of the low-temperature heat source decreases due to a change in load or the like, the set value of the outlet temperature of the chilled water is increased, the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator is reduced, and the return of the low-temperature heat source is reduced. The temperature can be maintained at a specified temperature or higher, and even if the cooling water of the generator is used as a low-temperature heat source, troubles such as condensation forming when the generator is cooled by the low-temperature heat source whose temperature has dropped significantly will occur. Can be avoided.

【0011】さらに、、このような優れた作用効果が一
つの三方弁を操作することによって得ることができ、コ
スト的のも優れた一重二重効用吸収式冷凍機を提供する
ことが可能になる。また、請求項2の発明によれば、低
温熱源の戻り温度が低下したときには、低下の度合いに
応じて低温熱源再生器に流入する低温熱源の量を次第に
減少し、低温熱源再生器での放熱量を次第に減少させ、
負荷の変動に対する応答性を向上でき、かつ、低温熱源
の戻り温度を所定の温度以上に維持することができ、発
電機の冷却水などを低温熱源にしているとき、低温熱源
の戻り温度が低下した場合にも、低温熱源を有効に利用
しつつ温度が大幅に低下した低温熱源によって発電機を
冷却する際に結露すると云うようなトラブルを回避する
ことができる。
Furthermore, such an excellent operation and effect can be obtained by operating one three-way valve, and it is possible to provide a single-double-effect absorption refrigerator which is excellent in cost. . According to the second aspect of the invention, when the return temperature of the low-temperature heat source decreases, the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator is gradually reduced in accordance with the degree of the decrease, and the discharge in the low-temperature heat source regenerator is reduced. Gradually reduce the amount of heat,
Responsiveness to load fluctuations can be improved, and the return temperature of the low-temperature heat source can be maintained at a predetermined temperature or higher.When the cooling water of the generator is used as the low-temperature heat source, the return temperature of the low-temperature heat source decreases. In this case as well, while effectively utilizing the low-temperature heat source, it is possible to avoid such a trouble that dew condensation occurs when the generator is cooled by the low-temperature heat source whose temperature has significantly decreased.

【0012】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、かつ、低温熱源の熱量が変化
した場合にも低温熱源の熱を一層有効に利用し、冷媒の
再生が効果的に行われてCOPを向上することが可能に
なる。また、請求項3の発明によれば、蒸発器から取り
出す冷水の出口温度に基づいて高温再生器の加熱量及び
三方弁を制御し、かつ、低温熱源の戻り温度が所定温度
より低下したときには、この低下に伴い、低温熱源再生
器へ流入する低温熱源の量を減少させ、低熱源再生器に
供給する低温熱源の多少及び負荷の変動に拘わらず、冷
水の出口温度を設定値に維持し、負荷の変動に対する応
答性を向上することが可能になり、かつ、低温熱源の戻
り温度が低下したときには、低温熱源再生器に流入する
低温熱源の量を減少し、低温熱源再生器での放熱量を減
少させ、低温熱源の戻り温度を所定の温度以上に維持す
ることができ、発電機の冷却水などを低温熱源に使用し
た場合にも、温度が大幅に低下した低温熱源によって発
電機を冷却する際に結露すると云うようなトラブルを回
避することが可能になる。
Further, it is possible to prevent the regeneration temperature of the low heat source regenerator from being extremely lowered, and to effectively utilize the heat of the low temperature heat source even when the amount of heat of the low temperature heat source changes, so that the regeneration of the refrigerant is effective. It is possible to improve the COP. According to the invention of claim 3, the heating amount of the high-temperature regenerator and the three-way valve are controlled based on the outlet temperature of the cold water taken out of the evaporator, and when the return temperature of the low-temperature heat source falls below a predetermined temperature, With this decrease, the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator is reduced, and the outlet temperature of the cold water is maintained at the set value regardless of the variation of the low-temperature heat source supplied to the low heat source regenerator and the load, When the return temperature of the low-temperature heat source decreases, the amount of low-temperature heat source that flows into the low-temperature heat source regenerator is reduced, and the amount of heat released by the low-temperature heat source regenerator is improved. And the return temperature of the low-temperature heat source can be maintained at a predetermined temperature or higher.Even when the cooling water of the generator is used as the low-temperature heat source, the generator is cooled by the low-temperature heat source whose temperature has dropped significantly. Condensation when you do It becomes possible to avoid the trouble, such as say that.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は冷媒に例えば水、吸収液(溶液)
に臭化リチウム(LiBr)溶液を用いた一重二重効用
吸収式冷凍機の概略構成図であり、1は蒸発器、2は吸
収器、3は蒸発器1及び吸収器2を収納した蒸発器吸収
器胴(以下、下胴と云う)、4は例えばガスバーナ5を
備え高温熱源によって加熱される高温再生器、5Aはガ
スバーナ5に供給されるガスの量を調節する燃料制御
弁、6は低温再生器、7は低温再生器6のための凝縮器
(以下、第1凝縮器と云う)、8は低温再生器6及び第
1凝縮器7を収納した低温再生器凝縮器胴(以下、第1
上胴と云う)、9は例えば95℃前後の温廃水を低温熱
源とする低熱源再生器、10は低温熱源再生器9のため
の凝縮器(以下、第2凝縮器と云う)、11は低熱源再
生器9と第2凝縮器10とを収納した低熱源再生器凝縮
器胴(以下、第2上胴と云う)、12は低温熱交換器、
13は高温熱交換器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows that the refrigerant is, for example, water and an absorbing liquid (solution).
1 is a schematic configuration diagram of a single-double effect absorption refrigerator using a lithium bromide (LiBr) solution as an example, 1 is an evaporator, 2 is an absorber, 3 is an evaporator containing an evaporator 1 and an absorber 2 An absorber cylinder (hereinafter, referred to as a lower cylinder), 4 is a high-temperature regenerator equipped with, for example, a gas burner 5 and heated by a high-temperature heat source, 5A is a fuel control valve for adjusting the amount of gas supplied to the gas burner 5, and 6 is a low-temperature A regenerator 7 is a condenser for the low-temperature regenerator 6 (hereinafter, referred to as a first condenser), and 8 is a low-temperature regenerator condenser body (hereinafter, referred to as a first condenser) housing the low-temperature regenerator 6 and the first condenser 7. 1
A lower heat source regenerator 9 using, for example, warm wastewater of about 95 ° C. as a low temperature heat source; 10 a condenser for the low temperature heat source regenerator 9 (hereinafter referred to as a second condenser); A low heat source regenerator condenser body (hereinafter, referred to as a second upper body) containing the low heat source regenerator 9 and the second condenser 10, a low temperature heat exchanger 12;
13 is a high-temperature heat exchanger.

【0014】2Aは吸収器2の下部に形成された稀吸収
液溜りであり、この稀吸収液溜り2Aと低熱源再生器9
の気相部とは、途中に稀吸収液ポンプP1を備えた稀吸
収液配管14によって配管接続されている。また、低熱
源再生器9の下部に形成された中間吸収液溜り9Aと高
温再生器4の気相部とは、途中に中間吸収液ポンプP2
を備えた中間吸収液配管15によって配管接続されてい
る。
Reference numeral 2A denotes a rare absorbing liquid reservoir formed below the absorber 2, and the rare absorbing liquid reservoir 2A and the low heat source regenerator 9
Is connected to the gas phase section by a dilute absorbent pipe 14 provided with a dilute absorbent pump P1 on the way. Further, the intermediate absorbent reservoir 9A formed at the lower portion of the low heat source regenerator 9 and the gas phase of the high temperature regenerator 4 are connected between the intermediate absorbent pump P2
Are connected by an intermediate absorption liquid pipe 15 having

【0015】4Aは高温再生器4に形成された中間吸収
液溜りであり、この中間吸収液溜り4Aと低温再生器6
に気相部とは、中間吸収液配管16によって配管接続さ
れている。また、低温再生器6の下部に形成された濃吸
収液溜り6Aと吸収器2の気相部に設けられた濃吸収液
散布装置2Bとは濃吸収液管17A、17Bからなる濃
吸収液配管17によって配管接続されている。
Reference numeral 4A denotes an intermediate absorbing liquid reservoir formed in the high-temperature regenerator 4;
The pipe is connected to the gas phase by an intermediate absorbent pipe 16. Further, the concentrated absorption liquid reservoir 6A formed in the lower part of the low temperature regenerator 6 and the concentrated absorption liquid spraying device 2B provided in the gas phase part of the absorber 2 are composed of concentrated absorption liquid pipes 17A and 17B. 17 is connected by piping.

