JP2006250427A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine Download PDF

Info

Publication number
JP2006250427A
JP2006250427A JP2005067149A JP2005067149A JP2006250427A JP 2006250427 A JP2006250427 A JP 2006250427A JP 2005067149 A JP2005067149 A JP 2005067149A JP 2005067149 A JP2005067149 A JP 2005067149A JP 2006250427 A JP2006250427 A JP 2006250427A
Authority
JP
Japan
Prior art keywords
refrigerant liquid
refrigerant
temperature regenerator
amount
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005067149A
Other languages
Japanese (ja)
Inventor
Yusuke Nakahara
雄介 中原
Kiyoharu Sone
清春 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2005067149A priority Critical patent/JP2006250427A/en
Publication of JP2006250427A publication Critical patent/JP2006250427A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption refrigerating machine having improved performance while suppressing the degradation of its reliability. <P>SOLUTION: The absorption refrigerating machine 1 has a high temperature regenerator 3 using the heat of a heat source for heating and a low temperature regenerator 5 using the heat of refrigerant vapor generated by the high temperature regenerator 3 for heating. It comprises refrigerant liquid amount detecting means 33, 41 for detecting the amount of refrigerant liquid residing in the low temperature regenerator 5 and refrigerant flow amount control means 37, 41 for controlling the flow amount of the refrigerant liquid in a refrigerant liquid flow path 29 depending on the amount of the refrigerant liquid detected by the refrigerant liquid amount detecting means 33. Thus, the flow of the refrigerant vapor into a refrigerant heat exchanger 31 is suppressed and the performance is improved. The flow amount of the refrigerant liquid is increased as the amount of the refrigerant liquid in the low temperature regenerator 5 is increased, therefore suppressing the malfunction of the absorption refrigerating machine which is caused by the refrigerant liquid residing in the low temperature regenerator 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吸収式冷凍機に係り、特に、再生器として高温再生器及び低温再生器を有する吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator, and more particularly, to an absorption refrigerator having a high-temperature regenerator and a low-temperature regenerator as regenerators.

高温再生器及び低温再生器を有する吸収式冷凍機では、高温再生器で発生した冷媒蒸気が低温再生器での加熱に用いられる。低温再生器での加熱に用いられることで凝縮した冷媒液は、冷媒液流路によって凝縮器に導かれる。この低温再生器と凝縮器の間に設けられた冷媒液流路には、吸収器からの稀溶液の一部が通流する稀溶液流路との間で熱交換を行うことで、冷媒液流路を通流する凝縮した冷媒液の熱を低温再生器に導かれる稀溶液に回収する冷媒熱交換器が設けられているものがある(例えば、特許文献1参照)。   In an absorption chiller having a high temperature regenerator and a low temperature regenerator, refrigerant vapor generated in the high temperature regenerator is used for heating in the low temperature regenerator. The refrigerant liquid condensed by being used for heating in the low temperature regenerator is guided to the condenser by the refrigerant liquid flow path. The refrigerant liquid flow path provided between the low-temperature regenerator and the condenser exchanges heat with the rare-solution flow path through which a part of the rare solution from the absorber flows, so that the refrigerant liquid There is a refrigerant heat exchanger that collects the heat of the condensed refrigerant liquid flowing through the flow path into a rare solution led to a low-temperature regenerator (see, for example, Patent Document 1).

このような吸収式冷凍機では、高温再生器からの冷媒蒸気が低温再生器で凝縮せずに冷媒熱交換器に流入すると、吸収式冷凍機の性能の低下を招いてしまう。このため、高温再生器からの冷媒蒸気を低温再生器で凝縮させるため、冷媒液流路に、特許文献1の吸収式冷凍機のように冷媒液の冷媒熱交換器からの出口温度に応じて開度が制御される流量制御弁や、穿設された孔の口径及び一次側と2次側の圧力差の関係によって冷媒液の流量を調整するオリフィスなどが設けられており、冷媒液流路に流路抵抗を付与するようになっている。   In such an absorption chiller, if the refrigerant vapor from the high-temperature regenerator flows into the refrigerant heat exchanger without condensing in the low-temperature regenerator, the performance of the absorption chiller is reduced. For this reason, in order to condense the refrigerant | coolant vapor | steam from a high temperature regenerator with a low temperature regenerator, according to the exit temperature from the refrigerant | coolant heat exchanger of a refrigerant liquid to a refrigerant | coolant liquid flow path like the absorption refrigeration machine of patent document 1. A flow rate control valve for controlling the opening degree, an orifice for adjusting the flow rate of the refrigerant liquid according to the relationship between the diameter of the bored hole and the pressure difference between the primary side and the secondary side are provided. Is provided with a flow path resistance.

特開2003−287315号公報(第3−4頁、第1図)JP 2003-287315 A (page 3-4, FIG. 1)

ところで、例えば、高温再生器や低温再生器で生成した冷媒蒸気を凝縮して液化するための凝縮器に供給される冷却液の温度が低くなるに連れ、高温再生器内と凝縮器内の圧力差が小さくなる。このため、凝縮器に供給される冷却液の温度によっては、従来の吸収式冷凍機のように、冷媒液流路に冷媒液の冷媒熱交換器からの出口温度に応じて開度が制御される流量制御弁やオリフィスが設けられていると、冷媒液が流れなくなってしまう場合がある。冷媒液流路を冷媒液が流れなくなってしまうと、低温再生器内に冷媒液が溜まり、吸収液の濃度の上昇や晶析などの不具合が発生し、これにより吸収式冷凍機の運転に支障を来し、吸収式冷凍機が異常停止するなど、信頼性が低下してしまう。   By the way, for example, as the temperature of the coolant supplied to the condenser for condensing and liquefying the refrigerant vapor generated in the high-temperature regenerator or the low-temperature regenerator decreases, the pressure in the high-temperature regenerator and the condenser The difference becomes smaller. For this reason, depending on the temperature of the cooling liquid supplied to the condenser, the opening degree is controlled in the refrigerant liquid flow path according to the outlet temperature of the refrigerant liquid from the refrigerant heat exchanger as in a conventional absorption refrigerator. If a flow control valve or orifice is provided, the refrigerant liquid may not flow. If the refrigerant liquid stops flowing through the refrigerant liquid flow path, the refrigerant liquid accumulates in the low-temperature regenerator, causing problems such as an increase in the concentration of the absorbing liquid and crystallization, which hinders the operation of the absorption refrigerator. This will reduce the reliability, for example, the absorption refrigerator will stop abnormally.

一方、このような信頼性の低下を抑制するため、冷媒液の冷媒熱交換器からの出口温度に対する流量制御弁の開度やオリフィスの口径を大きくして冷媒液流路の冷媒液の流量を大きく設定することが考えられる。しかし、冷媒液の冷媒熱交換器からの出口温度に対する流量制御弁の開度やオリフィスの口径を大きくすると、吸収式冷凍機の定格運転時に、高温再生器からの冷媒蒸気が低温再生器で凝縮せずに冷媒熱交換器に流入し、吸収式冷凍機の性能が低下してしまう。このように従来の吸収式冷凍機では、信頼性の低下を抑制しようとすると、吸収式冷凍機の性能を向上できなくなるという問題がある。このため、信頼性の低下を抑制しながら性能を向上できる吸収式冷凍機が求められている。   On the other hand, in order to suppress such a decrease in reliability, the flow rate of the refrigerant liquid in the refrigerant liquid flow path is increased by increasing the opening degree of the flow control valve and the orifice diameter with respect to the outlet temperature of the refrigerant liquid from the refrigerant heat exchanger. It is conceivable to set a large value. However, if the opening of the flow control valve or the orifice diameter is increased with respect to the outlet temperature of the refrigerant liquid from the refrigerant heat exchanger, the refrigerant vapor from the high-temperature regenerator condenses in the low-temperature regenerator during the rated operation of the absorption refrigerator. Without flowing into the refrigerant heat exchanger, the performance of the absorption chiller is degraded. Thus, in the conventional absorption refrigerator, there is a problem that the performance of the absorption refrigerator cannot be improved if it is attempted to suppress a decrease in reliability. For this reason, there is a demand for an absorption refrigerator that can improve performance while suppressing a decrease in reliability.

本発明の課題は、信頼性の低下を抑制しながら性能を向上することにある。   The subject of this invention is improving a performance, suppressing the fall of reliability.

本発明の吸収式冷凍機は、熱源の熱により加熱を行う高温再生器、この高温再生器で発生した冷媒蒸気の熱で加熱を行う低温再生器、凝縮器、蒸発器及び吸収器を備え、低温再生器で加熱に用いられて凝縮した冷媒液を凝縮器に導く冷媒液流路と、吸収器からの稀溶液の一部が通流する稀溶液流路との間で熱交換を行う冷媒熱交換器が設けられた吸収式冷凍機であり、低温再生器に溜まった冷媒液の量を検出する冷媒液量検出手段と、この冷媒液量検出手段で検出した冷媒液の量に応じて冷媒液流路の冷媒液の流量を調整する冷媒流量調整手段とを設けた構成とすることにより上記課題を解決する。   The absorption refrigerator of the present invention includes a high-temperature regenerator that performs heating with heat from a heat source, a low-temperature regenerator that performs heating with heat of refrigerant vapor generated in the high-temperature regenerator, a condenser, an evaporator, and an absorber. Refrigerant that exchanges heat between a refrigerant liquid channel that guides the condensed refrigerant liquid used for heating in the low temperature regenerator to the condenser and a rare solution channel through which a part of the rare solution from the absorber flows. It is an absorption refrigerator provided with a heat exchanger, and according to the amount of refrigerant liquid detecting means for detecting the amount of refrigerant liquid accumulated in the low temperature regenerator and the amount of refrigerant liquid detected by this refrigerant liquid amount detecting means The above problem is solved by providing a refrigerant flow rate adjusting means for adjusting the flow rate of the refrigerant liquid in the refrigerant liquid flow path.

このような構成とすれば、冷媒液の流量を適切に調整できることにより、低温再生器で冷媒蒸気を凝縮させて冷媒蒸気の冷媒熱交換器への流入を抑制でき、性能を向上できる。さらに、凝縮器へ供給される冷却液の温度が低くなるなどの条件によって冷媒液の流れが悪い状態になっても、低温再生器内の冷媒液の量が増加すると冷媒流量調整手段によって冷媒液の流量を増大させることができる。このため、低温再生器内に冷媒液が溜まるのを防ぎ、信頼性の低下を抑制できる。したがって、信頼性の低下を抑制しながら性能を向上できる。   With such a configuration, it is possible to appropriately adjust the flow rate of the refrigerant liquid, thereby condensing the refrigerant vapor with the low-temperature regenerator and suppressing the inflow of the refrigerant vapor to the refrigerant heat exchanger, thereby improving the performance. Furthermore, even if the flow of the refrigerant liquid becomes poor due to a condition such as the temperature of the cooling liquid supplied to the condenser being lowered, if the amount of the refrigerant liquid in the low-temperature regenerator increases, The flow rate of can be increased. For this reason, it is possible to prevent the refrigerant liquid from accumulating in the low-temperature regenerator and to suppress a decrease in reliability. Therefore, the performance can be improved while suppressing a decrease in reliability.

