JP2007232271A - Triple effect absorption refrigerating machine - Google Patents

Triple effect absorption refrigerating machine Download PDF

Info

Publication number
JP2007232271A
JP2007232271A JP2006054437A JP2006054437A JP2007232271A JP 2007232271 A JP2007232271 A JP 2007232271A JP 2006054437 A JP2006054437 A JP 2006054437A JP 2006054437 A JP2006054437 A JP 2006054437A JP 2007232271 A JP2007232271 A JP 2007232271A
Authority
JP
Japan
Prior art keywords
temperature
solution
low
regenerator
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006054437A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Irie
智芳 入江
Yoshiro Takemura
與四郎 竹村
Jun Murata
純 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2006054437A priority Critical patent/JP2007232271A/en
Publication of JP2007232271A publication Critical patent/JP2007232271A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a triple effect absorption refrigerating machine which suppresses a temperature of a solution to be sucked by a pump while suppressing rising of a temperature and a pressure of a high temperature regenerator. <P>SOLUTION: The triple effect absorption refrigerating machine is provided with: an absorber A producing a dilute solution Sw with a lower concentration from a solution S; a low temperature regenerator G1 producing a low temperature concentrated solution Sh1 with a higher concentration by heating the dilute solution Sw and evaporating coolant; a middle temperature regenerator G2 heating the dilute solution Sw, evaporating the coolant at a temperature higher than in the low temperature regenerator G1, and raising the concentration; the high temperature regenerator G3 heating the low temperature concentrated solution Sh1, evaporating the coolant at a temperature higher than in the middle temperature regenerator G2, and raising the concentration; a middle temperature solution pump 12 sending the dilute solution Sw in the absorber A to the middle temperature regenerator G2; and a high temperature solution pump 13 sending the low temperature concentrated solution Sh1 in the low temperature regenerator G1 to the high temperature regenerator G3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は三重効用吸収冷凍機に関し、特に高温再生器の温度及び圧力の上昇を抑えつつポンプの耐久性を向上させることができる三重効用吸収冷凍機に関する。   The present invention relates to a triple effect absorption refrigerator, and more particularly to a triple effect absorption refrigerator that can improve the durability of a pump while suppressing an increase in temperature and pressure of a high-temperature regenerator.

近年、地球環境保全意識が高まる一方でエネルギー消費の著しい増加が環境に及ぼす影響が懸念されている。いわゆる京都議定書の発効が確定した今日においては、各国に定められた温室効果ガスの削減目標を達成するため、さらなる省エネルギーの推進を図ることが喫緊の課題となっている。そのような中、業務用を中心に事務所やビル等で幅広く採用される吸収冷凍機として、より省エネルギー性の高い三重効用吸収冷凍機の普及が期待されている。   In recent years, there has been concern about the impact of a significant increase in energy consumption on the environment while increasing awareness of global environmental conservation. Today, when the so-called Kyoto Protocol comes into effect, it is an urgent task to promote further energy conservation in order to achieve the greenhouse gas reduction targets set in each country. Under such circumstances, triple-effect absorption refrigerators with higher energy savings are expected to be widely used as absorption refrigerators widely used in offices and buildings mainly for commercial use.

三重効用吸収冷凍機は、作動温度が高い順に高温再生器、中温再生器、低温再生器、の異なる3つの再生器を有し、シリーズフローあるいは分岐フローの溶液サイクルを有するものが一般的に知られている。シリーズフローは、吸収器の希溶液を高温再生器へ送液し、高温再生器で希溶液を濃縮した第1の濃溶液を中温再生器に送液し、中温再生器で第1の濃溶液を濃縮した第2の濃溶液を低温再生器に送液し、低温再生器で第2の濃溶液を濃縮した第3の濃溶液を吸収器に送液する溶液サイクルである(図12参照)。分岐フローは、吸収器の希溶液を高温再生器、中温再生器、低温再生器へ並列に送液し、高温再生器で希溶液を濃縮した第1の濃溶液、中温再生器で希溶液を濃縮した第2の濃溶液、低温再生器で希溶液を濃縮した第3の濃溶液の3つの濃溶液を合流させて吸収器に送液する溶液サイクルである(図13参照)。   Triple-effect absorption refrigerators are generally known to have three different regenerators, high temperature regenerator, medium temperature regenerator, and low temperature regenerator in descending order of operating temperature, and have a series flow or branch flow solution cycle. It has been. In the series flow, the diluted solution of the absorber is sent to the high temperature regenerator, the first concentrated solution obtained by concentrating the diluted solution with the high temperature regenerator is sent to the intermediate temperature regenerator, and the first concentrated solution is sent with the intermediate temperature regenerator. Is a solution cycle in which the second concentrated solution obtained by concentrating the liquid is sent to a low-temperature regenerator, and the third concentrated solution obtained by concentrating the second concentrated solution in the low-temperature regenerator is sent to the absorber (see FIG. 12). . In the branch flow, the dilute solution in the absorber is sent in parallel to the high-temperature regenerator, medium-temperature regenerator, and low-temperature regenerator. This is a solution cycle in which three concentrated solutions of the concentrated second concentrated solution and the third concentrated solution obtained by concentrating the dilute solution with a low-temperature regenerator are combined and sent to the absorber (see FIG. 13).

ところが、上述のシリーズフローの溶液サイクルを有する三重効用吸収冷凍機は高温再生器の圧力が高くなりがちで圧力容器としての強度上は不利となり、上述の分岐フローの溶液サイクルを有する三重効用吸収冷凍機は高温再生器の温度が高くなりがちで高温による腐食の問題があったため、これらの問題点を解消すべく、吸収器の希溶液を中温再生器及び低温再生器へ並列に送液し、中温再生器で希溶液を濃縮した第2の濃溶液の適切な量を高温再生器へ送液し、高温再生器で第2の濃溶液を濃縮した第1の濃溶液、中温再生器で希溶液を濃縮した第2の濃溶液の残余分、低温再生器で希溶液を濃縮した第3の濃溶液の3つの濃溶液を合流させて吸収器に送液する溶液サイクルを有する三重効用吸収冷凍機が開発された(例えば特許文献1参照)。
特開2000−154945号公報(図1等)
However, the triple effect absorption refrigeration machine having the above-described series flow solution cycle is disadvantageous in terms of strength as a pressure vessel because the pressure of the high temperature regenerator tends to be high, and the triple effect absorption refrigeration having the above branch flow solution cycle. Since the temperature of the high-temperature regenerator tends to be high and there is a problem of corrosion due to high temperature, in order to solve these problems, the absorber dilute solution is sent in parallel to the medium-temperature regenerator and the low-temperature regenerator, An appropriate amount of the second concentrated solution obtained by concentrating the dilute solution in the intermediate temperature regenerator is fed to the high temperature regenerator, and the first concentrated solution obtained by concentrating the second concentrated solution in the high temperature regenerator is diluted with the intermediate temperature regenerator. Triple effect absorption refrigeration having a solution cycle in which the remaining of the second concentrated solution obtained by concentrating the solution, the three concentrated solutions of the third concentrated solution obtained by concentrating the diluted solution in the low temperature regenerator are combined and sent to the absorber. Machines were developed (eg patent literature) Reference).
JP 2000-154945 A (FIG. 1 etc.)

しかしながら、上述の特許文献1に記載の三重効用吸収冷凍機は、高温再生器の温度及び圧力の上昇を抑えることができたが、中温再生器から高温再生器へ送液するポンプの耐久性に影響を与えていた。   However, the triple effect absorption refrigerator described in Patent Document 1 described above can suppress the increase in temperature and pressure of the high-temperature regenerator, but the durability of the pump for feeding liquid from the medium-temperature regenerator to the high-temperature regenerator is improved. Had an influence.

本発明は上述の課題に鑑み、高温再生器の温度及び圧力の上昇を抑えつつポンプの耐久性を向上させることができる三重効用吸収冷凍機を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a triple effect absorption refrigerator that can improve the durability of a pump while suppressing an increase in temperature and pressure of a high temperature regenerator.

上記目的を達成するために、請求項1に記載の発明に係る三重効用吸収冷凍機は、例えば図1に示すように、冷媒蒸気Vsを溶液Sで吸収し、溶液Sを濃度が低下した希溶液Swとする吸収器Aと;吸収器Aから希溶液Swを導入し、希溶液Swを加熱することにより冷媒を蒸発させて濃度が上昇した低温濃溶液Sh1とする低温再生器G1と;吸収器Aから希溶液Swを導入し、希溶液Swを加熱することにより低温再生器G1におけるよりも高い温度で冷媒を蒸発させて濃度を上昇させる中温再生器G2と;低温再生器G1から低温濃溶液Sh1を導入し、低温濃溶液Sh1を加熱することにより中温再生器G2におけるよりも高い温度で冷媒を蒸発させて濃度を上昇させる高温再生器G3と;吸収器A内の希溶液Swを中温再生器G2に送液する中温溶液ポンプ12と;低温再生器G1内の低温濃溶液Sh1を高温再生器G3に送液する高温溶液ポンプ13とを備える。   In order to achieve the above object, a triple effect absorption refrigerator according to the invention described in claim 1 absorbs refrigerant vapor Vs with a solution S, for example, as shown in FIG. Absorber A as solution Sw; Low-temperature regenerator G1 that introduces dilute solution Sw from absorber A and heats the dilute solution Sw to evaporate the refrigerant to increase the concentration of the low-temperature concentrated solution Sh1; A medium temperature regenerator G2 that evaporates the refrigerant at a higher temperature than in the low temperature regenerator G1 by introducing the dilute solution Sw from the regenerator A and heating the dilute solution Sw; and a low temperature concentration from the low temperature regenerator G1 A high-temperature regenerator G3 that introduces the solution Sh1 and heats the low-temperature concentrated solution Sh1 to evaporate the refrigerant at a higher temperature than in the intermediate-temperature regenerator G2, thereby increasing the concentration; and the dilute solution Sw in the absorber A Regenerator G2 A medium temperature solution pump 12 for feeding; and a hot solution pump 13 for feeding a cold concentrated solution Sh1 within the low temperature generator G1 to the high temperature regenerator G3.

このように構成すると、低温再生器内の低温濃溶液を高温再生器に送液する高温溶液ポンプを備えるので、高温溶液ポンプが中温濃溶液よりも温度が低い低温濃溶液を高温再生器に送液することとなり、高温再生器の温度及び圧力の上昇を抑えつつ高温溶液ポンプが吸い込む溶液の温度を抑制することができ、高温溶液ポンプの耐久性を向上させることができる。   With this configuration, since the high-temperature solution pump for feeding the low-temperature concentrated solution in the low-temperature regenerator to the high-temperature regenerator is provided, the high-temperature solution pump sends the low-temperature concentrated solution whose temperature is lower than that of the medium-temperature concentrated solution to the high-temperature regenerator. As a result, the temperature of the solution sucked by the high temperature solution pump can be suppressed while suppressing an increase in temperature and pressure of the high temperature regenerator, and the durability of the high temperature solution pump can be improved.

また、請求項2に記載の発明に係る三重効用吸収冷凍機は、例えば図1及び図2に示すように、請求項1に記載の三重効用吸収冷凍機1において、低温再生器G1が低温濃溶液Sh1を溜める低温再生器溶液溜まり21を有すると共に、高温溶液ポンプ13が低温再生器溶液溜まり21から高温再生器G1へと低温濃溶液Sh1を導く低温濃溶液流路43に配設され;中温再生器G2が希溶液Swから冷媒を蒸発させて濃度が上昇した中温濃溶液Sh2を溜める中温再生器溶液溜まり22を有し;高温再生器G3が低温濃溶液Sh1から冷媒を蒸発させて濃度が上昇した高温濃溶液Sh3を溜める高温再生器溶液溜まり85を有し;高温再生器溶液溜まり85内もしくは高温再生器G3の本体内の高温濃溶液Sh3の液面が第1の所定の液面高さになるように高温溶液ポンプ13の吐出量を調節すると共に、中温再生器溶液溜まり22内もしくは中温再生器G2の本体内の中温濃溶液Sh2の液面が第2の所定の液面高さになるように中温溶液ポンプ12の吐出量を調節する制御装置60とを備える。   Moreover, the triple effect absorption refrigerator according to the invention described in claim 2 is the triple effect absorption refrigerator 1 according to claim 1, wherein the low-temperature regenerator G1 is a low-temperature concentrate, as shown in FIGS. A low temperature regenerator solution reservoir 21 for storing the solution Sh1 is provided, and a high temperature solution pump 13 is disposed in a low temperature concentrated solution flow path 43 that guides the low temperature concentrated solution Sh1 from the low temperature regenerator solution reservoir 21 to the high temperature regenerator G1; The regenerator G2 has a medium temperature regenerator solution reservoir 22 that accumulates the medium temperature concentrated solution Sh2 whose concentration has been increased by evaporating the refrigerant from the dilute solution Sw; the high temperature regenerator G3 evaporates the refrigerant from the low temperature concentrated solution Sh1 and has a concentration A high temperature regenerator solution reservoir 85 for storing the elevated high temperature concentrated solution Sh3; the liquid level of the high temperature concentrated solution Sh3 in the high temperature regenerator solution reservoir 85 or in the main body of the high temperature regenerator G3 is a first predetermined liquid level The discharge amount of the high temperature solution pump 13 is adjusted so that the liquid level of the medium temperature concentrated solution Sh2 in the intermediate temperature regenerator solution reservoir 22 or in the main body of the intermediate temperature regenerator G2 is the second predetermined liquid level height. And a control device 60 for adjusting the discharge amount of the intermediate temperature solution pump 12.

このように構成すると、高温溶液ポンプが低温再生器溶液溜まりから高温再生器へと低温濃溶液を導く低温濃溶液流路に配設されるので、高温溶液ポンプがキャビテーション等により故障することを回避しやすくなる。また、高温再生器溶液溜まり内もしくは高温再生器の本体内の高温濃溶液の液面が第1の所定の液面高さになるように高温溶液ポンプの吐出量を調節すると共に、中温再生器溶液溜まり内もしくは中温再生器の本体内の中温濃溶液が第2の所定の液面高さになるように中温溶液ポンプの吐出量を調節するので、高温再生器内の高温濃溶液及び中温再生器内の中温濃溶液が、各再生器で蒸発した冷媒に混じって排出されることがない。   With this configuration, the high temperature solution pump is disposed in the low temperature concentrated solution flow path that guides the low temperature concentrated solution from the low temperature regenerator solution reservoir to the high temperature regenerator, thereby avoiding failure of the high temperature solution pump due to cavitation or the like. It becomes easy to do. In addition, the discharge amount of the high temperature solution pump is adjusted so that the liquid level of the high temperature concentrated solution in the high temperature regenerator solution reservoir or in the main body of the high temperature regenerator becomes the first predetermined liquid level, and the medium temperature regenerator Since the discharge amount of the intermediate temperature solution pump is adjusted so that the intermediate temperature concentrated solution in the solution reservoir or in the main body of the intermediate temperature regenerator has the second predetermined liquid level, the high temperature concentrated solution and the intermediate temperature regeneration in the high temperature regenerator are adjusted. The medium-temperature concentrated solution in the chamber is not discharged by being mixed with the refrigerant evaporated in each regenerator.

また、請求項3に記載の発明に係る三重効用吸収冷凍機は、例えば図1及び図2に示すように、請求項2に記載の三重効用吸収冷凍機1において、高温再生器G3内の圧力を検知する高温圧力検知器63と;高温再生器溶液溜まり85内もしくは高温再生器G3の本体内の高温濃溶液Sh3の高位液面及び低位液面を検知する高温液面検知器66A〜66Dと;中温再生器G2内の圧力を検知する中温圧力検知器62と;中温再生器溶液溜まり22内もしくは中温再生器G2の本体内の中温濃溶液Sh2の高位液面及び低位液面を検知する中温液面検知器65とを備え;制御装置60が、高温溶液ポンプ13の回転速度を、高温圧力検知器63で検知した圧力に基づいて調節しつつ高温液面検知器66D(66A〜66C)が高位液面を検知したときに低下させ低位液面を検知したときに上昇させると共に、中温溶液ポンプ12の回転速度を、中温圧力検知器62で検知した圧力に基づいて調節しつつ中温液面検知器65が高位液面を検知したときに低下させ低位液面を検知したときに上昇させるように構成されている。   Further, the triple effect absorption refrigerator according to the invention described in claim 3 is the pressure in the high temperature regenerator G3 in the triple effect absorption refrigerator 1 described in claim 2, for example, as shown in FIGS. A high temperature pressure detector 63 for detecting the high temperature liquid level detector 66A to 66D for detecting the high level liquid level and the low level liquid level of the high temperature concentrated solution Sh3 in the high temperature regenerator solution reservoir 85 or in the main body of the high temperature regenerator G3; A medium temperature pressure detector 62 for detecting the pressure in the medium temperature regenerator G2, and a medium temperature for detecting the high and low liquid levels of the medium temperature concentrated solution Sh2 in the medium temperature regenerator solution reservoir 22 or in the main body of the medium temperature regenerator G2. A liquid level detector 65; the control device 60 adjusts the rotational speed of the high temperature solution pump 13 based on the pressure detected by the high temperature pressure detector 63, and the high temperature liquid level detector 66D (66A to 66C) Detect high liquid level When the lower liquid level is detected, the intermediate temperature liquid level detector 65 is adjusted to adjust the rotation speed of the intermediate temperature solution pump 12 based on the pressure detected by the intermediate temperature pressure detector 62. It is configured to be lowered when a surface is detected and raised when a lower liquid level is detected.

このように構成すると、高温再生器及び中温再生器おいて、各再生器内の圧力を基準として対応する溶液ポンプの回転速度を調節して、各再生器の溶液溜まりもしくは各再生器の本体内の液面によって対応する溶液ポンプの回転速度を補正するので、各再生器内の溶液液面の安定性が増す。   With this configuration, in the high-temperature regenerator and the medium-temperature regenerator, the rotation speed of the corresponding solution pump is adjusted with reference to the pressure in each regenerator, so that the solution reservoir of each regenerator or the main body of each regenerator Since the rotation speed of the corresponding solution pump is corrected by the liquid level, the stability of the solution liquid level in each regenerator is increased.

また、請求項4に記載の発明に係る三重効用吸収冷凍機は、例えば図3に示すように、請求項3に記載の三重効用吸収冷凍機1において、高温圧力検知器63(例えば図2参照)に代えて、高温再生器G3内の低温濃溶液Sh1を加熱して蒸発した冷媒が凝縮した高温凝縮冷媒Vf3の温度を検知する高温冷媒温度検知器69を備え;中温圧力検知器62(例えば図1参照)に代えて、中温再生器G2内の希溶液Swを加熱して蒸発した冷媒が凝縮した中温凝縮冷媒Vf2の温度を検知する中温冷媒温度検知器68を備え;制御装置60が、高温圧力検知器63(例えば図2参照)で検知した圧力に代えて高温冷媒温度検知器69で検知した温度に基づいて高温溶液ポンプ13の回転速度を調節し、中温圧力検知器62(例えば図1参照)で検知した圧力に代えて中温冷媒温度検知器68で検知した温度に基づいて中温溶液ポンプ12の回転速度を調節するように構成されている。   In addition, the triple effect absorption refrigerator according to the invention described in claim 4 is the same as the triple effect absorption refrigerator 1 described in claim 3, for example, as shown in FIG. ), A high-temperature refrigerant temperature detector 69 for detecting the temperature of the high-temperature condensed refrigerant Vf3 condensed by the refrigerant evaporated by heating the low-temperature concentrated solution Sh1 in the high-temperature regenerator G3; In place of (see FIG. 1), a medium temperature refrigerant temperature detector 68 for detecting the temperature of the medium temperature condensed refrigerant Vf2 in which the refrigerant evaporated by heating the diluted solution Sw in the medium temperature regenerator G2 is condensed is provided; Instead of the pressure detected by the high-temperature pressure detector 63 (for example, see FIG. 2), the rotational speed of the high-temperature solution pump 13 is adjusted based on the temperature detected by the high-temperature refrigerant temperature detector 69, and the medium-temperature pressure detector 62 (for example, FIG. 2). 1) Is configured to adjust the rotational speed of the medium temperature solution pump 12 based on the temperature detected by the medium-temperature refrigerant temperature detector 68 instead of the pressure that knowledge.

このように構成すると、高温再生器及び中温再生器内の圧力と相関関係を有する高温凝縮冷媒及び中温凝縮冷媒の温度を基準として対応する溶液ポンプの回転速度を調節し、各再生器の溶液溜まりの液面によって対応する溶液ポンプの回転速度を補正するので、各再生器内の溶液液面の安定性が増す。   With this configuration, the rotational speeds of the corresponding solution pumps are adjusted based on the temperatures of the high-temperature condensing refrigerant and the intermediate-temperature condensing refrigerant that have a correlation with the pressure in the high-temperature regenerator and the intermediate-temperature regenerator, and the solution reservoirs of each regenerator are adjusted. Since the rotation speed of the corresponding solution pump is corrected by the liquid level, the stability of the solution liquid level in each regenerator is increased.

また、請求項5に記載の発明に係る三重効用吸収冷凍機は、例えば図1に示すように、請求項2乃至請求項4のいずれか1項に記載の三重効用吸収冷凍機1において、低温再生器溶液溜まり21内の低温濃溶液Sh1の液面が第3の所定の液面高さ以上になるように低温再生器G1に導入する希溶液Swの流量を調整する希溶液導入量調整手段16、60、64を備える。   Further, the triple effect absorption refrigerator according to the invention described in claim 5 is a low-temperature low-temperature absorption refrigerator 1 according to any one of claims 2 to 4, for example, as shown in FIG. Dilute solution introduction amount adjusting means for adjusting the flow rate of the dilute solution Sw introduced into the low temperature regenerator G1 so that the liquid level of the low temperature concentrated solution Sh1 in the regenerator solution reservoir 21 is equal to or higher than the third predetermined liquid level. 16, 60, 64.

このように構成すると、高温溶液ポンプがキャビテーション等により故障することをより確実に回避することができる。   If comprised in this way, it can avoid more reliably that a high temperature solution pump fails by cavitation etc.

また、請求項6に記載の発明に係る三重効用吸収冷凍機は、例えば図1に示すように、請求項5に記載の三重効用吸収冷凍機において、前記希溶液導入量調整手段が、吸収器Aから低温再生器G1へと希溶液Swを導く希溶液流路41に配設され、希溶液流路41内を流れる希溶液Swの流量を調整する流量調整弁16と、低温再生器溶液溜まり21内の低温濃溶液Sh1の液面が第3の所定の液面高さ以上にあるか否かを検知する低温液面検知器64と、低温再生器溶液溜まり21内の低温濃溶液Sh1の液面が第3の所定の液面高さよりも低下したときに流量調整弁16の開度を大きくする制御装置60とを含んで構成されている。   Moreover, the triple effect absorption refrigerator according to the invention described in claim 6 is the triple effect absorption refrigerator according to claim 5, for example, as shown in FIG. A flow rate adjusting valve 16 that adjusts the flow rate of the dilute solution Sw that flows in the dilute solution flow channel 41, and a low temperature regenerator solution reservoir, which is disposed in the dilute solution flow channel 41 that guides the dilute solution Sw from A to the low temperature regenerator G1. The low-temperature liquid level detector 64 that detects whether or not the liquid level of the low-temperature concentrated solution Sh1 in the 21 is equal to or higher than a third predetermined liquid level, and the low-temperature concentrated solution Sh1 in the low-temperature regenerator solution reservoir 21 And a control device 60 that increases the opening of the flow regulating valve 16 when the liquid level falls below a third predetermined liquid level.

このように構成すると、単純な構成で高温溶液ポンプがキャビテーション等により故障することをより確実に回避することができる。   If comprised in this way, it can avoid more reliably that a high temperature solution pump fails by cavitation etc. with a simple structure.