【0016】また、中間吸収液ポンプP2の吸込側の中
間吸収液管15Aと低温熱交換器12の上流側の濃吸収
液管17Aとは、吸収液管18によって接続されてい
る。この吸収液管18は第1上胴8よりも低い位置に設
けられ、第2上胴11内の圧力と第1上胴8内の圧力の
間に差が生じた場合でも、それぞれの胴間は吸収液によ
ってUシールされる。
The intermediate absorption liquid pipe 15A on the suction side of the intermediate absorption liquid pump P2 and the concentrated absorption liquid pipe 17A on the upstream side of the low-temperature heat exchanger 12 are connected by an absorption liquid pipe 18. The absorption liquid pipe 18 is provided at a position lower than the first upper body 8, and even if a difference occurs between the pressure in the second upper body 11 and the pressure in the first upper body 8, the absorption liquid pipe 18 is provided between each body. Is sealed with an absorbing liquid.

【0017】また、高温熱交換器13の上流側の中間吸
収液管16Aと吸収器2とは、開閉弁10Vを途中に備
えた中間吸収液配管19によって配管接続されている。
そして、開閉弁19Vは冷水供給時に閉じられ、温水供
給時に開放される。20は高温再生器4の気相部から第
1上胴8に至る冷媒蒸気配管であり、低温再生器6の内
部を経由して第1凝縮器7の底部に開口している。21
は途中に開閉弁21Vを備え、低温再生器6の上流側の
冷媒蒸気配管21Aと吸収器2の気相部とを連通する冷
媒蒸気配管である。そして、開閉弁21Vは冷水供給時
に閉じられ、温水供給時に開放される。
The intermediate absorbent pipe 16A on the upstream side of the high-temperature heat exchanger 13 and the absorber 2 are connected by an intermediate absorbent pipe 19 provided with an on-off valve 10V in the middle.
The on-off valve 19V is closed when cold water is supplied, and is opened when hot water is supplied. Reference numeral 20 denotes a refrigerant vapor pipe extending from the gas phase portion of the high-temperature regenerator 4 to the first upper body 8, and opens to the bottom of the first condenser 7 via the inside of the low-temperature regenerator 6. 21
Is a refrigerant vapor pipe provided with an on-off valve 21V in the middle and communicating the refrigerant vapor pipe 21A on the upstream side of the low temperature regenerator 6 with the gas phase of the absorber 2. The on-off valve 21V is closed when cold water is supplied, and is opened when hot water is supplied.

【0018】22は第1凝縮器7の底部と蒸発器1の気
相部とを配管接続する第1冷媒液配管であり、この第1
冷媒液配管22の途中にUシール部22Aが形成されて
いる。また、23は第2凝縮器10の底部と第1冷媒液
配管22のUシール部22Aとを配管接続する第2冷媒
液配管であり、第2冷媒液配管23にも、第1冷媒液配
管22との接続部にUシール部23Aが形成されてい
る。
Reference numeral 22 denotes a first refrigerant liquid pipe connecting the bottom of the first condenser 7 and the gas phase of the evaporator 1.
A U-seal portion 22 </ b> A is formed in the middle of the refrigerant liquid pipe 22. Reference numeral 23 denotes a second refrigerant liquid pipe that connects the bottom of the second condenser 10 to the U seal portion 22A of the first refrigerant liquid pipe 22. The second refrigerant liquid pipe 23 also has a first refrigerant liquid pipe. A U-seal portion 23 </ b> A is formed at a connection portion with the 22.

【0019】24は蒸発器1の冷媒液溜り1Aと冷媒散
布装置1Bとを配管接続する冷媒液循環配管であり、こ
の冷媒液循環配管24の途中に冷媒液ポンプP3が設け
られている。また、25は冷媒液溜り1Aと稀吸収液溜
り2Aとの間に配管接続された冷媒液ドレン配管であ
り、この冷媒液ドレン配管25の途中に開閉弁25Vが
設けられている。
Reference numeral 24 denotes a refrigerant liquid circulation pipe for connecting the refrigerant liquid reservoir 1A of the evaporator 1 to the refrigerant dispersion device 1B, and a refrigerant liquid pump P3 is provided in the refrigerant liquid circulation pipe 24. Reference numeral 25 denotes a refrigerant liquid drain pipe connected between the refrigerant liquid reservoir 1A and the rare absorption liquid reservoir 2A. An on-off valve 25V is provided in the refrigerant liquid drain pipe 25.

【0020】26は冷温水配管であり、この冷温水管配
管26は冷温水管26A、蒸発器熱交換器26B、冷温
水管26Cから構成されている。27は冷却水配管であ
り、この冷却水配管27は冷却塔(図示せず)から吸収
器熱交換器27A、第1凝縮器熱交換器27B、第2凝
縮器熱交換器27Cを経て冷却塔に戻る冷却水の循環路
を形成している。また、28は、第1凝縮器熱交換器2
7Bから第2凝縮器熱交換器27Cに至る冷却水管27
Dと冷温水配管26との間に配管接続された冷却水配管
であり、この冷却水配管28の途中に開閉弁28Vが設
けられている。開閉弁28Vは温水供給時に開放され、
水が冷温水管26Cから冷却水配管27に送られて貯留
される。
Reference numeral 26 denotes a cold / hot water pipe. The cold / hot water pipe 26 comprises a cold / hot water pipe 26A, an evaporator heat exchanger 26B, and a cold / hot water pipe 26C. Reference numeral 27 denotes a cooling water pipe. The cooling water pipe 27 is connected to a cooling tower (not shown) through an absorber heat exchanger 27A, a first condenser heat exchanger 27B, and a second condenser heat exchanger 27C. A circulation path for the cooling water returning to is formed. 28 is the first condenser heat exchanger 2
Cooling water pipe 27 from 7B to second condenser heat exchanger 27C
This is a cooling water pipe connected between D and the cold / hot water pipe 26, and an on-off valve 28V is provided in the middle of the cooling water pipe 28. On-off valve 28V is opened when hot water is supplied,
Water is sent from the cold / hot water pipe 26C to the cooling water pipe 27 and stored.

【0021】29は例えば95℃程度の温廃水、例えば
図示しない発電機の冷却水などを低温熱源(以下、熱源
温水と云う)として低熱源再生器9に供給するための低
熱源供給配管である。この低熱源供給配管29は、低熱
源供給管29A、低熱源熱交換器29B、低熱源戻し管
29C、側路管29D、三方弁29Eから構成されてい
る。
Reference numeral 29 denotes a low heat source supply pipe for supplying warm waste water of, for example, about 95 ° C., for example, cooling water for a generator (not shown) to the low heat source regenerator 9 as a low temperature heat source (hereinafter referred to as heat source hot water). . The low heat source supply pipe 29 includes a low heat source supply pipe 29A, a low heat source heat exchanger 29B, a low heat source return pipe 29C, a bypass pipe 29D, and a three-way valve 29E.

【0022】30はメイン制御器、31、32、33、
34及び35は温度センサーであり、温度センサー31
は冷温水管26Cを流れている冷温水の温度T1を検出
し、温度センサー32は吸収器2へ流入する冷却水の温
度T2を検出し、温度検出器33は高温再生器4内の溶
液の温度T3を検出し、温度検出器34は低熱源再生器
9から中間吸収液配管15に流出する中間吸収液の温度
T4を検出し、温度センサー35は熱源温水の戻り温度
T5を検出する。また、メイン制御器30は温度センサ
ー31が検出した冷温水の温度T1を制御器36、3
7、38に与える。
30 is a main controller, 31, 32, 33,
Reference numerals 34 and 35 denote temperature sensors.
Indicates the temperature T1 of the cold and hot water flowing through the cold and hot water pipe 26C, the temperature sensor 32 detects the temperature T2 of the cooling water flowing into the absorber 2, and the temperature detector 33 detects the temperature of the solution in the high temperature regenerator 4. T3 is detected, the temperature detector 34 detects the temperature T4 of the intermediate absorbent flowing out of the low heat source regenerator 9 into the intermediate absorbent pipe 15, and the temperature sensor 35 detects the return temperature T5 of the heat source hot water. Further, the main controller 30 controls the temperature of the cold / hot water T1 detected by the temperature sensor 31 to the controllers 36, 3
7, 38.