また、冷媒液流路の少なくとも一部を並列に2本の流路に分岐し、この冷媒液流路の分岐した部分の一方にオリフィスが設けてあり、冷媒流量調整手段は、冷媒液流路の分岐した部分の他方に設けられ、冷媒液量検出手段で検出した冷媒液の量に応じて開閉する開閉弁を有する構成とする。このような構成とすれば、従来のオリフィスを設けた構成の吸収式冷凍機に、このオリフィスに対して並列に開閉弁を設けた流路を設置することで、信頼性の低下を抑制しながら性能を向上できる。   Further, at least a part of the refrigerant liquid flow path is branched into two flow paths in parallel, and an orifice is provided in one of the branched portions of the refrigerant liquid flow path. And an on-off valve that opens and closes according to the amount of refrigerant liquid detected by the refrigerant liquid amount detecting means. By adopting such a configuration, a flow path provided with an opening / closing valve in parallel with the orifice is installed in an absorption refrigerator having a configuration with a conventional orifice while suppressing a decrease in reliability. Performance can be improved.

このとき、冷媒液量検出手段は、低温再生器に溜まった冷媒液の量に相関する値として高温再生器の燃焼量と、高温再生器及び低温再生器で生成した冷媒蒸気を液化する冷却液の凝縮器からの出口温度とを検出する構成とする。このような構成でも、低温再生器に溜まった冷媒液の量に応じて冷媒の流量を調整することができる。   At this time, the refrigerant liquid amount detecting means is a coolant that liquefies the combustion amount of the high temperature regenerator and the refrigerant vapor generated in the high temperature regenerator and the low temperature regenerator as a value correlated with the amount of refrigerant liquid accumulated in the low temperature regenerator. The temperature of the outlet from the condenser is detected. Even with such a configuration, the flow rate of the refrigerant can be adjusted according to the amount of the refrigerant liquid accumulated in the low temperature regenerator.

また、冷媒流量調整手段は、冷媒液流路に設けられ、冷媒液量検出手段で検出した冷媒液の量に比例して開度が可変する比例弁を有する構成とする。このような構成でも、低温再生器での冷媒蒸気の凝縮状態に応じて適切に冷媒液の流量を調整できるため、信頼性の低下を抑制しながら性能を向上できる。   The refrigerant flow rate adjusting means includes a proportional valve that is provided in the refrigerant liquid flow path and whose opening degree is variable in proportion to the amount of refrigerant liquid detected by the refrigerant liquid amount detecting means. Even in such a configuration, the flow rate of the refrigerant liquid can be appropriately adjusted according to the condensed state of the refrigerant vapor in the low-temperature regenerator, so that the performance can be improved while suppressing a decrease in reliability.

このとき、冷媒液量検出手段は、低温再生器に溜まった冷媒液の量に相関する値として高温再生器の燃焼量と、高温再生器内の圧力とを検出する構成とする。このような構成でも、低温再生器に溜まった冷媒液の量に応じて冷媒の流量を調整することができる。   At this time, the refrigerant liquid amount detecting means is configured to detect the combustion amount of the high temperature regenerator and the pressure in the high temperature regenerator as a value correlated with the amount of refrigerant liquid accumulated in the low temperature regenerator. Even with such a configuration, the flow rate of the refrigerant can be adjusted according to the amount of the refrigerant liquid accumulated in the low temperature regenerator.

また、冷媒液量検出手段は、低温再生器で凝縮した冷媒液が溜まる冷媒液溜め部の液面に応じて移動するフロートを有し、冷媒流量調整手段は、フロートの動きに連動して開度が変わる弁を有し、フロートと弁とは、フロートの動きを弁に伝える連結部材によって連結されている構成とする。このような構成とすれば、機械的な構成のみで冷媒液の量に応じて冷媒液の流量を制御できる。   The refrigerant liquid amount detection means has a float that moves according to the liquid level of the refrigerant liquid reservoir where the refrigerant liquid condensed by the low temperature regenerator accumulates, and the refrigerant flow rate adjustment means opens in conjunction with the movement of the float. The float has a variable valve, and the float and the valve are connected by a connecting member that transmits the movement of the float to the valve. With such a configuration, the flow rate of the refrigerant liquid can be controlled in accordance with the amount of the refrigerant liquid with only a mechanical configuration.

本発明によれば、信頼性の低下を抑制しながら性能を向上できる。   According to the present invention, it is possible to improve performance while suppressing a decrease in reliability.

(第1の実施形態)
以下、本発明を適用してなる吸収式冷凍機の第1の実施形態について図1を参照して説明する。図1は、本発明を適用してなる吸収式冷凍機の概略構成を模式的に示すブロック図である。
(First embodiment)
Hereinafter, a first embodiment of an absorption chiller to which the present invention is applied will be described with reference to FIG. FIG. 1 is a block diagram schematically showing a schematic configuration of an absorption chiller to which the present invention is applied.

本実施形態の吸収式冷凍機1は、図1に示すように、高温再生器3、低温再生器5、凝縮器7、蒸発器9、そして吸収器11などを備えている。高温再生器3は、ボイラの燃焼により熱媒を加熱する直焚き型の再生器や加熱された熱媒を熱源とする熱媒焚きの再生器などである。高温再生器3には、この高温再生器3での稀溶液の加熱により発生した冷媒蒸気が通流する第1冷媒蒸気管路13、冷媒蒸気の発生により吸収液の濃度が高くなった濃溶液が通流する第1濃溶液管路15、そして、蒸発器7や吸収器11の底部に溜まった稀溶液を高温再生器3に戻すための第1稀溶液管路17などが連結されている。なお、稀溶液は、例えば臭化リチウムと水からなる溶液であり、この場合、水が冷媒となり、臭化リチウムが吸収液となる。   As shown in FIG. 1, the absorption refrigerator 1 of the present embodiment includes a high temperature regenerator 3, a low temperature regenerator 5, a condenser 7, an evaporator 9, and an absorber 11. The high-temperature regenerator 3 is a direct-fired regenerator that heats a heat medium by combustion of a boiler, a regenerator that uses a heated heat medium as a heat source, or the like. The high temperature regenerator 3 includes a first refrigerant vapor line 13 through which refrigerant vapor generated by heating of the rare solution in the high temperature regenerator 3 flows, and a concentrated solution in which the concentration of the absorbing liquid is increased by generation of the refrigerant vapor. Are connected to the first concentrated solution line 15 through which the refrigerant flows and the first diluted solution line 17 for returning the diluted solution accumulated at the bottom of the evaporator 7 and the absorber 11 to the high-temperature regenerator 3. . The rare solution is, for example, a solution composed of lithium bromide and water. In this case, water serves as a refrigerant and lithium bromide serves as an absorbing solution.

低温再生器5は、高温再生器3で発生した冷媒蒸気と蒸発器9や吸収器11からの稀溶液との間で熱交換を行うことで稀溶液を加熱するものであり、冷媒蒸気が通流する伝熱管5aを内部に備えている。低温再生器5の伝熱管5aの一端には、高温再生器3からの第1冷媒蒸気管路13が連結されている。伝熱管5aは、複数の管路であるため、伝熱管5aの両端部には、これらの複数の伝熱管5aが連結されたヘッダ管やマニホールドなどといったが部材が設けられている。したがって、複数の伝熱管5aの一端は、図示していないヘッダ管などに連結されており、第1冷媒蒸気管路13は、この図示していないヘッダ管などに連結されている。   The low temperature regenerator 5 heats the rare solution by exchanging heat between the refrigerant vapor generated in the high temperature regenerator 3 and the rare solution from the evaporator 9 and the absorber 11. A flowing heat transfer tube 5a is provided inside. The first refrigerant vapor line 13 from the high temperature regenerator 3 is connected to one end of the heat transfer tube 5 a of the low temperature regenerator 5. Since the heat transfer tube 5a is a plurality of conduits, members such as a header tube and a manifold connected to the plurality of heat transfer tubes 5a are provided at both ends of the heat transfer tube 5a. Therefore, one end of the plurality of heat transfer tubes 5a is connected to a header tube (not shown) or the like, and the first refrigerant vapor line 13 is connected to the header tube (not shown) or the like.

同様に、本実施形態の低温再生器5では、複数の伝熱管5aの他端は、低温再生器5で凝縮した冷媒液が溜まるマニホールド19に連結されている。さらに、低温再生器5には、この低温再生器5での稀溶液の加熱により発生した冷媒蒸気が通流する第2冷媒蒸気管路21、冷媒蒸気の発生により吸収液の濃度が高くなった濃溶液が通流し、第1濃溶液管路15に合流する第2濃溶液管路23、そして、蒸発器9や吸収器11の底部に溜まった稀溶液を低温再生器5に戻すための第1稀溶液管路17から各々分岐した第2稀溶液管路25、第3稀溶液管路27などが連結されている。さらに、低温再生器5は、マニホールド19に連結され、マニホールド19内の冷媒液を凝縮器7内に導く第1冷媒液管路29によって凝縮器7と連結されている。   Similarly, in the low temperature regenerator 5 of the present embodiment, the other ends of the plurality of heat transfer tubes 5a are connected to a manifold 19 in which the refrigerant liquid condensed in the low temperature regenerator 5 is accumulated. Further, in the low-temperature regenerator 5, the concentration of the absorbing liquid is increased due to the generation of the refrigerant vapor, the second refrigerant vapor line 21 through which the refrigerant vapor generated by heating the rare solution in the low-temperature regenerator 5 flows. A second concentrated solution pipe 23 through which the concentrated solution flows and merges with the first concentrated solution pipe 15, and a rare solution accumulated at the bottom of the evaporator 9 and the absorber 11 is returned to the low temperature regenerator 5. A second dilute solution line 25, a third dilute solution line 27 and the like branched from the 1 dilute solution line 17 are connected. Further, the low temperature regenerator 5 is connected to the manifold 19 and is connected to the condenser 7 by a first refrigerant liquid line 29 that guides the refrigerant liquid in the manifold 19 into the condenser 7.

低温再生器5で凝縮した冷媒液が溜まる冷媒液溜め部の役割を果たすマニホールド19には、マニホールド19内の液面を検出することで、低温再生器5で凝縮して溜まった冷媒液の量を検出するための液面レベル検知器33が設けられている。第1冷媒液管路29には、第1冷媒液管路29を通流する冷媒液と第2稀溶液管路25を通流する稀溶液との間で熱交換を行うことで、低温再生器5で凝縮した冷媒液の熱を稀溶液に回収する冷媒熱交換器31が設けられている。   The manifold 19 that functions as a refrigerant liquid reservoir in which the refrigerant liquid condensed in the low temperature regenerator 5 accumulates is detected, and the amount of the refrigerant liquid condensed and accumulated in the low temperature regenerator 5 is detected by detecting the liquid level in the manifold 19. Is provided with a liquid level detector 33. The first refrigerant liquid line 29 is subjected to low temperature regeneration by exchanging heat between the refrigerant liquid flowing through the first refrigerant liquid line 29 and the rare solution flowing through the second dilute solution line 25. A refrigerant heat exchanger 31 is provided for recovering the heat of the refrigerant liquid condensed in the vessel 5 into a dilute solution.