また、請求項7に記載の発明に係る三重効用吸収冷凍機は、例えば図3に示すように、請求項5に記載の三重効用吸収冷凍機において、前記希溶液導入量調整手段が、吸収器A内の希溶液Swを低温再生器G1に送液する、中温溶液ポンプ12とは別の低温溶液ポンプ15と、低温再生器溶液溜まり21内の低温濃溶液Sh1の液面が第3の所定の液面高さ以上にあるか否かを検知する低温液面検知器64と、低温再生器溶液溜まり21内の低温濃溶液Sh1の液面が第3の所定の液面高さよりも低下したときに低温溶液ポンプ15の回転速度を上昇させる制御装置60とを含んで構成されている。   In addition, the triple effect absorption refrigerator according to the invention described in claim 7 is the triple effect absorption refrigerator according to claim 5, for example, as shown in FIG. The liquid level of the low-temperature concentrated solution Sh1 in the low-temperature regenerator solution reservoir 21 and the low-temperature solution pump 15 different from the medium-temperature solution pump 12 that sends the dilute solution Sw in A to the low-temperature regenerator G1 are the third predetermined level. The liquid level of the low-temperature concentrated solution Sh1 in the low-temperature regenerator solution reservoir 21 is lower than the third predetermined liquid level height. The controller 60 is sometimes configured to increase the rotational speed of the low temperature solution pump 15.

このように構成すると、過大な圧力損失を伴うことなく低温再生器への希溶液の導入量を調整することができる。   If comprised in this way, the introduction amount of the dilute solution to a low-temperature regenerator can be adjusted, without accompanying an excessive pressure loss.

本発明に係る三重効用吸収冷凍機によれば、低温再生器内の低温濃溶液を高温再生器に送液する高温溶液ポンプを備えるので、高温溶液ポンプが中温濃溶液よりも温度が低い低温濃溶液を高温再生器に送液することとなり、高温再生器の温度及び圧力の上昇を抑えつつ高温溶液ポンプが吸い込む溶液の温度を抑制することができ、高温溶液ポンプの耐久性を向上させることができる。   According to the triple effect absorption refrigerator according to the present invention, since the high-temperature solution pump for feeding the low-temperature concentrated solution in the low-temperature regenerator to the high-temperature regenerator is provided, the high-temperature solution pump has a lower temperature than the medium-temperature concentrated solution. The solution will be sent to the high temperature regenerator, and the temperature of the solution sucked by the high temperature solution pump can be suppressed while suppressing an increase in temperature and pressure of the high temperature regenerator, and the durability of the high temperature solution pump can be improved. it can.

以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する装置には同一あるいは類似の符号を付し、重複した説明は省略する。なお、図1〜5(図2(b)は除く)中、破線は制御信号を表す。
まず図1を参照して、本発明の実施の形態に係る三重効用吸収冷凍機1(以下単に「吸収冷凍機1」という。)の構成について説明する。図1は、本発明の実施の形態に係る吸収冷凍機1を示す模式的系統図である。吸収冷凍機1は、吸収器Aと、低温再生器G1と、中温再生器G2と、高温再生器G3と、凝縮器Cと、蒸発器Eと、中温溶液ポンプ12と、高温溶液ポンプ13と、低温溶液熱交換器31と、中温溶液熱交換器32と、高温溶液熱交換器33と、制御装置60とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same or corresponding devices are denoted by the same or similar reference numerals, and redundant description is omitted. 1 to 5 (excluding FIG. 2B), a broken line represents a control signal.
First, the configuration of a triple effect absorption refrigerator 1 (hereinafter simply referred to as “absorption refrigerator 1”) according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram showing an absorption refrigerator 1 according to an embodiment of the present invention. The absorption refrigerator 1 includes an absorber A, a low temperature regenerator G1, an intermediate temperature regenerator G2, a high temperature regenerator G3, a condenser C, an evaporator E, an intermediate temperature solution pump 12, and a high temperature solution pump 13. The low-temperature solution heat exchanger 31, the intermediate-temperature solution heat exchanger 32, the high-temperature solution heat exchanger 33, and the control device 60 are provided.

吸収器Aは、蒸発器Eで発生した冷媒蒸気Vsを溶液Sに吸収させる装置である。典型的には、冷媒として水が、溶液Sとして臭化リチウム(LiBr)が用いられるが、これに限らず他の冷媒、溶液(吸収剤)の組み合わせで使用してもよい。吸収器Aには、溶液Sが冷媒蒸気Vsを吸収したとき発生する吸収熱を奪う冷却水qを流すための冷却水管71が内部に配設されている。また、吸収器Aには、各再生器G1〜G3で再生され、濃度が高くなった溶液Sを散布する濃溶液散布ノズル72が冷却水管71の上方に配設されている。吸収器Aは、その下部が、冷媒蒸気Vsを吸収して濃度が低下した希溶液Swを貯留する貯留部73となっている。貯留部73には、希溶液Swを低温再生器G1及び中温再生器G2に向けて導出する希溶液導出管42が接続されている。吸収器Aは蒸発器Eと上部で連通しており、蒸発器Eで蒸発した冷媒蒸気Vsを吸収器Aに導入することができるように構成されている。   The absorber A is a device that causes the solution S to absorb the refrigerant vapor Vs generated in the evaporator E. Typically, water is used as the refrigerant and lithium bromide (LiBr) is used as the solution S. However, the present invention is not limited to this, and other refrigerants and solutions (absorbents) may be used in combination. The absorber A is provided with a cooling water pipe 71 for flowing cooling water q that takes away the heat of absorption generated when the solution S absorbs the refrigerant vapor Vs. Further, in the absorber A, a concentrated solution spraying nozzle 72 that sprays the solution S having a high concentration regenerated by the regenerators G1 to G3 is disposed above the cooling water pipe 71. The lower part of the absorber A is a storage unit 73 that stores the diluted solution Sw having a reduced concentration by absorbing the refrigerant vapor Vs. The reservoir 73 is connected to a dilute solution outlet tube 42 that guides the dilute solution Sw toward the low temperature regenerator G1 and the intermediate temperature regenerator G2. The absorber A communicates with the evaporator E at the top, and is configured so that the refrigerant vapor Vs evaporated by the evaporator E can be introduced into the absorber A.

低温再生器G1は、吸収器Aから希溶液Swを導入し、希溶液Swを加熱することにより冷媒を蒸発させて濃度を上昇させる装置である。低温再生器G1内の上部には、導入した希溶液Swを散布する希溶液散布ノズル51aが配設されている。また、低温再生器G1には、希溶液Swを加熱する加熱源としての冷媒蒸気Vmを流すための加熱用蒸気管51が希溶液散布ノズル51aの下方に配設されている。この、加熱用蒸気管51が配設される部分を、低温再生器G1の本体ということとする。加熱用蒸気管51には、中温再生器G2で蒸発した中温冷媒蒸気Vs2と、高温再生器G3で蒸発した高温冷媒蒸気Vs3が中温再生器G2で凝縮した高温凝縮冷媒Vf3とが混合した冷媒蒸気Vmが導入される。低温再生器G1は凝縮器Cと上部で連通しており、冷媒蒸気Vmの熱で希溶液Swから蒸発した低温冷媒蒸気Vs1が凝縮器Cに移動することができるように構成されている。   The low temperature regenerator G1 is a device that introduces the dilute solution Sw from the absorber A and heats the dilute solution Sw to evaporate the refrigerant to increase the concentration. A dilute solution spray nozzle 51a for spraying the introduced dilute solution Sw is disposed in the upper part of the low temperature regenerator G1. The low temperature regenerator G1 is provided with a heating steam pipe 51 for flowing a refrigerant vapor Vm as a heating source for heating the diluted solution Sw below the diluted solution spray nozzle 51a. The portion where the heating steam pipe 51 is disposed is referred to as a main body of the low temperature regenerator G1. In the heating steam pipe 51, a refrigerant vapor in which a medium temperature refrigerant vapor Vs2 evaporated in the medium temperature regenerator G2 and a high temperature condensed refrigerant Vf3 in which the high temperature refrigerant vapor Vs3 evaporated in the high temperature regenerator G3 is condensed in the medium temperature regenerator G2 are mixed. Vm is introduced. The low-temperature regenerator G1 communicates with the condenser C at the top, and is configured such that the low-temperature refrigerant vapor Vs1 evaporated from the dilute solution Sw by the heat of the refrigerant vapor Vm can move to the condenser C.

また、低温再生器G1には、希溶液Sw中から冷媒が蒸発して濃度が上昇した低温濃溶液Sh1を溜める低温再生器溶液溜まり21が設けられている。低温再生器溶液溜まり21は、典型的には、低温再生器G1の下部に、オーバーフロー堰21aで仕切られることにより低温再生器G1と一体となって形成されているが、例えば所定の容積を有するタンクを低温再生器G1から物理的に離して配管で接続して形成されていても低温再生器G1の一部であるものとする。また、低温再生器溶液溜まり21は、タンクのような形状ではなく、配管であってもよい。低温再生器溶液溜まり21が低温再生器G1と一体となっている場合は、低温再生器G1の本体が低温再生器溶液溜まり21を兼ねることがある。低温再生器溶液溜まり21には、その内部に溜められた低温濃溶液の液面を検知する低温液面検知器としての液面センサー64が設けられている。液面センサー64には、典型的には、電極棒が用いられる。液面センサー64と制御装置60との間にはそれぞれ信号ケーブルが敷設されており、検知した液面信号を制御装置60に送信することができるように構成されている。なお、液面センサー64は、電極棒以外のフロートスイッチ等であってもよい。低温再生器溶液溜まり21には、低温濃溶液Sh1を高温再生器G3へと導く低温濃溶液流路を形成する低温濃溶液管43が接続されている。また、低温再生器溶液溜まり21の下流側(オーバーフロー堰21a下流側)の低温再生器G1の下部には、低温濃溶液Sh1を導出する低温濃溶液導出管44が接続されている。低温濃溶液導出管44は、低温溶液熱交換器31を介して吸収器Aの濃溶液散布ノズル72に接続されている。   Further, the low temperature regenerator G1 is provided with a low temperature regenerator solution reservoir 21 for storing a low temperature concentrated solution Sh1 whose concentration has been increased by evaporation of the refrigerant from the dilute solution Sw. The low-temperature regenerator solution reservoir 21 is typically formed integrally with the low-temperature regenerator G1 by being partitioned by an overflow weir 21a at the lower part of the low-temperature regenerator G1, and has a predetermined volume, for example. Even if the tank is physically separated from the low temperature regenerator G1 and connected by piping, it is assumed to be a part of the low temperature regenerator G1. Further, the low temperature regenerator solution reservoir 21 may not be a tank shape but may be a pipe. When the low-temperature regenerator solution reservoir 21 is integrated with the low-temperature regenerator G1, the main body of the low-temperature regenerator G1 may also serve as the low-temperature regenerator solution reservoir 21. The low temperature regenerator solution reservoir 21 is provided with a liquid level sensor 64 as a low temperature liquid level detector for detecting the liquid level of the low temperature concentrated solution stored therein. For the liquid level sensor 64, an electrode rod is typically used. A signal cable is laid between the liquid level sensor 64 and the control device 60, respectively, so that the detected liquid level signal can be transmitted to the control device 60. The liquid level sensor 64 may be a float switch other than the electrode rod. The low temperature regenerator solution reservoir 21 is connected to a low temperature concentrated solution tube 43 that forms a low temperature concentrated solution flow path that guides the low temperature concentrated solution Sh1 to the high temperature regenerator G3. Further, a low temperature concentrated solution outlet pipe 44 for extracting the low temperature concentrated solution Sh1 is connected to the lower part of the low temperature regenerator G1 downstream of the low temperature regenerator solution reservoir 21 (downstream of the overflow weir 21a). The low temperature concentrated solution outlet tube 44 is connected to the concentrated solution spray nozzle 72 of the absorber A through the low temperature solution heat exchanger 31.

中温再生器G2は、吸収器Aから希溶液Swを導入し、希溶液Swを加熱することにより低温再生器G1におけるよりも高い温度で冷媒を蒸発させて濃度を上昇させる装置である。中温再生器G2内の上部には、導入した希溶液Swを散布する希溶液散布ノズル52aが配設されている。また、中温再生器G2には、希溶液Swを加熱する加熱源としての冷媒蒸気Vs3を流すための加熱用蒸気管52が希溶液散布ノズル52aの下方に配設されている。この、加熱用蒸気管52が配設される部分を、中温再生器G2の本体ということとする。加熱用蒸気管52には、高温再生器G3で蒸発した高温冷媒蒸気Vs3が導入される。加熱用蒸気管52には、希溶液Swに熱を奪われた高温冷媒蒸気Vs3が凝縮した高温凝縮冷媒Vf3を流す高温凝縮冷媒管56が接続されている。また、中温再生器G2の上部には、高温冷媒蒸気Vs3の熱で希溶液Swから蒸発した中温冷媒蒸気Vs2を導出する中温冷媒蒸気管55が接続されている。中温冷媒蒸気管55は、低温再生器G1の加熱用蒸気管51に接続されている。また、中温冷媒蒸気管55には、途中で高温凝縮冷媒管56が接続されている。中温再生器G2には、中温再生器G2内の圧力を検知する圧力検知器としての圧力センサー62が設けられている。圧力センサー62は、中温再生器G2内の圧力を検知することができればよいので、中温再生器G2近傍の中温冷媒蒸気管55に設けられていてもよい。圧力センサー62は、信号ケーブルで制御装置60と接続されており、圧力センサー62で検知した圧力信号を制御装置60に送信することができるように構成されている。   The intermediate temperature regenerator G2 is a device that evaporates the refrigerant at a temperature higher than that in the low temperature regenerator G1 by introducing the dilute solution Sw from the absorber A and heating the dilute solution Sw, thereby increasing the concentration. A dilute solution spray nozzle 52a for spraying the introduced dilute solution Sw is disposed in the upper part of the intermediate temperature regenerator G2. The intermediate temperature regenerator G2 is provided with a heating steam pipe 52 for flowing a refrigerant vapor Vs3 as a heating source for heating the diluted solution Sw below the diluted solution spray nozzle 52a. The portion where the heating steam pipe 52 is disposed is referred to as a main body of the intermediate temperature regenerator G2. The high-temperature refrigerant vapor Vs3 evaporated by the high-temperature regenerator G3 is introduced into the heating vapor pipe 52. Connected to the heating steam pipe 52 is a high-temperature condensing refrigerant pipe 56 through which the high-temperature condensing refrigerant Vf3 condensed by the high-temperature refrigerant vapor Vs3 deprived of heat by the dilute solution Sw. In addition, an intermediate temperature refrigerant vapor pipe 55 is connected to the upper part of the intermediate temperature regenerator G2 for deriving the intermediate temperature refrigerant vapor Vs2 evaporated from the dilute solution Sw by the heat of the high temperature refrigerant vapor Vs3. The intermediate temperature refrigerant vapor pipe 55 is connected to the heating vapor pipe 51 of the low temperature regenerator G1. In addition, a high temperature condensing refrigerant pipe 56 is connected to the intermediate temperature refrigerant vapor pipe 55 in the middle. The intermediate temperature regenerator G2 is provided with a pressure sensor 62 as a pressure detector that detects the pressure in the intermediate temperature regenerator G2. Since the pressure sensor 62 only needs to be able to detect the pressure in the intermediate temperature regenerator G2, the pressure sensor 62 may be provided in the intermediate temperature refrigerant vapor pipe 55 in the vicinity of the intermediate temperature regenerator G2. The pressure sensor 62 is connected to the control device 60 via a signal cable, and is configured to be able to transmit the pressure signal detected by the pressure sensor 62 to the control device 60.

また、中温再生器G2には、希溶液Sw中から冷媒が蒸発して濃度が上昇した中温濃溶液Sh2を溜める中温再生器溶液溜まり22が設けられている。中温再生器溶液溜まり22は、典型的には、中温再生器G2の下部に中温再生器G2と一体となって形成されているが、例えば所定の容積を有するタンクを中温再生器G2から物理的に離して配管で接続して形成されていても中温再生器G2の一部であるものとする。また、中温再生器溶液溜まり22は、タンクのような形状ではなく、配管であってもよい。中温再生器溶液溜まり22が中温再生器G2と一体となっている場合は、中温再生器G2の本体が中温再生器溶液溜まり22を兼ねることがある。中温再生器溶液溜まり22の液面高さは、中温再生器G2内の圧力、希溶液Swの温度や濃度の他、中温再生器G2に中温溶液ポンプ12により送られる希溶液Swの流量により支配される。中温再生器溶液溜まり22には、中温濃溶液Sh2を導出する中温濃溶液導出管45が接続されている。中温濃溶液導出管45は、中温溶液熱交換器32を介した後に低温溶液熱交換器31の上流側の低温濃溶液導出管44に接続されている。中温再生器溶液溜まり22には、その内部に溜められた中温濃溶液Sh2の高位液面を検知する高位液面センサー65Hと、低位液面を検知する低位液面センサー65Lとを有する中温液面検知器65が設けられている。高位及び低位液面センサー65H、65Lには、典型的には、電極棒が用いられる。高位液面センサー65H及び低位液面センサー65Lと制御装置60との間にはそれぞれ信号ケーブルが敷設されており、検知した高位及び低位液面信号を制御装置60に送信することができるように構成されている。なお、高位及び低位液面センサー65H、65Lは、電極棒以外のフロートスイッチ等であってもよい。フロートスイッチとした場合は、1つのスイッチで高位液面と低位液面の両方を検知することも可能となる。また、中温再生器G2本体の液面を制御対象とする場合は、中温液面検知器65は中温再生器G2本体内に配設される。   Further, the intermediate temperature regenerator G2 is provided with an intermediate temperature regenerator solution reservoir 22 for storing an intermediate temperature concentrated solution Sh2 whose concentration has increased due to evaporation of the refrigerant from the dilute solution Sw. The intermediate temperature regenerator solution reservoir 22 is typically formed integrally with the intermediate temperature regenerator G2 below the intermediate temperature regenerator G2. For example, a tank having a predetermined volume is physically formed from the intermediate temperature regenerator G2. It is assumed that it is a part of the medium temperature regenerator G2 even if it is formed by connecting by piping. Further, the intermediate temperature regenerator solution reservoir 22 may be a pipe instead of a tank-like shape. When the intermediate temperature regenerator solution reservoir 22 is integrated with the intermediate temperature regenerator G2, the main body of the intermediate temperature regenerator G2 may also serve as the intermediate temperature regenerator solution reservoir 22. The liquid surface height of the intermediate temperature regenerator solution reservoir 22 is controlled by the pressure in the intermediate temperature regenerator G2, the temperature and concentration of the dilute solution Sw, and the flow rate of the dilute solution Sw sent to the intermediate temperature regenerator G2 by the intermediate temperature solution pump 12. Is done. The intermediate temperature regenerator solution reservoir 22 is connected to an intermediate temperature concentrated solution outlet tube 45 for extracting the intermediate temperature concentrated solution Sh2. The intermediate temperature concentrated solution outlet tube 45 is connected to the lower temperature concentrated solution outlet tube 44 on the upstream side of the low temperature solution heat exchanger 31 after passing through the intermediate temperature solution heat exchanger 32. The medium temperature regenerator solution reservoir 22 has a medium temperature liquid level having a high liquid level sensor 65H for detecting a high liquid level of the medium warm concentrated solution Sh2 stored therein and a low liquid level sensor 65L for detecting a low liquid level. A detector 65 is provided. Typically, electrode bars are used for the high and low liquid level sensors 65H and 65L. Signal cables are laid between the high level liquid level sensor 65H and the low level liquid level sensor 65L and the control device 60, respectively, so that the detected high level and low level liquid level signals can be transmitted to the control device 60. Has been. The high and low liquid level sensors 65H and 65L may be float switches other than the electrode rods. When the float switch is used, it is possible to detect both the high and low liquid levels with one switch. When the liquid level of the medium temperature regenerator G2 main body is to be controlled, the medium temperature liquid level detector 65 is disposed in the medium temperature regenerator G2 main body.

ここで図2を参照して高温再生器G3の詳細を説明する。図2は高温再生器G3の詳細図であり、(a)は縦断面図、(b)は缶胴部分の平面図である。図2に示すように、高温再生器G3は貫流ボイラ型の再生器となっている。高温再生器G3は、低温再生器G1(図1参照)から低温濃溶液Sh1を導入し、加熱することにより中温再生器G2(図1参照)におけるよりも高い温度で冷媒を蒸発させて濃度を上昇させる装置である。高温再生器G3は、円筒状の缶胴80内に、上部と下部に環状の管寄せ81、82を備え、これらの管寄せ81、82の間に多数の伝熱管83を環状に配列して設け、上部中央部に燃焼装置としてのバーナー84を備え、さらに上部管寄せ81に配管86を介してつながる気液分離器85を備えて構成されている。そして、下部管寄せ82には低温濃溶液管43が接続され、気液分離器85の上部には高温冷媒蒸気管54が接続され、気液分離器85の底部は配管87を介して下部管寄せ82に接続されている。また、気液分離器85の底部には、高温濃溶液導出管46が、配管87と並列に接続されている。ここでは、缶胴80に囲まれた部分を高温再生器G3の本体ということとする。気液分離器85は、高温再生器溶液溜まりの役割をも兼ねている。気液分離器85には、高温再生器G3内の圧力を検知する圧力検知器としての圧力センサー63が設けられている。また、気液分離器85の側面には、気相部と液相部を各連通した液位検出部99Cが設けられており、液位検出部99Cは、その内部に溜められた高温濃溶液Sh3の高位液面を検知する高位液面センサー66CHと、低位液面を検知する低位液面センサー66CLとを有する高温液面検知器66Cが設けられている。高位及び低位液面センサー66CH、66CLには、典型的には、電極棒が用いられる。高位及び低位液面センサー66CH、66CLは、電極棒以外のフロートスイッチ等であってもよい。フロートスイッチとした場合は、1つのスイッチで高位液面と低位液面の両方を検知することも可能となる。高温液面検知器66Cは、信号ケーブルを介して制御装置60と接続されている。   The details of the high temperature regenerator G3 will now be described with reference to FIG. FIG. 2 is a detailed view of the high-temperature regenerator G3, where (a) is a longitudinal sectional view and (b) is a plan view of a can body portion. As shown in FIG. 2, the high temperature regenerator G3 is a once-through boiler type regenerator. The high temperature regenerator G3 introduces the low temperature concentrated solution Sh1 from the low temperature regenerator G1 (see FIG. 1) and heats it to evaporate the refrigerant at a higher temperature than in the intermediate temperature regenerator G2 (see FIG. 1). It is a device to raise. The high-temperature regenerator G3 includes an annular header 81, 82 at the upper and lower portions in a cylindrical can body 80, and a large number of heat transfer tubes 83 are annularly arranged between these headers 81, 82. It is provided with a burner 84 as a combustion device in the upper central part, and further with a gas-liquid separator 85 connected to the upper header 81 via a pipe 86. A low temperature concentrated solution pipe 43 is connected to the lower header 82, a high temperature refrigerant vapor pipe 54 is connected to the top of the gas / liquid separator 85, and the bottom of the gas / liquid separator 85 is connected to the lower pipe via a pipe 87. It is connected to the shift 82. A hot concentrated solution outlet pipe 46 is connected to the bottom of the gas-liquid separator 85 in parallel with the pipe 87. Here, the part surrounded by the can body 80 is assumed to be the main body of the high temperature regenerator G3. The gas-liquid separator 85 also serves as a high temperature regenerator solution reservoir. The gas-liquid separator 85 is provided with a pressure sensor 63 as a pressure detector for detecting the pressure in the high temperature regenerator G3. Further, a liquid level detection unit 99C in which the gas phase part and the liquid phase part are communicated with each other is provided on the side surface of the gas-liquid separator 85, and the liquid level detection part 99C is a high-temperature concentrated solution stored therein. A high temperature liquid level detector 66C having a high liquid level sensor 66CH for detecting the high liquid level of Sh3 and a low liquid level sensor 66CL for detecting the low liquid level is provided. Typically, electrode bars are used for the high and low liquid level sensors 66CH and 66CL. The high and low liquid level sensors 66CH and 66CL may be float switches other than the electrode rods. When the float switch is used, it is possible to detect both the high and low liquid levels with one switch. The high-temperature liquid level detector 66C is connected to the control device 60 via a signal cable.