【0023】制御器36は、メイン制御器30から得た
冷温水の温度に基づいて燃料制御弁5Aの開度を制御
し、例えば冷水温度T1と例えば7.0℃の設定温度と
を比較し、冷水温度T1が設定温度より低いときには燃
料制御弁5Aへ閉信号を出力し、燃料制御弁5Aの開度
は次第に減少する。また、冷水温度T1が設定温度より
高いときには燃料制御弁5Aへ閉信号を出力し、燃料制
御弁5Aの開度は次第に増加する。そして、燃料制御弁
5Aの開度の変化に伴い、ガスバーナ5に供給するガス
流量が変化する。
The controller 36 controls the opening of the fuel control valve 5A based on the temperature of the cold water obtained from the main controller 30, and compares the cold water temperature T1 with a set temperature of, for example, 7.0 ° C. When the cold water temperature T1 is lower than the set temperature, a close signal is output to the fuel control valve 5A, and the opening of the fuel control valve 5A gradually decreases. When the chilled water temperature T1 is higher than the set temperature, a close signal is output to the fuel control valve 5A, and the opening of the fuel control valve 5A gradually increases. Then, with the change in the opening of the fuel control valve 5A, the gas flow rate supplied to the gas burner 5 changes.

【0024】また、制御器36は、メイン制御器30か
ら得た冷温水の温度に基づいて中間吸収液ポンプP2の
起動/停止制御を行い、さらに、温度センサー32が検
出する冷却水の温度T2と温度センサー33が検出する
高温再生器4内の溶液の温度T3とに基づいて、中間吸
収液ポンプP2に供給する電力の周波数を制御する。そ
して、制御器36によって制御された周波数の電力が周
波数変換器40から中間吸収液ポンプP2へ供給され、
中間吸収液ポンプP2の回転数が制御される。
The controller 36 controls the start / stop of the intermediate absorbent pump P2 based on the temperature of the cold / hot water obtained from the main controller 30, and further controls the temperature T2 of the cooling water detected by the temperature sensor 32. The frequency of the power supplied to the intermediate absorbent pump P2 is controlled based on the temperature T3 of the solution in the high temperature regenerator 4 detected by the temperature sensor 33. Then, the power of the frequency controlled by the controller 36 is supplied from the frequency converter 40 to the intermediate absorbent pump P2,
The rotation speed of the intermediate absorbent pump P2 is controlled.

【0025】制御器37は、メイン制御器30から得た
冷温水の温度T1に基づいて稀吸収液ポンプP1の定格
運転を指示し、この定格運転が指示されていないときに
は、温度センサー34が検出する中間吸収液の温度T4
に基づいて稀吸収液ポンプP1に供給する電力の周波数
を制御する。そして、制御器37によって制御された周
波数の電力が周波数変換器41から稀吸収液ポンプP1
へ供給され、稀吸収液ポンプP1の回転数が制御され
る。
The controller 37 instructs the rated operation of the rare absorbent pump P1 based on the temperature T1 of the cold / hot water obtained from the main controller 30, and when the rated operation is not instructed, the temperature sensor 34 detects Temperature T4 of the intermediate absorbing liquid
The frequency of the electric power supplied to the rare absorbing liquid pump P1 is controlled based on. Then, the electric power of the frequency controlled by the controller 37 is supplied from the frequency converter 41 to the rare absorbing liquid pump P1.
And the number of rotations of the rare absorbing liquid pump P1 is controlled.

【0026】制御器38は、流量制御弁29Eの開度を
制御する制御器であり、この制御器38はメイン制御器
30から得た冷温水の温度T1と設定温度とを比較して
流量制御弁29Eへ開閉信号を出力し、低熱源戻し管2
9Cを流れて戻っていく熱源温水の流量を制御する。こ
こで、例えば冷水の供給時には、検出した冷水温度T1
と例えば6.5℃の設定温度とを比較し、流量制御弁2
9Eへ開閉信号を出力する。さらに、制御器38は、温
度センサー35が検出した熱源温水の戻り温度T5に基
づいて上記設定温度を変化させ、例えば、冷水供給時に
は図2に実線にて示したように冷水温度T1に基づいて
設定温度は変化する。
The controller 38 controls the opening of the flow control valve 29E. The controller 38 compares the temperature T1 of the cold / hot water obtained from the main controller 30 with the set temperature to control the flow rate. An open / close signal is output to the valve 29E and the low heat source return pipe 2
The flow rate of the heat source hot water flowing back through 9C is controlled. Here, for example, when supplying cold water, the detected cold water temperature T1
And a set temperature of, for example, 6.5 ° C.
An open / close signal is output to 9E. Further, the controller 38 changes the set temperature based on the return temperature T5 of the heat source hot water detected by the temperature sensor 35. For example, when supplying cold water, the controller 38 changes the temperature based on the cold water temperature T1 as shown by a solid line in FIG. The set temperature changes.

【0027】上記のように構成された吸収式冷凍機にお
いて、開閉弁19V、21V、25V及び28Vを閉
じ、冷温水管26Cを介して冷水を負荷に供給する冷水
供給時の制御を説明する。先ず、温度センサー34が検
出した冷水の温度T1がメイン制御器30から各制御器
36、37及び38に与えられる。
In the absorption chiller constructed as described above, the control at the time of supplying cold water for supplying cold water to the load via the cold / hot water pipe 26C by closing the on-off valves 19V, 21V, 25V and 28V will be described. First, the temperature T1 of the cold water detected by the temperature sensor 34 is given from the main controller 30 to each of the controllers 36, 37 and 38.

【0028】制御器36は冷水の温度T1に基づいて燃
料制御弁5Aの開度を制御し、ガスバーナ5に供給する
ガスの量を制御する。さらに、低熱源供給配管29から
低熱源再生器9に供給する熱源温水は、制御器38がメ
イン制御器30から送られた冷水の温度T1に基づいて
流量制御弁29Eの開度を制御し、低熱源熱交換器29
E側に流れる熱源温水流量を制御する。このため、熱源
温水の熱量の増減に伴い、高温再生器4の加熱量が増減
し、熱源温水の不足量が高温再生器4によって補われ、
低熱源供給配管29から第2上胴11の低熱源再生器9
に供給する熱源温水の熱量の多少に拘わらず、供給され
る冷水の温度T1を設定値に保つことができる。
The controller 36 controls the opening of the fuel control valve 5A based on the temperature T1 of the cold water, and controls the amount of gas supplied to the gas burner 5. Further, in the heat source hot water supplied from the low heat source supply pipe 29 to the low heat source regenerator 9, the controller 38 controls the opening of the flow control valve 29E based on the temperature T1 of the cold water sent from the main controller 30, Low heat source heat exchanger 29
The flow rate of the heat source hot water flowing to the E side is controlled. For this reason, the heating amount of the high-temperature regenerator 4 increases and decreases with the increase and decrease of the heat amount of the heat source hot water, and the shortage of the heat source hot water is compensated by the high-temperature regenerator 4,
From the low heat source supply pipe 29 to the low heat source regenerator 9 of the second upper body 11
The temperature T1 of the supplied cold water can be kept at the set value regardless of the amount of heat of the hot water supplied to the heat source.