さらに、第1冷媒液管路29の冷媒熱交換器31よりも冷媒の流れに対して下流側の部分には、穿設された孔の口径及び一次側と2次側の圧力差の関係によって冷媒液の流量を調整するオリフィス35が設けられている。また、第1冷媒液管路29の冷媒熱交換器31よりも冷媒の流れに対して下流側の部分には、オリフィス35に対して並列に第1冷媒液管路29から分岐して再び合流する並列管路29aが設けられており、この並列管路29aには、電動開閉弁37が設けられている。液面レベル検知器33と電動開閉弁37は、各々、配線39を介して制御部41に電気的に接続されている。   Further, the downstream portion of the first refrigerant liquid conduit 29 with respect to the refrigerant flow with respect to the refrigerant heat exchanger 31 has a hole diameter and a relationship between the pressure difference between the primary side and the secondary side. An orifice 35 for adjusting the flow rate of the refrigerant liquid is provided. Further, the portion of the first refrigerant liquid conduit 29 downstream of the refrigerant heat exchanger 31 with respect to the refrigerant flow branches from the first refrigerant liquid conduit 29 in parallel to the orifice 35 and merges again. A parallel pipe line 29a is provided, and an electric on-off valve 37 is provided in the parallel pipe line 29a. The liquid level detector 33 and the electric on-off valve 37 are each electrically connected to the control unit 41 via the wiring 39.

液面レベル検知器33としては、電極棒方式の液面レベル検知器や、フロート方式の液面レベル検知器などを用いる。液面レベル検知器33は、マニホールド19内の液面が予め設定された位置以上に上昇すると、電極棒による液面の検知またはフロートの上昇によって上側のスイッチがオンし、その信号を制御部41に送信する。制御部41は、液面レベル検知器33からのマニホールド19内の液面が予め設定された位置以上に上昇したことを知らせる信号を受信すると、電動開閉弁37に弁を開いた状態にすることを指令する開信号を送信する。これにより、電動開閉弁37が開いた状態となる。   As the liquid level detector 33, an electrode bar type liquid level detector, a float type liquid level detector, or the like is used. When the liquid level in the manifold 19 rises above a preset position, the liquid level detector 33 turns on the upper switch by detecting the liquid level with the electrode rod or raising the float, and the signal is sent to the control unit 41. Send to. When the control unit 41 receives a signal from the liquid level detector 33 notifying that the liquid level in the manifold 19 has risen above a preset position, the control unit 41 opens the electric on-off valve 37. Send an open signal to command. As a result, the electric on-off valve 37 is opened.

一方、液面レベル検知器33は、マニホールド19内の液面が予め設定された位置以下に低下すると、電極棒による液面の検知またはフロートの下降によって下側のスイッチがオンし、その信号を制御部41に送信する。制御部41は、液面レベル検知器33からのマニホールド19内の液面が予め設定された位置以下に低下したことを知らせる信号を受信すると、電動開閉弁37に弁を閉じた状態にすることを指令する閉信号を送信する。これにより、電動開閉弁37が閉じた状態となる。このように、本実施形態では、液面レベル検知器33や制御部41などが冷媒液量検出手段を構成し、電動開閉弁37や制御部41などが冷媒流量調整手段を構成している。   On the other hand, when the liquid level in the manifold 19 falls below a preset position, the liquid level detector 33 turns on the lower switch by detecting the liquid level with the electrode rod or lowering the float, It transmits to the control part 41. When the control unit 41 receives a signal from the liquid level detector 33 notifying that the liquid level in the manifold 19 has fallen below a preset position, the control unit 41 causes the electric on-off valve 37 to close the valve. Sends a close signal to command As a result, the electric on-off valve 37 is closed. Thus, in the present embodiment, the liquid level detector 33 and the control unit 41 constitute a refrigerant liquid amount detection means, and the electric on-off valve 37 and the control unit 41 constitute a refrigerant flow rate adjustment means.

凝縮器7は、図示していない冷却塔で冷却された冷却液、例えば水が通流する伝熱管7aを内部に備えている。したがって、本実施形態では、冷却水が凝縮器7の冷却液となる。伝熱管7aには、冷却水が伝熱管7aと図示していない冷却塔との間を循環できるように冷却水管路43が連結されている。また、凝縮器7には、低温再生器5からの第2冷媒蒸気管路21、マニホールド19からの第1冷媒液管路29、そして、凝縮器7内の冷媒液を蒸発器9に導く第2冷媒液管路45などが連結されている。そして、蒸発器9で流体を冷却する運転を行うとき、凝縮器7に流入した高温再生器3及び低温再生器5からの冷媒蒸気は、伝熱管7a内を通流する冷却水により冷却されて凝縮し、液化する。   The condenser 7 includes therein a heat transfer tube 7a through which a coolant, for example, water, cooled by a cooling tower (not shown) flows. Therefore, in this embodiment, the cooling water becomes the cooling liquid of the condenser 7. A cooling water pipe 43 is connected to the heat transfer pipe 7a so that the cooling water can circulate between the heat transfer pipe 7a and a cooling tower (not shown). Further, the condenser 7 includes a second refrigerant vapor line 21 from the low-temperature regenerator 5, a first refrigerant liquid line 29 from the manifold 19, and a first liquid that leads the refrigerant liquid in the condenser 7 to the evaporator 9. Two refrigerant liquid lines 45 and the like are connected. When the operation of cooling the fluid by the evaporator 9 is performed, the refrigerant vapor from the high-temperature regenerator 3 and the low-temperature regenerator 5 flowing into the condenser 7 is cooled by the cooling water flowing through the heat transfer pipe 7a. Condensed and liquefied.

蒸発器9は、吸収式冷凍機1が冷却する流体、例えば水などが通流する伝熱管9aを内部に備えている。伝熱管9aは、冷却された水などの流体を利用する図示していない設備や機器との間でこの流体を循環させるための流体循環管路47に連結されている。また、蒸発器9は、第2冷媒液管路45を介して伝熱管9aに滴下または散布された冷媒液が気化することで、蒸発器9で発生した冷媒蒸気が通流できるように吸収器11と連通している。   The evaporator 9 includes therein a heat transfer tube 9a through which a fluid cooled by the absorption refrigerator 1 such as water flows. The heat transfer pipe 9a is connected to a fluid circulation pipe 47 for circulating the fluid between equipment and equipment (not shown) that uses a fluid such as cooled water. Further, the evaporator 9 absorbs the refrigerant vapor generated in the evaporator 9 by allowing the refrigerant liquid dropped or sprayed on the heat transfer pipe 9a through the second refrigerant liquid pipe 45 to evaporate. 11 communicates.

吸収器11は、図示していない冷却塔で冷却された冷却水が通流する伝熱管11aを内部に備えている。また、吸収器11には、第1濃溶液管路15が連結されており、高温再生器3で生成された濃溶液及び第1濃溶液管路15に合流する第2濃溶液管路23からの低温再生器5で生成された濃溶液は、吸収器11の伝熱管11aに滴下または散布される。伝熱管11aは、冷却水が伝熱管11aと図示していない冷却塔との間を循環できるように冷却水管路43が連結されている。そして、吸収器11の伝熱管11aと凝縮器7の伝熱管7aが冷却水管路43に対して直列に連結されていることにより、図示していない冷却塔で冷却された冷却水は、冷却水管路43を介して、図示していない冷却塔から、吸収器11の伝熱管11a、凝縮器7の伝熱管7a、そして、図示していない冷却塔の順に循環する。   The absorber 11 includes therein a heat transfer tube 11a through which cooling water cooled by a cooling tower (not shown) flows. Further, the absorber 11 is connected to the first concentrated solution line 15, and the concentrated solution generated in the high temperature regenerator 3 and the second concentrated solution line 23 that merges with the first concentrated solution line 15. The concentrated solution produced by the low temperature regenerator 5 is dropped or spread on the heat transfer tube 11a of the absorber 11. The heat transfer pipe 11a is connected to a cooling water pipe 43 so that the cooling water can circulate between the heat transfer pipe 11a and a cooling tower (not shown). And since the heat exchanger tube 11a of the absorber 11 and the heat exchanger tube 7a of the condenser 7 are connected in series with respect to the cooling water pipe 43, the cooling water cooled with the cooling tower which is not shown in figure is a cooling water pipe. From the cooling tower (not shown), the heat transfer pipe 11a of the absorber 11, the heat transfer pipe 7a of the condenser 7, and the cooling tower (not shown) are circulated through the passage 43 in this order.

第1稀溶液管路17の吸収器11からの出口部分には、ポンプ49が設けられており、蒸発器9や吸収器11の底部に溜まった稀溶液は、第1稀溶液管路17を介して高温再生器3に、第1稀溶液管路17から分岐した第2稀溶液管路25及び第3稀溶液管路27を介して低温再生器5に戻される。第1稀溶液管路17のポンプ49及び第2稀溶液管路25との分岐部よりも稀溶液の流れに対して下流側の部分には、第2濃溶液管路23との合流部よりも濃溶液の流れに対して下流側の第1濃溶液管路15の部分内を通流する高温再生器3及び低温再生器5からの濃溶液と、第1稀溶液管路17内を通流する稀溶液との間で熱交換を行うための熱交換器51が設けられている。   A pump 49 is provided at the outlet of the first diluted solution pipe 17 from the absorber 11, and the diluted solution accumulated at the bottom of the evaporator 9 and the absorber 11 passes through the first diluted solution pipe 17. To the high temperature regenerator 3 via the second dilute solution line 25 and the third dilute solution line 27 branched from the first dilute solution line 17. From the junction with the second concentrated solution line 23, the downstream side of the flow of the dilute solution with respect to the flow of the dilute solution from the branch part between the pump 49 and the second dilute solution line 25 of the first dilute solution line 17. Also, the concentrated solution from the high temperature regenerator 3 and the low temperature regenerator 5 flowing through the portion of the first concentrated solution pipe 15 on the downstream side with respect to the flow of the concentrated solution and the inside of the first dilute solution pipe 17 are passed. A heat exchanger 51 for exchanging heat with the flowing rare solution is provided.

さらに、第1稀溶液管路17の熱交換器51及び第3稀溶液管路27との分岐部よりも稀溶液の流れに対して下流側の部分には、第2濃溶液管路23との合流部よりも濃溶液の流れに対して上流側の第1濃溶液管路15の部分内を通流する高温再生器3からの濃溶液と、第1稀溶液管路17内を通流する稀溶液との間で熱交換を行うための熱交換器53が設けられている。   Furthermore, the second concentrated solution line 23 and the downstream part of the dilute solution flow from the branch of the first dilute solution line 17 with the heat exchanger 51 and the third dilute solution line 27 are The concentrated solution from the high-temperature regenerator 3 that flows in the portion of the first concentrated solution pipe 15 upstream of the concentrated solution flow with respect to the flow of the concentrated solution and the first diluted solution pipe 17 A heat exchanger 53 is provided for exchanging heat with the diluted solution.

このような構成の吸収式冷凍機の本発明の特徴部に関わる動作などについて説明する。なお、その他の吸収式冷凍機としての動作などは、一般的な吸収式冷凍機と同じである。また、ここでは、蒸発器9で伝熱管9a内の流体を冷却する場合、例えば本実施形態の吸収式冷凍機1が空調設備の室外機であり、室内機に供給される冷媒を蒸発器9で冷却する冷房運転の場合について説明する。しかし、本発明は、空調用の吸収式冷凍機に限らず、様々な用途の吸収式冷凍機に適用でき、また、蒸発器9で伝熱管9a内の流体の冷却のみを行うものや、伝熱管9a内の流体を冷却及び加熱できるものなど、様々な構成の吸収式冷凍機に適用できる。   The operation | movement regarding the characteristic part of this invention of the absorption refrigerator with such a structure is demonstrated. The operation of other absorption refrigerators is the same as that of a general absorption refrigerator. Further, here, when the fluid in the heat transfer tube 9a is cooled by the evaporator 9, for example, the absorption refrigeration machine 1 of the present embodiment is an outdoor unit of the air conditioning equipment, and the refrigerant supplied to the indoor unit is used as the evaporator 9 A description will be given of the case of cooling operation in which cooling is performed. However, the present invention can be applied not only to absorption refrigerators for air conditioning but also to absorption refrigerators for various purposes. In addition, the evaporator 9 only cools the fluid in the heat transfer tube 9a. The present invention can be applied to absorption refrigerators having various configurations such as those capable of cooling and heating the fluid in the heat pipe 9a.