なお、高温再生器G3における液面検知器として、気液分離器85内に、その内部に溜められた高温濃溶液Sh3の高位液面を検知する高位液面センサー66DHと、低位液面を検知する低位液面センサー66DLとを有する高温液面検知器66Dを設けてもよい。あるいは、上部管寄せ81及び下部管寄せ82間に連通管90を設け、連通管90に液位検出部99Aを配設して、液位検出部99A内に高温濃溶液Sh3の高位液面を検知する高位液面センサー66AHと、低位液面を検知する低位液面センサー66ALとを有する高温液面検知器66Aを設けてもよく、又は、上部管寄せ81から特定の伝熱管83内に高温濃溶液Sh3の高位液面を検知する高位液面センサー66BHと、低位液面を検知する低位液面センサー66BLとを有する高温液面検知器66Bを設けてもよい。高温液面検知器66A、66B、66Dが設けられる場合は、これらもそれぞれ信号ケーブルを介して制御装置60と接続されている。高温再生器G3は、高温液面検知器66A〜66Dのいずれか1つを備える構成としてもよく、あるいはこれらの任意の組み合わせ、又はすべてを備える構成としてもよい。典型的には、高温液面検知器66Bは伝熱管83の過熱防止のための液面検知に適しており、高温液面検知器66C、66Dは冷媒蒸気Vs3への高温濃溶液Sh3の混入の防止や吸収器A(図1参照)への高温濃溶液Sh3の安定供給のための液面検知に適するといった利点があるため、高温液面検知器66A〜66Dを制御目的に応じて配設することが好ましい。   As a liquid level detector in the high temperature regenerator G3, a high liquid level sensor 66DH for detecting a high liquid level of the hot concentrated solution Sh3 stored in the gas-liquid separator 85 and a low liquid level are detected. A high temperature liquid level detector 66D having a low level liquid level sensor 66DL may be provided. Alternatively, a communication pipe 90 is provided between the upper header 81 and the lower header 82, a liquid level detection unit 99A is provided in the communication pipe 90, and a high liquid level of the hot concentrated solution Sh3 is provided in the liquid level detection unit 99A. A high-temperature liquid level detector 66A having a high-level liquid level sensor 66AH for detecting and a low-level liquid level sensor 66AL for detecting a low level liquid level may be provided, or a high temperature may be provided from the upper header 81 into a specific heat transfer tube 83. A high temperature liquid level detector 66B having a high liquid level sensor 66BH for detecting the high liquid level of the concentrated solution Sh3 and a low liquid level sensor 66BL for detecting the low liquid level may be provided. When the high-temperature liquid level detectors 66A, 66B, and 66D are provided, these are also connected to the control device 60 via signal cables, respectively. The high temperature regenerator G3 may be configured to include any one of the high temperature liquid level detectors 66A to 66D, or may be configured to include any combination or all of these. Typically, the high-temperature liquid level detector 66B is suitable for liquid level detection for preventing overheating of the heat transfer tube 83, and the high-temperature liquid level detectors 66C and 66D are used for mixing the high-temperature concentrated solution Sh3 into the refrigerant vapor Vs3. Therefore, the high-temperature liquid level detectors 66A to 66D are arranged in accordance with the control purpose because they are suitable for liquid level detection for prevention and stable supply of the hot concentrated solution Sh3 to the absorber A (see FIG. 1). It is preferable.

ここで一旦図1に戻り、吸収冷凍機1の説明を続ける。凝縮器Cは、低温再生器G1で蒸発した低温冷媒蒸気Vs1を導入し凝縮して低温凝縮冷媒Vf1とする装置である。凝縮器Cは低温再生器G1と共に1つの缶胴内にシェルアンドチューブ型に形成され、両者の間には仕切壁が設けられている。凝縮器Cは低温再生器G1と仕切壁の上部で連通しており、低温再生器G1から低温冷媒蒸気Vs1を導入することができるように構成されている。凝縮器Cの内部には、低温冷媒蒸気Vs1と中温凝縮冷媒Vf2を冷却するための冷却水qを流す冷却水管C1が配設されている。また、凝縮器Cには、低温再生器G1で凝縮した中温凝縮冷媒Vf2を導入する中温凝縮冷媒管57が接続されている。凝縮器Cには、低温冷媒蒸気Vs1が凝縮した低温凝縮冷媒Vf1と冷却された中温凝縮冷媒Vf2とが混合した冷媒液Vfを蒸発器Eに向けて導出する低温凝縮冷媒管58が接続されている。   Here, returning to FIG. 1, the description of the absorption refrigerator 1 will be continued. The condenser C is a device that introduces and condenses the low-temperature refrigerant vapor Vs1 evaporated in the low-temperature regenerator G1 to form a low-temperature condensed refrigerant Vf1. The condenser C is formed in a shell and tube type in one can body together with the low temperature regenerator G1, and a partition wall is provided between the two. The condenser C communicates with the low temperature regenerator G1 at the upper part of the partition wall, and is configured so that the low temperature refrigerant vapor Vs1 can be introduced from the low temperature regenerator G1. Inside the condenser C, a cooling water pipe C1 through which the cooling water q for cooling the low-temperature refrigerant vapor Vs1 and the medium-temperature condensed refrigerant Vf2 is disposed. The condenser C is connected to an intermediate temperature condensed refrigerant pipe 57 for introducing the intermediate temperature condensed refrigerant Vf2 condensed by the low temperature regenerator G1. The condenser C is connected to a low-temperature condensing refrigerant pipe 58 for deriving a refrigerant liquid Vf, which is a mixture of the low-temperature condensing refrigerant Vf1 condensed with the low-temperature refrigerant vapor Vs1 and the cooled intermediate-temperature condensing refrigerant Vf2, toward the evaporator E. Yes.

蒸発器Eは、凝縮器Cから冷媒液Vfを導入して被冷却媒体pの熱で冷媒液Vfを蒸発させる装置である。蒸発器Eの内部には、被冷却媒体pを流す冷水管74が配設されている。蒸発器E内の冷水管74の上部には、冷媒液Vfを散布するための冷媒液散布ノズル75が配設されている。蒸発器Eの下部は、導入した冷媒液Vfを貯留する貯留部76となっている。貯留部76には貯留されている冷媒液Vfを上部の冷媒液散水ノズル75に導く循環冷媒管59が接続されている。循環冷媒管59には、貯留部76に貯留している冷媒液Vfを冷媒液散水ノズル75に圧送する循環ポンプ14が配設されている。蒸発器Eは吸収器Aと共に1つの缶胴内にシェルアンドチューブ型に形成され、両者の間には仕切壁が設けられている。蒸発器Eは吸収器Aと仕切壁の上部で連通しており、蒸発器Eで蒸発した冷媒蒸気Vsを吸収器Aに移動させることができるように構成されている。   The evaporator E is a device that introduces the refrigerant liquid Vf from the condenser C and evaporates the refrigerant liquid Vf with the heat of the medium to be cooled p. Inside the evaporator E, a cold water pipe 74 through which the medium to be cooled p flows is disposed. In the upper part of the cold water pipe 74 in the evaporator E, a refrigerant liquid spraying nozzle 75 for spraying the refrigerant liquid Vf is disposed. The lower part of the evaporator E is a storage part 76 that stores the introduced refrigerant liquid Vf. A circulating refrigerant pipe 59 that guides the stored refrigerant liquid Vf to the upper refrigerant liquid spray nozzle 75 is connected to the storage section 76. The circulating refrigerant pipe 59 is provided with a circulating pump 14 that pumps the refrigerant liquid Vf stored in the storage unit 76 to the refrigerant liquid sprinkling nozzle 75. The evaporator E and the absorber A are formed in a shell and tube type in one can body, and a partition wall is provided between the two. The evaporator E communicates with the absorber A at the upper part of the partition wall, and is configured so that the refrigerant vapor Vs evaporated by the evaporator E can be moved to the absorber A.

中温溶液ポンプ12は、吸収器Aから希溶液Swを中温再生器G2及び低温再生器G1に送液するポンプである。中温溶液ポンプ12は、希溶液導出管42に配設されている。希溶液導出管42は中温再生器G2の希溶液散布ノズル52aに接続されている。中温溶液ポンプ12より下流側の希溶液導出管42からは希溶液管41が分岐しており、希溶液管41は低温再生器G1の希溶液散布ノズル51aに接続されている。中温溶液ポンプ12は、吸収器A内の希溶液Swを中温再生器G2に所定の圧力で送液できる程度の揚程を有していれば足り、中温再生器G2よりも圧力が高い高温再生器G3へ送液できる揚程は有していなくてもよい。このようにすると、中温溶液ポンプ12は過剰な揚程、流量のポンプとはならずに済む。中温溶液ポンプ12は、制御装置60との間に信号ケーブルが敷設されており、制御装置60からの信号を受信して回転速度を調節することにより、希溶液Swの吐出量を調節することができるように構成されている。なお、本実施の形態では、希溶液管41に、オリフィス18が配設されると共に、オリフィス18をバイパスするバイパス管17が設けられている。バイパス管17には流量調整弁16が配設されている。流量調整弁16、バイパス管17、オリフィス18は希溶液導入量調整手段の構成要素となっている。流量調整弁16を開くことで低温再生器G1への希溶液Swの供給量が増加し、低温再生器溶液溜まり21に所定の液面を確保することができ、高温溶液ポンプ13のキャビテーションによる故障等を回避することができる。流量調整弁16は、信号ケーブルで制御装置60と接続されている。   The intermediate temperature solution pump 12 is a pump that sends the dilute solution Sw from the absorber A to the intermediate temperature regenerator G2 and the low temperature regenerator G1. The intermediate temperature solution pump 12 is disposed in the dilute solution outlet pipe 42. The dilute solution outlet tube 42 is connected to the dilute solution spray nozzle 52a of the intermediate temperature regenerator G2. A dilute solution pipe 41 is branched from a dilute solution outlet pipe 42 downstream of the intermediate temperature solution pump 12, and the dilute solution pipe 41 is connected to a dilute solution spray nozzle 51a of the low temperature regenerator G1. The intermediate temperature solution pump 12 only needs to have a lift that can feed the dilute solution Sw in the absorber A to the intermediate temperature regenerator G2 at a predetermined pressure. The high temperature regenerator has a higher pressure than the intermediate temperature regenerator G2. It is not necessary to have a head that can send liquid to G3. In this way, the intermediate temperature solution pump 12 does not have to be an excessively high head and flow rate pump. The intermediate temperature solution pump 12 is provided with a signal cable between the control device 60 and the discharge amount of the dilute solution Sw can be adjusted by receiving the signal from the control device 60 and adjusting the rotation speed. It is configured to be able to. In the present embodiment, the dilute solution pipe 41 is provided with the orifice 18 and the bypass pipe 17 that bypasses the orifice 18. A flow rate adjusting valve 16 is disposed in the bypass pipe 17. The flow rate adjusting valve 16, the bypass pipe 17, and the orifice 18 are constituent elements of the diluted solution introduction amount adjusting means. By opening the flow rate adjusting valve 16, the supply amount of the dilute solution Sw to the low temperature regenerator G1 is increased, a predetermined liquid level can be secured in the low temperature regenerator solution reservoir 21, and the high temperature solution pump 13 is damaged due to cavitation. Etc. can be avoided. The flow regulating valve 16 is connected to the control device 60 by a signal cable.

高温溶液ポンプ13は、低温再生器G1から低温濃溶液Sh1を高温再生器G3に送液するポンプである。高温溶液ポンプ13は、低温濃溶液管43に配設されている。低温濃溶液管43は高温再生器G3の下部管寄せ82(図2参照)に接続されている。高温溶液ポンプ13は、低温再生器G1内の低温濃溶液Sh1を高温再生器G3に所定の圧力で送液できる揚程を有している。高温溶液ポンプ13は、制御装置60との間に信号ケーブルが敷設されており、制御装置60からの信号を受信して回転速度を調節することにより、低温濃溶液Sh1の吐出量を調節することができるように構成されている。   The high temperature solution pump 13 is a pump that sends the low temperature concentrated solution Sh1 from the low temperature regenerator G1 to the high temperature regenerator G3. The high temperature solution pump 13 is disposed in the low temperature concentrated solution tube 43. The low temperature concentrated solution tube 43 is connected to the lower header 82 (see FIG. 2) of the high temperature regenerator G3. The high temperature solution pump 13 has a head that can send the low temperature concentrated solution Sh1 in the low temperature regenerator G1 to the high temperature regenerator G3 at a predetermined pressure. The high-temperature solution pump 13 has a signal cable laid between the control device 60 and receives the signal from the control device 60 to adjust the rotation speed, thereby adjusting the discharge amount of the low-temperature concentrated solution Sh1. It is configured to be able to.

低温溶液熱交換器31は、オーバーフロー堰21aを越えて吸収器Aに向かう低温濃溶液Sh1、中温濃溶液Sh2、及び高温濃溶液Sh3が混合した濃溶液Sと、低温再生器G1及び中温再生器G2に送る希溶液Swとの間で熱交換させる機器である。低温溶液熱交換器31は、典型的にはプレート型熱交換器が用いられるがシェルアンドチューブ型やその他の熱交換器を用いてもよい。低温溶液熱交換器31は、希溶液管41が分岐する前の希溶液導出管42と、中温濃溶液導出管45及び高温濃溶液導出管46が接続された後の低温濃溶液導出管44とに配設されている。   The low-temperature solution heat exchanger 31 includes a concentrated solution S in which a low-temperature concentrated solution Sh1, an intermediate-temperature concentrated solution Sh2, and a high-temperature concentrated solution Sh3 are mixed, the low-temperature regenerator G1, and the intermediate-temperature regenerator. This is a device that exchanges heat with the dilute solution Sw sent to G2. The low temperature solution heat exchanger 31 is typically a plate type heat exchanger, but a shell and tube type or other heat exchangers may be used. The low temperature solution heat exchanger 31 includes a dilute solution outlet tube 42 before the dilute solution tube 41 branches, a low temperature concentrated solution outlet tube 44 after the intermediate temperature concentrated solution outlet tube 45 and the hot concentrated solution outlet tube 46 are connected. It is arranged.

中温溶液熱交換器32は、中温濃溶液Sh2と中温再生器G2に送る希溶液Swとの間で熱交換させる機器である。中温溶液熱交換器32は、中温再生器溶液溜まり22よりも下方に配設されている。中温溶液熱交換器32は、典型的にはプレート型熱交換器が用いられるがシェルアンドチューブ型やその他の熱交換器を用いてもよい。中温溶液熱交換器32は、希溶液管41が分岐した後の希溶液導出管42と、中温濃溶液導出管45とに配設されている。   The intermediate temperature solution heat exchanger 32 is a device that exchanges heat between the intermediate temperature concentrated solution Sh2 and the dilute solution Sw sent to the intermediate temperature regenerator G2. The intermediate temperature solution heat exchanger 32 is disposed below the intermediate temperature regenerator solution reservoir 22. The medium temperature solution heat exchanger 32 is typically a plate heat exchanger, but may be a shell and tube type or other heat exchanger. The intermediate temperature solution heat exchanger 32 is disposed in the diluted solution outlet tube 42 after the diluted solution tube 41 branches and the intermediate temperature concentrated solution outlet tube 45.

高温溶液熱交換器33は、高温濃溶液Sh3と高温再生器G3に送る低温濃溶液Sh1との間で熱交換させる機器である。高温溶液熱交換器33は、高温再生器溶液溜まり85(図2参照)よりも下方に配設されている。高温溶液熱交換器33は、典型的にはプレート型熱交換器が用いられるがシェルアンドチューブ型やその他の熱交換器を用いてもよい。高温溶液熱交換器33は、低温濃溶液管43と高温濃溶液導出管46とに配設されている。なお、高温溶液熱交換器33を複数に分割して並列もしくは直列に設置してもよい。分割して1台当たりの大きさを小さくすると、高温溶液熱交換器33が大気圧を超える圧力となる場合であっても、内容積を小さくして安全性を高め、圧力容器に関する法規制上の取扱いを含めてより簡便な取扱いにすることができる。   The high temperature solution heat exchanger 33 is a device that exchanges heat between the high temperature concentrated solution Sh3 and the low temperature concentrated solution Sh1 sent to the high temperature regenerator G3. The high temperature solution heat exchanger 33 is disposed below the high temperature regenerator solution reservoir 85 (see FIG. 2). The high temperature solution heat exchanger 33 is typically a plate heat exchanger, but may be a shell and tube type or other heat exchanger. The high temperature solution heat exchanger 33 is disposed in the low temperature concentrated solution tube 43 and the high temperature concentrated solution outlet tube 46. Note that the high-temperature solution heat exchanger 33 may be divided into a plurality of pieces and installed in parallel or in series. If the size per unit is reduced by dividing, even if the high-temperature solution heat exchanger 33 is at a pressure exceeding atmospheric pressure, the internal volume is reduced to increase safety and Can be handled more easily including

制御装置60は、圧力センサー62、63(図2参照)から圧力信号を受信し、また、各液面センサー66C(図2参照)、65、64から液面の信号を受信して、高温再生器溶液溜まり85(図2参照)の液面高さが第1の所定の液面高さとなるように、及び中温再生器溶液溜まり22の液面高さが第2の所定の液面高さとなるように、並びに低温再生器溶液溜まり21の液面高さが第3の所定の高さとなるように、高温溶液ポンプ13及び中温溶液ポンプ12並びに流量調整バルブ16に信号を送信し、高温溶液ポンプ13及び中温溶液ポンプ12の回転速度並びに流量調整バルブ16の開度をそれぞれ調節する装置である。第1の所定の液面は、高温再生器G3内の高温濃溶液Sh3が高温冷媒蒸気管54に混入しないように上限を設定し、高温溶液熱交換器33内の濃溶液Sh3が不足しないように下限を設定した液面であり、高温再生器溶液溜まり85(図2参照)にある、高位液面センサー66CHと低位液面センサー66CLとの間の液面である。また、第2の所定の液面は、中温再生器G2内の中温濃溶液Sh2が中温冷媒蒸気管55に流入しないように上限を設定し、中温溶液熱交換器32内の濃溶液Sh2が不足しないように下限を設定した液面であり、中温再生器溶液溜まり22内(又は中温液面検知器が65が中温再生器G2本体内に配設される場合は、中温再生器G2本体内)にある、高位液面センサー65Hと低位液面センサー65Lとの間の液面である。第3の所定の液面は、高温溶液ポンプ12にキャビテーションが発生しないように設定した液面である。   The control device 60 receives pressure signals from the pressure sensors 62 and 63 (see FIG. 2), and also receives liquid level signals from the liquid level sensors 66C (see FIG. 2), 65 and 64, and reproduces at a high temperature. The liquid level of the regenerator solution reservoir 85 (see FIG. 2) is the first predetermined liquid level, and the liquid level of the intermediate temperature regenerator solution reservoir 22 is the second predetermined liquid level. The high temperature solution pump 13, the intermediate temperature solution pump 12, and the flow rate adjustment valve 16 are transmitted so that the liquid level of the low temperature regenerator solution reservoir 21 becomes the third predetermined height. It is a device that adjusts the rotational speed of the pump 13 and the medium temperature solution pump 12 and the opening degree of the flow rate adjustment valve 16. The upper limit of the first predetermined liquid level is set so that the high temperature concentrated solution Sh3 in the high temperature regenerator G3 is not mixed into the high temperature refrigerant vapor pipe 54 so that the concentrated solution Sh3 in the high temperature solution heat exchanger 33 is not short. Is the liquid level between the high liquid level sensor 66CH and the low liquid level sensor 66CL in the high temperature regenerator solution reservoir 85 (see FIG. 2). Further, the upper limit of the second predetermined liquid level is set so that the intermediate temperature concentrated solution Sh2 in the intermediate temperature regenerator G2 does not flow into the intermediate temperature refrigerant vapor pipe 55, and the concentrated solution Sh2 in the intermediate temperature solution heat exchanger 32 is insufficient. In the medium temperature regenerator solution reservoir 22 (or in the case where the medium temperature liquid level detector 65 is provided in the medium temperature regenerator G2 main body) The liquid level between the high liquid level sensor 65H and the low liquid level sensor 65L. The third predetermined liquid level is a liquid level set so that cavitation does not occur in the high-temperature solution pump 12.

ここで再び図2を参照して、高温再生器G3の追加の構成について説明する。追加の構成は、制御機器の故障や溶液配管系の損傷、溶液ポンプ13(図1参照)の故障等により高温再生器G3が過熱等で損傷するのを防ぐための、備えていることが好ましい各種の安全保護機能である。   Here, referring again to FIG. 2, an additional configuration of the high-temperature regenerator G3 will be described. The additional configuration is preferably provided to prevent the high temperature regenerator G3 from being damaged due to overheating due to a failure of the control device, a damage of the solution piping system, a failure of the solution pump 13 (see FIG. 1), or the like. Various safety protection functions.

例えば、吸収冷凍機の運転中に高温再生器G3内の液位があらかじめ設定した安全下限液位より低下した場合に生じうる伝熱管83や管寄せ81、82の熱変形や過熱による損傷を防止するために、溶液の液位が安全下限液位より低下したことを検知する低液位検知器を、液位検出部99A内(低液位検知器91A)や伝熱管83内(低液位検知器91B)に設けるとよい。あるいは別途低液位検知器91A、91Bを設けずに、高温液面検知器66A、66B、66C、66Dの低位液面センサー66AL、66BL、66CL、66DLが所定時間接液がないことをもって溶液の液位が安全下限液位より低下したことを検知してもよい。   For example, the heat transfer pipe 83 and the headers 81 and 82, which may occur when the liquid level in the high-temperature regenerator G3 falls below a preset safety lower limit level during operation of the absorption refrigerator, is prevented from being damaged due to thermal deformation or overheating. Therefore, a low liquid level detector that detects that the liquid level of the solution has fallen below the safety lower limit liquid level is provided in the liquid level detector 99A (low liquid level detector 91A) or in the heat transfer tube 83 (low liquid level). It may be provided in the detector 91B). Alternatively, the low liquid level detectors 91A, 91B are not provided separately, and the low liquid level sensors 66AL, 66BL, 66CL, 66DL of the high temperature liquid level detectors 66A, 66B, 66C, 66D are not in contact with the liquid for a predetermined time. It may be detected that the liquid level has fallen below the safety lower limit liquid level.

また、高温再生器G3の缶内圧力が安全上限圧力を超えて上昇した場合に缶内圧力を低下させるために、例えば気液分離器85に安全弁吐出管88を接続してここに安全弁89を配設するとよい。安全弁89の作動時に外部からの空気等が高温再生器G3内に漏れ込むと吸収冷凍機の真空状態が破壊されるため、安全弁89が作動して放出される冷媒蒸気Vs3は中温再生器G2(図1参照)や低温再生器G1(図1参照)、あるいは凝縮器C(図1参照)、もしくはこれらと連結した配管へ導かれるように構成するとよい。また、制御装置60(図1参照)と電気的に接続されていない安全弁89の作動を検知するため、安全弁吐出管88に、安全弁吐出管88内の圧力を検知する安全弁圧力検知器92や温度を検知する安全弁温度検知器93、もしくは安全弁吐出管88の振動を検知する安全弁振動検知器94を設けるとよい。安全弁圧力検知器92、安全弁温度検知器93、安全弁振動検知器94は、いずれか1つもしくは組み合わせて設置してもよく、信号ケーブルを介して制御装置60(図1参照)と接続される。   Further, in order to reduce the can internal pressure when the internal pressure of the high-temperature regenerator G3 exceeds the safe upper limit pressure, for example, a safety valve discharge pipe 88 is connected to the gas-liquid separator 85 and a safety valve 89 is provided here. It is good to arrange. If air or the like from the outside leaks into the high temperature regenerator G3 during the operation of the safety valve 89, the vacuum state of the absorption chiller is destroyed. Therefore, the refrigerant vapor Vs3 released by the operation of the safety valve 89 is the medium temperature regenerator G2 ( It may be configured to be guided to a low temperature regenerator G1 (see FIG. 1), a condenser C (see FIG. 1), or a pipe connected thereto. In addition, in order to detect the operation of the safety valve 89 that is not electrically connected to the control device 60 (see FIG. 1), a safety valve pressure detector 92 that detects the pressure in the safety valve discharge pipe 88 and a temperature A safety valve temperature detector 93 for detecting the vibration or a safety valve vibration detector 94 for detecting the vibration of the safety valve discharge pipe 88 may be provided. The safety valve pressure detector 92, the safety valve temperature detector 93, and the safety valve vibration detector 94 may be installed either alone or in combination, and are connected to the control device 60 (see FIG. 1) via a signal cable.