【0029】また、制御器38では、図2に示したよう
に低熱源戻し管29Cを通って熱源へ戻っていく熱源温
水の戻り温度T5に応じて冷水温度の設定値が変化し、
熱源温水の戻り温度T5が例えば82.5℃より低下す
ると、戻り温度T5が低下するにつれて冷水温度の設定
値が次第に高くなる。そして、制御器38での設定値が
高くなったときにも、上記のように冷水の温度T1に応
じて高温再生器4の加熱量が制御されているため、冷水
の温度T1はほぼ設定温度の7℃に保たれる。冷水の温
度T1がほぼ一定で、制御器38での冷水温度の設定値
が上昇すると、制御器38は、流量制御弁29Eへ信号
を出力する。このため、流量制御弁29Eの低熱源熱交
換器29B側の開度が減少し、三方弁熱源供給配管29
から低熱源再生器9に供給する熱源温水の量は減少し、
側路管29D側の開度が増加し、低熱源供給管29Aか
ら供給されて側路管29D側に流れる熱源温水の量が増
加し、戻り温度T5は上昇する。
In the controller 38, as shown in FIG. 2, the set value of the cold water temperature changes according to the return temperature T5 of the heat source hot water returning to the heat source through the low heat source return pipe 29C.
When the return temperature T5 of the heat source hot water falls below, for example, 82.5 ° C., the set value of the cold water temperature gradually increases as the return temperature T5 decreases. Even when the set value of the controller 38 becomes high, since the heating amount of the high-temperature regenerator 4 is controlled according to the cold water temperature T1 as described above, the cold water temperature T1 is almost equal to the set temperature. At 7 ° C. When the temperature T1 of the chilled water is substantially constant and the set value of the chilled water temperature in the controller 38 increases, the controller 38 outputs a signal to the flow control valve 29E. Therefore, the opening of the flow control valve 29E on the low heat source heat exchanger 29B side decreases, and the three-way valve heat source supply pipe 29
The amount of heat source hot water supplied to the low heat source regenerator 9 from
The degree of opening on the side pipe 29D increases, the amount of hot water supplied from the low heat source supply pipe 29A and flowing to the side pipe 29D increases, and the return temperature T5 increases.

【0030】以下、第2上胴11の低温熱源再生器9で
冷水負荷に対して十分な熱量が熱源温水から得られる場
合と、充分な熱量が得られない場合とに分けて、それぞ
れ具体的な一制御例を説明する。例えば、熱源から流れ
たて来た熱源温水から冷水負荷に対して十分な熱量が得
られる場合は、制御器38がメイン制御器30から送ら
れてきた冷水の温度T1に基づいて流量制御弁29Eの
開度を制御する。そして、冷水の温度に応じて低熱源熱
交換器29Bに流れる熱源温水の量は変化し、これによ
って、冷温水管26Cを介して負荷に供給される冷水の
温度T1が設定温度に保たれる。
In the following, the low-temperature heat source regenerator 9 of the second upper body 11 is divided into a case where a sufficient amount of heat for the cold water load is obtained from the heat source hot water and a case where a sufficient amount of heat is not obtained. One control example will be described. For example, when a sufficient amount of heat for the cold water load can be obtained from the hot water flowing from the heat source, the controller 38 controls the flow control valve 29E based on the temperature T1 of the cold water sent from the main controller 30. Control the opening degree. Then, the amount of the heat source hot water flowing to the low heat source heat exchanger 29B changes according to the temperature of the cold water, whereby the temperature T1 of the cold water supplied to the load via the cold / hot water pipe 26C is maintained at the set temperature.

【0031】従って、低熱源供給配管29を流れる熱源
温水から冷水負荷に対して十分な熱量が得られている場
合は、負荷に供給される冷水の温度は高温再生器4の加
熱量制御のための設定温度の例えば7℃より低下してい
る。このため、制御器36は燃料制御弁5Aの制御を行
わず、燃料制御弁5Aは閉じたままであり、ガスバーナ
5は燃焼せず、高温再生器4は停止している。また、制
御器36は中間吸収液ポンプP2へ起動信号を出力せ
ず、中間吸収液ポンプP2は運転を停止している。
Therefore, when a sufficient amount of heat for the cold water load is obtained from the heat source hot water flowing through the low heat source supply pipe 29, the temperature of the cold water supplied to the load is controlled by the heating amount of the high temperature regenerator 4. Is lower than the set temperature of 7 ° C., for example. For this reason, the controller 36 does not control the fuel control valve 5A, the fuel control valve 5A remains closed, the gas burner 5 does not burn, and the high temperature regenerator 4 is stopped. Further, the controller 36 does not output a start signal to the intermediate absorbent pump P2, and the operation of the intermediate absorbent pump P2 is stopped.

【0032】制御器37は、冷水の温度T1が制御器3
6の設定値である7℃より低いときのメイン制御器30
からの温度信号に基づいて、稀吸収液ポンプP1の運転
を制御するのではなく、温度センサー34が検出した中
間吸収液の温度T4に基づいて、稀吸収液ポンプP1に
供給する電力の周波数を例えば図3のように制御し、稀
吸収液ポンプP1の回転数を制御する。
The controller 37 determines whether the temperature T1 of the cold water is
Main controller 30 when lower than 7 ° C. which is the set value of 6
Is controlled based on the temperature T4 of the intermediate absorbent detected by the temperature sensor 34, instead of controlling the operation of the rare absorbent pump P1 based on the temperature signal from For example, control is performed as shown in FIG. 3 to control the rotation speed of the rare absorbing liquid pump P1.

【0033】例えば、中間吸収液の温度が80℃以上に
なっているときには、稀吸収液ポンプP1は定格の60
Hzで運転し、70℃以下のときには例えば定格の半分
の周波数30Hzで運転する。また、中間吸収液の温度
が70〜80℃の間のときには例えば温度に比例する周
波数で運転する。このため、負荷が少なく冷媒の再生量
が少なく、再生温度が低い場合には稀吸収液の循環量が
減少し、顕熱ロスが減少し、吸収式冷凍機のCOPが向
上する。
For example, when the temperature of the intermediate absorbent is 80 ° C. or higher, the rare absorbent pump P1
When the temperature is 70 ° C. or lower, for example, the frequency is 30 Hz, which is half the rated value. When the temperature of the intermediate absorbent is between 70 and 80 ° C., the operation is performed at a frequency proportional to the temperature, for example. For this reason, when the load is small and the regeneration amount of the refrigerant is small and the regeneration temperature is low, the circulation amount of the diluted absorbing liquid is reduced, the sensible heat loss is reduced, and the COP of the absorption refrigerator is improved.

【0034】以下、冷媒と溶液との循環について説明す
る。冷媒と溶液の循環は従来の一重二重効用吸収式冷凍
機の循環と同様であり、冷水供給運転であり、熱源温水
から冷水負荷に対して十分な熱量が得られている場合に
は、中間吸収液ポンプP2及び高温再生器4は停止して
おり、低温熱源再生器9で冷媒を蒸発分離して濃度が上
昇した中間吸収液は、中間吸収液管15A、吸収液管1
8、濃吸収液管17A、低温熱交換器12、濃吸収液管
17Bを経て吸収器2の濃吸収液散布装置2Bから吸収
器熱交換器27Aに散布される。
Hereinafter, circulation of the refrigerant and the solution will be described. The circulation of the refrigerant and the solution is the same as the circulation of the conventional single-use double-effect absorption refrigerator, and the operation is a chilled water supply operation.If a sufficient amount of heat is obtained from the heat source hot water to the chilled water load, the intermediate circulation is performed. The absorbing liquid pump P2 and the high-temperature regenerator 4 are stopped, and the intermediate absorbing liquid whose concentration has increased by evaporating and separating the refrigerant in the low-temperature heat source regenerator 9 is supplied to the intermediate absorbing liquid pipe 15A and the absorbing liquid pipe 1
8. Sprayed from the concentrated absorbent dispersion device 2B of the absorber 2 to the absorber heat exchanger 27A via the concentrated absorbent pipe 17A, the low-temperature heat exchanger 12, and the concentrated absorbent pipe 17B.

【0035】また、低熱源再生器9で分離した冷媒は、
第2凝縮器10に流入して冷却され凝縮する。そして、
冷媒液は第2冷媒液配管23を流下し、Uシール部23
A、22Aに溜まる。Uシール部23A,22Aに溜ま
った冷媒液は溢れて蒸発器1に流入する。蒸発器1に流
入して冷媒液溜り1Aに溜まった冷媒液は、冷媒液ポン
プP3の運転により冷媒液循環配管24を流れ、冷媒散
布装置1Bから冷温水熱交換器26Bに散布される。そ
して、冷媒液が気化するときの潜熱によって冷却された
冷水が冷温水熱交換器26B、冷温水管26Cから負荷
に供給される。また、蒸発器1で気化した冷媒は吸収器
2へ流れ、濃吸収液散布装置2Bから散布される濃吸収
液に吸収される。
The refrigerant separated by the low heat source regenerator 9 is
It flows into the second condenser 10 and is cooled and condensed. And
The refrigerant liquid flows down the second refrigerant liquid pipe 23 and is
A, accumulates at 22A. The refrigerant liquid accumulated in the U seal portions 23A and 22A overflows and flows into the evaporator 1. The refrigerant liquid flowing into the evaporator 1 and stored in the refrigerant liquid reservoir 1A flows through the refrigerant liquid circulation pipe 24 by operation of the refrigerant liquid pump P3, and is sprayed from the refrigerant spray device 1B to the cold / hot water heat exchanger 26B. Then, the cold water cooled by the latent heat when the refrigerant liquid evaporates is supplied to the load from the cold / hot water heat exchanger 26B and the cold / hot water pipe 26C. Further, the refrigerant vaporized in the evaporator 1 flows to the absorber 2, and is absorbed by the concentrated absorbing liquid sprayed from the concentrated absorbing liquid spraying device 2B.