本実施形態の吸収式冷凍機1では、高温再生器3での加熱により、稀溶液中に吸収されている冷媒が蒸発して生成された冷媒蒸気は、第1冷媒蒸気管路13に流入し、低温再生器5へと導かれる。低温再生器5へと導かれた冷媒蒸気は、伝熱管5aを通流する間に、第2稀溶液管路25や第3稀溶液管路27から低温再生器5内に流入してくる稀溶液と熱交換する。これにより、低温再生器5へと導かれた冷媒蒸気の熱が稀溶液に回収され、冷媒蒸気が凝縮して冷媒液となる。   In the absorption refrigerator 1 of the present embodiment, the refrigerant vapor generated by evaporating the refrigerant absorbed in the dilute solution by heating in the high temperature regenerator 3 flows into the first refrigerant vapor line 13. To the low-temperature regenerator 5. The refrigerant vapor guided to the low temperature regenerator 5 is rarely flowing into the low temperature regenerator 5 from the second rare solution pipe 25 or the third rare solution pipe 27 while flowing through the heat transfer pipe 5a. Heat exchange with solution. Thereby, the heat | fever of the refrigerant | coolant vapor | steam guide | induced to the low temperature regenerator 5 is collect | recovered by a rare solution, and a refrigerant | coolant vapor | steam condenses into a refrigerant | coolant liquid.

このとき、本実施形態の吸収式冷凍機1では、低温再生器5へと導かれた高温再生器3からの冷媒蒸気が凝縮した冷媒液がマニホールド19内に溜まってマニホールド19内の液面が予め設定された位置以上に上昇すると、液面レベル検知器33からの信号により、制御部41が、電動開閉弁37に弁を開いた状態にする。これにより、例えば冷却水の温度が比較的低い条件での運転などによって高温再生器3と凝縮器7との圧力差が小さくなり、冷媒液がオリフィス35を通過して流れ難くなくなった場合でも、マニホールド19内に溜まった冷媒液の液面が上昇すると、電動開閉弁37が開くため、冷媒液は並列管路29aを通って凝縮器7へ流れ、冷媒液の流量を増大できる。   At this time, in the absorption refrigerator 1 of the present embodiment, the refrigerant liquid condensed from the refrigerant vapor from the high-temperature regenerator 3 led to the low-temperature regenerator 5 is accumulated in the manifold 19 and the liquid level in the manifold 19 is changed. When it rises above the preset position, the control unit 41 opens the valve on the electric on-off valve 37 by a signal from the liquid level detector 33. Thereby, for example, even when the pressure difference between the high temperature regenerator 3 and the condenser 7 is reduced by operation under a condition where the temperature of the cooling water is relatively low, and the refrigerant liquid does not flow easily through the orifice 35, When the liquid level of the refrigerant liquid accumulated in the manifold 19 rises, the electric on-off valve 37 opens, so that the refrigerant liquid flows to the condenser 7 through the parallel conduit 29a, and the flow rate of the refrigerant liquid can be increased.

したがって、冷却水の温度の変動といったような運転条件などに関わらず、冷媒液が低温再生器5内に溜まるのを抑制できる。そして、低温再生器5内に冷媒液が溜まるのを抑制できることにより、吸収式冷凍機内を循環する稀溶液などが含む吸収液の濃度の上昇や晶析の発生などを抑制でき、これにより、吸収式冷凍機の運転に支障が生じたり、吸収式冷凍機が異常停止したりするのを抑制できる。   Therefore, it is possible to suppress the refrigerant liquid from accumulating in the low temperature regenerator 5 regardless of the operating conditions such as the temperature variation of the cooling water. Further, by preventing the refrigerant liquid from accumulating in the low-temperature regenerator 5, it is possible to suppress an increase in the concentration of the absorbing liquid included in the rare solution circulating in the absorption refrigerator, the occurrence of crystallization, and the like. It is possible to prevent troubles in the operation of the refrigerator and the abnormal stop of the absorption refrigerator.

一方、マニホールド19内の液面が予め設定された位置以下であれば、液面レベル検知器33からの信号により、制御部41が、電動開閉弁37に弁を閉じた状態にする。これにより、冷媒液の流量は、高温再生器3と凝縮器7との圧力差に応じてオリフィス35によって調整され、高温再生器3からの冷媒蒸気は低温再生器5で凝縮する。したがって、高温再生器3からの冷媒蒸気が冷媒熱交換器31に流入し難くなり、熱効率やCOPが向上することなどにより、性能を向上できる。   On the other hand, if the liquid level in the manifold 19 is equal to or less than a preset position, the control unit 41 closes the electric open / close valve 37 in response to a signal from the liquid level detector 33. Thus, the flow rate of the refrigerant liquid is adjusted by the orifice 35 according to the pressure difference between the high temperature regenerator 3 and the condenser 7, and the refrigerant vapor from the high temperature regenerator 3 is condensed in the low temperature regenerator 5. Therefore, it becomes difficult for the refrigerant vapor from the high temperature regenerator 3 to flow into the refrigerant heat exchanger 31, and the performance can be improved by improving the thermal efficiency and COP.

このように、本実施形態の吸収式冷凍機1では、低温再生器5で凝縮して溜まった冷媒液の量を検出するためにマニホールド19に設けた液面レベル検知器33などの冷媒液量検出手段、そして、液面レベル検知器33で検出した液面の位置つまり低温再生器5で凝縮して溜まった冷媒液の量に応じて冷媒液の流量を調整するため、オリフィス35に対して並列に配管された並列管路29aに設けられた電動開閉弁37などの冷媒流量調整手段を有している。   Thus, in the absorption refrigerator 1 of the present embodiment, the amount of refrigerant liquid such as the liquid level detector 33 provided in the manifold 19 in order to detect the amount of refrigerant liquid condensed and accumulated in the low temperature regenerator 5. In order to adjust the flow rate of the refrigerant liquid in accordance with the position of the liquid level detected by the detection means and the liquid level detector 33, that is, the amount of the refrigerant liquid condensed and accumulated in the low temperature regenerator 5, Refrigerant flow rate adjusting means such as an electric on-off valve 37 provided in a parallel pipe line 29a piped in parallel is provided.

このため、冷却水の温度の変動といったような運転条件の変動があっても、第1冷媒液管路29の冷媒液の流量を適切に調整できることにより、低温再生器5で冷媒蒸気を凝縮させて冷媒蒸気の冷媒熱交換器への流入を抑制でき、性能を向上できる。さらに、低温再生器5内の冷媒液の量が増加すると電動開閉弁37が開くことによって冷媒液の流量を増大できるため、低温再生器5内の冷媒液が溜まることによって発生する吸収式冷凍機の信頼性を低下させる不具合の発生を抑制できる。すなわち、信頼性の低下を抑制しながら性能を向上できる。   For this reason, the refrigerant vapor is condensed in the low temperature regenerator 5 by appropriately adjusting the flow rate of the refrigerant liquid in the first refrigerant liquid line 29 even if there is a change in operating conditions such as the temperature change of the cooling water. Thus, the inflow of the refrigerant vapor to the refrigerant heat exchanger can be suppressed, and the performance can be improved. Further, since the flow rate of the refrigerant liquid can be increased by opening the electric on-off valve 37 when the amount of the refrigerant liquid in the low temperature regenerator 5 increases, the absorption refrigerator generated by the accumulation of the refrigerant liquid in the low temperature regenerator 5. It is possible to suppress the occurrence of defects that reduce the reliability of the device. That is, the performance can be improved while suppressing a decrease in reliability.

さらに、本実施形態の吸収式冷凍機1では、冷媒流量調整手段は、オリフィス35に対して並列に配管された並列管路29aに設けられた電動開閉弁37などからなる構成となっている。このため、従来のオリフィスを設けた構成の吸収式冷凍機に、このオリフィスに対して並列に開閉弁を設けた流路を設置するといった簡単な改造で、信頼性の低下を抑制しながら性能を向上できる。   Further, in the absorption refrigerator 1 of the present embodiment, the refrigerant flow rate adjusting means is configured by an electric on-off valve 37 provided in a parallel pipe line 29 a piped in parallel with the orifice 35. For this reason, a simple modification such as installing a flow path with an on-off valve in parallel with the orifice in a conventional absorption refrigerator having a configuration with an orifice can improve performance while suppressing a decrease in reliability. It can be improved.

また、本実施形態では、冷媒液量検出手段として、マニホールド19のような冷媒液溜め部に液面レベル検知器33を設けた構成を示した。しかし、冷媒液量検出手段は、冷媒液溜め部に液面レベル検知器を設けた構成に限らず、低温再生器で凝縮して溜まった冷媒液の量を検出できれば様々な構成にできる。例えば、低温再生器5で凝縮して溜まった冷媒液の量を直接検出せずに、低温再生器5に溜まった冷媒液の量に相関する値を用いて低温再生器5で凝縮して溜まった冷媒液の量を検出する冷媒液量検出手段にすることもできる。   Moreover, in this embodiment, the structure which provided the liquid level detector 33 in the refrigerant | coolant liquid reservoir part like the manifold 19 was shown as a refrigerant | coolant liquid amount detection means. However, the refrigerant liquid amount detecting means is not limited to the configuration in which the liquid level detector is provided in the refrigerant liquid reservoir, and various configurations can be used as long as it can detect the amount of the refrigerant liquid condensed and accumulated in the low temperature regenerator. For example, instead of directly detecting the amount of refrigerant liquid condensed and accumulated in the low temperature regenerator 5, it is condensed and accumulated in the low temperature regenerator 5 using a value correlated with the amount of refrigerant liquid accumulated in the low temperature regenerator 5. The refrigerant liquid amount detecting means for detecting the amount of the refrigerant liquid can also be used.

ここで、低温再生器5に溜まった冷媒液の量に相関する値を用いる冷媒液量検出手段を用いる本実施形態の一変形例について説明する。低温再生器5に溜まった冷媒液の量に相関する値を用いる冷媒液量検出手段を用いる場合は、マニホールド19などの冷媒液溜め部となる部材に液面レベル検知器33などは設けず、図1には示していないが、冷媒液量検出手段として、高温再生器3の燃焼量を検出する燃焼量検出器及び凝縮器からの冷却水の出口温度を検出する温度検出器、そして、燃焼量検出器と温度検出器で検出した燃焼量と温度に基づいて低温再生器5に溜まった冷媒液の量に対応する電動開閉弁の開閉を制御する制御部41を設けた構成とする。   Here, a description will be given of a modification of the present embodiment using the refrigerant liquid amount detection means that uses a value that correlates with the amount of refrigerant liquid accumulated in the low temperature regenerator 5. In the case of using the refrigerant liquid amount detecting means using a value correlated with the amount of the refrigerant liquid accumulated in the low temperature regenerator 5, the liquid level detector 33 or the like is not provided in the member that becomes the refrigerant liquid reservoir such as the manifold 19, Although not shown in FIG. 1, as a refrigerant liquid amount detection means, a combustion amount detector for detecting the combustion amount of the high-temperature regenerator 3, a temperature detector for detecting the outlet temperature of the cooling water from the condenser, and the combustion The controller 41 is configured to control the opening / closing of the electric on-off valve corresponding to the amount of refrigerant liquid accumulated in the low temperature regenerator 5 based on the combustion amount and temperature detected by the amount detector and the temperature detector.