また、高温再生器G3の缶体の温度が過熱状態となった場合に生じうる熱変形や過熱による損傷を防止するために、缶体表面の温度を検知する表面温度検知器を、上部管寄せ81表面(表面温度検知器95A)や伝熱管83表面(表面温度検知器95B)、又は下部管寄せ82表面(表面温度検知器95C)に設けるとよい。あるいは、過熱状態を検知するために、上部管寄せ81内の高温濃溶液Sh3の温度を検知する缶内温度検知器96Aや、下部管寄せ82内の希溶液Swの温度を検知する缶内温度検知器96Bを設けてもよい。表面温度検知器95A〜95C、缶内温度検知器96A、96Bは、信号ケーブルを介して制御装置60と接続される。   Further, in order to prevent thermal deformation or damage due to overheating that may occur when the temperature of the high temperature regenerator G3 is overheated, a surface temperature detector for detecting the temperature of the can body surface is provided in the upper header. It may be provided on the 81 surface (surface temperature detector 95A), the heat transfer tube 83 surface (surface temperature detector 95B), or the lower header 82 surface (surface temperature detector 95C). Alternatively, in order to detect an overheated state, an in-can temperature detector 96A that detects the temperature of the hot concentrated solution Sh3 in the upper header 81, or an in-can temperature that detects the temperature of the dilute solution Sw in the lower header 82. A detector 96B may be provided. The surface temperature detectors 95A to 95C and the in-can temperature detectors 96A and 96B are connected to the control device 60 via a signal cable.

また、燃焼装置の故障等で煤が発生することにより排ガスeの温度が安全上限を超えて上昇した場合に燃焼を停止するために、排ガス管97に排ガス温度検知器98を設けるとよい。排ガス温度検知器98は、信号ケーブルを介して制御装置60(図1参照)と接続される。   Further, an exhaust gas temperature detector 98 is preferably provided in the exhaust gas pipe 97 in order to stop combustion when the temperature of the exhaust gas e rises above the upper limit of safety due to the occurrence of soot due to a failure of the combustion device or the like. The exhaust gas temperature detector 98 is connected to the control device 60 (see FIG. 1) via a signal cable.

引き続き図1及び図2(高温再生器G3の説明)を参照して、吸収冷凍機1のサイクルを説明する。まず、冷媒側のサイクルを説明する。凝縮器Cでは、低温再生器G1で蒸発した低温冷媒蒸気Vs1を受け入れて、冷却塔(不図示)から供給された、冷却水管C1を流れる冷却水qで冷却して凝縮し、冷媒液Vf1とする。凝縮した冷媒液Vf1は、冷却水管C1を流れる冷却水qで冷却された中温凝縮冷媒Vf2と混合されて冷媒液Vfとなって蒸発器Eへと送られ、貯留部76に冷媒液Vfとして貯留される。あるいは、凝縮器Cから蒸発器Eへ送られる冷媒液Vfは、循環ポンプ14で圧送される冷媒液Vfと合流し、冷媒液散布ノズル75によって冷水管74に散布されてから貯留部76に貯留されてもよい。貯留部76に貯留された冷媒液Vfは、循環ポンプ14により冷媒液散布ノズル75に送液される。蒸発器Eの冷媒液Vfが冷媒液散布ノズル75から冷水管74に散布されると、冷媒液Vfは冷水管74内の被冷却媒体pから熱を受けて蒸発する一方、被冷却媒体pは冷やされる。冷やされた被冷却媒体pは冷熱を利用する場所(不図示)に送られて使われる。他方、蒸発器Eで蒸発した冷媒液Vfは冷媒蒸気Vsとなって、連通している吸収器Aへと移動する。   The cycle of the absorption refrigerator 1 will be described with reference to FIGS. 1 and 2 (explanation of the high temperature regenerator G3). First, the refrigerant side cycle will be described. In the condenser C, the low-temperature refrigerant vapor Vs1 evaporated in the low-temperature regenerator G1 is received, cooled by the cooling water q flowing through the cooling water pipe C1 supplied from the cooling tower (not shown), and condensed, and the refrigerant liquid Vf1 and To do. The condensed refrigerant liquid Vf1 is mixed with the medium temperature condensed refrigerant Vf2 cooled by the cooling water q flowing through the cooling water pipe C1 to be sent to the evaporator E as the refrigerant liquid Vf, and stored in the storage unit 76 as the refrigerant liquid Vf. Is done. Alternatively, the refrigerant liquid Vf sent from the condenser C to the evaporator E merges with the refrigerant liquid Vf pumped by the circulation pump 14, and is sprayed on the cold water pipe 74 by the refrigerant liquid spray nozzle 75 and then stored in the storage unit 76. May be. The refrigerant liquid Vf stored in the storage unit 76 is sent to the refrigerant liquid spray nozzle 75 by the circulation pump 14. When the refrigerant liquid Vf of the evaporator E is sprayed from the refrigerant liquid spray nozzle 75 to the cold water pipe 74, the refrigerant liquid Vf is evaporated by receiving heat from the medium to be cooled p in the cold water pipe 74, while the medium to be cooled p is Chilled. The cooled medium p to be cooled is sent to a place (not shown) where cold heat is used. On the other hand, the refrigerant liquid Vf evaporated by the evaporator E becomes the refrigerant vapor Vs and moves to the absorber A in communication.

次に溶液側のサイクルを説明する。吸収器Aでは、高濃度の溶液Sが濃溶液散布ノズル72から散布され、蒸発器Eで発生した冷媒蒸気Vsを溶液Sが吸収して希溶液Swとなる。希溶液Swは、貯留部73に貯留される。溶液Sが冷媒蒸気Vsを吸収する際に発生する吸収熱は、冷却水管71を流れる冷却水qによって除去される。本実施の形態における冷却水qは、凝縮器Cで使われたものを冷却水管71に導入し、吸収熱を奪って温度が上昇した冷却水は冷却塔(不図示)に送られて空冷される。特に、三重効用吸収冷凍機では高温再生器の圧力が高くなるので、本実施の形態のように、冷却水qを凝縮器Cで利用してから吸収器Aに導くことで低温再生器G1内の圧力の上昇を抑制し、ひいては高温再生器G3内の圧力の上昇を抑制することができる。しかしながら、吸収器Aで利用した後に凝縮器Cに導いてもよい。この場合は、吸収器Aの性能を上げることができる。また、冷却水qを凝縮器C及び吸収器Aにそれぞれ別々に導いてもよい。この場合は、高温再生器G3内の圧力の上昇を抑制しつつ吸収器Aの性能を上げることが可能となる。   Next, the solution side cycle will be described. In the absorber A, a high-concentration solution S is sprayed from the concentrated solution spray nozzle 72, and the solution S absorbs the refrigerant vapor Vs generated in the evaporator E to become a dilute solution Sw. The dilute solution Sw is stored in the storage unit 73. Absorption heat generated when the solution S absorbs the refrigerant vapor Vs is removed by the cooling water q flowing through the cooling water pipe 71. In the present embodiment, the cooling water q used in the condenser C is introduced into the cooling water pipe 71, and the cooling water whose temperature has risen due to absorption heat is sent to a cooling tower (not shown) and air-cooled. The In particular, in the triple effect absorption refrigerator, the pressure of the high-temperature regenerator increases, so that the cooling water q is used in the condenser C and then guided to the absorber A as in the present embodiment, so that the inside of the low-temperature regenerator G1. The increase in pressure in the high-temperature regenerator G3 can be suppressed. However, it may be led to the condenser C after being used in the absorber A. In this case, the performance of the absorber A can be improved. Further, the cooling water q may be separately led to the condenser C and the absorber A. In this case, it is possible to improve the performance of the absorber A while suppressing an increase in pressure in the high temperature regenerator G3.

貯留部73の希溶液Swは、中温溶液ポンプ12で中温再生器G2及び低温再生器G1へ、それぞれ圧送される。なお、貯留部73に溜まった溶液を溶液循環ポンプ(不図示)により循環させて冷却水管71に散布する構成としてもよい。このようにすると、冷却水管71を溶液で十分に濡らすことができ、冷却水管71に接触する溶液の偏りを防止することができる。また、中温溶液ポンプ12が溶液循環ポンプを兼ねるように構成してもよい。この場合は、中温溶液ポンプ12と低温溶液熱交換器31との間の希溶液導出管42から配管を分岐して濃溶液散布ノズル72に接続するとよい。   The dilute solution Sw in the reservoir 73 is pumped to the intermediate temperature regenerator G2 and the low temperature regenerator G1 by the intermediate temperature solution pump 12, respectively. The solution stored in the storage unit 73 may be circulated by a solution circulation pump (not shown) and sprayed to the cooling water pipe 71. In this way, the cooling water pipe 71 can be sufficiently wetted with the solution, and the bias of the solution in contact with the cooling water pipe 71 can be prevented. Moreover, you may comprise so that the intermediate temperature solution pump 12 may serve as a solution circulation pump. In this case, a pipe may be branched from the dilute solution outlet pipe 42 between the intermediate temperature solution pump 12 and the low temperature solution heat exchanger 31 and connected to the concentrated solution spray nozzle 72.

希溶液導出管42を流れる希溶液Swは、まず低温溶液熱交換器31で各濃溶液Sh1〜Sh3が混合した濃溶液と熱交換して熱回収した後に分流し、一部は中温溶液熱交換器32へと導かれ、残りは低温再生器G1へと導かれる。中温溶液熱交換器32に導入された希溶液Swは、中温濃溶液Sh2と熱交換して熱回収し、温度が上昇した後に中温再生器G2に導入され、希溶液散布ノズル52aから散布される。希溶液散布ノズル52aから散布された希溶液Swは、加熱用蒸気管52を流れる高温冷媒蒸気Vs3によって加熱され、中温再生器G2内の希溶液Sw中の冷媒が蒸発して中温濃溶液Sh2となる。ここで、高温冷媒蒸気Vs3は高温再生器G3で蒸発した冷媒蒸気である。加熱用蒸気管52に供給される高温冷媒蒸気Vs3の流量は、高温再生器G3の作動条件によって変動しうる。中温再生器G2内で蒸発した中温冷媒蒸気Vs2は、低温再生器G1の加熱用蒸気管51に送られる。中温濃溶液Sh2は、高温冷媒蒸気Vs3からの受熱により温度が上昇しており、中温再生器溶液溜まり22に流入した後、重力及び中温再生器G2内の圧力により中温溶液熱交換器32に導入されて希溶液Swと熱交換して熱が回収され、低温濃溶液Sh1と高温濃溶液Sh3とが混合した溶液と合流する。ここで、高温濃溶液Sh3は、高温再生器G3から導出された濃溶液である。また、中温再生器G2で希溶液Swを加熱した高温冷媒蒸気Vs3は温度が低下して凝縮し、高温凝縮冷媒Vf3となって中温蒸発冷媒Vs2と合流する。中温蒸発冷媒Vs2と合流した高温凝縮冷媒Vf3は混ざり合って混合した冷媒蒸気Vmとなる。   The dilute solution Sw flowing through the dilute solution outlet tube 42 is first separated by heat exchange with the concentrated solution in which each of the concentrated solutions Sh1 to Sh3 is mixed in the low-temperature solution heat exchanger 31 and then divided. To the regenerator 32 and the remainder to the low temperature regenerator G1. The dilute solution Sw introduced into the intermediate temperature solution heat exchanger 32 is heat-recovered by exchanging heat with the intermediate temperature concentrated solution Sh2, and is introduced into the intermediate temperature regenerator G2 after the temperature rises, and is sprayed from the dilute solution spray nozzle 52a. . The dilute solution Sw sprayed from the dilute solution spray nozzle 52a is heated by the high-temperature refrigerant vapor Vs3 flowing through the heating steam pipe 52, and the refrigerant in the dilute solution Sw in the intermediate-temperature regenerator G2 evaporates to form the intermediate-temperature concentrated solution Sh2. Become. Here, the high-temperature refrigerant vapor Vs3 is the refrigerant vapor evaporated in the high-temperature regenerator G3. The flow rate of the high-temperature refrigerant vapor Vs3 supplied to the heating steam pipe 52 can vary depending on the operating conditions of the high-temperature regenerator G3. The intermediate temperature refrigerant vapor Vs2 evaporated in the intermediate temperature regenerator G2 is sent to the heating steam pipe 51 of the low temperature regenerator G1. The temperature of the medium temperature concentrated solution Sh2 rises due to heat received from the high-temperature refrigerant vapor Vs3. After flowing into the medium temperature regenerator solution reservoir 22, it is introduced into the medium temperature solution heat exchanger 32 by gravity and the pressure in the medium temperature regenerator G2. Then, heat is recovered by exchanging heat with the dilute solution Sw, and the heat is collected and merged with the mixed solution of the low temperature concentrated solution Sh1 and the high temperature concentrated solution Sh3. Here, the hot concentrated solution Sh3 is a concentrated solution derived from the high temperature regenerator G3. Further, the high-temperature refrigerant vapor Vs3 obtained by heating the dilute solution Sw in the intermediate-temperature regenerator G2 is condensed at a reduced temperature, and becomes the high-temperature condensed refrigerant Vf3 and merges with the intermediate-temperature evaporative refrigerant Vs2. The high-temperature condensing refrigerant Vf3 merged with the medium-temperature evaporating refrigerant Vs2 is mixed and becomes a mixed refrigerant vapor Vm.

低温溶液熱交換器31で温度が上昇した後に低温再生器G1に導かれた希溶液Swは、希溶液散布ノズル51aから散布される。希溶液散布ノズル51aから散布された希溶液Swは冷媒蒸気Vmによって加熱され、低温再生器G1内の希溶液Sw中の冷媒が蒸発して低温濃溶液Sh1となる。蒸発した低温冷媒蒸気Vs1は、凝縮器Cへと送られる。低温濃溶液Sh1は、冷媒蒸気Vmからの受熱により温度が上昇しており、一旦低温再生器溶液溜まり21に流入し、低温再生器溶液溜まり21内の液位が上昇してオーバーフロー堰21aを越えた分の低温濃溶液Sh1が重力及び低温再生器G1内の圧力により低温濃溶液導出管44を流れ、高温溶液熱交換器33を出た高温濃溶液Sh3及び中温溶液熱交換器32を出た中温濃溶液Sh2と合流した後に、低温溶液熱交換器31に導入されて希溶液Swと熱交換して熱が回収され、その後吸収器Aの濃溶液散布ノズル72から吸収器A内に散布される。   The dilute solution Sw introduced to the low temperature regenerator G1 after the temperature is raised by the low temperature solution heat exchanger 31 is sprayed from the dilute solution spray nozzle 51a. The dilute solution Sw sprayed from the dilute solution spray nozzle 51a is heated by the refrigerant vapor Vm, and the refrigerant in the dilute solution Sw in the low temperature regenerator G1 evaporates to become the low temperature concentrated solution Sh1. The evaporated low-temperature refrigerant vapor Vs1 is sent to the condenser C. The temperature of the low-temperature concentrated solution Sh1 has risen due to heat received from the refrigerant vapor Vm, and once flows into the low-temperature regenerator solution reservoir 21, the liquid level in the low-temperature regenerator solution reservoir 21 rises and exceeds the overflow weir 21a. A portion of the low-temperature concentrated solution Sh1 flows through the low-temperature concentrated solution outlet pipe 44 due to gravity and the pressure in the low-temperature regenerator G1, and exits the high-temperature concentrated solution Sh3 and the intermediate-temperature solution heat exchanger 32 that have exited the high-temperature solution heat exchanger 33. After joining with the medium temperature concentrated solution Sh2, it is introduced into the low temperature solution heat exchanger 31 to exchange heat with the dilute solution Sw, and heat is recovered, and then sprayed into the absorber A from the concentrated solution spray nozzle 72 of the absorber A. The

低温再生器溶液溜まり21内の低温濃溶液Sh1は、低温濃溶液管43に導入される。低温濃溶液管43を流れる低温濃溶液Sh1は、高温溶液ポンプ13で圧送され、高温溶液熱交換器33で高温濃溶液Sh3と熱交換して熱回収し、温度が上昇した後に高温再生器G3に導入される。高温再生器G3に導入された低温濃溶液Sh1は、下部管寄せ82に導入され、高温溶液ポンプ13の圧力で複数の伝熱管83を通って上部管寄せ81に至る。このとき、バーナー84に空気とガス又は油を供給して燃焼させ、この燃焼の熱を加熱源として伝熱管83を通過する低温濃溶液Sh1を加熱して、低温濃溶液Sh1から冷媒を蒸発させる。伝熱管83で加熱された低温濃溶液Sh1からは冷媒蒸気が発生し、典型的には液面は伝熱管83内に維持されて、高温濃溶液Sh3と冷媒蒸気Vs3とが気液2相流(混相流)の状態で配管86を通って気液分離器85に流入する。気液分離器85では、上部から冷媒蒸気Vs3が導出され、中温再生器G2の加熱用蒸気管52に送られる。気液分離器85の下部からは、高温濃溶液Sh3の一部が下部管寄せ82に戻され、残りが高温濃溶液導出管46から吸収器Aに向けて導出される。高温濃溶液導出管46に導出された高温濃溶液Sh3は、バーナー84における燃焼熱からの受熱により温度が上昇しており、高温溶液熱交換器33に導入されて低温濃溶液Sh1と熱交換して熱が回収され、低温再生器溶液溜まり21からオーバーフロー堰21aを越えて導出された低温濃溶液Sh1と合流する。高温再生器G3では、伝熱管83内で冷媒蒸気Vs3が発生し、上部管寄せ81を介して気液分離器85に流れる高温濃溶液Sh3の流量が低温再生器G1から高温溶液ポンプ13で供給される低温濃溶液Sh1の流量よりも大きいため、気液分離器85内の高温濃溶液Sh3の一部を下部管寄せ82に戻すこととしている。このように、三重効用吸収冷凍機では、高温再生器G3が大気圧以上となるので、高温再生器を貫流式ボイラとすることが好ましい。高温再生器G3の作動圧力及び作動温度は、吸収冷凍機1の冷凍負荷に応じて変動しうる。冷凍負荷の変動に対しては、典型的には、バーナー84に供給するガス又は油の量を制御バルブ(不図示)にて調節することにより対応する。供給するガス又は油の量が変動すると高温再生器G3の内圧が変動するため、作動する高温再生器G3の温度及び圧力も変動することとなる。   The low temperature concentrated solution Sh1 in the low temperature regenerator solution reservoir 21 is introduced into the low temperature concentrated solution tube 43. The low-temperature concentrated solution Sh1 flowing through the low-temperature concentrated solution tube 43 is pumped by the high-temperature solution pump 13, and heat is recovered by exchanging heat with the high-temperature concentrated solution Sh3 by the high-temperature solution heat exchanger 33. After the temperature rises, the high-temperature regenerator G3 To be introduced. The low temperature concentrated solution Sh1 introduced into the high temperature regenerator G3 is introduced into the lower header 82, and reaches the upper header 81 through the plurality of heat transfer tubes 83 with the pressure of the high temperature solution pump 13. At this time, air and gas or oil are supplied to the burner 84 and burnt, and the low-temperature concentrated solution Sh1 passing through the heat transfer tube 83 is heated using the heat of combustion as a heat source to evaporate the refrigerant from the low-temperature concentrated solution Sh1. . Refrigerant vapor is generated from the low temperature concentrated solution Sh1 heated by the heat transfer tube 83. Typically, the liquid level is maintained in the heat transfer tube 83, and the high temperature concentrated solution Sh3 and the refrigerant vapor Vs3 are in a gas-liquid two-phase flow. It flows into the gas-liquid separator 85 through the pipe 86 in the state of (multiphase flow). In the gas-liquid separator 85, the refrigerant vapor Vs3 is derived from the upper part and sent to the heating vapor pipe 52 of the intermediate temperature regenerator G2. From the lower part of the gas-liquid separator 85, a part of the hot concentrated solution Sh3 is returned to the lower header 82, and the rest is led out from the hot concentrated solution outlet pipe 46 toward the absorber A. The temperature of the high temperature concentrated solution Sh3 led out to the high temperature concentrated solution outlet pipe 46 has risen due to heat received from the combustion heat in the burner 84, and is introduced into the high temperature solution heat exchanger 33 to exchange heat with the low temperature concentrated solution Sh1. Then, the heat is recovered and merged with the low temperature concentrated solution Sh1 derived from the low temperature regenerator solution reservoir 21 through the overflow weir 21a. In the high temperature regenerator G3, refrigerant vapor Vs3 is generated in the heat transfer pipe 83, and the flow rate of the hot concentrated solution Sh3 flowing to the gas-liquid separator 85 through the upper header 81 is supplied from the low temperature regenerator G1 by the high temperature solution pump 13. Since the flow rate of the low-temperature concentrated solution Sh <b> 1 is larger, a part of the high-temperature concentrated solution Sh <b> 3 in the gas-liquid separator 85 is returned to the lower header 82. Thus, in the triple effect absorption refrigerator, since the high temperature regenerator G3 is at atmospheric pressure or higher, it is preferable that the high temperature regenerator is a once-through boiler. The operating pressure and operating temperature of the high-temperature regenerator G3 can vary depending on the refrigeration load of the absorption refrigerator 1. Typically, the fluctuation of the refrigeration load is dealt with by adjusting the amount of gas or oil supplied to the burner 84 with a control valve (not shown). When the amount of gas or oil supplied varies, the internal pressure of the high temperature regenerator G3 varies, so the temperature and pressure of the operating high temperature regenerator G3 also vary.

なお、高温再生器G3が各種の安全保護機能を備える場合は、以下のように作用する。低液位検知器91A、91Bや高温液面検知器66A、66B、66C、66Dを備える場合において、検知器91A、91Bでの液面が低下し液面未検知となるか、検知器66A、66B、66C、66Dの低位液面センサー66AL、66BL、66CL、66DLが所定時間接液しないときには、制御装置60に信号を送信し、信号を受信した制御装置60は、警報装置(不図示)に信号を送信して警報を発すると共にバーナー84への燃料の供給を燃料バルブ(不図示)を閉じるなどして停止させ、バーナー84での燃焼を緊急停止させる。   In addition, when the high temperature regenerator G3 is provided with various safety protection functions, it operates as follows. In the case where the low liquid level detectors 91A and 91B and the high temperature liquid level detectors 66A, 66B, 66C and 66D are provided, the liquid level at the detectors 91A and 91B decreases and the liquid level is not detected, or the detector 66A, When the lower liquid level sensors 66AL, 66BL, 66CL, 66DL of 66B, 66C, 66D do not contact with liquid for a predetermined time, a signal is transmitted to the control device 60, and the control device 60 that has received the signal sends an alarm device (not shown). A signal is transmitted to issue an alarm and fuel supply to the burner 84 is stopped by closing a fuel valve (not shown) or the like, and combustion in the burner 84 is stopped urgently.

また、安全弁89を備える場合において、高温再生器G3の缶内圧力が安全上限圧力を超えて上昇したら安全弁89が作動する。安全弁89は機械的に作動するため、安全弁89が作動したか否かを安全弁圧力検知器92、安全弁温度検知器93、安全弁振動検知器94で検知する。各検知器92、93、94は制御装置60に随時信号を送信する。安全弁圧力検知器92を備える場合は検知した圧力があらかじめ設定した安全上限値に達したときに、また、安全弁温度検知器93を備える場合は検知した温度があらかじめ設定した安全上限値に達したときに、安全弁89が作動したと判断して、制御装置60は警報装置(不図示)に信号を送信して警報を発すると共にバーナー84への燃料の供給を燃料バルブ(不図示)を閉じるなどして停止させ、バーナー84での燃焼を緊急停止させる。また、安全弁振動検知器94を備える場合は、検知した振動値があらかじめ設定した値に達したときに、安全弁89の作動により冷媒蒸気Vs3が吹き出して安全弁吐出管88に強度の振動が生じたものと判断して、制御装置60は警報装置(不図示)に信号を送信して警報を発すると共にバーナー84への燃料の供給を燃料バルブ(不図示)を閉じるなどして停止させ、バーナー84での燃焼を緊急停止させる。   In the case where the safety valve 89 is provided, the safety valve 89 is activated when the internal pressure of the high-temperature regenerator G3 rises above the safety upper limit pressure. Since the safety valve 89 is mechanically operated, the safety valve pressure detector 92, the safety valve temperature detector 93, and the safety valve vibration detector 94 detect whether the safety valve 89 has been operated. Each detector 92, 93, 94 transmits a signal to the control device 60 as needed. When the safety valve pressure detector 92 is provided, when the detected pressure reaches the preset safety upper limit value, and when the safety valve temperature detector 93 is provided, the detected temperature reaches the preset safety upper limit value. In addition, it is determined that the safety valve 89 has been activated, and the control device 60 transmits a signal to an alarm device (not shown) to issue an alarm and close the fuel valve (not shown) to supply fuel to the burner 84. To stop the combustion in the burner 84 urgently. Further, when the safety valve vibration detector 94 is provided, when the detected vibration value reaches a preset value, the safety valve 89 is actuated to blow out the refrigerant vapor Vs3, and the safety valve discharge pipe 88 is vibrated with high intensity. Therefore, the control device 60 transmits a signal to an alarm device (not shown) to give an alarm and stop the supply of fuel to the burner 84 by closing a fuel valve (not shown). Emergency stop the combustion.