【0036】吸収器2で冷媒を吸収して稀液になった吸
収液は、稀吸収液ポンプP1により稀吸収液配管14を
通って低熱源再生器4に送られる。以下、冷水供給運転
時で、熱源温水から冷水負荷に対して十分な熱量が得ら
れない場合の制御について説明する。この場合も、温度
センサー34が検出した冷水の温度T1が各制御器3
6、37、38にそれぞれ与えられる。
The absorption liquid that has become a diluted liquid by absorbing the refrigerant in the absorber 2 is sent to the low heat source regenerator 4 through the diluted absorption liquid pipe 14 by the diluted absorption liquid pump P1. Hereinafter, a description will be given of a control in a case where a sufficient amount of heat cannot be obtained from the heat source hot water to the cold water load during the cold water supply operation. Also in this case, the temperature T1 of the cold water detected by the temperature
6, 37 and 38 respectively.

【0037】この場合、冷水負荷に対して十分な熱量が
熱源温水から低熱源再生器9に与えられないので、冷水
の出口温度を設定温度の6.5℃まで低下することがで
きない。このため、冷水の温度T1が所定の設定温度ま
で低下していないという情報をメイン制御器30から得
た制御器36は、中間吸収液ポンプP2の起動及びガス
ナーナ5の点火を指示し、かつ、燃料制御弁5Aの開度
をメイン制御器30から得た冷水の温度T1に基づいて
制御する。このため、ガスバーナ5に供給されるガス流
量が冷水の温度T1に応じて制御され、高温再生器4内
で吸収液が加熱されて吸収液から冷媒蒸気が分離する。
In this case, a sufficient amount of heat with respect to the cold water load is not provided from the heat source hot water to the low heat source regenerator 9, so that the outlet temperature of the cold water cannot be lowered to the set temperature of 6.5 ° C. Therefore, the controller 36, which has obtained information from the main controller 30 that the temperature T1 of the cold water has not dropped to the predetermined set temperature, instructs the activation of the intermediate absorbent pump P2 and the ignition of the gas nana 5, and The opening degree of the fuel control valve 5A is controlled based on the temperature T1 of the cold water obtained from the main controller 30. For this reason, the flow rate of the gas supplied to the gas burner 5 is controlled according to the temperature T1 of the cold water, and the absorbing liquid is heated in the high-temperature regenerator 4 so that the refrigerant vapor is separated from the absorbing liquid.

【0038】制御器36は温度センサ32が検出した冷
却水の温度T2と温度センサ33が検出する高温再生器
4内の溶液温度T3に基づいて、中間吸収液ポンプP2
に供給する電力の周波数を周波数変換器40において例
えば図4に示したように制御し、中間吸収液ポンプP2
の回転数を制御する。すなわち、定格周波数が例えば6
0Hzである場合は、最低周波数を例えば定格の半分以
下の28Hzとし、定格周波数と最低周波数との間で冷
却水の温度T2が低いほど、高温再生器4内の溶液の温
度T3が高いほど、周波数を上げるように変換し、中間
吸収液ポンプP2の回転数を高める制御を行う。
The controller 36 determines the intermediate absorbent pump P2 based on the temperature T2 of the cooling water detected by the temperature sensor 32 and the solution temperature T3 in the high-temperature regenerator 4 detected by the temperature sensor 33.
The frequency of the power supplied to the intermediate absorbent pump P2 is controlled by the frequency converter 40 as shown in FIG.
To control the number of revolutions. That is, if the rated frequency is 6
In the case of 0 Hz, the lowest frequency is, for example, 28 Hz which is equal to or less than half of the rating, and the lower the temperature T2 of the cooling water is between the rated frequency and the lowest frequency, and the higher the temperature T3 of the solution in the high-temperature regenerator 4 is, The control is performed to increase the frequency and increase the rotation speed of the intermediate absorbent pump P2.

【0039】制御器37はメイン制御器30から得た冷
水の温度T1が設定温度の7℃にまで低下していないと
の温度情報に基づいて、稀吸収液ポンプP1の定格運転
の継続を指示する。このため、吸収器2、低熱源再生器
9、高温再生器4、高温熱交換器13、低温再生器6、
低温熱交換器12、第1凝縮器7、第2凝縮器10及び
蒸発器1による一重二重効用の冷凍サイクルが形成さ
れ、冷水負荷の増加にも速やかに対応することができ
る。
The controller 37 instructs the continuation of the rated operation of the rare absorbent pump P1 based on the temperature information that the temperature T1 of the chilled water obtained from the main controller 30 has not dropped to the set temperature of 7 ° C. I do. Therefore, the absorber 2, the low heat source regenerator 9, the high temperature regenerator 4, the high temperature heat exchanger 13, the low temperature regenerator 6,
A single-double-effect refrigeration cycle is formed by the low-temperature heat exchanger 12, the first condenser 7, the second condenser 10, and the evaporator 1, and it is possible to quickly cope with an increase in the load of chilled water.

【0040】上記の一重二重効用の冷凍サイクル構成時
において制御器38は、温度センサ35から得た熱源温
水の戻り温度T5に基づいて図2に示した冷水の出口温
度T1の設定値になるように流量制御弁29Eを制御す
る。すなわち、熱源温水の戻り温度T5が82.5℃を
下回ると、冷水の出口温度T1の設定値が高くなり、検
出した冷水の出口温度T1と設定値とに基づいて制御器
38は流量制御弁29Eへ側路管29D側の開度を増加
し、低熱源熱交換器29B側の開度を減少させる信号を
出力する。そして、流量制御弁29Eの側路管29D側
の開度が増加し、側路管29Dを流れる熱源温水が増加
し、低熱源熱交換器29B側に流れる熱源温水が減少す
る。このため、熱源温水の戻り温度T5は上昇する。ま
た、熱源温水の戻り温度T5が82.5℃を越えると、
冷水の出口温度T1の設定値が低くなり、検出した冷水
の出口温度T1と設定値とに基づいて制御器38は流量
制御弁29Eへ側路管29D側の開度を減少し、低熱源
熱交換器29B側の開度を増加させる信号を出力する。
そして、制御器38からの信号に基づいて流量制御弁2
9Eの側路管29D側の開度が減少し、側路管29Dを
流れる熱源温水が減少し、低熱源熱交換器29B側に流
れる熱源温水が増加する。このため、熱源温水の戻り温
度T5は低下する。
In the above-described single-double-effect refrigeration cycle, the controller 38 sets the outlet temperature T1 of the cold water shown in FIG. 2 based on the return temperature T5 of the heat source hot water obtained from the temperature sensor 35. The flow control valve 29E is controlled as described above. That is, when the return temperature T5 of the heat source hot water falls below 82.5 ° C., the set value of the cold water outlet temperature T1 increases, and the controller 38 sets the flow control valve based on the detected cold water outlet temperature T1 and the set value. A signal is output to 29E to increase the opening on the side pipe 29D side and decrease the opening on the low heat source heat exchanger 29B side. Then, the opening degree of the flow control valve 29E on the side pipe 29D side increases, the heat source hot water flowing through the side pipe 29D increases, and the heat source hot water flowing on the low heat source heat exchanger 29B side decreases. For this reason, the return temperature T5 of the heat source hot water increases. When the return temperature T5 of the heat source hot water exceeds 82.5 ° C.,
The set value of the outlet temperature T1 of the chilled water becomes lower, and the controller 38 decreases the opening degree of the side pipe 29D to the flow control valve 29E based on the detected outlet temperature T1 of the chilled water and the set value, thereby reducing the heat of the low heat source. A signal for increasing the opening degree of the exchanger 29B is output.
Then, based on the signal from the controller 38, the flow control valve 2
The opening of 9E on the side pipe 29D side decreases, the heat source hot water flowing through the side pipe 29D decreases, and the heat source hot water flowing on the low heat source heat exchanger 29B side increases. Therefore, the return temperature T5 of the heat source hot water decreases.