低温再生器5での冷媒液溜まりや冷媒熱交換器31への冷媒蒸気抜けは、冷媒量つまり低温再生器5に流入してくる冷媒蒸気の量、そして、高温再生器3と凝縮器7との間の圧力差に影響を受ける。そこで、低温再生器5に流入してくる冷媒蒸気の量は、高温再生器3の燃焼量つまり高温再生器3での最大燃焼量に対するそのときの燃焼量の割合(%)にほぼ比例するとして捉える。また、高温再生器3と凝縮器7との間の圧力差は、冷却水の凝縮器7からの出口温度に対応するとして捉えた。   The refrigerant liquid pool in the low temperature regenerator 5 and the refrigerant vapor loss to the refrigerant heat exchanger 31 are the amount of refrigerant, that is, the amount of refrigerant vapor flowing into the low temperature regenerator 5, and the high temperature regenerator 3 and the condenser 7. Affected by the pressure difference between. Therefore, it is assumed that the amount of refrigerant vapor flowing into the low temperature regenerator 5 is substantially proportional to the combustion amount of the high temperature regenerator 3, that is, the ratio (%) of the combustion amount at that time to the maximum combustion amount in the high temperature regenerator 3. Capture. Further, the pressure difference between the high temperature regenerator 3 and the condenser 7 was regarded as corresponding to the outlet temperature from the condenser 7 of the cooling water.

そして、空調の場合の冷房運転のように蒸発器9で伝熱管9a内の流体を冷却する運転のとき、燃焼量を固定したと考えた場合、冷却水の凝縮器7からの出口温度が高くなり所定の温度になると低温再生器5から冷媒熱交換器31への冷媒蒸気抜けが発生する。逆に、冷却水の凝縮器7からの出口温度が低くなり所定の温度になると、吸収式冷凍機1の運転に不具合が生じるような低温再生器5での冷媒液溜まりが発生する。   And when cooling the fluid in the heat transfer tube 9a with the evaporator 9 as in the cooling operation in the case of air conditioning, when the combustion amount is considered to be fixed, the outlet temperature from the condenser 7 of the cooling water is high. When the temperature reaches a predetermined temperature, refrigerant vapor escape from the low-temperature regenerator 5 to the refrigerant heat exchanger 31 occurs. On the contrary, when the outlet temperature from the condenser 7 of the cooling water becomes low and reaches a predetermined temperature, a refrigerant liquid pool in the low temperature regenerator 5 that causes a problem in the operation of the absorption chiller 1 occurs.

そこで、図2に示すように、高温再生器3での燃焼量と、問題となるような低温再生器5での冷媒液溜まりが発生する温度との関係を示す直線である冷媒液溜まり限界ライン201、そして、高温再生器3での燃焼量と、冷媒蒸気抜けが発生する温度との関係を示す直線である冷媒蒸気抜け限界ライン203を実験的に求め、制御部41に記憶しておく。そして、制御部41は、図示していない燃焼量検出器で検出した高温再生器3での燃焼量に対して、そのときの図示していない温度検出器で検出した冷却水の凝縮器7からの出口温度が冷媒液溜まり限界ライン201以下に下降した場合には電動開閉弁37を開く制御を行う。一方、制御部41は、図示していない燃焼量検出器で検出した高温再生器3での燃焼量に対して、そのときの図示していない温度検出器で検出した冷却水の凝縮器7からの出口温度が冷媒蒸気抜け限界ライン203以上に上昇した場合には電動開閉弁37を閉じる制御を行う。   Therefore, as shown in FIG. 2, a refrigerant liquid pool limit line that is a straight line showing the relationship between the amount of combustion in the high temperature regenerator 3 and the temperature at which the refrigerant liquid pool in the low temperature regenerator 5 causes a problem. 201, and a refrigerant vapor escape limit line 203, which is a straight line showing the relationship between the amount of combustion in the high-temperature regenerator 3 and the temperature at which refrigerant vapor escape occurs, is experimentally determined and stored in the control unit 41. And the control part 41 from the condenser 7 of the cooling water detected with the temperature detector which is not illustrated with respect to the combustion amount in the high temperature regenerator 3 detected with the combustion amount detector which is not illustrated at that time When the outlet temperature of the refrigerant drops below the refrigerant liquid accumulation limit line 201, the electric on-off valve 37 is controlled to open. On the other hand, the control unit 41 detects the amount of combustion in the high-temperature regenerator 3 detected by a combustion amount detector (not shown) from the condenser 7 of the cooling water detected by a temperature detector (not shown) at that time. When the outlet temperature of the refrigerant rises above the refrigerant vapor escape limit line 203, control is performed to close the electric on-off valve 37.

このように、低温再生器5に溜まった冷媒液の量を直接検出せず、低温再生器5に溜まった冷媒液の量に相関する値として、高温再生器3の燃焼量と、冷却水の凝縮器7からの出口温度とを検出し、電動開閉弁37の開閉を制御する構成とすることでも、信頼性の低下を抑制しながら性能を向上できる。さらに、高温再生器3の燃焼量と、冷却水の凝縮器7からの出口温度とを検出し、電動開閉弁37の開閉を制御するための制御部41を設置するだけで、従来の吸収式冷凍機の構成をそのまま用いることができるため、液面レベル検知器33を設置するといった加工を必要としない。このため、従来の吸収式冷凍機に簡単な改造を施すことで、信頼性の低下を抑制しながら性能を向上できるようになる。   As described above, the amount of refrigerant liquid accumulated in the low-temperature regenerator 5 is not directly detected, and the value correlating with the amount of refrigerant liquid accumulated in the low-temperature regenerator 5 is used as a value correlated with the amount of refrigerant liquid accumulated in the low-temperature regenerator 5. By detecting the outlet temperature from the condenser 7 and controlling the opening and closing of the electric on-off valve 37, the performance can be improved while suppressing a decrease in reliability. Furthermore, the conventional absorption type is simply installed by detecting the combustion amount of the high-temperature regenerator 3 and the outlet temperature from the condenser 7 of the cooling water and controlling the opening / closing of the electric on-off valve 37. Since the configuration of the refrigerator can be used as it is, processing such as installing the liquid level detector 33 is not required. For this reason, by performing a simple modification to the conventional absorption refrigerator, the performance can be improved while suppressing a decrease in reliability.

(第2の実施形態)
以下、本発明を適用してなる吸収式冷凍機の第2の実施形態について図3を参照して説明する。図3は、本発明を適用してなる吸収式冷凍機の概略構成を模式的に示すブロック図である。なお、本実施形態では、第1の実施形態と同一の構成などには同じ符号を付して説明を省略し、第1の実施形態と相違する構成や特徴部などについて説明する。
(Second Embodiment)
Hereinafter, a second embodiment of an absorption refrigerator to which the present invention is applied will be described with reference to FIG. FIG. 3 is a block diagram schematically showing a schematic configuration of an absorption chiller to which the present invention is applied. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted, and configurations and features that are different from those in the first embodiment will be described.

本実施形態の吸収式冷凍機が第1の実施形態と相違する点は、冷媒流量調整手段の構成にある。すなわち、本実施形態の吸収式冷凍機55では、冷媒流量調整手段は、第1冷媒液管路29の冷媒熱交換器31よりも冷媒の流れに対して下流側の部分に設けられた電動の比例弁57、比例弁57の開度を制御する制御部59などで構成されている。制御部59は、配線39を介して、低温再生器5で凝縮した冷媒液が溜まる冷媒液溜め部となるマニホールド19に設けられた液面レベル検知器33、そして、比例弁57と電気的に接続されている。   The difference between the absorption refrigerator of the present embodiment and the first embodiment resides in the configuration of the refrigerant flow rate adjusting means. That is, in the absorption chiller 55 of the present embodiment, the refrigerant flow rate adjusting means is an electric motor provided at a portion downstream of the refrigerant heat exchanger 31 in the first refrigerant liquid conduit 29 with respect to the refrigerant flow. The proportional valve 57 includes a control unit 59 that controls the opening degree of the proportional valve 57. The control unit 59 is electrically connected to the liquid level sensor 33 provided in the manifold 19 serving as a refrigerant liquid storage unit in which the refrigerant liquid condensed in the low temperature regenerator 5 is stored, and the proportional valve 57 via the wiring 39. It is connected.

本実施形態では、冷媒液量検出手段を構成する液面レベル検知器33としては、できるだけ多くの位置で液面位置を検出できるか、または、連続的に液面位置を検出できる液面レベル検知器を用いる。液面レベル検知器33は、マニホールド19内に溜まった冷媒液の液面位置に応じた信号を送信する。制御部59には、予め実験的に決定された液面レベル検知器33からの信号つまり冷媒液の液面位置に対する比例弁57の開度のデータが記憶されている。そして、制御部59は、
液面レベル検知器33からの信号と記憶されている比例弁57の開度のデータとに基づいて比例弁57の開度を決定し、決定した開度に応じた信号を比例弁57に送信する。
In the present embodiment, the liquid level detector 33 constituting the refrigerant liquid level detection means can detect the liquid level at as many positions as possible, or can detect the liquid level continuously. Use a vessel. The liquid level detector 33 transmits a signal corresponding to the liquid level position of the refrigerant liquid accumulated in the manifold 19. The control unit 59 stores a signal from the liquid level detector 33 experimentally determined in advance, that is, data of the opening degree of the proportional valve 57 with respect to the liquid level position of the refrigerant liquid. Then, the control unit 59
The opening degree of the proportional valve 57 is determined based on the signal from the liquid level detector 33 and the stored opening degree data of the proportional valve 57, and a signal corresponding to the determined opening degree is transmitted to the proportional valve 57. To do.

本実施形態の吸収式冷凍機55では、低温再生器5へと導かれた高温再生器3からの冷媒蒸気が凝縮した冷媒液がマニホールド19内に溜まってマニホールド19内の液面が上昇するに連れ、液面レベル検知器33からの信号により、制御部59が、比例弁57の弁の開度を大きくする。これにより、例えば冷却水の温度が比較的低い条件での運転などによって高温再生器3と凝縮器7との圧力差が小さくなっても、冷媒液は凝縮器7へ流れ、冷媒液の流量を増大できる。したがって、冷却水の温度の変動といったような運転条件などに関わらず、冷媒液が低温再生器5内に溜まるのを抑制できる。そして、低温再生器5内に冷媒液が溜まるのを抑制できることにより、吸収式冷凍機内を循環する稀溶液などが含む吸収液の濃度の上昇や晶析の発生などを抑制でき、これにより、吸収式冷凍機の運転に支障が生じたり、吸収式冷凍機が異常停止したりするのを抑制できる。   In the absorption refrigerator 55 of the present embodiment, the refrigerant liquid condensed from the refrigerant vapor from the high temperature regenerator 3 led to the low temperature regenerator 5 accumulates in the manifold 19 and the liquid level in the manifold 19 rises. Accordingly, the control unit 59 increases the opening of the proportional valve 57 by the signal from the liquid level detector 33. Thus, for example, even if the pressure difference between the high-temperature regenerator 3 and the condenser 7 is reduced due to, for example, operation under a condition where the temperature of the cooling water is relatively low, the refrigerant liquid flows to the condenser 7 and the flow rate of the refrigerant liquid is reduced. Can increase. Therefore, it is possible to suppress the refrigerant liquid from accumulating in the low temperature regenerator 5 regardless of the operating conditions such as the temperature variation of the cooling water. Further, by preventing the refrigerant liquid from accumulating in the low-temperature regenerator 5, it is possible to suppress an increase in the concentration of the absorbing liquid included in the rare solution circulating in the absorption refrigerator, the occurrence of crystallization, and the like. It is possible to prevent troubles in the operation of the refrigerator and the abnormal stop of the absorption refrigerator.

一方、マニホールド19内の液面が下降するに連れ、液面レベル検知器33からの信号により、制御部59が、比例弁57の弁の開度を小さくする。これにより、冷媒液の流量が絞られ、高温再生器3からの冷媒蒸気は低温再生器5で凝縮するため、高温再生器3からの冷媒蒸気が冷媒熱交換器31に流入し難くなり、熱効率やCOPが向上することなどにより、性能を向上できる。   On the other hand, as the liquid level in the manifold 19 is lowered, the control unit 59 reduces the opening degree of the proportional valve 57 by a signal from the liquid level detector 33. As a result, the flow rate of the refrigerant liquid is reduced, and the refrigerant vapor from the high temperature regenerator 3 is condensed in the low temperature regenerator 5, so that the refrigerant vapor from the high temperature regenerator 3 is less likely to flow into the refrigerant heat exchanger 31. The performance can be improved by improving COP and COP.

このように、本実施形態の吸収式冷凍機55では、低温再生器5で凝縮して溜まった冷媒液の量を検出するためにマニホールド19に設けた液面レベル検知器33などの冷媒液量検出手段、そして、液面レベル検知器33で検出した液面の位置つまり低温再生器5で凝縮して溜まった冷媒液の量に応じて冷媒液の流量を調整するため、第1冷媒液管路29に設けられた電動の比例弁57などの冷媒流量調整手段を有している。   Thus, in the absorption refrigerator 55 of the present embodiment, the refrigerant liquid amount such as the liquid level detector 33 provided in the manifold 19 in order to detect the amount of the refrigerant liquid condensed and accumulated in the low temperature regenerator 5. In order to adjust the flow rate of the refrigerant liquid according to the position of the liquid level detected by the detection means and the liquid level detector 33, that is, the amount of the refrigerant liquid condensed and accumulated in the low temperature regenerator 5, the first refrigerant liquid pipe Refrigerant flow rate adjusting means such as an electric proportional valve 57 provided in the passage 29 is provided.

このため、本実施形態の吸収式冷凍機55でも、冷却水の温度の変動といったような運転条件の変動があっても、第1冷媒液管路29の冷媒液の流量を適切に調整できることにより、低温再生器5で冷媒蒸気を凝縮させて冷媒蒸気の冷媒熱交換器への流入を抑制でき、性能を向上できる。さらに、低温再生器5内の冷媒液の量が増加するに連れて比例弁57の開度が大きくなることによって冷媒液の流量を増大できるため、低温再生器5内の冷媒液が溜まることによって発生する吸収式冷凍機の信頼性を低下させる不具合の発生を抑制できる。すなわち、信頼性の低下を抑制しながら性能を向上できる。   For this reason, even in the absorption chiller 55 of the present embodiment, the flow rate of the refrigerant liquid in the first refrigerant liquid conduit 29 can be appropriately adjusted even when there are fluctuations in operating conditions such as fluctuations in the temperature of the cooling water. The refrigerant vapor is condensed by the low-temperature regenerator 5 to suppress the inflow of the refrigerant vapor to the refrigerant heat exchanger, and the performance can be improved. Furthermore, since the flow rate of the refrigerant liquid can be increased by increasing the opening degree of the proportional valve 57 as the amount of the refrigerant liquid in the low temperature regenerator 5 increases, the refrigerant liquid in the low temperature regenerator 5 accumulates. Generation | occurrence | production of the malfunction which reduces the reliability of the absorption refrigerator which generate | occur | produces can be suppressed. That is, the performance can be improved while suppressing a decrease in reliability.

さらに、本実施形態の吸収式冷凍機55では、第1の実施形態のように、オリフィスを設ける管路と電動開閉弁を設ける管路を並列に設ける必要がないため、配管などの構成を簡素化できる。   Furthermore, in the absorption refrigerator 55 of this embodiment, unlike the first embodiment, it is not necessary to provide a pipeline for providing an orifice and a pipeline for providing an electric on-off valve in parallel. Can be

また、本実施形態でも、冷媒液量検出手段として、マニホールド19のような冷媒液溜め部に液面レベル検知器33を設けた構成を示した。しかし、冷媒液量検出手段は、冷媒液溜め部に液面レベル検知器を設けた構成に限らず、低温再生器で凝縮して溜まった冷媒液の量を検出できれば様々な構成にできる。例えば、低温再生器5で凝縮して溜まった冷媒液の量を直接検出せずに、低温再生器5に溜まった冷媒液の量に相関する値を用いて低温再生器5で凝縮して溜まった冷媒液の量を検出する冷媒液量検出手段にすることもできる。   Also in this embodiment, the configuration in which the liquid level detector 33 is provided in the refrigerant liquid reservoir such as the manifold 19 as the refrigerant liquid amount detecting means is shown. However, the refrigerant liquid amount detection means is not limited to a configuration in which a liquid level detector is provided in the refrigerant liquid reservoir, and various configurations can be used as long as it can detect the amount of refrigerant liquid condensed and accumulated in the low temperature regenerator. For example, instead of directly detecting the amount of refrigerant liquid condensed and accumulated in the low-temperature regenerator 5, it is condensed and accumulated in the low-temperature regenerator 5 using a value correlated with the amount of refrigerant liquid accumulated in the low-temperature regenerator 5. The refrigerant liquid amount detecting means for detecting the amount of the refrigerant liquid can also be used.

ここで、低温再生器5に溜まった冷媒液の量に相関する値を用いる冷媒液量検出手段を用いる本実施形態の一変形例について説明する。低温再生器5に溜まった冷媒液の量に相関する値を用いる冷媒液量検出手段を用いる場合は、マニホールド19などの冷媒液溜め部となる部材に液面レベル検知器33などは設けず、図1には示していないが、冷媒液量検出手段として、高温再生器3の燃焼量を検出する燃焼量検出器及び高温再生器3の圧力を検出する圧力検出器、そして、燃焼量検出器と圧力検出器で検出した燃焼量と圧力に基づいて低温再生器5に溜まった冷媒液の量に対応して比例弁の開度を制御する制御部59を設けた構成とする。   Here, a description will be given of a modification of the present embodiment using the refrigerant liquid amount detection means that uses a value that correlates with the amount of refrigerant liquid accumulated in the low temperature regenerator 5. In the case of using the refrigerant liquid amount detecting means using a value correlated with the amount of the refrigerant liquid accumulated in the low temperature regenerator 5, the liquid level detector 33 or the like is not provided in the member that becomes the refrigerant liquid reservoir such as the manifold 19, Although not shown in FIG. 1, as a refrigerant liquid amount detection means, a combustion amount detector for detecting the combustion amount of the high temperature regenerator 3, a pressure detector for detecting the pressure of the high temperature regenerator 3, and a combustion amount detector And a controller 59 for controlling the opening of the proportional valve in accordance with the amount of refrigerant liquid accumulated in the low temperature regenerator 5 based on the combustion amount and pressure detected by the pressure detector.

低温再生器5での冷媒液溜まりや冷媒熱交換器31への冷媒蒸気抜けは、冷媒量つまり低温再生器5に流入してくる冷媒蒸気の量、そして、高温再生器3と凝縮器7との間の圧力差に影響を受ける。そこで、低温再生器5に流入してくる冷媒蒸気の量は、高温再生器3の燃焼量つまり高温再生器3での最大燃焼量に対するそのときの燃焼量の割合(%)にほぼ比例するとして捉える。また、高温再生器3と凝縮器7との間の圧力差は、高温再生器3の圧力に対応するとして捉えた。   The refrigerant liquid pool in the low temperature regenerator 5 and the refrigerant vapor loss to the refrigerant heat exchanger 31 are the amount of refrigerant, that is, the amount of refrigerant vapor flowing into the low temperature regenerator 5, and the high temperature regenerator 3 and the condenser 7. Affected by the pressure difference between. Therefore, it is assumed that the amount of refrigerant vapor flowing into the low temperature regenerator 5 is substantially proportional to the combustion amount of the high temperature regenerator 3, that is, the ratio (%) of the combustion amount at that time to the maximum combustion amount in the high temperature regenerator 3. Capture. Further, the pressure difference between the high temperature regenerator 3 and the condenser 7 was regarded as corresponding to the pressure of the high temperature regenerator 3.

そして、高温再生器3の燃焼量と高温再生器3の圧力とに相関する相関値をXとすると、相関値Xの値が大きくなるに連れて冷媒液の液溜まりが多くなるため、相関値Xの値が大きくなるに連れて比例弁57の開度を大きくすることになる。一方、相関値Xの値が小さくなるに連れて冷媒蒸気の蒸気抜けが発生し易くなるため、相関値Xの値が小さくなるに連れて比例弁57の開度を小さくすることになる。なお、相関値Xは、高温再生器3の燃焼量と高温再生器3の圧力との関数として表すことができ、さらに、比例弁57の開度は、このような相関値Xの関数として求めることができる。   When the correlation value correlating with the combustion amount of the high temperature regenerator 3 and the pressure of the high temperature regenerator 3 is X, the liquid value pool increases as the correlation value X increases. As the value of X increases, the opening degree of the proportional valve 57 is increased. On the other hand, as the correlation value X decreases, it becomes easier for the refrigerant vapor to escape, so the opening of the proportional valve 57 decreases as the correlation value X decreases. The correlation value X can be expressed as a function of the combustion amount of the high-temperature regenerator 3 and the pressure of the high-temperature regenerator 3, and the opening degree of the proportional valve 57 is obtained as a function of the correlation value X. be able to.

そこで、高温再生器3の燃焼量と高温再生器3の圧力とに相関する相関値Xの値と、問題となるような低温再生器5での冷媒液溜まりや冷媒蒸気抜けが発生する比例弁57の開度との関係を実験的に求め、その結果から、図4に示すように、問題となるような低温再生器5での冷媒液溜まりや冷媒蒸気抜けが発生しないXの値に対する比例弁57の開度との関係のデータを得、制御部59に記憶しておく。そして、制御部59は、図示していない燃焼量検出器で検出した高温再生器3での燃焼量と、そのときの図示していない圧力検出器で検出した高温再生器3の圧力とから、相関値Xを求め、この求めた相関値Xに対応する比例弁57の開度を図4に示すようなデータから決定し、決定した開度に対応する信号を比例弁57に送信することで比例弁57の開度の制御を行う。   Therefore, the value of the correlation value X that correlates with the combustion amount of the high-temperature regenerator 3 and the pressure of the high-temperature regenerator 3, and a proportional valve that causes refrigerant liquid accumulation and refrigerant vapor escape in the low-temperature regenerator 5 that cause problems. The relationship with the opening degree of 57 is obtained experimentally, and as a result, as shown in FIG. 4, the proportionality to the value of X that does not cause a problem of refrigerant liquid accumulation or refrigerant vapor escape in the low temperature regenerator 5 as shown in FIG. Data on the relationship with the opening degree of the valve 57 is obtained and stored in the control unit 59. And the control part 59 is based on the combustion amount in the high temperature regenerator 3 detected with the combustion amount detector which is not illustrated, and the pressure of the high temperature regenerator 3 detected with the pressure detector which is not illustrated at that time, By obtaining the correlation value X, the opening degree of the proportional valve 57 corresponding to the obtained correlation value X is determined from data as shown in FIG. 4, and a signal corresponding to the determined opening degree is transmitted to the proportional valve 57. The opening degree of the proportional valve 57 is controlled.

このように、低温再生器5に溜まった冷媒液の量を直接検出せず、低温再生器5に溜まった冷媒液の量に相関する値として、高温再生器3の燃焼量と圧力を検出し、比例弁57の開度の制御する構成とすることでも、信頼性の低下を抑制しながら性能を向上できる。さらに、高温再生器3の燃焼量と圧力を検出し、比例弁57の開度を制御するための制御部59を設置するだけで、従来の吸収式冷凍機の構成をそのまま用いることができるため、液面レベル検知器33を設置するといった加工を必要としない。このため、従来の吸収式冷凍機に簡単な改造を施すことで、信頼性の低下を抑制しながら性能を向上できるようになる。また、比例弁57を用いた構成で、第1の実施形態に記載した電動開閉弁37と同様に、比例弁57に開閉動作のみを行なわせる構成などにすることもできる。このとき、例えば第1の実施形態に記載した制御部41のような制御部により、図2に示す冷媒液溜まり限界ライン201、冷媒蒸気抜け限界ライン203などを用いて、比例弁57の開閉を制御する。   In this way, the amount of refrigerant liquid accumulated in the low-temperature regenerator 5 is not directly detected, but the combustion amount and pressure of the high-temperature regenerator 3 are detected as values that correlate with the amount of refrigerant liquid accumulated in the low-temperature regenerator 5. Also, the performance can be improved while suppressing a decrease in reliability by adopting a configuration in which the opening degree of the proportional valve 57 is controlled. Furthermore, the configuration of the conventional absorption refrigerator can be used as it is simply by installing the control unit 59 for detecting the combustion amount and pressure of the high-temperature regenerator 3 and controlling the opening degree of the proportional valve 57. No processing such as installing the liquid level detector 33 is required. For this reason, by performing a simple modification to the conventional absorption refrigerator, the performance can be improved while suppressing a decrease in reliability. In addition, with the configuration using the proportional valve 57, a configuration in which the proportional valve 57 only performs an opening / closing operation can be used as in the case of the electric on / off valve 37 described in the first embodiment. At this time, for example, the control unit such as the control unit 41 described in the first embodiment opens and closes the proportional valve 57 using the refrigerant liquid pool limit line 201, the refrigerant vapor escape limit line 203, and the like shown in FIG. Control.

(第3の実施形態)
以下、本発明を適用してなる吸収式冷凍機の第3の実施形態について図5を参照して説明する。図5は、本発明を適用してなる吸収式冷凍機の概略構成を模式的に示すブロック図である。なお、本実施形態では、第1及び第2の実施形態と同一の構成などには同じ符号を付して説明を省略し、第1及び第2の実施形態と相違する構成や特徴部などについて説明する。
(Third embodiment)
Hereinafter, a third embodiment of the absorption refrigerator to which the present invention is applied will be described with reference to FIG. FIG. 5 is a block diagram schematically showing a schematic configuration of an absorption chiller to which the present invention is applied. In the present embodiment, the same components and the like as those in the first and second embodiments are denoted by the same reference numerals and the description thereof is omitted, and the configurations and features that are different from those in the first and second embodiments are described. explain.

本実施形態の吸収式冷凍機が第1及び第2の実施形態と相違する点は、冷媒流量調整手段が電気的な制御部を含まず、冷媒液の溜まった量に対して機械的な構成のみで冷媒流量を調整する構成としたことにある。すなわち、本実施形態の吸収式冷凍機61では、冷媒液量検出手段と冷媒流量調整手段を兼ねたボールタップ方式の流量調整機構63を備えている。ボールタップ方式の流量調整機構63は、低温再生器5のマニホールド19内に位置し、マニホールド19内の液面に応じて上下動するフロート63a、フロート63aに連結されたアーム部63b、フロート部63aの動きに連動して開度が変わる弁部63cなどで構成されている。   The difference between the absorption refrigerator of the present embodiment and the first and second embodiments is that the refrigerant flow rate adjusting means does not include an electrical control unit and is mechanically configured with respect to the amount of refrigerant liquid accumulated. That is, only the refrigerant flow rate is adjusted. That is, the absorption refrigerator 61 of the present embodiment includes a ball tap type flow rate adjusting mechanism 63 that also serves as a refrigerant liquid amount detecting unit and a refrigerant flow rate adjusting unit. The ball tap type flow rate adjusting mechanism 63 is located in the manifold 19 of the low-temperature regenerator 5, and floats 63 a that move up and down according to the liquid level in the manifold 19, an arm part 63 b that is connected to the float 63 a, and a float part 63 a. It consists of a valve part 63c whose opening degree changes in conjunction with movement.

本実施形態のボールタップ方式の流量調整機構63では、フロート63aは、アーム部63bの一端部に取り付けられており、アーム部63bの他端部側には、弁部63cの弁体63dが連結されている。また、アーム部63bの弁体63dが連結されている側の端部は、アーム部63bが回動できるように軸支されている。弁部63cは、第1冷媒液管路29の冷媒熱交換器31よりも冷媒の流れに対して下流側の部分に設けられている。弁部63c内の流路は、弁座が設けられた仕切板63eによって仕切られており、仕切板63eに形成された弁座部分の孔に弁体63dが嵌合することで弁が閉じた状態となり、弁座から弁体63dが離れることによって弁が開き、弁座から弁体63dが離れるにしたがって弁の開度が大きくなるようになっている。   In the ball tap type flow rate adjusting mechanism 63 of the present embodiment, the float 63a is attached to one end of the arm portion 63b, and the valve body 63d of the valve portion 63c is connected to the other end of the arm portion 63b. ing. Further, the end portion of the arm portion 63b on the side to which the valve body 63d is connected is pivotally supported so that the arm portion 63b can rotate. The valve portion 63 c is provided in a portion downstream of the refrigerant heat exchanger 31 in the first refrigerant liquid conduit 29 with respect to the refrigerant flow. The flow path in the valve portion 63c is partitioned by a partition plate 63e provided with a valve seat, and the valve is closed by fitting the valve body 63d into a hole in the valve seat portion formed in the partition plate 63e. When the valve body 63d is separated from the valve seat, the valve is opened, and the opening degree of the valve is increased as the valve body 63d is separated from the valve seat.

このように、フロート63aと弁体63dは、フロート63aの動きを弁部63cの弁体63dに伝える連結部材となり、弁体63d側の端部で回動可能に軸支されたアーム部63bによって連結されている。このため、マニホールド19内の液面が上昇してフロート63aが上昇するに連れて弁体63dも上昇する。これにより、弁座から弁体63dが離れる方向に移動し、弁の開度が大きくなる。一方、マニホールド19内の液面が下降してフロート63aが下降するに連れて弁体63dも下降する。これにより、弁座に弁体63dが近づく方向に移動し、弁の開度が小さくなる。   Thus, the float 63a and the valve body 63d serve as a connecting member that transmits the movement of the float 63a to the valve body 63d of the valve part 63c, and are supported by the arm part 63b pivotally supported at the end part on the valve body 63d side. It is connected. For this reason, as the liquid level in the manifold 19 rises and the float 63a rises, the valve body 63d also rises. As a result, the valve body 63d moves away from the valve seat, and the valve opening increases. On the other hand, as the liquid level in the manifold 19 descends and the float 63a descends, the valve body 63d also descends. Thereby, the valve body 63d moves in the direction approaching the valve seat, and the opening degree of the valve is reduced.

したがって、本実施形態の吸収式冷凍機61では、低温再生器5へと導かれた高温再生器3からの冷媒蒸気が凝縮した冷媒液がマニホールド19内に溜まってマニホールド19内の液面が上昇するに連れ、フロート63aが上昇し、弁部63cの開度が大きくなる。これにより、例えば冷却水の温度が比較的低い条件での運転などによって高温再生器3と凝縮器7との圧力差が小さくなっても、冷媒液は凝縮器7へ流れ、冷媒液の流量を増大できる。したがって、冷却水の温度の変動といったような運転条件などに関わらず、冷媒液が低温再生器5内に溜まるのを抑制できる。そして、低温再生器5内に冷媒液が溜まるのを抑制できることにより、吸収式冷凍機内を循環する稀溶液などが含む吸収液の濃度の上昇や晶析の発生などを抑制でき、これにより、吸収式冷凍機の運転に支障が生じたり、吸収式冷凍機が異常停止したりするのを抑制できる。   Therefore, in the absorption refrigerator 61 of the present embodiment, the refrigerant liquid condensed from the refrigerant vapor from the high temperature regenerator 3 led to the low temperature regenerator 5 is accumulated in the manifold 19 and the liquid level in the manifold 19 rises. Accordingly, the float 63a rises and the opening of the valve portion 63c increases. Thus, for example, even if the pressure difference between the high-temperature regenerator 3 and the condenser 7 is reduced due to, for example, operation under a condition where the temperature of the cooling water is relatively low, the refrigerant liquid flows to the condenser 7 and the flow rate of the refrigerant liquid is reduced. Can increase. Therefore, it is possible to suppress the refrigerant liquid from accumulating in the low temperature regenerator 5 regardless of the operating conditions such as the temperature variation of the cooling water. Further, by preventing the refrigerant liquid from accumulating in the low-temperature regenerator 5, it is possible to suppress an increase in the concentration of the absorbing liquid included in the rare solution circulating in the absorption refrigerator, the occurrence of crystallization, and the like. It is possible to prevent troubles in the operation of the refrigerator and the abnormal stop of the absorption refrigerator.

一方、マニホールド19内の液面が下降するに連れ、フロート63aが下降し、弁体63dも下降する。これにより、弁座に弁体63dが近づく方向に移動し、弁部63cの開度が小さくなる。これにより、冷媒液の流量が絞られ、高温再生器3からの冷媒蒸気は低温再生器5で凝縮するため、高温再生器3からの冷媒蒸気が冷媒熱交換器31に流入し難くなり、熱効率やCOPが向上することなどにより、性能を向上できる。   On the other hand, as the liquid level in the manifold 19 is lowered, the float 63a is lowered and the valve body 63d is also lowered. Thereby, the valve body 63d moves in a direction approaching the valve seat, and the opening degree of the valve portion 63c is reduced. As a result, the flow rate of the refrigerant liquid is reduced, and the refrigerant vapor from the high temperature regenerator 3 is condensed in the low temperature regenerator 5, so that the refrigerant vapor from the high temperature regenerator 3 is less likely to flow into the refrigerant heat exchanger 31. The performance can be improved by improving COP and COP.

このように、本実施形態の吸収式冷凍機61では、冷媒液量検出手段と冷媒流量調整手段を兼ねたボールタップ方式の流量調整機構63が、低温再生器5で凝縮して溜まった冷媒液の量に対応する液面の位置を検出し、そして、検出した液面の位置に応じて冷媒液の流量を調整する。このため、本実施形態の吸収式冷凍機61でも、冷却水の温度の変動といったような運転条件の変動があっても、第1冷媒液管路29の冷媒液の流量を適切に調整できることにより、低温再生器5で冷媒蒸気を凝縮させて冷媒蒸気の冷媒熱交換器への流入を抑制でき、性能を向上できる。さらに、低温再生器5内の冷媒液の量が増加するに連れて流量調整機構63の弁部63cの開度が大きくなることによって冷媒液の流量を増大できるため、低温再生器5内の冷媒液が溜まることによって発生する吸収式冷凍機の信頼性を低下させる不具合の発生を抑制できる。すなわち、信頼性の低下を抑制しながら性能を向上できる。   As described above, in the absorption chiller 61 of the present embodiment, the ball tap type flow rate adjusting mechanism 63 that serves as both the refrigerant liquid amount detecting means and the refrigerant flow rate adjusting means is used for the refrigerant liquid condensed and accumulated in the low temperature regenerator 5. The position of the liquid level corresponding to the amount is detected, and the flow rate of the refrigerant liquid is adjusted according to the detected position of the liquid level. For this reason, even in the absorption chiller 61 of the present embodiment, the flow rate of the refrigerant liquid in the first refrigerant liquid conduit 29 can be appropriately adjusted even when there are fluctuations in operating conditions such as fluctuations in the temperature of the cooling water. The refrigerant vapor is condensed by the low-temperature regenerator 5 to suppress the inflow of the refrigerant vapor to the refrigerant heat exchanger, and the performance can be improved. Furthermore, since the flow rate of the refrigerant liquid can be increased by increasing the opening of the valve portion 63c of the flow rate adjusting mechanism 63 as the amount of the refrigerant liquid in the low temperature regenerator 5 increases, the refrigerant in the low temperature regenerator 5 can be increased. Generation | occurrence | production of the malfunction which reduces the reliability of the absorption refrigerator which generate | occur | produces when a liquid accumulates can be suppressed. That is, the performance can be improved while suppressing a decrease in reliability.

さらに、本実施形態の吸収式冷凍機61では、低温再生器で凝縮した冷媒液の量を対応する電気信号に変換し、この冷媒液の量に対応する電気信号に応じて弁の開度を制御するといった電気的な制御のための構成を不要にできる。   Further, in the absorption refrigerator 61 of the present embodiment, the amount of refrigerant liquid condensed in the low-temperature regenerator is converted into a corresponding electric signal, and the valve opening is set according to the electric signal corresponding to the amount of refrigerant liquid. A configuration for electrical control such as control can be eliminated.

また、本発明は、第1乃至第3の実施形態の構成の吸収式冷凍機に限らず、高温再生器、低温再生器、低温再生器からの冷媒液の熱を冷媒熱交換器により稀溶液の一部に回収する構成であれば、様々な構成の吸収式冷凍機に適用できる。   Further, the present invention is not limited to the absorption refrigeration machine having the configuration of the first to third embodiments, and the heat of the refrigerant liquid from the high temperature regenerator, the low temperature regenerator, and the low temperature regenerator is diluted with the refrigerant heat exchanger. If it is the structure collect | recovered in a part, it can apply to the absorption refrigeration machine of various structures.

本発明を適用してなる吸収式冷凍機の第1の実施形態の概略構成を模式的に示すブロック図である。It is a block diagram which shows typically the schematic structure of 1st Embodiment of the absorption refrigerator which applies this invention. 本発明を適用してなる吸収式冷凍機の第1の実施形態の変形例における開閉弁の開閉の制御を説明する図である。It is a figure explaining the control of opening / closing of the on-off valve in the modification of 1st Embodiment of the absorption refrigerator which applies this invention. 本発明を適用してなる吸収式冷凍機の第2の実施形態の概略構成を模式的に示すブロック図である。It is a block diagram which shows typically schematic structure of 2nd Embodiment of the absorption refrigerator which applies this invention. 本発明を適用してなる吸収式冷凍機の第2の実施形態の変形例における比例弁の開度の制御を説明する図である。It is a figure explaining control of the opening degree of the proportional valve in the modification of 2nd Embodiment of the absorption refrigerator which applies this invention. 本発明を適用してなる吸収式冷凍機の第3の実施形態の概略構成を模式的に示すブロック図である。It is a block diagram which shows typically schematic structure of 3rd Embodiment of the absorption refrigerator which applies this invention.

符号の説明Explanation of symbols

1 吸収式冷凍機
3 高温再生器
5 低温再生器
7 凝縮器
9 蒸発器
11 吸収器
29 第1冷媒液管路
29a 並列管路
31 冷媒熱交換器
33 液面レベル検知器
35 オリフィス
37 開閉弁
41 制御部
1 Absorption Refrigerator 3 High Temperature Regenerator 5 Low Temperature Regenerator 7 Condenser 9 Evaporator 11 Absorber 29 First Refrigerant Liquid Pipe 29a Parallel Pipe 31 Refrigerant Heat Exchanger 33 Liquid Level Detector 35 Orifice 37 Open / Close Valve 41 Control unit

Claims (6)

熱源の熱により加熱を行う高温再生器、該高温再生器で発生した冷媒蒸気の熱で加熱を行う低温再生器、凝縮器、蒸発器及び吸収器を備え、前記低温再生器で加熱に用いられて凝縮した冷媒液を前記凝縮器に導く冷媒液流路と、前記吸収器からの稀溶液の一部が通流する稀溶液流路との間で熱交換を行う冷媒熱交換器が設けられた吸収式冷凍機であり、
前記低温再生器に溜まった冷媒液の量を検出する冷媒液量検出手段と、該冷媒液量検出手段で検出した冷媒液の量に応じて前記冷媒液流路の冷媒液の流量を調整する冷媒流量調整手段とを設けたことを特徴とする吸収式冷凍機。
A high-temperature regenerator that heats by the heat of the heat source, a low-temperature regenerator that heats by the heat of the refrigerant vapor generated in the high-temperature regenerator, a condenser, an evaporator, and an absorber, are used for heating in the low-temperature regenerator A refrigerant heat exchanger that exchanges heat between a refrigerant liquid channel that guides the condensed refrigerant liquid to the condenser and a rare solution channel through which a part of the rare solution from the absorber flows is provided. Absorption refrigerator,
Refrigerant liquid amount detecting means for detecting the amount of refrigerant liquid accumulated in the low temperature regenerator, and adjusting the flow rate of the refrigerant liquid in the refrigerant liquid flow path according to the amount of refrigerant liquid detected by the refrigerant liquid amount detecting means. An absorption refrigerator having a refrigerant flow rate adjusting means.
前記冷媒液流路の少なくとも一部を並列に2本の流路に分岐し、該冷媒液流路の分岐した部分の一方にオリフィスが設けてあり、前記冷媒流量調整手段は、前記冷媒液流路の分岐した部分の他方に設けられ、前記冷媒液量検出手段で検出した冷媒液の量に応じて開閉する開閉弁を有することを特徴とする請求項1に記載の吸収式冷凍機。 At least a part of the refrigerant liquid flow path is branched into two flow paths in parallel, and an orifice is provided in one of the branched portions of the refrigerant liquid flow path. The absorption refrigerator according to claim 1, further comprising an on-off valve provided on the other of the branched portions of the path, which opens and closes according to the amount of refrigerant liquid detected by the refrigerant liquid amount detecting means. 前記冷媒液量検出手段は、前記低温再生器に溜まった冷媒液の量に相関する値として前記高温再生器の燃焼量と、前記高温再生器及び前記低温再生器で生成した冷媒蒸気を液化する冷却液の前記凝縮器からの出口温度とを検出することを特徴とする請求項2に記載の吸収式冷凍機。 The refrigerant liquid amount detecting means liquefies the combustion amount of the high temperature regenerator and the refrigerant vapor generated by the high temperature regenerator and the low temperature regenerator as a value correlated with the amount of refrigerant liquid accumulated in the low temperature regenerator. The absorption refrigerator according to claim 2, wherein an outlet temperature of the coolant from the condenser is detected. 前記冷媒流量調整手段は、前記冷媒液流路に設けられ、前記冷媒液量検出手段で検出した冷媒液の量に比例して開度が可変する比例弁を有することを特徴とする請求項1に記載の吸収式冷凍機。 2. The refrigerant flow rate adjusting means includes a proportional valve that is provided in the refrigerant liquid flow path and whose opening degree is variable in proportion to the amount of refrigerant liquid detected by the refrigerant liquid amount detecting means. Absorption type refrigerator as described in 1. 前記冷媒液量検出手段は、前記低温再生器に溜まった冷媒液の量に相関する値として前記高温再生器の燃焼量と、前記高温再生器内の圧力とを検出することを特徴とする請求項4に記載の吸収式冷凍機。 The refrigerant liquid amount detecting means detects a combustion amount of the high temperature regenerator and a pressure in the high temperature regenerator as a value correlated with an amount of refrigerant liquid accumulated in the low temperature regenerator. Item 5. The absorption refrigerator according to Item 4. 前記冷媒液量検出手段は、前記低温再生器で凝縮した冷媒液が溜まる冷媒液溜め部の液面に応じて移動するフロートを有し、前記冷媒流量調整手段は、前記フロートの動きに連動して開度が変わる弁を有し、前記フロートと前記弁とは、前記フロートの動きを前記弁に伝える連結部材によって連結されていることを特徴とする請求項1に記載の吸収式冷凍機。 The refrigerant liquid amount detection means has a float that moves according to the liquid level of the refrigerant liquid reservoir where the refrigerant liquid condensed in the low-temperature regenerator accumulates, and the refrigerant flow rate adjustment means is interlocked with the movement of the float. The absorption refrigerator according to claim 1, wherein the float and the valve are connected by a connecting member that transmits movement of the float to the valve.
JP2005067149A 2005-03-10 2005-03-10 Absorption refrigerating machine Abandoned JP2006250427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067149A JP2006250427A (en) 2005-03-10 2005-03-10 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067149A JP2006250427A (en) 2005-03-10 2005-03-10 Absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2006250427A true JP2006250427A (en) 2006-09-21

Family

ID=37091119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067149A Abandoned JP2006250427A (en) 2005-03-10 2005-03-10 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2006250427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202923A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2012150254A (en) * 2011-01-19 2012-08-09 Ricoh Co Ltd Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202923A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2012150254A (en) * 2011-01-19 2012-08-09 Ricoh Co Ltd Image forming apparatus

Similar Documents

Publication Publication Date Title
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JP2002147885A (en) Absorption refrigerating machine
JP2006250427A (en) Absorption refrigerating machine
JP3887204B2 (en) Two-stage absorption chiller / heater
JP2002295917A (en) Control method for absorption freezer
US3363674A (en) Absorption refrigeration apparatus and methods
JP4281967B2 (en) Absorption chiller / heater
JP3920619B2 (en) Absorption chiller / heater and control method thereof
KR0177718B1 (en) Ammonia absorptive cooler/heater
JP2005188813A (en) Thermo-siphon type cooling device
JP2007071475A (en) Triple-effect absorption refrigerating machine
JPH062982A (en) Absorption room cooling/heating system and controlling method therefor
JP2007232271A (en) Triple effect absorption refrigerating machine
JP2001099474A (en) Air conditioner
JP4330522B2 (en) Absorption refrigerator operation control method
TWI522582B (en) Hybrid heat pump for heating and cooling
CN220524387U (en) Absorption heat exchanger unit
JP3393398B2 (en) Absorption type cold heat generator
JP3451539B2 (en) Absorption type cold heat generator
JP4297822B2 (en) Absorption refrigerator
JP2013011424A (en) Steam absorption type refrigerating machine
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP3448681B2 (en) Absorption type cold heat generator
JP3383898B2 (en) Absorption type cold heat generator
JP2008281243A (en) Heat exchanger pump unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090113