また、表面温度検知器95A、95Bや缶内温度検知器96A、96Bを備える場合において、各検知器95A、95B、96A、96Bは制御装置60に随時信号を送信し、信号を受信した制御装置60は、あらかじめ設定した安全上限温度以上の温度と判断したら、警報装置(不図示)に信号を送信して警報を発すると共にバーナー84への燃料の供給を燃料バルブ(不図示)を閉じるなどして停止させ、バーナー84での燃焼を緊急停止させる。   Further, when the surface temperature detectors 95A and 95B and the in-can temperature detectors 96A and 96B are provided, the detectors 95A, 95B, 96A, and 96B transmit signals to the control device 60 as needed, and the control devices that have received the signals. When it is determined that the temperature is equal to or higher than a preset safety upper limit temperature, 60 sends a signal to an alarm device (not shown) to issue an alarm and close the fuel valve (not shown) to supply fuel to the burner 84. To stop the combustion in the burner 84 urgently.

また、排ガス温度検知器98を備える場合において、排ガス温度検知器98は制御装置60に随時信号を送信し、信号を受信した制御装置60は、あらかじめ設定した安全上限温度以上の温度になると異常燃焼を判断し、警報装置(不図示)に信号を送信して警報を発すると共にバーナー84への燃料の供給を燃料バルブ(不図示)を閉じるなどして停止させ、バーナー84での燃焼を緊急停止させる。   Further, when the exhaust gas temperature detector 98 is provided, the exhaust gas temperature detector 98 transmits a signal to the control device 60 as needed, and the control device 60 that receives the signal abnormally burns when the temperature reaches a preset safety upper limit temperature or higher. Is sent to a warning device (not shown) to issue a warning, and the fuel supply to the burner 84 is stopped by closing the fuel valve (not shown), etc., and the combustion in the burner 84 is stopped immediately. Let

上述した溶液のサイクルにおいて、各再生器G1〜G3は溶液が混ざっていない冷媒蒸気を次工程に供給し、また、溶液熱交換器31〜33内の濃溶液が不足することによる熱交換効率の低下及び各再生器G1〜G3の伝熱面の過熱を防ぐために、各再生器G1〜G3内の濃溶液の液面を一定にすることが望ましい。ここでいう「一定」は、上述の趣旨に鑑みて、所定の幅があってもよい。上述のように、各再生器G1〜G3は冷凍負荷の変動に対応したガス又は油の供給量の変動に伴い内圧が変動する。各再生器G1〜G3の内圧が変動すると各溶液ポンプ12、13のヘッドが変動し、各再生器G1〜G3の内圧が変動する前の溶液ポンプ12、13の回転速度を維持していると各再生器G1〜G3内の濃溶液の液面を一定に維持することができないという事態が生じうる。そこで吸収冷凍機1は、各再生器G1〜G3内の濃溶液の液面を一定にするために、制御装置60により、以下のような制御を行う。   In the solution cycle described above, each of the regenerators G1 to G3 supplies the refrigerant vapor not mixed with the solution to the next process, and the heat exchange efficiency due to the lack of the concentrated solution in the solution heat exchangers 31 to 33. In order to prevent lowering and overheating of the heat transfer surfaces of the regenerators G1 to G3, it is desirable to make the liquid level of the concentrated solution in each of the regenerators G1 to G3 constant. “Constant” here may have a predetermined width in view of the above-mentioned purpose. As described above, each of the regenerators G1 to G3 has an internal pressure that fluctuates with a change in the supply amount of gas or oil corresponding to a change in the refrigeration load. When the internal pressures of the regenerators G1 to G3 change, the heads of the solution pumps 12 and 13 change, and the rotational speeds of the solution pumps 12 and 13 before the internal pressures of the regenerators G1 to G3 change are maintained. A situation may occur in which the liquid level of the concentrated solution in each of the regenerators G1 to G3 cannot be maintained constant. Therefore, the absorption refrigerator 1 performs the following control by the control device 60 in order to make the liquid level of the concentrated solution in each of the regenerators G1 to G3 constant.

高温再生器G3内の高温濃溶液Sh3の液面高さを一定にするために、高温溶液ポンプ13は、圧力センサー63で検知した圧力に応じて吐出量を調節する。吐出量の調節は典型的には高温溶液ポンプ13の回転速度を調節することにより行う。回転速度の調節により吐出量を調節すると、バルブ等で絞る場合と比べて消費動力が削減できるので好ましい。圧力センサー63で検知した圧力に応じて吐出量を調節することは、典型的には、高温再生器G3内の圧力を検知し、あらかじめ求めておいた第1の所定の液面を維持するのに必要なポンプ回転速度と高温再生器G3内圧力との関係に基づいて、検知した高温再生器G3内の圧力に応じたポンプ回転速度で高温溶液ポンプ13を運転することにより行う。高温再生器G3内の液面高さである、気液分離器85又は伝熱管83内の液面高さは、高温再生器G3内の圧力と相関関係がある。すなわち、ガス又は油の供給量が増加する等して、高温再生器G3内の圧力が上昇すると高温濃溶液Sh3の導出量が増えて液面が低下する。また高温溶液ポンプ13が遠心ポンプであれば、高温再生器G3内の圧力が上昇すると低温濃溶液Sh1の吐出量が減って液面が低下する。いずれにしても高温溶液ポンプ13の吐出量を調節する(吐出量を増やす、又は減った吐出量を増やして元に戻す)ことにより、液面を所定の値に制御することができる。なお、高温溶液ポンプ13の回転速度を、高温再生器G3の圧力と低温再生器G1の圧力との差圧に基づいて調節してもよい。このような差圧に基づく調節も圧力センサー63で検知された圧力に基づく調節に含まれる。   In order to make the liquid level height of the hot concentrated solution Sh3 in the high temperature regenerator G3 constant, the high temperature solution pump 13 adjusts the discharge amount according to the pressure detected by the pressure sensor 63. The discharge amount is typically adjusted by adjusting the rotational speed of the high-temperature solution pump 13. It is preferable to adjust the discharge amount by adjusting the rotation speed because power consumption can be reduced as compared with the case where the amount is reduced by a valve or the like. Adjusting the discharge amount according to the pressure detected by the pressure sensor 63 typically detects the pressure in the high-temperature regenerator G3 and maintains the first predetermined liquid level obtained in advance. The high temperature solution pump 13 is operated at a pump rotation speed corresponding to the detected pressure in the high temperature regenerator G3 based on the relationship between the pump rotation speed necessary for the operation and the pressure in the high temperature regenerator G3. The liquid level in the gas-liquid separator 85 or the heat transfer tube 83, which is the liquid level in the high temperature regenerator G3, has a correlation with the pressure in the high temperature regenerator G3. That is, when the pressure in the high temperature regenerator G3 increases due to an increase in the amount of gas or oil supplied, the amount of the high temperature concentrated solution Sh3 derived increases and the liquid level decreases. If the high-temperature solution pump 13 is a centrifugal pump, when the pressure in the high-temperature regenerator G3 increases, the discharge amount of the low-temperature concentrated solution Sh1 decreases and the liquid level decreases. In any case, the liquid level can be controlled to a predetermined value by adjusting the discharge amount of the high-temperature solution pump 13 (increasing the discharge amount or increasing the decreased discharge amount and returning it to the original value). The rotational speed of the high temperature solution pump 13 may be adjusted based on the pressure difference between the pressure of the high temperature regenerator G3 and the pressure of the low temperature regenerator G1. Such adjustment based on the differential pressure is also included in the adjustment based on the pressure detected by the pressure sensor 63.

仮に、吸収冷凍機1内の圧力バランスの変動が生じ、あらかじめ求めておいた第1の所定の液面を維持するのに必要な高温溶液ポンプ13の回転速度と高温再生器G3内圧力との関係に基づいて、検知した高温再生器G3内の圧力に応じたポンプ回転速度で高温溶液ポンプ13を運転しても第1の所定の液面を維持することができないときは、高温溶液ポンプ13の吐出量の修正を行うための液面の検知を、液面センサー66CH、66CL(場合によっては液面センサー66AH、66AL、66BH、66BL、66DH、66DL。以下、この段落において同じ。)によって行う。液面が下がって低位液面センサー66CLが液面未検知となったら、制御装置60は高温溶液ポンプ13に信号を送信し、回転速度を所定値だけ増加させる。逆に液面が上昇して高位液面センサー66CHが高位液面を検知したら、制御装置60は高温溶液ポンプ13に信号を送信し、回転速度を所定値だけ減少させる。そして、高位液面が未検知であり、低位液面が検知される場合、制御装置60は、あらかじめ求めておいた第1の所定の液面を維持するのに必要なポンプ回転速度と高温再生器G3内圧力との関係を修正する。この修正は、高位又は低位液面センサー66CH、66CLの作動により増減させた所定値に相当する回転速度分を修正する。修正することにより、液面センサー66CH、66CLの作動回数が少なくなるようにする。このようにして高温再生器G3内の高温濃溶液Sh3の液面高さを第1の所定の液面高さに維持し、高温冷媒蒸気Vs3への溶液の混入や、高温溶液熱交換器33に蒸気が混ざってしまういわゆる冷媒蒸気の吹き抜けを防いでいる。   If the pressure balance in the absorption refrigerator 1 fluctuates, the rotation speed of the high-temperature solution pump 13 and the internal pressure of the high-temperature regenerator G3 required to maintain the first predetermined liquid level obtained in advance are assumed. Based on the relationship, when the first predetermined liquid level cannot be maintained even when the high temperature solution pump 13 is operated at the pump rotation speed corresponding to the detected pressure in the high temperature regenerator G3, the high temperature solution pump 13 is used. The liquid level for correcting the discharge amount is detected by liquid level sensors 66CH and 66CL (in some cases, the liquid level sensors 66AH, 66AL, 66BH, 66BL, 66DH, and 66DL; the same applies in this paragraph). . When the liquid level falls and the low liquid level sensor 66CL has not detected the liquid level, the control device 60 sends a signal to the high temperature solution pump 13 to increase the rotation speed by a predetermined value. Conversely, when the liquid level rises and the high liquid level sensor 66CH detects the high liquid level, the control device 60 sends a signal to the high temperature solution pump 13 to decrease the rotation speed by a predetermined value. When the high liquid level is not detected and the low liquid level is detected, the control device 60 performs the pump rotation speed and high temperature regeneration necessary for maintaining the first predetermined liquid level obtained in advance. The relationship with the pressure in the vessel G3 is corrected. This correction corrects the rotational speed corresponding to a predetermined value increased or decreased by the operation of the high or low liquid level sensors 66CH and 66CL. By correcting, the number of times of operation of the liquid level sensors 66CH and 66CL is reduced. In this way, the liquid level of the high temperature concentrated solution Sh3 in the high temperature regenerator G3 is maintained at the first predetermined liquid level, so that the solution is mixed into the high temperature refrigerant vapor Vs3, or the high temperature solution heat exchanger 33. This prevents the so-called refrigerant vapor from being blown through.

中温再生器G2内の中温濃溶液Sh2の液面高さを一定にする場合も、高温再生器G3内の高温濃溶液Sh3の液面高さを一定にするための制御と同様の制御を行う。ただし、中温再生器G2内の中温濃溶液Sh2の液面高さを一定にする場合は、圧力センサー62で検知した圧力に応じて中温溶液ポンプ12の吐出量を調節し、第2の所定の液面を維持することができないときは、中温溶液ポンプ12の吐出量の修正を行うための液面の検知を、液面センサー65H、65Lによって行う。なお、中温溶液ポンプ12が中温再生器G2と低温再生器G1に並列に希溶液Swを送液しているが、希溶液管41に小さな圧力損失(例えばオリフィス18や制御弁等)を設けることにより、中温再生器G2内の中温濃溶液Sh2の液面を一定に制御することで低温再生器G1内の低温濃溶液Sh1の液面高さも、所定の範囲内で維持することができる。なお、中温溶液ポンプ12の回転速度を、中温再生器G2の圧力と吸収器Aの圧力との差圧に基づいて調節してもよい。このような差圧に基づく調節も圧力センサー62で検知された圧力に基づく調節に含まれる。   Even when the liquid level height of the medium temperature concentrated solution Sh2 in the medium temperature regenerator G2 is made constant, the same control as the control for making the liquid level height of the high temperature concentrated solution Sh3 in the high temperature regenerator G3 constant is performed. . However, when the liquid level height of the medium temperature concentrated solution Sh2 in the medium temperature regenerator G2 is made constant, the discharge amount of the medium temperature solution pump 12 is adjusted according to the pressure detected by the pressure sensor 62, and the second predetermined amount is set. When the liquid level cannot be maintained, the liquid level is detected by the liquid level sensors 65H and 65L to correct the discharge amount of the intermediate temperature solution pump 12. In addition, although the intermediate temperature solution pump 12 sends the dilute solution Sw in parallel to the intermediate temperature regenerator G2 and the low temperature regenerator G1, a small pressure loss (for example, an orifice 18 or a control valve) is provided in the dilute solution pipe 41. Thus, the liquid level of the low temperature concentrated solution Sh1 in the low temperature regenerator G1 can be maintained within a predetermined range by controlling the liquid level of the medium temperature concentrated solution Sh2 in the medium temperature regenerator G2 to be constant. The rotational speed of the intermediate temperature solution pump 12 may be adjusted based on the differential pressure between the pressure of the intermediate temperature regenerator G2 and the pressure of the absorber A. Such adjustment based on the differential pressure is also included in the adjustment based on the pressure detected by the pressure sensor 62.

なお、液面高さ制御は、各再生器G2、G3内の圧力を検知せずに、各再生器溶液溜まり22、85内の高位及び低位液面を液面センサー65H、65L、66CH、66CL等でそれぞれ検知して、それが所定の液面高さになるように各溶液ポンプ12、13の回転速度を調節することにより行ってもよい。また、液面の上下限の検知ではなく、例えばディスプレースメント型液面高さ検知器等の液面高さ検知器(不図示)を設けて調節器により連続的に制御してもよい。この場合、P制御又はPI制御とすると制御が安定するので好ましい。また、液面センサー65H、65L、66CH、66CL等を用いずに圧力検知器62、63のみで液面高さを制御してもよいが、あらかじめ求めておいた所定の液面を維持するのに必要な溶液ポンプの回転速度と高温再生器G3内圧力との関係に生じたズレを検知できない場合があるため、液面センサー65H、65L、66CH、66CL等を用いることが好ましい。   Note that the liquid level control is performed without detecting the pressure in each of the regenerators G2 and G3, and the high and low liquid levels in the regenerator solution reservoirs 22 and 85 are adjusted to the liquid level sensors 65H, 65L, 66CH, and 66CL. For example, the detection may be performed by adjusting the rotational speeds of the solution pumps 12 and 13 so that the liquid level becomes a predetermined liquid level. Further, instead of detecting the upper and lower limits of the liquid level, for example, a liquid level detector (not shown) such as a displacement type liquid level detector may be provided and continuously controlled by the adjuster. In this case, P control or PI control is preferable because the control is stable. Further, the liquid level may be controlled only by the pressure detectors 62 and 63 without using the liquid level sensors 65H, 65L, 66CH, 66CL, etc., but the predetermined liquid level obtained in advance is maintained. It is preferable to use liquid level sensors 65H, 65L, 66CH, 66CL, etc., because it may not be possible to detect a deviation caused by the relationship between the rotational speed of the solution pump required for the heating and the internal pressure of the high-temperature regenerator G3.

(再生器内圧力検知手段の変更)
なお、液面高さ制御を行うに際し、圧力センサー62、63の代わりに温度センサーを用いてもよい。
図3は、吸収冷凍機1の変形例に係る三重効用吸収冷凍機2(以下単に「吸収冷凍機2」という。)を示す系統図である。吸収冷凍機2では、圧力センサー63(図1参照)に代えて高温冷媒温度検知器としての温度センサー69を中温再生器G2の加熱用蒸気管52の出口近くの高温凝縮冷媒管56に設け、高温冷媒蒸気Vs3が凝縮した高温凝縮冷媒Vf3の温度を検知している。また、圧力センサー62(図1参照)に代えて中温冷媒温度検知器としての温度センサー68を中温凝縮冷媒管57に設け、中温冷媒蒸気Vs2が凝縮した中温凝縮冷媒Vf2の温度を検知している。各凝縮冷媒Vf3、Vf2の温度は、ほぼ飽和温度であるので、飽和温度を圧力に換算して、あらかじめ求めておいた所定の液面を維持するのに必要な溶液ポンプの回転速度と各再生器G2、G3内圧力との関係に基づいて、溶液ポンプ12、13の回転速度を調節することで所定の液面を維持することができる。なお、検知する温度は飽和温度であることが好ましいが、必ずしも飽和温度である必要はない。過冷却した冷媒の温度であっても、加熱用蒸気管51、52の出口近くの温度であれば実用上差し支えない。
(Change of regenerator pressure detection means)
In performing the liquid level control, a temperature sensor may be used instead of the pressure sensors 62 and 63.
FIG. 3 is a system diagram showing a triple effect absorption refrigerator 2 (hereinafter simply referred to as “absorption refrigerator 2”) according to a modification of the absorption refrigerator 1. In the absorption refrigerator 2, instead of the pressure sensor 63 (see FIG. 1), a temperature sensor 69 as a high-temperature refrigerant temperature detector is provided in the high-temperature condensing refrigerant pipe 56 near the outlet of the heating steam pipe 52 of the intermediate temperature regenerator G2. The temperature of the high-temperature condensed refrigerant Vf3 in which the high-temperature refrigerant vapor Vs3 is condensed is detected. Further, instead of the pressure sensor 62 (see FIG. 1), a temperature sensor 68 as an intermediate temperature refrigerant temperature detector is provided in the intermediate temperature condensed refrigerant pipe 57 to detect the temperature of the intermediate temperature condensed refrigerant Vf2 condensed by the intermediate temperature refrigerant vapor Vs2. . Since the temperatures of the respective condensed refrigerants Vf3 and Vf2 are substantially saturated temperatures, the rotation speed of each solution pump and each regeneration required to maintain the predetermined liquid level obtained in advance by converting the saturation temperature into pressure. The predetermined liquid level can be maintained by adjusting the rotation speed of the solution pumps 12 and 13 based on the relationship with the pressure in the vessels G2 and G3. In addition, although it is preferable that the temperature to detect is a saturation temperature, it does not necessarily need to be a saturation temperature. Even if it is the temperature of the supercooled refrigerant | coolant, if it is the temperature near the exit of the heating steam pipes 51 and 52, there is no problem in practical use.

また、吸収冷凍機2では、吸収器Aから低温再生器G1へ希溶液Swを流すための低温溶液ポンプ15を中温溶液ポンプ12とは別に備えており、希溶液管41に流量調整弁16、バイパス管17、オリフィス18(図1参照)を設けていない。低温溶液ポンプ15を別途設けると、過大な圧力損失を伴うことなく低温再生器G1への希溶液Swの導入量を調整することができる。低温溶液ポンプ15は、信号ケーブルで制御装置60と接続されている。吸収冷凍機2のその他の構成は吸収冷凍機1(図1参照)と同様である。なお、吸収冷凍機1に、低温溶液ポンプ15を設けて流量調整弁16、バイパス管17、オリフィス18を省略してもよく、逆に吸収冷凍機2に低温溶液ポンプ15の代わりに流量調整弁16、バイパス管17、オリフィス18を設けてもよい。また、低温溶液ポンプ15は、他の溶液ポンプ12、13と同じ要領で、低温再生器G1の圧力を基準として回転速度を設定し、オーバーフロー堰21aの下流部分の高位液面及び低位液面によって回転速度を修正するようにしてもよい。   In addition, the absorption refrigerator 2 includes a low temperature solution pump 15 for flowing the dilute solution Sw from the absorber A to the low temperature regenerator G1 separately from the intermediate temperature solution pump 12, and the dilute solution pipe 41 includes a flow rate adjusting valve 16, The bypass pipe 17 and the orifice 18 (see FIG. 1) are not provided. If the low temperature solution pump 15 is separately provided, the amount of the dilute solution Sw introduced into the low temperature regenerator G1 can be adjusted without excessive pressure loss. The cryogenic solution pump 15 is connected to the control device 60 by a signal cable. Other configurations of the absorption refrigerator 2 are the same as those of the absorption refrigerator 1 (see FIG. 1). It should be noted that the absorption refrigerator 1 may be provided with a low temperature solution pump 15 and the flow rate adjustment valve 16, the bypass pipe 17 and the orifice 18 may be omitted, and conversely, the absorption refrigerator 2 may have a flow rate adjustment valve instead of the low temperature solution pump 15. 16, a bypass pipe 17 and an orifice 18 may be provided. Further, the low temperature solution pump 15 sets the rotation speed based on the pressure of the low temperature regenerator G1 in the same manner as the other solution pumps 12 and 13, and depends on the high and low liquid levels in the downstream portion of the overflow weir 21a. The rotational speed may be corrected.

(吸収器と蒸発器の多段化)
以上の説明では、吸収器と蒸発器を単段の三重効用吸収冷凍機としたが、吸収器と蒸発器を多段の三重効用吸収冷凍機としてもよい。
図4は、吸収器及び蒸発器を多段とした三重効用吸収冷凍機3(以下単に「吸収冷凍機3」という。)を示す部分系統図である。吸収冷凍機3では、吸収器A(図1、3参照)を低段吸収器A1と高段吸収器A2の2段階に分割し、蒸発器E(図1、3参照)を低段蒸発器E1と高段蒸発器E2の2段階に分割しており、低段吸収器A1と低段蒸発器E1、及び高段吸収器A2と高段蒸発器E2をそれぞれ一対として独立したシェル内に設けている。そして、濃溶液は低段吸収器A1に導かれた後に高段吸収器A2に導かれ、被冷却媒体pはまず、高段蒸発器E2に導かれた後に低段蒸発器E1に導かれ、凝縮器Cを出た冷却水qは低段吸収器A1と高段吸収器A2とに並列に導かれるようにしたものである。その他の構成は吸収冷凍機1、2と同様である。このように吸収器Aと蒸発器Eを多段の三重効用吸収冷凍機とすると、希溶液Swの濃度を低くすることができ、低温再生器G1、中温再生器G2での沸騰温度を低下させ、高温再生器G3の温度及び圧力を低下させることができる。
(Multi-stage absorber and evaporator)
In the above description, the absorber and the evaporator are single-stage triple effect absorption refrigerators, but the absorber and the evaporator may be a multi-stage triple effect absorption refrigerator.
FIG. 4 is a partial system diagram showing a triple effect absorption refrigerator 3 (hereinafter simply referred to as “absorption refrigerator 3”) in which an absorber and an evaporator are provided in multiple stages. In the absorption refrigerator 3, the absorber A (see FIGS. 1 and 3) is divided into two stages, a low stage absorber A1 and a high stage absorber A2, and the evaporator E (see FIGS. 1 and 3) is divided into a low stage evaporator. E1 and the high-stage evaporator E2 are divided into two stages, and the low-stage absorber A1 and the low-stage evaporator E1, and the high-stage absorber A2 and the high-stage evaporator E2 are provided as a pair in independent shells. ing. Then, the concentrated solution is led to the high stage absorber A2 after being led to the low stage absorber A1, and the cooled medium p is first led to the high stage evaporator E2 and then to the low stage evaporator E1. The cooling water q exiting the condenser C is guided in parallel to the low stage absorber A1 and the high stage absorber A2. Other configurations are the same as those of the absorption refrigerators 1 and 2. Thus, when the absorber A and the evaporator E are multistage triple effect absorption refrigerators, the concentration of the dilute solution Sw can be lowered, and the boiling temperature in the low temperature regenerator G1 and the medium temperature regenerator G2 is lowered. The temperature and pressure of the high temperature regenerator G3 can be reduced.