【0041】上記のように、熱源温水の戻り温度T5に
基づいて制御器38の流量制御弁29E制御用のが冷水
の出口温度の設定値が変化し、制御器38が流量制御弁
29Eを制御するので、低熱源戻し管29Cを通って戻
って行く熱源温水の温度はほぼ82.5℃以上に保たれ
る。このように、熱源温水の熱量が冷水負荷に対して不
足しているときにも、熱源温水の戻り温度T5は所定の
温度、実施例においては82.5℃より大幅に低下する
ことがないので、熱源温水を例えば発電機などに戻して
冷却に使用しても結露することがなく、熱源温水の供給
源の運転を安定させることができる。
As described above, the set value of the outlet temperature of the cold water for controlling the flow control valve 29E of the controller 38 changes based on the return temperature T5 of the heat source hot water, and the controller 38 controls the flow control valve 29E. Therefore, the temperature of the heat source hot water returning through the low heat source return pipe 29C is maintained at about 82.5 ° C. or higher. As described above, even when the amount of heat of the heat source hot water is insufficient for the load of the chilled water, the return temperature T5 of the heat source hot water does not drop significantly from a predetermined temperature, 82.5 ° C. in the embodiment. Even when the heat source hot water is returned to, for example, a generator and used for cooling, dew condensation does not occur, and the operation of the heat source hot water supply source can be stabilized.

【0042】また、熱源温水の戻り温度T5がほぼ8
2.5℃以上に安定しているため、低熱源再生器9の再
生温度が極端に低下することがなく、常に冷媒の再生に
必要な温度に維持されるため、冷媒再生に熱源温水を有
効に利用でき、COPを向上することもできる。上記一
重二重効用の冷凍サイクルでは、低熱源再生器9にて冷
媒の一部が分離した中間吸収液は中間吸収液ポンプP2
によって高温再生器4へ送られる。高温再生器4では、
ガスバーナ5によって中間吸収液が加熱されて冷媒が蒸
発分離する。高温再生器4で冷媒が分離して濃度が上昇
した中間吸収液は、高温熱交換器13を経て低温再生器
6へ送られる。中間吸収液は低温再生器6で冷媒蒸気配
管20を通って送られてきた冷媒蒸気によって加熱さ
れ、さらに冷媒が中間吸収液から蒸発分離する。そし
て、一層濃度が高くなった濃吸収液が低温再生器6から
低温熱交換器12を経て吸収器2へ送られ、濃吸収液散
布装置2Bから散布される。
The return temperature T5 of the heat source hot water is approximately 8
Since the temperature is stable at 2.5 ° C. or higher, the regeneration temperature of the low heat source regenerator 9 does not drop extremely, and is always maintained at the temperature required for the regeneration of the refrigerant. And COP can be improved. In the single-double-effect refrigeration cycle, the intermediate absorbent from which part of the refrigerant has been separated in the low heat source regenerator 9 is supplied to the intermediate absorbent pump P2.
To the high temperature regenerator 4. In the high temperature regenerator 4,
The intermediate absorbing liquid is heated by the gas burner 5, and the refrigerant is evaporated and separated. The intermediate absorption liquid whose concentration has increased due to separation of the refrigerant in the high temperature regenerator 4 is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13. The intermediate absorbent is heated by the refrigerant vapor sent through the refrigerant vapor pipe 20 in the low-temperature regenerator 6, and the refrigerant evaporates and separates from the intermediate absorbent. Then, the concentrated absorbent having a higher concentration is sent from the low-temperature regenerator 6 to the absorber 2 via the low-temperature heat exchanger 12, and is dispersed from the concentrated absorbent dispersion device 2B.

【0043】また、低熱源再生器9で分離した冷媒蒸気
は第2凝縮器10で凝縮し、低温再生器6で分離した冷
媒蒸気は第1凝縮器7で凝縮する。そして、冷媒液が第
1凝縮器7及び第2凝縮器10から第1冷媒配管22及
び第2冷媒配管23を経て蒸発器1へ流れ、冷媒散布器
1Bから散布される。蒸発器1では、冷媒が蒸発すると
きに潜熱によって冷温水熱交換器26Bで冷却された冷
水が冷水負荷に供給される。また、蒸発器1で気化した
冷媒蒸気は吸収器2へ流れ、濃吸収液散布装置2Bから
散布される濃吸収液によって吸収される。吸収器2で冷
媒を吸収して濃度が低下した稀吸収液は稀吸収液ポンプ
P1によって低熱源再生器9へ送られる。
The refrigerant vapor separated in the low heat source regenerator 9 is condensed in the second condenser 10, and the refrigerant vapor separated in the low temperature regenerator 6 is condensed in the first condenser 7. Then, the refrigerant liquid flows from the first condenser 7 and the second condenser 10 to the evaporator 1 via the first refrigerant pipe 22 and the second refrigerant pipe 23, and is sprayed from the refrigerant sprayer 1B. In the evaporator 1, when the refrigerant evaporates, the cold water cooled by the cold / hot water heat exchanger 26B by the latent heat is supplied to the cold water load. Further, the refrigerant vapor vaporized in the evaporator 1 flows to the absorber 2, and is absorbed by the concentrated absorbing liquid sprayed from the concentrated absorbing liquid spraying device 2B. The diluted absorbing liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 2 is sent to the low heat source regenerator 9 by the diluted absorbing liquid pump P1.

【0044】なお、負荷に温水を供給するときには、開
閉弁19V、21V、25V、28Vを開放し、高温再
生器4で発生した高温の冷媒蒸気を冷媒蒸気管20A、
冷媒蒸気配管21を経て下胴3に導く。冷温水熱交換器
26Bを流れる水は下胴3に送られた冷媒蒸気によって
加熱され、負荷に供給される。また、冷温水熱交換器2
6Bに触れて凝縮し、冷媒液溜り1Aに溜まった冷媒液
は冷媒液ドレン配管25を経て稀吸収液溜り2Aに導か
れる。そして、稀吸収液が稀吸収液ポンプP1及び中間
吸収液ポンプP2の運転によって吸収器2から低熱源再
生器9を経て高温再生器4へ送られる。
When supplying hot water to the load, the open / close valves 19V, 21V, 25V and 28V are opened, and the high-temperature refrigerant vapor generated in the high-temperature regenerator 4 is supplied to the refrigerant vapor pipe 20A,
The refrigerant is led to the lower body 3 via the refrigerant vapor pipe 21. The water flowing through the cold / hot water heat exchanger 26B is heated by the refrigerant vapor sent to the lower body 3 and supplied to the load. In addition, the cold and hot water heat exchanger 2
The refrigerant liquid that touches 6B and condenses and accumulates in the refrigerant liquid reservoir 1A is led to the rare absorbing liquid reservoir 2A via the refrigerant liquid drain pipe 25. Then, the rare absorbent is sent from the absorber 2 to the high-temperature regenerator 4 via the low heat source regenerator 9 by the operation of the rare absorbent pump P1 and the intermediate absorbent pump P2.

【0045】なお、本発明は上記実施例に限定されるも
のではなく、特許請求の範囲の記載の主旨から逸脱しな
い範囲で各種の変形実施が可能である。例えば、図2に
一点鎖線で示したように、熱源温水の戻り温度が例えば
上記実施例よりも低い温度である80℃より低くなる
と、冷水の出口温度の設定値を次第に高くすることによ
って上記実施例と同様に、熱源温水の戻り温度をほぼ8
0℃以上に保つことができる。さらに、上記実施例より
も低い温度まで冷水の出口温度の設定値が変更されない
ため、熱源温水を低い温度まで一層有効に使用すること
ができ、吸収式冷凍機のCOPをさらに向上することが
できる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the appended claims. For example, as shown by the one-dot chain line in FIG. 2, when the return temperature of the heat source hot water becomes lower than 80 ° C., which is a lower temperature than in the above embodiment, for example, the set value of the outlet temperature of the cold water is gradually increased, and As in the example, the return temperature of the heat source hot water was set to approximately 8
It can be kept at 0 ° C. or higher. Further, since the set value of the outlet temperature of the cold water is not changed to a temperature lower than that of the above embodiment, the heat source hot water can be used more effectively to a lower temperature, and the COP of the absorption refrigerator can be further improved. .