(高温再生器の変形例)
また、高温再生器G3を図2に示すような構成ではなく、中温再生器G2と同様の構成としてもよい。
図5は、変形例に係る高温再生器G3’の図である。高温再生器G3’には、低温濃溶液Sh1を導入する低温濃溶液導入管53aが配設されている。また、高温再生器G3’は、ガスや油などを導入して燃焼させた燃焼ガスや蒸気発生ボイラ(不図示)から供給された蒸気、あるいは外部からの加熱源により低温濃溶液Sh1を加熱することができるように構成されている。図5に示す例では、高温再生器G3’には、低温濃溶液Sh1を加熱する加熱源としての加熱用蒸気rを流すための加熱用蒸気管53が下方に配設されている。加熱用蒸気管53は、低温濃溶液導入管53aから導入された低温濃溶液Sh1に没入した状態となっており、高温再生器G3’は、いわゆる満液式に構成されている。高温再生器G3’の上部には、加熱用蒸気rの熱で低温濃溶液Sh1から蒸発した高温冷媒蒸気Vs3を導出する高温冷媒蒸気管54が接続されている。高温再生器G3’には、高温再生器G3’内の圧力を検知する圧力検知器としての圧力センサー63が設けられている。圧力センサー63は、高温再生器G3内の圧力を検知することができればよいので、高温再生器G3’近傍の高温冷媒蒸気管54に設けられていてもよい。圧力センサー63は、信号ケーブルで制御装置60と接続されており、圧力センサー63で検知した圧力信号を制御装置60に送信することができるように構成されている。
(Modification of high temperature regenerator)
Further, the high temperature regenerator G3 may have the same configuration as the intermediate temperature regenerator G2 instead of the configuration shown in FIG.
FIG. 5 is a diagram of a high-temperature regenerator G3 ′ according to a modification. The high temperature regenerator G3 ′ is provided with a low temperature concentrated solution introduction pipe 53a for introducing the low temperature concentrated solution Sh1. The high-temperature regenerator G3 ′ heats the low-temperature concentrated solution Sh1 using combustion gas introduced from gas, oil, or the like and burned, steam supplied from a steam generation boiler (not shown), or an external heating source. It is configured to be able to. In the example shown in FIG. 5, the high temperature regenerator G3 ′ is provided with a heating steam pipe 53 for flowing a heating steam r as a heating source for heating the low temperature concentrated solution Sh1. The heating steam pipe 53 is immersed in the low temperature concentrated solution Sh1 introduced from the low temperature concentrated solution introduction pipe 53a, and the high temperature regenerator G3 ′ is configured as a so-called full liquid type. Connected to the upper part of the high-temperature regenerator G3 ′ is a high-temperature refrigerant vapor pipe 54 that leads out the high-temperature refrigerant vapor Vs3 evaporated from the low-temperature concentrated solution Sh1 by the heat of the heating vapor r. The high temperature regenerator G3 ′ is provided with a pressure sensor 63 as a pressure detector for detecting the pressure in the high temperature regenerator G3 ′. Since the pressure sensor 63 only needs to be able to detect the pressure in the high temperature regenerator G3, the pressure sensor 63 may be provided in the high temperature refrigerant vapor pipe 54 in the vicinity of the high temperature regenerator G3 ′. The pressure sensor 63 is connected to the control device 60 via a signal cable, and is configured to transmit a pressure signal detected by the pressure sensor 63 to the control device 60.

また、高温再生器G3’には、低温濃溶液Sh1中に没入している加熱用蒸気管53内を流れる加熱用蒸気rによって加熱されて低温濃溶液Sh1中から冷媒が蒸発し濃度が上昇した高温濃溶液Sh3を溜める高温再生器溶液溜まり23が設けられている。高温再生器溶液溜まり23は、典型的には、高温再生器G3’の下部が、高温再生器G3’の底部から上方に向かって垂直に延びる仕切板23aによって加熱用蒸気管53が配設された空間と仕切られることによって形成されている。この加熱用蒸気管53が配設された空間を、高温再生器G3’の本体ということとする。高温再生器溶液溜まり23の底部は、加熱用蒸気管53が配設された空間の高温再生器G3’の底部よりも下方になるように形成されている。高温再生器溶液溜まり23には、加熱用蒸気管53が配設された空間(本体)にある濃溶液Sh3のうちの仕切板23aを越えたものが流入するように構成されている。高温再生器溶液溜まり23は、典型的には、高温再生器G3’と一体となって形成されているが、例えば所定の容積を有するタンクを高温再生器G3’から物理的に離して配管で接続して形成されていても高温再生器G3’の一部であるものとする。また、高温再生器溶液溜まり23は、タンクのような形状ではなく、配管であってもよい。高温再生器溶液溜まり23には、高温濃溶液Sh3を導出する高温濃溶液導出管46が接続されている。高温再生器溶液溜まり23には、その内部に溜められた高温濃溶液Sh3の高位液面を検知する高位液面センサー66Hと、低位液面を検知する低位液面センサー66Lとを有する高温液面検知器66が設けられている。高位及び低位液面センサー66H、66Lには、典型的には、電極棒が用いられる。高位液面センサー66H及び低位液面センサー66Lと制御装置60との間にはそれぞれ信号ケーブルが敷設されており、検知した液面信号を制御装置60に送信することができるように構成されている。なお、高位及び低位液面センサー66H、66Lは、電極棒以外のフロートスイッチ等であってもよい。また、高温再生器G3’本体の液面を制御対象とする場合は、高温液面検知器66は高温再生器G3’本体内に配設される。   Further, the high temperature regenerator G3 ′ is heated by the heating steam r flowing in the heating steam pipe 53 immersed in the low temperature concentrated solution Sh1, and the refrigerant evaporates from the low temperature concentrated solution Sh1 to increase the concentration. A high temperature regenerator solution reservoir 23 for storing the high temperature concentrated solution Sh3 is provided. In the high temperature regenerator solution reservoir 23, typically, the lower part of the high temperature regenerator G3 ′ is provided with a heating steam pipe 53 by a partition plate 23a extending vertically upward from the bottom of the high temperature regenerator G3 ′. It is formed by partitioning with the space. The space in which the heating steam pipe 53 is disposed is referred to as a main body of the high temperature regenerator G3 '. The bottom of the high temperature regenerator solution reservoir 23 is formed to be lower than the bottom of the high temperature regenerator G3 'in the space where the heating steam pipe 53 is disposed. The high-temperature regenerator solution reservoir 23 is configured such that the concentrated solution Sh3 in the space (main body) in which the heating steam pipe 53 is disposed exceeds the partition plate 23a. The high temperature regenerator solution reservoir 23 is typically formed integrally with the high temperature regenerator G3 ′. For example, a tank having a predetermined volume is physically separated from the high temperature regenerator G3 ′ by piping. Even if they are connected, they are part of the high temperature regenerator G3 ′. Further, the high temperature regenerator solution reservoir 23 may be a pipe instead of a tank-like shape. The high temperature regenerator solution reservoir 23 is connected to a high temperature concentrated solution outlet tube 46 for extracting the high temperature concentrated solution Sh3. The high temperature regenerator solution reservoir 23 includes a high liquid level sensor 66H that detects a high liquid level of the high temperature concentrated solution Sh3 stored therein and a low liquid level sensor 66L that detects a low liquid level. A detector 66 is provided. Typically, electrode bars are used for the high and low liquid level sensors 66H and 66L. Signal cables are laid between the high liquid level sensor 66H and the low liquid level sensor 66L and the control device 60, respectively, so that the detected liquid level signal can be transmitted to the control device 60. . The high and low liquid level sensors 66H and 66L may be float switches other than the electrode rods. When the liquid level of the high temperature regenerator G3 'main body is to be controlled, the high temperature liquid level detector 66 is disposed in the high temperature regenerator G3' main body.

高温再生器G3’では、低温濃溶液Sh1が低温濃溶液導入管53aから高温再生器G3’に導入される。高温溶液ポンプ13で圧送されて高温再生器G3’に導入された低温濃溶液Sh1は、仕切板23aの加熱用蒸気管53側の低温濃溶液Sh1が増加していき、蒸気源(不図示)から供給された加熱用蒸気rによって加熱され、冷媒が蒸発して高温濃溶液Sh3となる。このときの高温再生器G3’の作動圧力及び作動温度は、吸収冷凍機1の冷凍負荷に応じて変動しうる。冷凍負荷の変動に対しては、典型的には、加熱用蒸気管53に導入される加熱用蒸気rの量を制御バルブ(不図示)にて調節することにより対応する。加熱用蒸気管53への加熱用蒸気rの供給量が変動すると高温再生器G3’の内圧が変動するため、作動する高温再生器G3’の温度及び圧力も変動することとなる。蒸発した冷媒蒸気Vs3は、中温再生器G2の加熱用蒸気管52(図1、3参照)に送られる。高温濃溶液Sh3は、加熱用蒸気rからの受熱により温度が上昇しており、仕切板23aを越えて高温再生器溶液溜まり23に流入した後、高温再生器G3’内の圧力や重力により高温溶液熱交換器33に導入される。   In the high temperature regenerator G3 ', the low temperature concentrated solution Sh1 is introduced from the low temperature concentrated solution introduction pipe 53a into the high temperature regenerator G3'. The low-temperature concentrated solution Sh1 pumped by the high-temperature solution pump 13 and introduced into the high-temperature regenerator G3 ′ increases in the low-temperature concentrated solution Sh1 on the heating steam pipe 53 side of the partition plate 23a, and a steam source (not shown). Is heated by the heating steam r supplied from, and the refrigerant evaporates to become a high-temperature concentrated solution Sh3. The operating pressure and operating temperature of the high-temperature regenerator G3 'at this time can vary according to the refrigeration load of the absorption refrigerator 1. Typically, the fluctuation of the refrigeration load is dealt with by adjusting the amount of the heating steam r introduced into the heating steam pipe 53 with a control valve (not shown). When the supply amount of the heating steam r to the heating steam pipe 53 varies, the internal pressure of the high temperature regenerator G3 'varies, so that the temperature and pressure of the operating high temperature regenerator G3' also vary. The evaporated refrigerant vapor Vs3 is sent to the heating vapor pipe 52 (see FIGS. 1 and 3) of the intermediate temperature regenerator G2. The temperature of the hot concentrated solution Sh3 rises due to the heat received from the heating steam r, and after flowing into the hot regenerator solution reservoir 23 through the partition plate 23a, the hot concentrated solution Sh3 is heated to a high temperature by the pressure and gravity in the hot regenerator G3 ′. It is introduced into the solution heat exchanger 33.

(熱回収手段の追加)
上述の各三重効用吸収冷凍機において、各溶液熱交換器31〜33における溶液同士の熱交換による熱回収に加えて、中温再生器G2のドレンVf3や低温再生器G1のドレンVf2と希溶液Swとの熱交換による熱回収、中温再生器G2のドレンVf3と低温濃溶液Sh1との熱交換による熱回収、及び高温再生器G3からの排ガスと希溶液Swや低温濃溶液Sh1との熱交換による熱回収を行ってもよい。また、高温再生器G3からの排ガスの熱回収は、高温再生器G3への燃焼用の供給空気との間で行ってもよい。以下に、熱回収手段を追加したものに特有な部分を説明する。
(Addition of heat recovery means)
In each of the above triple effect absorption refrigerators, in addition to heat recovery by heat exchange between solutions in each solution heat exchanger 31-33, drain Vf3 of intermediate temperature regenerator G2, drain Vf2 of low temperature regenerator G1, and dilute solution Sw. Recovery by heat exchange with the heat, heat recovery by heat exchange between the drain Vf3 of the intermediate temperature regenerator G2 and the low temperature concentrated solution Sh1, and heat exchange between the exhaust gas from the high temperature regenerator G3 and the dilute solution Sw or the low temperature concentrated solution Sh1. Heat recovery may be performed. Further, the heat recovery of the exhaust gas from the high temperature regenerator G3 may be performed between the supply air for combustion to the high temperature regenerator G3. Below, the part peculiar to what added the heat | fever recovery means is demonstrated.

図6は、中温再生器及び低温再生器へ送液される希溶液で凝縮冷媒から熱回収する溶液系統の部分系統図であり、(a)は低温溶液熱交換器31と中温凝縮冷媒溶液熱交換器37、及び中温溶液熱交換器32と高温凝縮冷媒溶液熱交換器36をそれぞれ直列に配置した部分系統図、(b)は低温溶液熱交換器31と中温凝縮冷媒溶液熱交換器37、及び中温溶液熱交換器32と高温凝縮冷媒溶液熱交換器36をそれぞれ並列に配置した部分系統図、(c)は直列に配置した中温凝縮冷媒溶液熱交換器37と高温凝縮冷媒溶液熱交換器36に対して低温溶液熱交換器31及び中温溶液熱交換器32が並列になるように配置した部分系統図である。なお、図6では、吸収冷凍機1、2(図1、3参照)のうち溶液系統の吸収器Aから各再生器G1〜G3への溶液送りラインを示しており、他の構成の図示は省略している。図6に示すように、凝縮冷媒から熱回収を行う場合は、高温凝縮冷媒Vf3と希溶液Swとで熱交換を行う高温凝縮冷媒溶液熱交換器36と、中温凝縮冷媒Vf2と希溶液Swとで熱交換を行う中温凝縮冷媒溶液熱交換器37を備えている。高温凝縮冷媒溶液熱交換器36及び中温凝縮冷媒溶液熱交換器37は、典型的にはプレート型熱交換器が用いられるがシェルアンドチューブ型やその他の熱交換器を用いてもよい。   FIG. 6 is a partial system diagram of a solution system in which heat is recovered from the condensed refrigerant with a dilute solution sent to the intermediate temperature regenerator and the low temperature regenerator, and (a) is a low temperature solution heat exchanger 31 and medium temperature condensed refrigerant solution heat. The partial system diagram which has arrange | positioned the exchanger 37, the intermediate temperature solution heat exchanger 32, and the high temperature condensed refrigerant | coolant solution heat exchanger 36 in series, respectively, (b) is the low temperature solution heat exchanger 31 and the intermediate temperature condensed refrigerant solution heat exchanger 37, 4 is a partial system diagram in which the intermediate temperature solution heat exchanger 32 and the high temperature condensing refrigerant solution heat exchanger 36 are arranged in parallel, respectively, and (c) is an intermediate temperature condensing refrigerant solution heat exchanger 37 and a high temperature condensing refrigerant solution heat exchanger arranged in series. FIG. 6 is a partial system diagram in which a low-temperature solution heat exchanger 31 and a medium-temperature solution heat exchanger 32 are arranged in parallel to 36. 6 shows the solution feed line from the absorber A of the solution system to the regenerators G1 to G3 in the absorption refrigerators 1 and 2 (see FIGS. 1 and 3). Omitted. As shown in FIG. 6, when recovering heat from the condensed refrigerant, the high-temperature condensed refrigerant solution heat exchanger 36 that exchanges heat between the high-temperature condensed refrigerant Vf3 and the diluted solution Sw, the intermediate-temperature condensed refrigerant Vf2, and the diluted solution Sw The intermediate temperature condensed refrigerant solution heat exchanger 37 that performs heat exchange is provided. The high temperature condensed refrigerant solution heat exchanger 36 and the medium temperature condensed refrigerant solution heat exchanger 37 are typically plate-type heat exchangers, but may be shell-and-tube type or other heat exchangers.

図6(a)に示すように低温溶液熱交換器31と中温凝縮冷媒溶液熱交換器37、及び中温溶液熱交換器32と高温凝縮冷媒溶液熱交換器36をそれぞれ直列に配置した場合は、低温溶液熱交換器31を通過して希溶液管41に分流した希溶液Swが低温再生器G1で凝縮した中温凝縮冷媒Vf2と中温凝縮冷媒溶液熱交換器37で熱交換して熱回収を行う。他方、低温溶液熱交換器31を通過後中温溶液熱交換器32を通過した希溶液Swが中温再生器G2で凝縮した高温凝縮冷媒Vf3と高温凝縮冷媒溶液熱交換器36で熱交換して熱回収を行う。この場合は、中温再生器G2及び低温再生器G1に導入される希溶液Swの温度を高くすることができる。   When the low temperature solution heat exchanger 31 and the medium temperature condensed refrigerant solution heat exchanger 37 and the medium temperature solution heat exchanger 32 and the high temperature condensed refrigerant solution heat exchanger 36 are arranged in series as shown in FIG. Heat recovery is performed by exchanging heat in the intermediate-temperature condensed refrigerant solution heat exchanger 37 and the intermediate-temperature condensed refrigerant solution heat exchanger 37 in which the diluted solution Sw that has passed through the low-temperature solution heat exchanger 31 and is divided into the diluted solution pipe 41 is condensed in the low-temperature regenerator G1. . On the other hand, the dilute solution Sw that has passed through the low temperature solution heat exchanger 31 and then passed through the intermediate temperature heat exchanger 32 is heat-exchanged by the high temperature condensed refrigerant solution heat exchanger 36 and the high temperature condensed refrigerant solution heat exchanger 36 that has condensed in the intermediate temperature regenerator G2. Collect. In this case, the temperature of the dilute solution Sw introduced into the intermediate temperature regenerator G2 and the low temperature regenerator G1 can be increased.

図6(b)に示すように低温溶液熱交換器31と中温凝縮冷媒溶液熱交換器37、及び中温溶液熱交換器32と高温凝縮冷媒溶液熱交換器36をそれぞれ並列に配置した場合は、中温溶液ポンプ12の吐出側で希溶液Swが分流した後に低温溶液熱交換器31及び中温凝縮冷媒溶液熱交換器37にそれぞれ導入される。中温凝縮冷媒溶液熱交換器37に導入された希溶液Swは、中温凝縮冷媒Vf2と熱交換した後に、低温溶液熱交換器31を通過して希溶液管41に分流した希溶液Swと合流し、低温再生器G1に導入される。他方、低温溶液熱交換器31に導入された希溶液Swは低温濃溶液Sh1、中温濃溶液Sh2、高温濃溶液Sh3が合流した溶液(図1、3参照)と熱交換する。熱交換して低温溶液熱交換器31から導出された希溶液Swは、一部が中温凝縮冷媒溶液熱交換器37を通過した希溶液Swと合流して低温再生器G1に導入され、残りはさらに分流して中温溶液熱交換器32及び高温凝縮冷媒溶液熱交換器36にそれぞれ導入される。中温溶液熱交換器32に導入された希溶液Swは中温濃溶液Sh2(図1、3参照)と熱交換し、高温凝縮冷媒溶液熱交換器36に導入された希溶液Swは高温凝縮冷媒Vf3と熱交換した後に合流して中温再生器G2に導入される。この場合は、中温凝縮冷媒溶液熱交換器37と低温溶液熱交換器31の溶液分流比、高温凝縮冷媒溶液熱交換器36と中温溶液熱交換器32の溶液分流比を調整することができ、各熱交換器の熱交換量を調整しつつ、中温再生器G2、低温再生器G1に導入される希溶液Swの温度を高くすることができる。   When the low temperature solution heat exchanger 31 and the medium temperature condensed refrigerant solution heat exchanger 37 and the medium temperature solution heat exchanger 32 and the high temperature condensed refrigerant solution heat exchanger 36 are arranged in parallel as shown in FIG. After diluting the dilute solution Sw on the discharge side of the intermediate temperature solution pump 12, it is introduced into the low temperature solution heat exchanger 31 and the intermediate temperature condensed refrigerant solution heat exchanger 37, respectively. The dilute solution Sw introduced into the intermediate temperature condensed refrigerant solution heat exchanger 37 merges with the dilute solution Sw that has passed through the low temperature solution heat exchanger 31 and branched into the dilute solution pipe 41 after exchanging heat with the intermediate temperature condensed refrigerant Vf2. And introduced into the low temperature regenerator G1. On the other hand, the dilute solution Sw introduced into the low-temperature solution heat exchanger 31 exchanges heat with a solution (see FIGS. 1 and 3) in which the low-temperature concentrated solution Sh1, the middle-temperature concentrated solution Sh2, and the high-temperature concentrated solution Sh3 are joined. The dilute solution Sw derived from the low temperature solution heat exchanger 31 through heat exchange is partly merged with the dilute solution Sw that has passed through the intermediate temperature condensed refrigerant solution heat exchanger 37 and is introduced into the low temperature regenerator G1. Further, the flow is divided and introduced into the intermediate temperature solution heat exchanger 32 and the high temperature condensed refrigerant solution heat exchanger 36, respectively. The dilute solution Sw introduced into the intermediate temperature solution heat exchanger 32 exchanges heat with the intermediate temperature concentrated solution Sh2 (see FIGS. 1 and 3), and the dilute solution Sw introduced into the high temperature condensed refrigerant solution heat exchanger 36 is converted into the high temperature condensed refrigerant Vf3. After exchanging heat with each other, they merge and are introduced into the intermediate temperature regenerator G2. In this case, it is possible to adjust the solution diversion ratio between the medium temperature condensing refrigerant solution heat exchanger 37 and the low temperature solution heat exchanger 31, and the solution diversion ratio between the high temperature condensing refrigerant solution heat exchanger 36 and the medium temperature solution heat exchanger 32, The temperature of the dilute solution Sw introduced into the intermediate temperature regenerator G2 and the low temperature regenerator G1 can be increased while adjusting the heat exchange amount of each heat exchanger.

図6(c)に示すように直列に配置した中温凝縮冷媒溶液熱交換器37と高温凝縮冷媒溶液熱交換器36に対して低温溶液熱交換器31及び中温溶液熱交換器32が並列になるように配置した場合は、中温溶液ポンプ12の吐出側で希溶液Swが分流した後に低温溶液熱交換器31及び中温凝縮冷媒溶液熱交換器37にそれぞれ導入される。低温溶液熱交換器31に導入された希溶液Swは低温濃溶液Sh1(図1、3参照)と熱交換した後に分流し、一部は低温再生器G1に導入され、残りは中温溶液熱交換器32に導入されて中温濃溶液Sh2(図1、3参照)と熱交換する。他方、中温凝縮冷媒溶液熱交換器37に導入された希溶液Swは中温凝縮冷媒Vf2と熱交換した後に高温凝縮冷媒溶液熱交換器36に導入されて高温凝縮冷媒Vf3と熱交換する。中温溶液熱交換器32から導出された希溶液Swと高温凝縮冷媒溶液熱交換器36から導出された希溶液Swとは、合流して中温再生器G2に導入される。この場合は、中温凝縮冷媒溶液熱交換器37、高温凝縮冷媒溶液熱交換器36と低温溶液熱交換器31、中温溶液熱交換器32への溶液分流比を調整することができ、各熱交換器の熱交換量を調整しつつ、中温再生器G2に導入される希溶液Swの温度を高くすることができる。   As shown in FIG. 6C, the low temperature solution heat exchanger 31 and the medium temperature solution heat exchanger 32 are arranged in parallel with the medium temperature condensed refrigerant solution heat exchanger 37 and the high temperature condensed refrigerant solution heat exchanger 36 arranged in series. In such a case, after diluting the dilute solution Sw on the discharge side of the intermediate temperature solution pump 12, it is introduced into the low temperature solution heat exchanger 31 and the intermediate temperature condensed refrigerant solution heat exchanger 37, respectively. The dilute solution Sw introduced into the low temperature solution heat exchanger 31 is diverted after heat exchange with the low temperature concentrated solution Sh1 (see FIGS. 1 and 3), a part is introduced into the low temperature regenerator G1, and the rest is medium temperature solution heat exchange. It is introduced into the vessel 32 to exchange heat with the medium-temperature concentrated solution Sh2 (see FIGS. 1 and 3). On the other hand, the dilute solution Sw introduced into the intermediate temperature condensed refrigerant solution heat exchanger 37 exchanges heat with the intermediate temperature condensed refrigerant Vf2, and then is introduced into the high temperature condensed refrigerant solution heat exchanger 36 to exchange heat with the high temperature condensed refrigerant Vf3. The dilute solution Sw derived from the intermediate temperature solution heat exchanger 32 and the dilute solution Sw derived from the high-temperature condensed refrigerant solution heat exchanger 36 are merged and introduced into the intermediate temperature regenerator G2. In this case, it is possible to adjust the solution diversion ratio to the medium temperature condensed refrigerant solution heat exchanger 37, the high temperature condensed refrigerant solution heat exchanger 36, the low temperature solution heat exchanger 31, and the medium temperature solution heat exchanger 32, and each heat exchange. The temperature of the dilute solution Sw introduced into the intermediate temperature regenerator G2 can be increased while adjusting the heat exchange amount of the cooler.

図7は、高温再生器へ送液される低温濃溶液で凝縮冷媒から熱回収する溶液系統の部分系統図である。なお、図7においても、吸収冷凍機1、2(図1、3参照)のうち溶液系統の吸収器Aから各再生器G1〜G3への溶液送りラインを示しており、他の構成の図示は省略している。また、図7に示す凝縮冷媒から熱回収を行う場合も、図6に示す場合と同様の高温凝縮冷媒溶液熱交換器36と、中温凝縮冷媒溶液熱交換器37とを備えている。図7に示すように低温溶液熱交換器31と中温凝縮冷媒溶液熱交換器37、及び高温凝縮冷媒溶液熱交換器36と高温溶液熱交換器33をそれぞれ直列に配置した場合は、低温溶液熱交換器31を通過して希溶液管41に分流した希溶液Swが、低温再生器G1で凝縮した中温凝縮冷媒Vf2と中温凝縮冷媒溶液熱交換器37で熱交換して熱回収を行う。他方、低温再生器G1から導出された低温濃溶液Sh1が、中温再生器G2で凝縮した高温凝縮冷媒Vf3と高温凝縮冷媒溶液熱交換器36で熱交換して熱回収を行う。この場合は、低温再生器G1に導入される希溶液Sw、及び高温再生器G3に導入される低温濃溶液Sh1の温度を高くすることができる。   FIG. 7 is a partial system diagram of a solution system for recovering heat from a condensed refrigerant with a low-temperature concentrated solution sent to a high-temperature regenerator. 7 also shows the solution feed line from the absorber A of the solution system to each of the regenerators G1 to G3 in the absorption refrigerators 1 and 2 (see FIGS. 1 and 3). Is omitted. 7 is also provided with a high-temperature condensed refrigerant solution heat exchanger 36 and an intermediate-temperature condensed refrigerant solution heat exchanger 37 similar to those shown in FIG. As shown in FIG. 7, when the low temperature solution heat exchanger 31 and the medium temperature condensed refrigerant solution heat exchanger 37 and the high temperature condensed refrigerant solution heat exchanger 36 and the high temperature solution heat exchanger 33 are arranged in series, respectively, the low temperature solution heat The dilute solution Sw that has passed through the exchanger 31 and is divided into the dilute solution tube 41 exchanges heat with the intermediate temperature condensed refrigerant Vf2 condensed by the low temperature regenerator G1 and the intermediate temperature condensed refrigerant solution heat exchanger 37 to recover heat. On the other hand, the low-temperature concentrated solution Sh1 derived from the low-temperature regenerator G1 performs heat recovery by exchanging heat between the high-temperature condensed refrigerant Vf3 condensed in the medium-temperature regenerator G2 and the high-temperature condensed refrigerant solution heat exchanger 36. In this case, the temperature of the dilute solution Sw introduced into the low temperature regenerator G1 and the low temperature concentrated solution Sh1 introduced into the high temperature regenerator G3 can be increased.

図8は、高温再生器より排出された排ガスから希溶液及び低温濃溶液に熱回収する溶液系統の部分系統図であり、(a)は低温溶液熱交換器31と排ガス溶液熱交換器35A、及び中温溶液熱交換器32と排ガス溶液熱交換器35B、高温溶液熱交換器33と排ガス溶液熱交換器35Cをそれぞれ直列に配置した部分系統図、(b)は低温溶液熱交換器31と排ガス溶液熱交換器35A、及び中温溶液熱交換器32と排ガス溶液熱交換器35B、高温溶液熱交換器33と排ガス溶液熱交換器35Cをそれぞれ並列に配置した部分系統図である。なお、図8においても、溶液系統の吸収器Aから各再生器G1〜G3への溶液送りラインを示しており、他の構成の図示は省略している。図8に示すように、高温再生器より排出された排ガスから熱回収を行う場合は、3つの排ガス溶液熱交換器35A、35B、35Cを備えている。排ガス溶液熱交換器35A、35B、35Cは、典型的にはシェルアンドチューブ型熱交換器が用いられるがその他の熱交換器を用いてもよい。   FIG. 8 is a partial system diagram of a solution system for recovering heat from the exhaust gas discharged from the high-temperature regenerator into a dilute solution and a low-temperature concentrated solution. (A) is a low-temperature solution heat exchanger 31 and an exhaust gas solution heat exchanger 35A, And a partial system diagram in which the intermediate temperature solution heat exchanger 32 and the exhaust gas solution heat exchanger 35B, the high temperature solution heat exchanger 33 and the exhaust gas solution heat exchanger 35C are arranged in series, respectively, (b) is the low temperature solution heat exchanger 31 and the exhaust gas. FIG. 3 is a partial system diagram in which a solution heat exchanger 35A, an intermediate temperature solution heat exchanger 32 and an exhaust gas solution heat exchanger 35B, and a high temperature solution heat exchanger 33 and an exhaust gas solution heat exchanger 35C are arranged in parallel. Also in FIG. 8, the solution feed line from the absorber A of the solution system to each of the regenerators G1 to G3 is shown, and the other components are not shown. As shown in FIG. 8, when recovering heat from the exhaust gas discharged from the high-temperature regenerator, three exhaust gas solution heat exchangers 35A, 35B, and 35C are provided. As the exhaust gas solution heat exchangers 35A, 35B, and 35C, a shell-and-tube heat exchanger is typically used, but other heat exchangers may be used.

図8(a)に示すように低温溶液熱交換器31と排ガス溶液熱交換器35A、及び中温溶液熱交換器32と排ガス溶液熱交換器35B、高温溶液熱交換器33と排ガス溶液熱交換器35Cをそれぞれ直列に配置した場合は、高温再生器G3から排出された排ガスeはまず排ガス溶液熱交換器35Cで高温溶液熱交換器33を通過した低温濃溶液Sh1と熱交換を行う。排ガス溶液熱交換器35Cから導出された排ガスeは、次に排ガス溶液熱交換器35Bで中温溶液熱交換器32を通過した希溶液Swと熱交換を行う。排ガス溶液熱交換器35Bから導出された排ガスeは、次に排ガス溶液熱交換器35Aで低温溶液熱交換器31を通過した希溶液Swと熱交換を行う。この場合は、高温再生器G3に導入される低温濃溶液Sh1、及び中温再生器G2、低温再生器G1に導入される希溶液Swの温度を高くすることができる。   As shown in FIG. 8A, the low temperature solution heat exchanger 31 and the exhaust gas solution heat exchanger 35A, the intermediate temperature solution heat exchanger 32 and the exhaust gas solution heat exchanger 35B, the high temperature solution heat exchanger 33 and the exhaust gas solution heat exchanger. When 35C is arranged in series, the exhaust gas e discharged from the high temperature regenerator G3 first performs heat exchange with the low temperature concentrated solution Sh1 that has passed through the high temperature solution heat exchanger 33 in the exhaust gas solution heat exchanger 35C. The exhaust gas e derived from the exhaust gas solution heat exchanger 35C then performs heat exchange with the dilute solution Sw that has passed through the intermediate temperature solution heat exchanger 32 in the exhaust gas solution heat exchanger 35B. The exhaust gas e derived from the exhaust gas solution heat exchanger 35B then exchanges heat with the dilute solution Sw that has passed through the low temperature solution heat exchanger 31 in the exhaust gas solution heat exchanger 35A. In this case, the temperatures of the low-temperature concentrated solution Sh1 introduced into the high-temperature regenerator G3 and the dilute solution Sw introduced into the intermediate-temperature regenerator G2 and the low-temperature regenerator G1 can be increased.

図8(b)に示すように低温溶液熱交換器31と排ガス溶液熱交換器35A、及び中温溶液熱交換器32と排ガス溶液熱交換器35B、高温溶液熱交換器33と排ガス溶液熱交換器35Cをそれぞれ並列に配置した場合は、高温溶液ポンプ13吐出側で低温濃溶液Sh1が分流し、その一部は高温溶液熱交換器33で高温濃溶液Sh3と熱交換した後に高温再生器G3に導入され、残りは低温濃溶液管43Dを流れ高温溶液熱交換器33をバイパスして、排ガス溶液熱交換器35Cに導かれて高温再生器G3から排出された排ガスeと熱交換した後に高温再生器G3に導入される。排ガス溶液熱交換器35Cから導出された排ガスeは、次に低温溶液熱交換器31を通過した後に分流して希溶液管42Dを流れ中温溶液熱交換器32をバイパスした希溶液Swと排ガス溶液熱交換器35Bで熱交換をする。低温溶液熱交換器31を通過した後に分流した希溶液Swの残りの一部は希溶液管41を流れてそのまま低温再生器G1に導入され、他の残りの希溶液Swは中温溶液熱交換器32に導かれて中温濃溶液Sh2と熱交換した後に中温再生器G2に導入される。低温溶液熱交換器31へ導入される希溶液Swは、中温溶液ポンプ12の吐出側で分流した一部であり、中温溶液ポンプ12の吐出側で分流した残りの希溶液Swは希溶液管41Dを流れて排ガス溶液熱交換器35Aに導かれ、排ガス溶液熱交換器35Bから導出された排ガスeと熱交換を行った後に低温再生器G1に導入される。この場合は、各溶液熱交換器31、32、33とこれらに並列に設置される排ガス溶液熱交換器35A、35B、35Cとの溶液分流比を調整することで、各熱交換器31、32、33、35A、35B、35Cの熱交換量を調整しつつ、各再生器G1〜G3へ導入される低温濃溶液Sh1及び希溶液Swの温度を高くすることができる。   As shown in FIG. 8B, the low temperature solution heat exchanger 31 and the exhaust gas solution heat exchanger 35A, the intermediate temperature solution heat exchanger 32 and the exhaust gas solution heat exchanger 35B, the high temperature solution heat exchanger 33 and the exhaust gas solution heat exchanger. When 35C is arranged in parallel, the low temperature concentrated solution Sh1 is diverted on the discharge side of the high temperature solution pump 13, and a part of the low temperature concentrated solution Sh3 is exchanged with the high temperature concentrated solution Sh3 in the high temperature solution heat exchanger 33, and then is transferred to the high temperature regenerator G3. The remaining gas flows through the low-temperature concentrated solution pipe 43D, bypasses the high-temperature solution heat exchanger 33, is guided to the exhaust gas solution heat exchanger 35C, and exchanges heat with the exhaust gas e discharged from the high-temperature regenerator G3. Introduced into the vessel G3. Exhaust gas e derived from the exhaust gas solution heat exchanger 35C then passes through the low-temperature solution heat exchanger 31 and then diverts to flow through the dilute solution pipe 42D and the dilute solution Sw and the exhaust gas solution bypassing the intermediate temperature solution heat exchanger 32. Heat exchange is performed by the heat exchanger 35B. The remaining part of the dilute solution Sw that has been branched after passing through the low temperature solution heat exchanger 31 flows through the dilute solution tube 41 and is introduced as it is into the low temperature regenerator G1, while the other remaining dilute solution Sw is the intermediate temperature solution heat exchanger. After being led to 32 and exchanging heat with the medium temperature concentrated solution Sh2, it is introduced into the medium temperature regenerator G2. The dilute solution Sw introduced into the low temperature solution heat exchanger 31 is a part of the diverted solution on the discharge side of the intermediate temperature solution pump 12, and the remaining dilute solution Sw divided on the discharge side of the intermediate temperature solution pump 12 is diluted solution tube 41D. And is introduced into the low temperature regenerator G1 after exchanging heat with the exhaust gas e derived from the exhaust gas solution heat exchanger 35B. In this case, each heat exchanger 31, 32, 33 is adjusted by adjusting the solution diversion ratio between the solution heat exchangers 31, 32, 33 and the exhaust gas solution heat exchangers 35A, 35B, 35C installed in parallel therewith. , 33, 35 </ b> A, 35 </ b> B, and 35 </ b> C can be adjusted while increasing the temperature of the low temperature concentrated solution Sh <b> 1 and the diluted solution Sw introduced into the regenerators G <b> 1 to G <b> 3.

なお、図6〜図8において説明した、中温再生器G2のドレンVf3や低温再生器G1のドレンVf2と希溶液Swや低温濃溶液Sh1との熱交換による熱回収、及び高温再生器G3からの排ガスと低温濃溶液Sh1や希溶液Swとの熱交換による熱回収で用いる各熱交換器36、37、35A〜35Cのうちで設置する熱交換器は、溶液熱交換器31〜33との直列、並列の組み合わせは適宜選定して配設することができ、また、必ずしも図示したすべてを備えている必要はなく、吸収冷凍機の作動条件により適宜選定して配設してもよい。   6 to 8, the heat recovery by heat exchange between the drain Vf3 of the intermediate temperature regenerator G2 or the drain Vf2 of the low temperature regenerator G1 and the dilute solution Sw or the low temperature concentrated solution Sh1, and the high temperature regenerator G3 Among the heat exchangers 36, 37, 35A to 35C used for heat recovery by heat exchange between the exhaust gas and the low temperature concentrated solution Sh1 or the dilute solution Sw, the heat exchanger installed in series with the solution heat exchangers 31 to 33 is used. The parallel combinations can be appropriately selected and arranged, and all of the illustrated combinations are not necessarily provided, and may be appropriately selected and arranged depending on the operating conditions of the absorption refrigerator.

(溶液ポンプの追加)
上述の各三重効用吸収冷凍機において、低温再生器G1と低温溶液熱交換器31との間の低温濃溶液配管44に、溶液ポンプ(不図示)を設置してもよい。低温溶液熱交換器31の温度効率を上昇させるため、低温溶液熱交換器31の圧損が高くなった場合、溶液ポンプ(不図示)にて圧送することで、低温再生器G1から吸収器Aへの溶液循環量を確保することができる。溶液ポンプ(不図示)は、低温再生器G1のオーバーフロー堰21aの下流側に制御装置60と信号ケーブルで接続された液面検出器(不図示)を設け、所定の液位を維持するように制御するとよい。
(Addition of solution pump)
In each of the above triple effect absorption refrigerators, a solution pump (not shown) may be installed in the low temperature concentrated solution pipe 44 between the low temperature regenerator G1 and the low temperature solution heat exchanger 31. In order to increase the temperature efficiency of the low-temperature solution heat exchanger 31, when the pressure loss of the low-temperature solution heat exchanger 31 becomes high, the solution is pumped by a solution pump (not shown), so that the low-temperature regenerator G1 transfers to the absorber A. The amount of solution circulation can be ensured. The solution pump (not shown) is provided with a liquid level detector (not shown) connected to the control device 60 via a signal cable on the downstream side of the overflow weir 21a of the low temperature regenerator G1 so as to maintain a predetermined liquid level. It is good to control.

(フラッシュチャンバーの追加)
また、吸収器Aに導入される、高温濃溶液Sh3、中温濃溶液Sh2、及び低温濃溶液Sh1の合流部にフラッシュチャンバーを設置してもよい。吸収冷凍機の運転条件により、各濃溶液の飽和圧力に差がある場合は、各濃溶液が合流したときに飽和圧力が高い方の濃溶液の圧力低下に伴って、さらに冷媒蒸気が発生する。合流部で発生する冷媒蒸気の量が多い場合には配管内で腐食等の不具合が生じるおそれがあるため、フラッシュチャンバーを設置して冷媒蒸気の再蒸発による影響を緩和させるとよい。また、フラッシュチャンバーの上部に、低温再生器G1又は凝縮器Cへと導く配管を接続し、フラッシュチャンバーで発生した冷媒蒸気を低温再生器G1又は凝縮器Cへ送るようにしてもよい。
(Addition of flash chamber)
Further, a flash chamber may be installed at a junction of the high-temperature concentrated solution Sh3, the medium-temperature concentrated solution Sh2, and the low-temperature concentrated solution Sh1 introduced into the absorber A. If there is a difference in the saturation pressure of each concentrated solution due to the operating conditions of the absorption refrigerator, when each concentrated solution joins, further refrigerant vapor is generated as the pressure of the concentrated solution with the higher saturation pressure decreases . When there is a large amount of refrigerant vapor generated at the junction, there is a risk of problems such as corrosion occurring in the pipe. Therefore, it is advisable to install a flash chamber to mitigate the effects of refrigerant vapor re-evaporation. Further, a pipe leading to the low temperature regenerator G1 or the condenser C may be connected to the upper part of the flash chamber, and the refrigerant vapor generated in the flash chamber may be sent to the low temperature regenerator G1 or the condenser C.

(流量調整手段の追加)
また、高温溶液熱交換器33の下流側の高温濃溶液導出管46、及び中温溶液熱交換器32の下流側の中温濃溶液導出管45のそれぞれに、電動弁等の流量調整手段(不図示)を設けてもよい。典型的には、高温溶液ポンプ13による高温再生器G3への溶液の供給量は高温濃溶液導出管46の抵抗によって決まる高温濃溶液Sh3の導出量により決定され、中温溶液ポンプ12による中温再生器G2への溶液の供給量は中温濃溶液導出管45の抵抗によって決まる中温濃溶液Sh2の導出量により決定されるが、これらは吸収冷凍機の定格運転条件を基準として決定されているため、部分負荷条件ではサイクル効率を最適にする溶液の供給量にはならない。そのため、上述の位置に電動弁等の流量調整手段を設け、冷凍負荷に応じた溶液量を供給できるようにしてもよい。電動弁等の流量調整手段は、典型的には制御装置60と信号ケーブルで接続され、制御装置60からの信号を受信して作動するように構成される。また、吸収冷凍機の起動直後や冷凍負荷が小さいとき、あるいは冷却水温度が低いとき等の、溶液ポンプ12、13の最低回転速度の運転時でも各再生器G1〜G3への溶液供給が過剰になる場合は、電動弁等の流量調整手段を制御して(電動弁の場合は開いて)過剰になる分の溶液を吸収器Aへ戻すようにしてもよい。
(Addition of flow rate adjustment means)
Further, a flow rate adjusting means (not shown) such as an electric valve is provided in each of the high temperature concentrated solution outlet pipe 46 on the downstream side of the high temperature solution heat exchanger 33 and the middle temperature concentrated solution outlet pipe 45 on the downstream side of the intermediate temperature solution heat exchanger 32. ) May be provided. Typically, the supply amount of the solution to the high temperature regenerator G3 by the high temperature solution pump 13 is determined by the derived amount of the high temperature concentrated solution Sh3 determined by the resistance of the high temperature concentrated solution outlet pipe 46, and the intermediate temperature regenerator by the intermediate temperature solution pump 12 is determined. The supply amount of the solution to G2 is determined by the derived amount of the medium-temperature concentrated solution Sh2 determined by the resistance of the medium-temperature concentrated solution outlet tube 45. However, since these are determined based on the rated operating conditions of the absorption refrigerator, The load conditions do not result in a solution supply that optimizes cycle efficiency. Therefore, a flow rate adjusting means such as an electric valve may be provided at the above position so that a solution amount corresponding to the refrigeration load can be supplied. The flow rate adjusting means such as an electric valve is typically connected to the control device 60 via a signal cable, and is configured to operate by receiving a signal from the control device 60. Also, the solution supply to the regenerators G1 to G3 is excessive even during operation at the minimum rotation speed of the solution pumps 12 and 13, such as immediately after the start of the absorption refrigerator, when the refrigeration load is small, or when the cooling water temperature is low. In such a case, an excess amount of solution may be returned to the absorber A by controlling a flow rate adjusting means such as a motorized valve (open in the case of a motorized valve).

以下、実施例1として図1に示す吸収冷凍機1における高温再生器G3の温度及び圧力等を示し、これを図11に示す吸収冷凍機101、図12に示す吸収冷凍機102、図13に示す吸収冷凍機103における高温再生器の温度及び圧力等と比較する。吸収冷凍機101〜103は図から明らかなようにいずれも三重効用吸収冷凍機であり、吸収冷凍機101を比較例1と、吸収冷凍機102を比較例2と、吸収冷凍機103を比較例3とする。比較例1は冒頭に示した特許文献1の溶液サイクルを有する吸収冷凍機、比較例2はシリーズフローの溶液サイクルを有する吸収冷凍機、比較例3は分岐フローの溶液サイクルを有する吸収冷凍機である。   Hereinafter, the temperature, pressure, and the like of the high-temperature regenerator G3 in the absorption refrigerator 1 shown in FIG. 1 are shown as Example 1, and these are shown in the absorption refrigerator 101 shown in FIG. 11, the absorption refrigerator 102 shown in FIG. Comparison is made with the temperature and pressure of the high-temperature regenerator in the absorption refrigerator 103 shown. The absorption refrigerators 101 to 103 are all triple-effect absorption refrigerators as is apparent from the figure. The absorption refrigerator 101 is the comparative example 1, the absorption refrigerator 102 is the comparative example 2, and the absorption refrigerator 103 is the comparative example. 3. Comparative Example 1 is an absorption refrigerator having the solution cycle of Patent Document 1 shown at the beginning, Comparative Example 2 is an absorption refrigerator having a series flow solution cycle, and Comparative Example 3 is an absorption refrigerator having a branch flow solution cycle. is there.

図9に、上記各吸収冷凍機の諸元(高温再生器の温度及び圧力を含む)を示す。なお、図9に示す数値は、冷水管に入る冷水(図1においては冷水管74に入る被冷却媒体p)の温度を13℃、冷水管から出た冷水の温度を7℃、冷却水管に入る冷却水(図1においては吸収器Aの冷却水管71に入る冷却水q)の温度を31℃とした場合におけるものである。ただし、本実施例では、図1に示した場合と異なり、冷却水qの流れを吸収器Aから凝縮器Cへと導いて吸収器Aの性能を向上させることとしている。実施例1を比較例1と比較すると、高温再生器出口温度は実施例1の方が比較例1よりも僅かに高くなるがほぼ同等であり、高温再生器圧力はほぼ同等となる。しかしながら、比較例1では、高温再生器に溶液を供給する高温溶液ポンプは中温再生器出口に設置されており、溶液ポンプ吸い込み溶液温度は、125.9℃となる。一方、実施例1では、高温溶液ポンプ13は、低温再生器G1の出口側に設置されており、溶液ポンプ13が吸い込む低温濃溶液Sh1の温度は、75.1℃と低く、実施例1の方が高温溶液ポンプ13の耐久性に優れている。実施例1を比較例2と比較すると、高温再生器溶液出口温度は、比較例2よりも若干高いものの、圧力の減少度合いは大きい。実施例1を比較例3と比較すると、高温再生器出口温度、高温再生器圧力共に、比較例3よりも低くなっている。このように実施例1では、高温再生器G3の温度及び圧力の上昇を抑えつつ高温溶液ポンプ13が吸い込む溶液の温度を抑制することができた。   FIG. 9 shows the specifications of each absorption refrigerator (including the temperature and pressure of the high-temperature regenerator). Note that the numerical values shown in FIG. 9 indicate that the temperature of the cold water entering the cold water pipe (cooled medium p entering the cold water pipe 74 in FIG. 1) is 13 ° C., the temperature of the cold water discharged from the cold water pipe is 7 ° C. This is when the temperature of the cooling water entering (cooling water q entering the cooling water pipe 71 of the absorber A in FIG. 1) is 31 ° C. However, in the present embodiment, unlike the case shown in FIG. 1, the flow of the cooling water q is guided from the absorber A to the condenser C to improve the performance of the absorber A. When Example 1 is compared with Comparative Example 1, the high temperature regenerator outlet temperature is slightly higher in Example 1 than in Comparative Example 1, but is approximately equal, and the high temperature regenerator pressure is approximately equal. However, in Comparative Example 1, the high temperature solution pump that supplies the solution to the high temperature regenerator is installed at the outlet of the medium temperature regenerator, and the solution pump suction solution temperature is 125.9 ° C. On the other hand, in Example 1, the high temperature solution pump 13 is installed on the outlet side of the low temperature regenerator G1, and the temperature of the low temperature concentrated solution Sh1 sucked by the solution pump 13 is as low as 75.1 ° C. The direction is superior in the durability of the high-temperature solution pump 13. When Example 1 is compared with Comparative Example 2, the high temperature regenerator solution outlet temperature is slightly higher than that of Comparative Example 2, but the degree of pressure decrease is large. When Example 1 is compared with Comparative Example 3, both the high temperature regenerator outlet temperature and the high temperature regenerator pressure are lower than those of Comparative Example 3. Thus, in Example 1, the temperature of the solution sucked by the high temperature solution pump 13 could be suppressed while suppressing an increase in the temperature and pressure of the high temperature regenerator G3.

次に、図4に示す吸収冷凍機3を実施例2として、実施例2における高温再生器G3の温度及び圧力等を検出した。実施例2は冷却水qを凝縮器Cから吸収器A1、A2に流し、蒸発器及び吸収器を2段としている。
図10に実施例2における諸元(高温再生器G3の温度及び圧力を含む)を示す。実施例2では、高温再生器G3内の圧力が0.090MPaG(0.92kg/cm2G)、高温濃溶液Sh3の温度(高温再生器溶液出口温度)が169.8℃となった。このように実施例2では、高温再生器G3内の圧力を、強度を維持して圧力容器に関する法規制上の取扱いを簡便にすることができる0.098MPaG(1.0kg/cm2G)以下とすることができ、高温濃溶液Sh3の温度(高温再生器溶液出口温度)を高温再生器G3の腐食対策上好ましい180.0℃以下とすることができた。
Next, the absorption refrigerator 3 shown in FIG. 4 was used as Example 2, and the temperature and pressure of the high-temperature regenerator G3 in Example 2 were detected. In the second embodiment, the cooling water q flows from the condenser C to the absorbers A1 and A2, and the evaporator and the absorber are in two stages.
FIG. 10 shows the specifications (including the temperature and pressure of the high-temperature regenerator G3) in Example 2. In Example 2, the pressure in the high temperature regenerator G3 was 0.090 MPaG (0.92 kg / cm 2 G), and the temperature of the high temperature concentrated solution Sh3 (high temperature regenerator solution outlet temperature) was 169.8 ° C. As described above, in Example 2, the pressure in the high-temperature regenerator G3 is 0.098 MPaG (1.0 kg / cm 2 G) or less, which can maintain the strength and simplify the legal regulations related to the pressure vessel. The temperature of the high-temperature concentrated solution Sh3 (high-temperature regenerator solution outlet temperature) could be 180.0 ° C. or less, which is preferable for preventing corrosion of the high-temperature regenerator G3.

本発明の実施の形態に係る吸収冷凍機を示す模式的系統図である。1 is a schematic system diagram showing an absorption refrigerator according to an embodiment of the present invention. 高温再生器G3の詳細図である。(a)は縦断面図、(b)は缶胴部分の平面図である。It is detail drawing of the high temperature regenerator G3. (A) is a longitudinal cross-sectional view, (b) is a plan view of a can body portion. 本発明の実施の形態に係る吸収冷凍機の変形例を示す模式的系統図である。It is a typical systematic diagram which shows the modification of the absorption refrigerator which concerns on embodiment of this invention. 吸収器及び蒸発器を多段とした三重効用吸収冷凍機を示す部分系統図である。It is a partial systematic diagram which shows the triple effect absorption refrigerator which made the absorber and the evaporator multistage. 本発明の実施の形態に係る吸収冷凍機の高温再生器の変形例を示す図である。It is a figure which shows the modification of the high temperature regenerator of the absorption refrigerator which concerns on embodiment of this invention. 図6は、中温再生器及び低温再生器へ送液される希溶液で凝縮冷媒から熱回収する溶液系統の部分系統図であり、(a)は低温溶液熱交換器と中温凝縮冷媒溶液熱交換器、及び中温溶液熱交換器と高温凝縮冷媒溶液熱交換器をそれぞれ直列に配置した部分系統図、(b)は低温溶液熱交換器と中温凝縮冷媒溶液熱交換器、及び中温溶液熱交換器と高温凝縮冷媒溶液熱交換器をそれぞれ並列に配置した部分系統図、(c)は直列に配置した中温凝縮冷媒溶液熱交換器と高温凝縮冷媒溶液熱交換器に対して低温溶液熱交換器及び中温溶液熱交換器が並列になるように配置した部分系統図である。FIG. 6 is a partial system diagram of a solution system in which heat is recovered from the condensed refrigerant with a dilute solution sent to the intermediate temperature regenerator and the low temperature regenerator, and (a) is a low temperature solution heat exchanger and medium temperature condensed refrigerant solution heat exchange. And a partial system diagram in which a medium temperature solution heat exchanger and a high temperature condensing refrigerant solution heat exchanger are respectively arranged in series, (b) is a low temperature solution heat exchanger, a medium temperature condensing refrigerant solution heat exchanger, and a medium temperature solution heat exchanger And (c) is a low temperature solution heat exchanger and a medium temperature condensed refrigerant solution heat exchanger and a high temperature condensed refrigerant solution heat exchanger arranged in series. It is a partial distribution diagram arranged so that medium temperature solution heat exchangers may be arranged in parallel. 高温再生器へ送液される低温濃溶液で凝縮冷媒から熱回収する溶液系統の部分系統図である。It is a partial systematic diagram of the solution system | strain which heat-recovers from a condensed refrigerant | coolant with the low temperature concentrated solution sent to a high temperature regenerator. 高温再生器より排出された排ガスから希溶液及び低温濃溶液に熱回収する溶液系統の部分系統図であり、(a)は低温溶液熱交換器と排ガス溶液熱交換器、及び中温溶液熱交換器と排ガス溶液熱交換器、高温溶液熱交換器と排ガス溶液熱交換器をそれぞれ直列に配置した部分系統図、(b)は低温溶液熱交換器と排ガス溶液熱交換器、及び中温溶液熱交換器と排ガス溶液熱交換器、高温溶液熱交換器と排ガス溶液熱交換器をそれぞれ並列に配置した部分系統図である。FIG. 4 is a partial system diagram of a solution system for recovering heat from exhaust gas discharged from a high-temperature regenerator into a dilute solution and a low-temperature concentrated solution, and (a) is a low-temperature solution heat exchanger, an exhaust gas solution heat exchanger, and an intermediate-temperature solution heat exchanger. And partial system diagram in which a high temperature solution heat exchanger and an exhaust gas solution heat exchanger are respectively arranged in series, (b) is a low temperature solution heat exchanger, an exhaust gas solution heat exchanger, and an intermediate temperature solution heat exchanger 2 is a partial system diagram in which an exhaust gas solution heat exchanger, a high temperature solution heat exchanger, and an exhaust gas solution heat exchanger are respectively arranged in parallel. 本発明の実施の形態に係る吸収冷凍機と従来の吸収冷凍機の諸元の比較を示す図である。It is a figure which shows the comparison of the item of the absorption refrigerator which concerns on embodiment of this invention, and the conventional absorption refrigerator. 吸収器及び蒸発器を多段とした三重効用吸収冷凍機の諸元を示す図である。It is a figure which shows the item of the triple effect absorption refrigerator which made the absorber and the evaporator multistage. 従来の高温再生器の温度及び圧力の上昇を抑制した三重効用吸収冷凍機を示す模式的系統図である。It is a typical system diagram which shows the triple effect absorption refrigerator which suppressed the raise of the temperature and pressure of the conventional high temperature regenerator. 従来のシリーズフローの溶液サイクルを有する三重効用吸収冷凍機を示す模式的系統図である。It is a typical system diagram which shows the triple effect absorption refrigerator which has the solution cycle of the conventional series flow. 従来の分岐フローの溶液サイクルを有する三重効用吸収冷凍機を示す模式的系統図である。It is a typical system diagram which shows the triple effect absorption refrigerator which has the solution cycle of the conventional branch flow.

符号の説明Explanation of symbols

1〜3 三重効用吸収冷凍機
12 中温溶液ポンプ
13 高温溶液ポンプ
15 低温溶液ポンプ
16 流量調整弁(希溶液導入量調整手段)
21 低温再生器溶液溜まり
22 中温再生器溶液溜まり
41 希溶液流路
43 低温濃溶液流路
60 制御装置
62 中温圧力検知器
63 高温圧力検知器
64 低温液面検知器
65 中温液面検知器
66A〜66D 高温液面検知器
68 中温冷媒温度検知器
69 高温冷媒温度検知器
85 高温再生器溶液溜まり
A 吸収器
G1 低温再生器
G2 中温再生器
G3 高温再生器
S 溶液
Sh1 低温濃溶液
Sh3 高温濃溶液
Sh2 中温濃溶液
Sw 希溶液
Vf2 中温凝縮冷媒
Vf3 高温凝縮冷媒
Vs 冷媒蒸気
1-3 Triple-effect absorption refrigerator 12 Medium temperature solution pump 13 High temperature solution pump 15 Low temperature solution pump 16 Flow rate adjusting valve (dilute solution introduction amount adjusting means)
21 Low temperature regenerator solution reservoir 22 Medium temperature regenerator solution reservoir 41 Dilute solution flow path 43 Low temperature concentrated solution flow path 60 Controller 62 Medium temperature pressure detector 63 High temperature pressure detector 64 Low temperature liquid level detector 65 Medium temperature liquid level detector 66A- 66D High temperature liquid level detector 68 Medium temperature refrigerant temperature detector 69 High temperature refrigerant temperature detector 85 High temperature regenerator solution reservoir A Absorber G1 Low temperature regenerator G2 Medium temperature regenerator G3 High temperature regenerator S Solution Sh1 Low temperature concentrated solution Sh3 High temperature concentrated solution Sh2 Medium temperature concentrated solution Sw Dilute solution Vf2 Medium temperature condensed refrigerant Vf3 High temperature condensed refrigerant Vs Refrigerant vapor

Claims (7)

冷媒蒸気を溶液で吸収し、前記溶液を濃度が低下した希溶液とする吸収器と;
前記吸収器から前記希溶液を導入し、前記希溶液を加熱することにより冷媒を蒸発させて濃度が上昇した低温濃溶液とする低温再生器と;
前記吸収器から前記希溶液を導入し、前記希溶液を加熱することにより前記低温再生器におけるよりも高い温度で冷媒を蒸発させて濃度を上昇させる中温再生器と;
前記低温再生器から前記低温濃溶液を導入し、前記低温濃溶液を加熱することにより前記中温再生器におけるよりも高い温度で冷媒を蒸発させて濃度を上昇させる高温再生器と;
前記吸収器内の前記希溶液を前記中温再生器に送液する中温溶液ポンプと;
前記低温再生器内の前記低温濃溶液を前記高温再生器に送液する高温溶液ポンプとを備える;
三重効用吸収冷凍機。
An absorber that absorbs the refrigerant vapor with a solution and makes the solution a dilute solution with reduced concentration;
A low-temperature regenerator that introduces the dilute solution from the absorber and heats the dilute solution to evaporate the refrigerant to obtain a low-temperature concentrated solution having an increased concentration;
An intermediate temperature regenerator that introduces the dilute solution from the absorber and heats the dilute solution to evaporate the refrigerant at a higher temperature than in the low temperature regenerator to increase the concentration;
A high temperature regenerator that evaporates the refrigerant at a higher temperature than that in the intermediate temperature regenerator by introducing the low temperature concentrated solution from the low temperature regenerator and heating the low temperature concentrated solution;
An intermediate temperature solution pump for delivering the dilute solution in the absorber to the intermediate temperature regenerator;
A high temperature solution pump for feeding the low temperature concentrated solution in the low temperature regenerator to the high temperature regenerator;
Triple effect absorption refrigerator.
前記低温再生器が前記低温濃溶液を溜める低温再生器溶液溜まりを有すると共に、前記高温溶液ポンプが前記低温再生器溶液溜まりから前記高温再生器へと前記低温濃溶液を導く低温濃溶液流路に配設され;
前記中温再生器が前記希溶液から冷媒を蒸発させて濃度が上昇した中温濃溶液を溜める中温再生器溶液溜まりを有し;
前記高温再生器が前記低温濃溶液から冷媒を蒸発させて濃度が上昇した高温濃溶液を溜める高温再生器溶液溜まりを有し;
前記高温再生器溶液溜まり内もしくは前記高温再生器の本体内の前記高温濃溶液の液面が第1の所定の液面高さになるように前記高温溶液ポンプの吐出量を調節すると共に、前記中温再生器溶液溜まり内もしくは前記中温再生器の本体内の前記中温濃溶液の液面が第2の所定の液面高さになるように前記中温溶液ポンプの吐出量を調節する制御装置とを備える;
請求項1に記載の三重効用吸収冷凍機。
The low-temperature regenerator has a low-temperature regenerator solution reservoir that stores the low-temperature concentrated solution, and the high-temperature solution pump is connected to a low-temperature concentrated solution channel that guides the low-temperature concentrated solution from the low-temperature regenerator solution reservoir to the high-temperature regenerator. Arranged;
The intermediate temperature regenerator has a medium temperature regenerator solution reservoir for storing a medium temperature concentrated solution having a concentration increased by evaporating refrigerant from the dilute solution;
The high temperature regenerator has a high temperature regenerator solution reservoir for storing a high temperature concentrated solution having an increased concentration by evaporating refrigerant from the low temperature concentrated solution;
Adjusting the discharge amount of the high-temperature solution pump so that the liquid level of the high-temperature concentrated solution in the high-temperature regenerator solution reservoir or in the main body of the high-temperature regenerator is a first predetermined liquid level; A control device for adjusting the discharge amount of the intermediate temperature solution pump so that the liquid level of the intermediate temperature concentrated solution in the intermediate temperature regenerator solution reservoir or in the main body of the intermediate temperature regenerator becomes a second predetermined liquid level; Prepare;
The triple effect absorption refrigerator according to claim 1.
前記高温再生器内の圧力を検知する高温圧力検知器と;
前記高温再生器溶液溜まり内もしくは前記高温再生器の本体内の前記高温濃溶液の高位液面及び低位液面を検知する高温液面検知器と;
前記中温再生器内の圧力を検知する中温圧力検知器と;
前記中温再生器溶液溜まり内もしくは前記中温再生器の本体内の前記中温濃溶液の高位液面及び低位液面を検知する中温液面検知器とを備え;
前記制御装置が、前記高温溶液ポンプの回転速度を、前記高温圧力検知器で検知した圧力に基づいて調節しつつ前記高温液面検知器が前記高位液面を検知したときに低下させ前記低位液面を検知したときに上昇させると共に、前記中温溶液ポンプの回転速度を、前記中温圧力検知器で検知した圧力に基づいて調節しつつ前記中温液面検知器が前記高位液面を検知したときに低下させ前記低位液面を検知したときに上昇させるように構成された;
請求項2に記載の三重効用吸収冷凍機。
A high temperature pressure detector for detecting the pressure in the high temperature regenerator;
A high temperature liquid level detector for detecting a high liquid level and a low liquid level of the high temperature concentrated solution in the high temperature regenerator solution reservoir or in the main body of the high temperature regenerator;
An intermediate temperature pressure detector for detecting the pressure in the intermediate temperature regenerator;
An intermediate temperature liquid level detector for detecting a high level liquid level and a low level liquid level of the medium temperature concentrated solution in the intermediate temperature regenerator solution reservoir or in the main body of the intermediate temperature regenerator;
The control device adjusts the rotational speed of the high-temperature solution pump based on the pressure detected by the high-temperature pressure detector, and decreases the low-level liquid when the high-temperature liquid level detector detects the high-level liquid level. When the surface temperature is detected, the intermediate temperature liquid level detector detects the higher liquid level while adjusting the rotation speed of the intermediate temperature solution pump based on the pressure detected by the intermediate temperature pressure detector. Configured to be lowered and raised when the lower liquid level is detected;
The triple effect absorption refrigerator according to claim 2.
前記高温圧力検知器に代えて、前記高温再生器内の低温濃溶液を加熱して蒸発した冷媒が凝縮した高温凝縮冷媒の温度を検知する高温冷媒温度検知器を備え;
前記中温圧力検知器に代えて、前記中温再生器内の希溶液を加熱して蒸発した冷媒が凝縮した中温凝縮冷媒の温度を検知する中温冷媒温度検知器を備え;
前記制御装置が、前記高温圧力検知器で検知した圧力に代えて前記高温冷媒温度検知器で検知した温度に基づいて前記高温溶液ポンプの回転速度を調節し、前記中温圧力検知器で検知した圧力に代えて前記中温冷媒温度検知器で検知した温度に基づいて前記中温溶液ポンプの回転速度を調節するように構成された;
請求項3に記載の三重効用吸収冷凍機。
In place of the high-temperature pressure detector, a high-temperature refrigerant temperature detector that detects the temperature of the high-temperature condensed refrigerant obtained by condensing the evaporated refrigerant by heating the low-temperature concentrated solution in the high-temperature regenerator;
In place of the intermediate temperature pressure detector, an intermediate temperature refrigerant temperature detector that detects the temperature of the intermediate temperature condensed refrigerant obtained by condensing the refrigerant evaporated by heating the diluted solution in the intermediate temperature regenerator;
The control device adjusts the rotational speed of the high temperature solution pump based on the temperature detected by the high temperature refrigerant temperature detector instead of the pressure detected by the high temperature pressure detector, and the pressure detected by the intermediate temperature pressure detector. Instead of the medium temperature refrigerant temperature detector is configured to adjust the rotational speed of the medium temperature solution pump based on the temperature detected by the medium temperature refrigerant temperature detector;
The triple effect absorption refrigerator according to claim 3.
前記低温再生器溶液溜まり内の前記低温濃溶液の液面が第3の所定の液面高さ以上になるように前記低温再生器に導入する前記希溶液の流量を調整する希溶液導入量調整手段を備える;
請求項2乃至請求項4のいずれか1項に記載の三重効用吸収冷凍機。
A dilute solution introduction amount adjustment for adjusting the flow rate of the dilute solution introduced into the low temperature regenerator so that the liquid level of the low temperature concentrated solution in the low temperature regenerator solution reservoir is equal to or higher than a third predetermined liquid level. Comprising means;
The triple effect absorption refrigerator according to any one of claims 2 to 4.
前記希溶液導入量調整手段が、
前記吸収器から前記低温再生器へと前記希溶液を導く希溶液流路に配設され、該希溶液流路内を流れる前記希溶液の流量を調整する流量調整弁と、
前記低温再生器溶液溜まり内の前記低温濃溶液の液面が前記第3の所定の液面高さ以上にあるか否かを検知する低温液面検知器と、
前記低温再生器溶液溜まり内の前記低温濃溶液の液面が前記第3の所定の液面高さよりも低下したときに前記流量調整弁の開度を大きくする制御装置とを含んで構成された;
請求項5に記載の三重効用吸収冷凍機。
The dilute solution introduction amount adjusting means is
A flow rate adjusting valve that is disposed in a dilute solution flow path that guides the dilute solution from the absorber to the low temperature regenerator, and that adjusts the flow rate of the dilute solution flowing in the dilute solution flow path;
A low-temperature liquid level detector for detecting whether or not the liquid level of the low-temperature concentrated solution in the low-temperature regenerator solution reservoir is equal to or higher than the third predetermined liquid level height;
And a controller that increases the opening of the flow rate adjusting valve when the liquid level of the low-temperature concentrated solution in the low-temperature regenerator solution reservoir is lower than the third predetermined liquid level height. ;
The triple effect absorption refrigerator according to claim 5.
前記希溶液導入量調整手段が、
前記吸収器内の前記希溶液を前記低温再生器に送液する、前記中温溶液ポンプとは別の低温溶液ポンプと、
前記低温再生器溶液溜まり内の前記低温濃溶液の液面が前記第3の所定の液面高さ以上にあるか否かを検知する低温液面検知器と、
前記低温再生器溶液溜まり内の前記低温濃溶液の液面が前記第3の所定の液面高さよりも低下したときに前記低温溶液ポンプの回転速度を上昇させる制御装置とを含んで構成された;
請求項5に記載の三重効用吸収冷凍機。
The dilute solution introduction amount adjusting means is
A low-temperature solution pump separate from the intermediate-temperature solution pump for feeding the dilute solution in the absorber to the low-temperature regenerator;
A low-temperature liquid level detector for detecting whether or not the liquid level of the low-temperature concentrated solution in the low-temperature regenerator solution reservoir is equal to or higher than the third predetermined liquid level height;
And a controller for increasing the rotational speed of the low temperature solution pump when the liquid level of the low temperature concentrated solution in the low temperature regenerator solution reservoir is lower than the third predetermined liquid level height. ;
The triple effect absorption refrigerator according to claim 5.
JP2006054437A 2006-03-01 2006-03-01 Triple effect absorption refrigerating machine Pending JP2007232271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054437A JP2007232271A (en) 2006-03-01 2006-03-01 Triple effect absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054437A JP2007232271A (en) 2006-03-01 2006-03-01 Triple effect absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2007232271A true JP2007232271A (en) 2007-09-13

Family

ID=38553040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054437A Pending JP2007232271A (en) 2006-03-01 2006-03-01 Triple effect absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2007232271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053847A (en) * 2012-11-15 2013-03-21 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerating machine
JP2013160399A (en) * 2012-02-01 2013-08-19 Kawasaki Thermal Engineering Co Ltd Control operation method of absorption refrigerating machine
KR101859546B1 (en) * 2017-09-21 2018-05-21 삼중테크 주식회사 Controlling apparatus and method of triple effect absorption chiller and heater.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384371A (en) * 1989-08-24 1991-04-09 Sanyo Electric Co Ltd Double effective absorption refrigerator
JP2000154945A (en) * 1998-11-19 2000-06-06 Ebara Corp Triple effect absorption refrigeration machine
JP2000171123A (en) * 1998-12-03 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2005003312A (en) * 2003-06-13 2005-01-06 Daikin Ind Ltd Triple effect absorption refrigerating plant
JP2005009697A (en) * 2003-06-17 2005-01-13 Hitachi Ltd Triple effect absorption refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384371A (en) * 1989-08-24 1991-04-09 Sanyo Electric Co Ltd Double effective absorption refrigerator
JP2000154945A (en) * 1998-11-19 2000-06-06 Ebara Corp Triple effect absorption refrigeration machine
JP2000171123A (en) * 1998-12-03 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2005003312A (en) * 2003-06-13 2005-01-06 Daikin Ind Ltd Triple effect absorption refrigerating plant
JP2005009697A (en) * 2003-06-17 2005-01-13 Hitachi Ltd Triple effect absorption refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160399A (en) * 2012-02-01 2013-08-19 Kawasaki Thermal Engineering Co Ltd Control operation method of absorption refrigerating machine
JP2013053847A (en) * 2012-11-15 2013-03-21 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerating machine
KR101859546B1 (en) * 2017-09-21 2018-05-21 삼중테크 주식회사 Controlling apparatus and method of triple effect absorption chiller and heater.

Similar Documents

Publication Publication Date Title
JP2008064422A (en) High temperature regenerator and absorption refrigerating machine
JP5390426B2 (en) Absorption heat pump device
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
JP2007232271A (en) Triple effect absorption refrigerating machine
JP2007071475A (en) Triple-effect absorption refrigerating machine
JP2007263411A (en) Absorption refrigerator
JP3554858B2 (en) Absorption refrigerator
KR20050101113A (en) Absorption refrigerator
JP4034215B2 (en) Triple effect absorption chiller / heater
JP2002349987A (en) Absorption refrigeration unit
JP2007071474A (en) Triple-effect absorption refrigerating machine
JP2009299936A (en) Absorption refrigerating machine
JP2009287805A (en) Absorption refrigerator
JP4183188B2 (en) Triple-effect absorption chiller / heater
JP2003130486A (en) Absorption chilled or hot-water machine and method of controlling the machine
JP4174614B2 (en) Absorption refrigerator
JP3585890B2 (en) Heating operation control method of triple effect absorption chiller / heater
JP2003329329A (en) Triple effect absorption type refrigerating machine
JP5536855B2 (en) Absorption refrigerator
JP4249588B2 (en) Absorption chiller / heater
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP3434280B2 (en) Absorption refrigerator and its operation method
JP4199977B2 (en) Triple effect absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JP5148264B2 (en) High temperature regenerator and absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802