【0046】また、図2に二点鎖線で示したように、熱
源温水の戻り温度が例えば80℃より低くなると、制御
器36の冷水の出口温度の設定値を例えば7.5℃と高
くすることによって上記実施例と同様に、熱源温水の戻
り温度をほぼ80℃以上に保つことができる。さらに、
上記実施例よりも低い温度まで冷水の出口温度の設定値
が変更されないため、熱源温水を低い温度まで一層有効
に使用することができ、吸収式冷凍機のCOPをさらに
向上することができ、かつ、冷水の出口温度の設定値の
変更は上記80℃のみで済み、制御の簡略化を図ること
ができる。
As shown by the two-dot chain line in FIG. 2, when the return temperature of the heat source hot water is lower than 80 ° C., for example, the set value of the outlet temperature of the cold water of the controller 36 is increased to 7.5 ° C., for example. As a result, the return temperature of the heat source hot water can be maintained at about 80 ° C. or higher, as in the above embodiment. further,
Since the set value of the outlet temperature of the cold water is not changed to a temperature lower than that of the above embodiment, the heat source hot water can be used more effectively to a lower temperature, and the COP of the absorption refrigerator can be further improved, and The change of the set value of the outlet temperature of the chilled water is only required to be at 80 ° C., and the control can be simplified.

【0047】[0047]

【発明の効果】本発明は上記実施例のように構成された
一重二重効用吸収式冷凍機であり、請求項1の発明によ
れば、低温熱源の供給管と戻し管とを連通するように三
方弁を設け、蒸発器から取り出す冷水の出口温度に基づ
いて高温再生器の加熱量を制御するとともに、冷水の出
口温度に基づいて三方弁を制御し、かつ、低温熱源の戻
り温度が所定温度以下になった時に、三方弁制御用の冷
水出口温度の設定値を高めるので、負荷の変動に対する
応答性を向上でき、低熱源再生器に供給する低温熱源の
増減及び負荷の変動に拘わらず、冷水の出口温度を設定
値に維持することができる。
According to the present invention, there is provided a single-double effect absorption refrigerator constructed as in the above embodiment. According to the first aspect of the present invention, a supply pipe and a return pipe for a low-temperature heat source are communicated. A three-way valve is provided to control the heating amount of the high-temperature regenerator based on the outlet temperature of the cold water taken out of the evaporator, control the three-way valve based on the outlet temperature of the cold water, and determine the return temperature of the low-temperature heat source. When the temperature falls below the temperature, the set value of the chilled water outlet temperature for the three-way valve control is increased, so that the responsiveness to the load fluctuation can be improved, regardless of the fluctuation of the low-temperature heat source supplied to the low heat source regenerator and the load fluctuation. In addition, the outlet temperature of the cold water can be maintained at the set value.

【0048】また、低温熱源の戻り温度が低下したとき
には、冷水の出口温度の設定値を高め、低温熱源再生器
に流入する低温熱源の量を減少し、低温熱源の戻り温度
を所定の温度以上に維持することができ、発電機の冷却
水などを低温熱源にした場合にも、温度が大幅に低下し
た低温熱源によって発電機を冷却する際に結露すると云
うようなトラブルを回避することができる。
When the return temperature of the low-temperature heat source decreases, the set value of the outlet temperature of the chilled water is increased, the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator is reduced, and the return temperature of the low-temperature heat source is increased to a predetermined temperature or more. Even when the cooling water of the generator is used as a low-temperature heat source, it is possible to avoid such a trouble that dew condensation occurs when the generator is cooled by the low-temperature heat source whose temperature has significantly decreased. .

【0049】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、常に冷媒再生に必要な温度に
維持され、冷媒の再生が効果的に行われてCOPを向上
することができる。しかも、このような優れた作用効果
が一つの三方弁を操作することによって得ることがで
き、コスト的のも優れた一重二重効用吸収式冷凍機を提
供することができる。
Further, it is possible to prevent the regeneration temperature of the low heat source regenerator from being extremely lowered, always maintain the temperature required for the regeneration of the refrigerant, and effectively perform the regeneration of the refrigerant to improve the COP. . Moreover, such an excellent operation and effect can be obtained by operating one three-way valve, and a single-double-effect absorption refrigerator having excellent cost can be provided.

【0050】また、請求項2に記載された発明によれ
ば、低温熱源の供給管と戻し管とを連通するように三方
弁を設け、蒸発器から取り出す冷水の出口温度に基づい
て高温再生器の加熱量を制御するとともに、冷水の出口
温度に基づいて三方弁を制御し、かつ、低温熱源の戻り
温度が所定温度より低下したときには、低下に従い、三
方弁制御用の冷水出口温度の設定値を次第に高めるの
で、負荷の変動に対する応答性を向上でき、低熱源再生
器に供給する低温熱源の多少及び負荷の変動に拘わら
ず、冷水の出口温度を設定値に維持することができる。
According to the second aspect of the present invention, a three-way valve is provided to connect the supply pipe and the return pipe of the low-temperature heat source, and the high-temperature regenerator is provided based on the outlet temperature of the cold water taken out from the evaporator. The three-way valve is controlled based on the outlet temperature of the chilled water, and when the return temperature of the low-temperature heat source falls below a predetermined temperature, the set value of the chilled water outlet temperature for the three-way valve control is controlled according to the drop. , The responsiveness to load fluctuations can be improved, and the outlet temperature of the chilled water can be maintained at the set value regardless of the low-temperature heat source supplied to the low heat source regenerator and the load fluctuations.

【0051】また、低温熱源の戻り温度が低下したとき
には、低下の度合いに応じて低温熱源再生器に流入する
低温熱源の量を次第に減少し、低温熱源再生器での放熱
量を次第に減少させ、負荷の変動などに拘わらず低温熱
源の戻り温度を所定の温度以上に維持することができ、
発電機の冷却水などを低温熱源にした場合にも、温度が
大幅に低下した低温熱源によって発電機を冷却する際に
結露すると云うようなトラブルを回避することができ
る。
When the return temperature of the low-temperature heat source decreases, the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator gradually decreases in accordance with the degree of the decrease, and the amount of heat radiation in the low-temperature heat source regenerator gradually decreases. The return temperature of the low-temperature heat source can be maintained at a predetermined temperature or higher irrespective of changes in load,
Even when the cooling water or the like of the generator is used as the low-temperature heat source, it is possible to avoid a trouble such as dew condensation when the generator is cooled by the low-temperature heat source whose temperature is greatly reduced.

【0052】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、かつ、低温熱源の熱量が変化
した場合にも低温熱源の熱を有効に利用し、冷媒の再生
が効果的に行われてCOPを向上することができる。さ
らに、請求項3に記載された発明によれば、低温熱源の
供給管と戻し管とを連通するように三方弁を設け、蒸発
器から取り出す冷水の出口温度に基づいて高温再生器の
加熱量を制御するとともに、冷水の出口温度に基づいて
三方弁を制御し、かつ、低温熱源の戻り温度が所定温度
より低下したときには、この低下に伴い低温熱源再生器
へ流入する低温熱源の量を減少させるので、負荷の変動
に対する応答性を向上でき、低熱源再生器に供給する低
温熱源の多少及び負荷の変動に拘わらず、冷水の出口温
度を設定値に維持することができる。
Further, the regeneration temperature of the low heat source regenerator can be prevented from being extremely lowered, and even when the amount of heat of the low temperature heat source changes, the heat of the low temperature heat source is effectively used, and the regeneration of the refrigerant is effectively performed. To improve the COP. Furthermore, according to the invention described in claim 3, a three-way valve is provided so as to communicate the supply pipe and the return pipe of the low-temperature heat source, and the heating amount of the high-temperature regenerator is determined based on the outlet temperature of the cold water taken out from the evaporator. When the return temperature of the low-temperature heat source falls below a predetermined temperature, the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator is reduced. Therefore, the responsiveness to the load variation can be improved, and the outlet temperature of the cold water can be maintained at the set value regardless of the amount of the low-temperature heat source supplied to the low heat source regenerator and the load variation.

【0053】また、低温熱源の戻り温度が低下したとき
には、低温熱源再生器に流入する低温熱源の量を減少
し、低温熱源再生器での放熱量を減少させ、低温熱源の
戻り温度を所定の温度以上に維持することができ、発電
機の冷却水などを低温熱源にした場合にも、温度が大幅
に低下した低温熱源によって発電機を冷却する際に結露
すると云うようなトラブルを回避することができる。
When the return temperature of the low-temperature heat source decreases, the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator is reduced, the amount of heat radiation in the low-temperature heat source regenerator is reduced, and the return temperature of the low-temperature heat source is reduced to a predetermined value. The temperature can be maintained above the temperature, and even if the cooling water of the generator is used as a low-temperature heat source, avoid troubles such as condensation when cooling the generator with the low-temperature heat source whose temperature has dropped significantly. Can be.

【0054】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、常に冷媒再生に必要な温度に
維持され、冷媒の再生が効果的に行われてCOPを向上
することができる。
Further, it is possible to prevent the regeneration temperature of the low heat source regenerator from being extremely lowered, to always maintain the temperature necessary for the regeneration of the refrigerant, and to effectively perform the regeneration of the refrigerant to improve the COP. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】一重二重効用吸収式冷凍機の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a single-double effect absorption refrigerator.

【図2】熱源温水の戻り温度と冷水出口温度設定値との
関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a return temperature of a heat source hot water and a set value of a cold water outlet temperature.

【図3】稀吸収液ポンプの制御例を示す説明図である。FIG. 3 is an explanatory diagram showing a control example of a rare absorbing liquid pump.

【図4】中間吸収液ポンプの制御例を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a control example of an intermediate absorbent pump.

【図5】従来の一重二重効用吸収式冷凍機の概略構成図
である。
FIG. 5 is a schematic configuration diagram of a conventional single double effect absorption refrigerator.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 3 下胴(蒸発器吸収器胴) 4 高温再生器 6 低温再生器 7 第1凝縮器 8 低熱源再生器凝縮器胴 9 低熱源再生器 10 第2凝縮器 11 低温再生器凝縮器胴 12 低温熱交換器 13 高温熱交換器 26 冷温水配管 29D 側路管 29E 流量制御弁(三方弁) 30 メイン制御器 38 制御器 Reference Signs List 1 evaporator 2 absorber 3 lower body (evaporator absorber body) 4 high temperature regenerator 6 low temperature regenerator 7 first condenser 8 low heat source regenerator condenser body 9 low heat source regenerator 10 second condenser 11 low temperature regeneration Condenser condenser 12 low-temperature heat exchanger 13 high-temperature heat exchanger 26 cold / hot water pipe 29D bypass pipe 29E flow control valve (three-way valve) 30 main controller 38 controller

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−257668(JP,A) 特開 昭59−189259(JP,A) 特開 平3−137461(JP,A) 特開 昭56−37467(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 F25B 15/00 306 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-257668 (JP, A) JP-A-59-189259 (JP, A) JP-A-3-137461 (JP, A) JP-A-56-189 37467 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 F25B 15/00 306

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器を配
管接続して吸収液及び冷媒の循環路を形成し、低温熱源
の供給管と戻し管とを連通するように三方弁を設け、蒸
発器から取り出す冷水の出口温度に基づいて高温再生器
の加熱量を制御するとともに、冷水の出口温度に基づい
て三方弁を制御し、かつ、低温熱源の戻り温度が所定温
度以下になった時に、三方弁制御用の冷水出口温度の設
定値を高める制御器を設けたことを特徴とする一重二重
効用吸収式冷凍機。
An evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, a low heat source regenerator using warm waste water as a low temperature heat source. A low heat source regenerator condenser body containing a condenser and a high temperature regenerator are connected by piping to form a circulation path for the absorbing liquid and the refrigerant, and a three-way valve is provided so as to communicate the supply pipe and the return pipe of the low temperature heat source. The heating amount of the high-temperature regenerator is controlled based on the outlet temperature of the cold water taken out of the evaporator, the three-way valve is controlled based on the outlet temperature of the cold water, and the return temperature of the low-temperature heat source becomes equal to or lower than a predetermined temperature. A single-double-effect absorption refrigerator having a controller for increasing the set value of the chilled water outlet temperature for controlling the three-way valve when the refrigerator is operated.
【請求項2】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器を配
管接続して吸収液及び冷媒の循環路を形成し、低温熱源
の供給管と戻し管とを連通するように三方弁を設け、蒸
発器から取り出す冷水の出口温度に基づいて高温再生器
の加熱量を制御するとともに、冷水の出口温度に基づい
て三方弁を制御し、かつ、低温熱源の戻り温度が所定温
度より低下するのに従い、三方弁制御用の冷水出口温度
の設定値を次第に高める制御器を設けたことを特徴とす
る一重二重効用吸収式冷凍機。
2. An evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot waste water as a low temperature heat source. A low heat source regenerator condenser body containing a condenser and a high temperature regenerator are connected by piping to form a circulation path for the absorbing liquid and the refrigerant, and a three-way valve is provided so as to communicate the supply pipe and the return pipe of the low temperature heat source. Provided, while controlling the heating amount of the high-temperature regenerator based on the outlet temperature of the cold water taken out from the evaporator, controlling the three-way valve based on the outlet temperature of the cold water, and the return temperature of the low-temperature heat source falls below a predetermined temperature. A single double effect absorption refrigerator comprising a controller for gradually increasing the set value of the chilled water outlet temperature for controlling the three-way valve according to the above.
【請求項3】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器を配
管接続して吸収液及び冷媒の循環路を形成し、低温熱源
の供給管と戻し管とを連通するように三方弁を設け、蒸
発器から取り出す冷水の出口温度に基づいて高温再生器
の加熱量を制御するとともに、冷水の出口温度に基づい
て三方弁を制御し、かつ、低温熱源の戻り温度が所定温
度より低下したときには、この低下に伴い、低温熱源再
生器へ流入する低温熱源の量を減少させる制御器を設け
たことを特徴とする一重二重効用吸収式冷凍機。
3. An evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot waste water as a low temperature heat source. A low heat source regenerator condenser body containing a condenser and a high temperature regenerator are connected by piping to form a circulation path for the absorbing liquid and the refrigerant, and a three-way valve is provided so as to communicate the supply pipe and the return pipe of the low temperature heat source. Provided, while controlling the heating amount of the high-temperature regenerator based on the outlet temperature of the cold water taken out of the evaporator, controlling the three-way valve based on the outlet temperature of the cold water, and the return temperature of the low-temperature heat source dropped below a predetermined temperature. Sometimes, a single-double-effect absorption refrigerator equipped with a controller for reducing the amount of low-temperature heat source flowing into the low-temperature heat source regenerator in accordance with the decrease.
JP06188278A 1994-08-10 1994-08-10 Single double effect absorption refrigerator Expired - Fee Related JP3086594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06188278A JP3086594B2 (en) 1994-08-10 1994-08-10 Single double effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06188278A JP3086594B2 (en) 1994-08-10 1994-08-10 Single double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0854153A JPH0854153A (en) 1996-02-27
JP3086594B2 true JP3086594B2 (en) 2000-09-11

Family

ID=16220860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06188278A Expired - Fee Related JP3086594B2 (en) 1994-08-10 1994-08-10 Single double effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3086594B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315855B2 (en) * 2004-04-14 2009-08-19 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JPH0854153A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JP3086594B2 (en) Single double effect absorption refrigerator
JP3363518B2 (en) Operation control method of single double effect absorption refrigerator
CN1245279A (en) Sorption refrigerator
JP3986122B2 (en) Exhaust heat absorption type absorption air conditioner
JP2010266095A (en) Absorption refrigerating machine for single/double effect
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JP4315855B2 (en) Absorption refrigerator
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP2789951B2 (en) Absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JP2895974B2 (en) Absorption refrigerator
JPH04313652A (en) Absorption refrigerating machine
JP3429905B2 (en) Absorption refrigerator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP2858921B2 (en) Control device for absorption refrigerator
JP2538423B2 (en) Single-double-effect absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3157349B2 (en) Absorption refrigerator control device
JPH0275865A (en) Controlling method for absorption refrigerator
JPH04151470A (en) Control device for absorption type cold-hot water heater
JPS6113888Y2 (en)
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JPH04260760A (en) Single-double effect absorption refrigerator
JP2001208443A (en) Absorption freezer
JPH0480312B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees