JP2009299936A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine Download PDF

Info

Publication number
JP2009299936A
JP2009299936A JP2008152399A JP2008152399A JP2009299936A JP 2009299936 A JP2009299936 A JP 2009299936A JP 2008152399 A JP2008152399 A JP 2008152399A JP 2008152399 A JP2008152399 A JP 2008152399A JP 2009299936 A JP2009299936 A JP 2009299936A
Authority
JP
Japan
Prior art keywords
solution
temperature
concentrated solution
refrigerant vapor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152399A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Irie
智芳 入江
Yoshiro Takemura
與四郎 竹村
Jun Murata
純 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2008152399A priority Critical patent/JP2009299936A/en
Priority to CN2009101454797A priority patent/CN101603744B/en
Publication of JP2009299936A publication Critical patent/JP2009299936A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption refrigerating machine capable of suppressing back flow of a solution with a simple constitution. <P>SOLUTION: In this absorption refrigerating machine 30 comprising an absorber 31 for absorbing refrigerant vapor Ve by the solution Sd to prepare a dilute solution Sw, a high temperature regenerator 32A preparing a thick solution Sa from the dilute solution Sw, a solution heat exchanger 37 exchanging heat between the dilute solution Sw and the thick solution Sa, a solution bypass flow channel 45B for preventing the solution Sw from flowing into the solution heat exchanger 37, and a control device 61 for controlling the flow of the solution Sw to allow the dilute solution Sw to flow into the solution bypass flow channel 45B in a diluting operation, the increase of a temperature of the dilute solution Sw flowing into the high temperature regenerator 32A can be suppressed in the diluting operation, thus a temperature and a pressure in the high temperature regenerator 32A can be lowered, and the back flow of the solution Sa from the high temperature regenerator 32A to the absorber 31 can be suppressed. The solution bypass flow channel may prevent the thick solution Sa from flowing into the solution heat exchanger 37. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は吸収冷凍機に関し、特に溶液の逆流を抑制する吸収冷凍機に関する。   The present invention relates to an absorption refrigerator, and more particularly to an absorption refrigerator that suppresses the backflow of a solution.

吸収冷凍機は、吸収溶液に吸収される冷媒が蒸発器において蒸発する際の蒸発潜熱を被冷却媒体から奪うことにより被冷却媒体を冷却する。冷媒を吸収した吸収溶液は、低圧の吸収器から高圧の再生器へ溶液ポンプで圧送され、再生器で加熱濃縮されて再び冷媒蒸気を吸収しうる濃度に再生された後、吸収器に戻されるサイクルを繰り返す。吸収冷凍機は、定常運転(被冷却媒体を冷却するための運転)から停止させる際、吸収溶液が結晶することを回避するために希釈運転が行われる。   The absorption refrigerator cools the medium to be cooled by removing the latent heat of evaporation when the refrigerant absorbed in the absorption solution evaporates in the evaporator from the medium to be cooled. The absorbing solution that has absorbed the refrigerant is pumped from the low-pressure absorber to the high-pressure regenerator by a solution pump, heated and concentrated by the regenerator, regenerated to a concentration that can absorb the refrigerant vapor, and then returned to the absorber. Repeat cycle. When the absorption refrigerator is stopped from a steady operation (operation for cooling the medium to be cooled), a dilution operation is performed to avoid the absorption solution from crystallizing.

一般に、希釈運転によって再生器の圧力が低下するが、再生器の圧力低下が不十分のまま希釈運転が終了する場合がある。再生器の圧力が高すぎると、多量の吸収溶液が再生器から吸収器へ流入し、さらに吸収器に隣接する蒸発器に流入して冷媒を汚してしまい、以後の定常運転において所定の冷凍能力を発揮できないという不都合が生じうる。このような不都合を回避するために、加熱されると伸び冷却されると縮む伸縮部材でチェッキを動かして定常運転時は溶液を流通させ希釈運転完了後は溶液の流通を阻止する溶液逆流防止構造を溶液ラインに設けることがある(例えば、特許文献1参照。)。
特開平11−94388号公報(図1−6等)
In general, the pressure of the regenerator is decreased by the dilution operation, but the dilution operation may be terminated while the pressure decrease of the regenerator is insufficient. If the pressure in the regenerator is too high, a large amount of absorbing solution flows from the regenerator into the absorber, and further flows into the evaporator adjacent to the absorber to contaminate the refrigerant. Inconvenience that it is not possible to exhibit. In order to avoid such inconvenience, a solution backflow prevention structure that moves the checker with an elastic member that expands when heated and contracts when cooled and circulates the solution during steady operation and prevents the solution from flowing after completion of the dilution operation. May be provided in the solution line (see, for example, Patent Document 1).
JP-A-11-94388 (FIGS. 1-6, etc.)

しかしながら、特許文献1に記載された溶液逆流防止構造のような複雑な機構の装置を設置すると、故障が生じやすいという問題があり、信頼性が低下することとなる。   However, when a device having a complicated mechanism such as the solution backflow prevention structure described in Patent Document 1 is installed, there is a problem that failure is likely to occur, and reliability is lowered.

本発明は上述の課題に鑑み、極力単純な構成で溶液の逆流を抑制する吸収冷凍機を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide an absorption refrigerator that suppresses the backflow of a solution with a simple configuration as much as possible.

上記目的を達成するために、本発明の第1の態様に係る吸収冷凍機は、例えば図1に示すように、冷媒蒸気Veを溶液Sdで吸収し、溶液Sdを濃度が低下した希溶液Swとする吸収器31と;希溶液Swを導入し加熱することにより冷媒を蒸発させて濃度が上昇した濃溶液Saとする高温再生器32Aと;吸収器31から高温再生器32Aへ向けて導出された希溶液Swと高温再生器32Aから吸収器31へ向けて導出された濃溶液Saとで熱交換を行わせる溶液熱交換器37と;希溶液Sw又は濃溶液Saの溶液熱交換器37への流入を回避させる溶液バイパス流路45B、46B(例えば図4(a)参照)、46C(例えば図4(c)参照)と;希釈運転時に、希溶液Sw又は濃溶液Saを溶液バイパス流路45B、46B(例えば図4(a)参照)、46C(例えば図4(c)参照)に流入させるように溶液Sw、Saの流れを制御する制御装置61とを備える。   In order to achieve the above object, the absorption refrigerator according to the first aspect of the present invention, for example, as shown in FIG. 1, absorbs the refrigerant vapor Ve with the solution Sd and reduces the concentration of the solution Sd to the diluted solution Sw. A high-temperature regenerator 32A that is a concentrated solution Sa whose concentration has been increased by evaporating the refrigerant by introducing and heating the dilute solution Sw; and derived from the absorber 31 toward the high-temperature regenerator 32A. A solution heat exchanger 37 that performs heat exchange between the diluted solution Sw and the concentrated solution Sa led out from the high-temperature regenerator 32A toward the absorber 31; and to the solution heat exchanger 37 of the diluted solution Sw or concentrated solution Sa. Solution bypass passages 45B and 46B (see, for example, FIG. 4A), 46C (see, for example, FIG. 4C), and the solution bypass passage for diluting the solution Sw or the concentrated solution Sa during the dilution operation. 45B, 46B (eg (A) refer), 46C solution so as to flow into (e.g. FIG. 4 (c) refer) Sw, and a control unit 61 for controlling the flow of Sa.

ここで「吸収器から高温再生器へ向けて(高温再生器から吸収器へ向けて)導出された」には、吸収器(高温再生器)から導出された溶液が、高温再生器(吸収器)に直接流入される場合のほか、他の部位(例えば、高温再生器よりも作動温度が低い中温再生器や低温再生器)を経由して高温再生器(吸収器)に流入される場合も含む。   Here, “derived from the absorber toward the high temperature regenerator (from the high temperature regenerator to the absorber)” means that the solution derived from the absorber (high temperature regenerator) is the high temperature regenerator (absorber ) Or directly into the high temperature regenerator (absorber) via another part (for example, a medium temperature regenerator or a low temperature regenerator whose operating temperature is lower than that of the high temperature regenerator). Including.

このように構成すると、希釈運転時に、希溶液又は濃溶液を溶液バイパス流路に流入させるように溶液の流れを制御するので、希釈運転時に、高温再生器に流入する希溶液の温度の上昇を抑制することができる。高温再生器に流入する希溶液の温度の上昇を抑制することによって、高温再生器内の温度を低下させることができ、高温再生器の内圧を低下させることができて、高温再生器から吸収器への溶液の逆流を抑制することができる。   With this configuration, the flow of the solution is controlled so that the dilute solution or the concentrated solution flows into the solution bypass channel during the dilution operation, so that the temperature of the dilute solution flowing into the high-temperature regenerator can be increased during the dilution operation. Can be suppressed. By suppressing the rise of the temperature of the dilute solution flowing into the high temperature regenerator, the temperature inside the high temperature regenerator can be lowered, the internal pressure of the high temperature regenerator can be lowered, and the absorber from the high temperature regenerator The backflow of the solution to the can be suppressed.

また、本発明の第2の態様に係る吸収冷凍機は、例えば図1に示すように、上記本発明の第1の態様に係る吸収冷凍機30において、冷媒蒸気Veを吸収した溶液Swと高温再生器32Aで発生した高温冷媒蒸気Vaとを導入し、高温冷媒蒸気Vaの熱により導入した溶液Swの濃度を上昇させる、高温再生器32Aよりも作動温度が低い再生器32Mと;冷媒蒸気Vbを冷却凝縮させる凝縮器33と;高温冷媒蒸気Vaを、高温再生器32Aから吸収器31又は凝縮器33へ直接導く高温冷媒蒸気バイパス流路57Bとを備え;制御装置61が、希釈運転時に、高温冷媒蒸気Vaを、高温冷媒蒸気バイパス流路57Bを介して吸収器31又は凝縮器33へと導くように高温冷媒蒸気Vaの流れを制御する。ここで「直接導く」とは、吸収冷凍機の主要構成部(冷凍サイクルを作動させるために必要な吸収器、再生器(多重効用の場合は各再生器を含む)、凝縮器、蒸発器)の他の部位(例えば、高温再生器よりも作動温度が低い中温再生器や低温再生器等)を経由せずに目的の部位に導くことである。   Moreover, the absorption refrigerator which concerns on the 2nd aspect of this invention, for example, as shown in FIG. 1, in the absorption refrigerator 30 which concerns on the said 1st aspect of the said invention, the solution Sw and the high temperature which absorbed the refrigerant | coolant vapor | steam Ve. A regenerator 32M having a lower operating temperature than the high temperature regenerator 32A, which introduces the high temperature refrigerant vapor Va generated in the regenerator 32A and increases the concentration of the solution Sw introduced by the heat of the high temperature refrigerant vapor Va; A condenser 33 that cools and condenses the refrigerant; and a high-temperature refrigerant vapor bypass flow path 57B that directly guides the high-temperature refrigerant vapor Va from the high-temperature regenerator 32A to the absorber 31 or the condenser 33; The flow of the high-temperature refrigerant vapor Va is controlled so that the high-temperature refrigerant vapor Va is led to the absorber 31 or the condenser 33 via the high-temperature refrigerant vapor bypass flow path 57B. Here, “directly lead” means main components of the absorption chiller (absorbers, regenerators (including each regenerator in the case of multiple effects), condensers and evaporators necessary for operating the refrigeration cycle) It is to lead to the target part without going through other parts (for example, an intermediate temperature regenerator or a low temperature regenerator whose operating temperature is lower than that of the high temperature regenerator).

このように構成すると、希釈運転時に、余熱で発生した高温冷媒蒸気を、高温冷媒蒸気バイパス流路を介して吸収器又は凝縮器へと導くように高温冷媒蒸気の流れを制御するので、高温冷媒蒸気を介して高温再生器の熱を吸収器又は凝縮器から放散することができる。高温再生器の熱を吸収器又は凝縮器から放散することによって、高温再生器内の温度を低下させることができ、高温再生器の内圧を低下させることができて、高温再生器から吸収器への溶液の逆流を抑制することができる。   With this configuration, the flow of the high-temperature refrigerant vapor is controlled so that the high-temperature refrigerant vapor generated by the residual heat is led to the absorber or the condenser via the high-temperature refrigerant vapor bypass channel during the dilution operation. The heat of the high temperature regenerator can be dissipated from the absorber or condenser via steam. By dissipating the heat of the high-temperature regenerator from the absorber or condenser, the temperature in the high-temperature regenerator can be reduced, the internal pressure of the high-temperature regenerator can be reduced, and the high-temperature regenerator to the absorber The backflow of the solution can be suppressed.

また、本発明の第3の態様に係る吸収冷凍機として、例えば図1、図4(b)、図4(c)に示すように、上記本発明の第1の態様又は第2の態様に係る吸収冷凍機30において、高温再生器32Aから吸収器31へ向けて導出された濃溶液Saを流す濃溶液流路46と;濃溶液流路46に配設され、濃溶液流路46を流れる濃溶液Saの流量を調節する流量調節手段75と;濃溶液Saの流量調節手段75への流入を回避させる流量調節バイパス流路76(図4(b)参照)、46C(図4(c)参照)とを備え;制御装置61が、希釈運転時に流量調節バイパス流路76(図4(b)参照)、46C(図4(c)参照)へ濃溶液Saを流すように濃溶液Saの流れを制御することとしてもよい。典型的には、定常運転時は濃溶液Saを流量調節バイパス流路76へ流さず、希釈運転時は濃溶液Saを流量調節バイパス流路76、46Cへ流す。   Moreover, as an absorption refrigerator which concerns on the 3rd aspect of this invention, as shown, for example in FIG.1, FIG.4 (b), FIG.4 (c), in the said 1st aspect or the 2nd aspect of the said invention, In the absorption refrigerator 30, a concentrated solution channel 46 that flows the concentrated solution Sa led out from the high-temperature regenerator 32 </ b> A toward the absorber 31; and a concentrated solution channel 46 that is disposed in the concentrated solution channel 46 and flows through the concentrated solution channel 46. A flow rate adjusting means 75 for adjusting the flow rate of the concentrated solution Sa; a flow rate adjusting bypass flow path 76 (see FIG. 4B) for avoiding the flow of the concentrated solution Sa into the flow rate adjusting means 75, 46C (FIG. 4C). The control device 61 controls the flow rate of the concentrated solution Sa so that the concentrated solution Sa flows through the flow rate adjustment bypass flow path 76 (see FIG. 4B) and 46C (see FIG. 4C) during the dilution operation. It is good also as controlling a flow. Typically, the concentrated solution Sa is not flowed to the flow control bypass flow path 76 during steady operation, and the concentrated solution Sa is flowed to the flow control bypass flow paths 76 and 46C during dilution operation.

このように構成すると、濃溶液が、希釈運転時に、流量調節手段に加えて流量調節バイパス流路をも流れることとなり、溶液の循環量が増加して、高温再生器内の温度及び圧力が低下するのを促進させることができる。   With this configuration, the concentrated solution flows through the flow rate control bypass flow path in addition to the flow rate control means during the dilution operation, and the circulation amount of the solution increases, and the temperature and pressure in the high temperature regenerator decrease. Can be promoted.

本発明によれば、希釈運転時に、希溶液又は濃溶液を溶液バイパス流路に流入させるように溶液の流れを制御するので、希釈運転時に、高温再生器に流入する希溶液の温度の上昇を抑制することができ、これによって、高温再生器内の温度を低下させることができ、高温再生器の内圧を低下させることができて、高温再生器から吸収器への溶液の逆流を抑制することができる。   According to the present invention, since the flow of the solution is controlled so that the dilute solution or the concentrated solution flows into the solution bypass channel during the dilution operation, the temperature of the dilute solution flowing into the high-temperature regenerator can be increased during the dilution operation. This can reduce the temperature in the high-temperature regenerator, thereby reducing the internal pressure of the high-temperature regenerator, and suppressing the backflow of the solution from the high-temperature regenerator to the absorber. Can do.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る吸収冷凍機30の構成を説明する。図1は吸収冷凍機30の系統図である。吸収冷凍機30は、三重効用吸収冷凍機であり、被冷却媒体としての冷水pの熱で冷媒液Vfを蒸発させて冷媒蒸気Veを発生させることにより冷水pを冷却する蒸発器34と、蒸発器34で発生した冷媒蒸気Veを混合濃溶液Sdで吸収する吸収器31と、吸収器31で冷媒蒸気Veを吸収して濃度が低下した希溶液Swを導入し、希溶液Swを加熱し冷媒を蒸発させて濃度が上昇した高温濃溶液Saを生成する高温再生器32Aと、吸収器31から希溶液Swを導入し、高温再生器32Aで発生した高温冷媒蒸気Vaで希溶液Swを加熱し冷媒を蒸発させて濃度が上昇した中温濃溶液Smを生成する中温再生器32Mと、同じく吸収器31から希溶液Swを導入し、主に中温再生器32Mで発生した中温冷媒蒸気Vmで希溶液Swを加熱し冷媒を蒸発させて濃度が上昇した低温濃溶液Sbを生成する低温再生器32Bと、低温再生器32Bで希溶液Swから蒸発した低温冷媒蒸気Vbを冷却して凝縮させ、蒸発器34に送る冷媒液Vfを生成する凝縮器33と、吸収冷凍機30を制御する制御装置61とを備えている。中温再生器32Mは高温再生器32Aよりも作動温度が低く、低温再生器32Bは中温再生器32Mよりも作動温度が低い。吸収冷凍機30で使用される冷媒及び溶液は、典型的には、冷媒として水が、溶液として臭化リチウム(LiBr)が用いられるが、これに限らず他の冷媒、溶液(吸収剤)の組み合わせで使用してもよい。なお、以下の説明において各溶液(希溶液Swや高温濃溶液Sa等)の濃度を不問とするときは、総称して単に「溶液S」ということとする。   First, with reference to FIG. 1, the structure of the absorption refrigerator 30 which concerns on embodiment of this invention is demonstrated. FIG. 1 is a system diagram of the absorption refrigerator 30. The absorption refrigerator 30 is a triple effect absorption refrigerator, and an evaporator 34 that cools the cold water p by evaporating the refrigerant liquid Vf with the heat of the cold water p as a medium to be cooled to generate the refrigerant vapor Ve, and evaporation. An absorber 31 that absorbs the refrigerant vapor Ve generated in the vessel 34 with the mixed concentrated solution Sd and a dilute solution Sw that has absorbed the refrigerant vapor Ve and has a reduced concentration by the absorber 31 are introduced, and the dilute solution Sw is heated to generate a refrigerant. The high-temperature regenerator 32A that generates a high-temperature concentrated solution Sa having an increased concentration by evaporating the dilute solution and the dilute solution Sw is introduced from the absorber 31, and the dilute solution Sw is heated by the high-temperature refrigerant vapor Va generated in the high-temperature regenerator 32A. The intermediate temperature regenerator 32M that generates a medium temperature concentrated solution Sm whose concentration has been increased by evaporating the refrigerant, and the dilute solution Sw is introduced from the absorber 31, and the dilute solution is mainly generated by the medium temperature refrigerant vapor Vm generated by the intermediate temperature regenerator 32M. Heat Sw A low-temperature regenerator 32B that generates a low-temperature concentrated solution Sb whose concentration has increased by evaporating the refrigerant, and a low-temperature refrigerant vapor Vb evaporated from the dilute solution Sw in the low-temperature regenerator 32B is cooled and condensed, and is sent to the evaporator 34 The condenser 33 which produces | generates the liquid Vf, and the control apparatus 61 which controls the absorption refrigerator 30 are provided. The medium temperature regenerator 32M has a lower operating temperature than the high temperature regenerator 32A, and the low temperature regenerator 32B has a lower operating temperature than the medium temperature regenerator 32M. The refrigerant and the solution used in the absorption refrigerator 30 typically use water as the refrigerant and lithium bromide (LiBr) as the solution, but not limited to this, other refrigerants and solutions (absorbents). You may use it in combination. In the following description, when the concentration of each solution (dilute solution Sw, high-temperature concentrated solution Sa, etc.) is not questioned, it is simply referred to as “solution S”.

蒸発器34には、冷却する対象である冷水pを流す冷水管34aが配設されている。冷水管34aは、エアハンドリングユニット等の冷水利用機器(不図示)と配管52を介して接続されている。また、蒸発器34には、冷媒液Vfを冷水管34aに向けて散布するための冷媒液散布ノズル34bが冷水管34aの上方に配設されている。蒸発器34の下部には、導入した冷媒液Vfを貯留する貯留部34cが形成されている。   The evaporator 34 is provided with a cold water pipe 34a through which the cold water p to be cooled flows. The cold water pipe 34 a is connected to cold water utilization equipment (not shown) such as an air handling unit via a pipe 52. The evaporator 34 is provided with a refrigerant liquid spray nozzle 34b for spraying the refrigerant liquid Vf toward the cold water pipe 34a above the cold water pipe 34a. A storage part 34c for storing the introduced refrigerant liquid Vf is formed in the lower part of the evaporator 34.

吸収器31には、混合濃溶液Sdで冷媒蒸気Veを吸収した際に発生する吸収熱を奪う冷却水qを流す冷却水管31aが内部に配設されている。冷却水管31aは、凝縮器33内の冷却水管33aと配管53を介して、及び冷却塔(不図示)と配管54を介して、それぞれ接続されている。また、吸収器31には、混合濃溶液Sdを冷却水管31aに向けて散布する濃溶液散布ノズル31bが冷却水管31aの上方に配設されている。濃溶液散布ノズル31bは、典型的には合成樹脂で形成されている。吸収器31は、冷却水管31aの下方に、冷媒蒸気Veを吸収して濃度が低下した希溶液Swを貯留する貯留部31cが形成されている。   The absorber 31 is provided with a cooling water pipe 31a through which cooling water q that takes away the heat of absorption generated when the refrigerant vapor Ve is absorbed by the mixed concentrated solution Sd. The cooling water pipe 31a is connected to each other via a cooling water pipe 33a and a pipe 53 in the condenser 33, and a cooling tower (not shown) and a pipe 54, respectively. The absorber 31 is provided with a concentrated solution spray nozzle 31b for spraying the mixed concentrated solution Sd toward the cooling water pipe 31a above the cooling water pipe 31a. The concentrated solution spray nozzle 31b is typically made of a synthetic resin. In the absorber 31, a storage part 31c is formed below the cooling water pipe 31a to store the diluted solution Sw having a reduced concentration by absorbing the refrigerant vapor Ve.

吸収器31と蒸発器34とは共に1つの缶胴内にシェルアンドチューブ型に形成され、両者の間には仕切壁31dが設けられている。吸収器31と蒸発器34とは仕切壁31dの上部で連通しており、蒸発器34で発生した冷媒蒸気Veを吸収器31に移動させることができるように構成されている。缶胴外側の蒸発器34側には、貯留部34cに貯留されている冷媒液Vfを上部の冷媒液散布ノズル34bに導く循環冷媒管51が配設されている。循環冷媒管51には、貯留部34cに貯留している冷媒液Vfを冷媒液散布ノズル34bに圧送する冷媒ポンプ39が配設されている。冷媒ポンプ39の下流側の循環冷媒管51には、希釈運転時に冷媒液Vfを希溶液管45に導く希釈冷媒管44が接続されている。   Both the absorber 31 and the evaporator 34 are formed in a shell and tube type in one can body, and a partition wall 31d is provided between them. The absorber 31 and the evaporator 34 communicate with each other at the upper part of the partition wall 31d, and the refrigerant vapor Ve generated in the evaporator 34 can be moved to the absorber 31. A circulating refrigerant pipe 51 that guides the refrigerant liquid Vf stored in the storage part 34c to the upper refrigerant liquid spray nozzle 34b is disposed on the evaporator 34 side outside the can body. The circulating refrigerant pipe 51 is provided with a refrigerant pump 39 that pumps the refrigerant liquid Vf stored in the storage section 34c to the refrigerant liquid spray nozzle 34b. A circulating refrigerant pipe 51 on the downstream side of the refrigerant pump 39 is connected to a diluted refrigerant pipe 44 that guides the refrigerant liquid Vf to the diluted solution pipe 45 during the dilution operation.

吸収器31の底部には、貯留部31cの希溶液Swを高温再生器32Aに導く希溶液管45と、中温再生器32M及び低温再生器32Bに導く希溶液管55が接続されている。希溶液管45には、希溶液Swを高温再生器32Aに圧送する高温溶液ポンプ48が配設されている。希溶液管55には、希溶液Swを中温再生器32M及び低温再生器32Bに圧送する中温溶液ポンプ38が配設されている。高温溶液ポンプ48及び中温溶液ポンプ38は、典型的にはインバータ(不図示)により、回転速度を調節することが可能なように構成されており、冷凍負荷に応じた流量の希溶液Swを圧送することができるように構成されている。すなわち、高温溶液ポンプ48及び中温溶液ポンプ38は、吐出流量が調節可能に構成されている。なお、中温溶液ポンプ38とは別に、吸収器31から低温再生器32Bへ希溶液Swを圧送する溶液ポンプを設けてもよい。   Connected to the bottom of the absorber 31 are a dilute solution tube 45 that guides the dilute solution Sw in the reservoir 31c to the high temperature regenerator 32A, and a dilute solution tube 55 that leads to the intermediate temperature regenerator 32M and the low temperature regenerator 32B. The dilute solution tube 45 is provided with a high temperature solution pump 48 that pumps the dilute solution Sw to the high temperature regenerator 32A. The dilute solution pipe 55 is provided with an intermediate temperature solution pump 38 that pumps the dilute solution Sw to the intermediate temperature regenerator 32M and the low temperature regenerator 32B. The high-temperature solution pump 48 and the intermediate-temperature solution pump 38 are typically configured so that the rotation speed can be adjusted by an inverter (not shown), and the dilute solution Sw having a flow rate corresponding to the refrigeration load is pumped. It is configured to be able to. That is, the high temperature solution pump 48 and the medium temperature solution pump 38 are configured such that the discharge flow rate can be adjusted. In addition to the intermediate temperature solution pump 38, a solution pump that pumps the diluted solution Sw from the absorber 31 to the low temperature regenerator 32B may be provided.

高温溶液ポンプ48の上流側の希溶液管45には、希釈運転時に冷媒液Vfを希溶液管45に導入する希釈冷媒管44が接続されている。希釈冷媒管44には、冷媒液Vfの流れを遮断可能な希釈冷媒弁44vが配設されている。高温溶液ポンプ48の下流側の希溶液管45には、希溶液Swと高温濃溶液Saとの間で熱交換を行わせる溶液熱交換器としての高温溶液熱交換器37が配設されている。高温溶液熱交換器37には、また、高温濃溶液Saを流す高温濃溶液流路としての高温濃溶液管46が接続されている。高温溶液熱交換器37は、典型的にはプレート型熱交換器が用いられるがシェルアンドチューブ型やその他の熱交換器であってもよい。   A diluted refrigerant pipe 44 for introducing the refrigerant liquid Vf into the diluted solution pipe 45 during the dilution operation is connected to the diluted solution pipe 45 on the upstream side of the high temperature solution pump 48. The diluted refrigerant pipe 44 is provided with a diluted refrigerant valve 44v that can block the flow of the refrigerant liquid Vf. A high temperature solution heat exchanger 37 as a solution heat exchanger for exchanging heat between the dilute solution Sw and the high temperature concentrated solution Sa is disposed in the dilute solution pipe 45 on the downstream side of the high temperature solution pump 48. . Also connected to the high temperature solution heat exchanger 37 is a high temperature concentrated solution tube 46 as a high temperature concentrated solution flow path through which the high temperature concentrated solution Sa flows. The high temperature solution heat exchanger 37 is typically a plate type heat exchanger, but may be a shell and tube type or other heat exchanger.

希溶液管45には、高温溶液熱交換器37を迂回するように高温溶液熱交換器37の上流側と下流側とに接続された溶液バイパス流路としての希溶液バイパス管45Bが設けられている。希溶液バイパス管45Bには、希溶液Swの流通を遮断可能な希溶液バイパス弁65が設けられている。高温溶液熱交換器37よりも下流側の高温濃溶液管46には、高温濃溶液Saの流量を調節する流量調節手段としてのオリフィス75が設けられている。   The dilute solution pipe 45 is provided with a dilute solution bypass pipe 45B as a solution bypass channel connected to the upstream side and the downstream side of the high temperature solution heat exchanger 37 so as to bypass the high temperature solution heat exchanger 37. Yes. The dilute solution bypass pipe 45B is provided with a dilute solution bypass valve 65 that can block the flow of the dilute solution Sw. The high temperature concentrated solution pipe 46 on the downstream side of the high temperature solution heat exchanger 37 is provided with an orifice 75 as a flow rate adjusting means for adjusting the flow rate of the high temperature concentrated solution Sa.

希溶液管45は、高温再生器32Aに接続されている。また、高温再生器32Aには、高温濃溶液管46が接続されている。また、高温再生器32Aには、発生した高温冷媒蒸気Vaを流す冷媒蒸気管57が接続されている。高温再生器32A近傍の冷媒蒸気管57には、冷媒蒸気管57の内部の圧力を検出する圧力検出手段としての圧力センサ71が設けられている。高温再生器32A近傍とは、典型的には検出した圧力が高温再生器32Aの内圧と推定できる程度の近さである。つまり、圧力センサ71は、実質的に高温再生器32Aの内部圧力を検出することができるように配設されている。圧力センサ71は、高温再生器32Aに直に設けられていてもよい。高温再生器32Aと高温溶液熱交換器37との間の高温濃溶液管46には、高温再生器32Aから導出された高温濃溶液Saの温度を検出する温度検出手段としての温度センサ72が設けられている。また、高温溶液熱交換器37よりも下流側の高温濃溶液管46には、高温濃溶液管46の内部を流れる高温濃溶液Saの温度を検出する温度検出手段としての温度センサ73が設けられている。なお、図1では、高温再生器32Aを簡易に示しているため、以下に、高温再生器32Aの構成及び高温再生器32Aへの希溶液管45、高温濃溶液管46、冷媒蒸気管57の具体的な接続位置について説明する。   The dilute solution tube 45 is connected to the high temperature regenerator 32A. A high temperature concentrated solution tube 46 is connected to the high temperature regenerator 32A. In addition, a refrigerant vapor pipe 57 for flowing the generated high-temperature refrigerant vapor Va is connected to the high-temperature regenerator 32A. The refrigerant vapor pipe 57 near the high temperature regenerator 32A is provided with a pressure sensor 71 as pressure detection means for detecting the pressure inside the refrigerant vapor pipe 57. The vicinity of the high temperature regenerator 32A is typically close enough that the detected pressure can be estimated as the internal pressure of the high temperature regenerator 32A. That is, the pressure sensor 71 is disposed so as to be able to detect the internal pressure of the high temperature regenerator 32A substantially. The pressure sensor 71 may be provided directly on the high temperature regenerator 32A. The high temperature concentrated solution tube 46 between the high temperature regenerator 32A and the high temperature solution heat exchanger 37 is provided with a temperature sensor 72 as temperature detecting means for detecting the temperature of the high temperature concentrated solution Sa derived from the high temperature regenerator 32A. It has been. Further, the high temperature concentrated solution pipe 46 on the downstream side of the high temperature solution heat exchanger 37 is provided with a temperature sensor 73 as temperature detecting means for detecting the temperature of the high temperature concentrated solution Sa flowing inside the high temperature concentrated solution pipe 46. ing. In FIG. 1, since the high temperature regenerator 32A is simply shown, the configuration of the high temperature regenerator 32A and the dilute solution pipe 45, the high temperature concentrated solution pipe 46, and the refrigerant vapor pipe 57 to the high temperature regenerator 32A will be described below. A specific connection position will be described.

図2は、高温再生器32Aの縦断面図である。高温再生器32Aは貫流式再生器であり、希溶液Swを導入する液室としての下部管寄せ14と、下部管寄せ14の希溶液Swを上方に向けて流す複数の液管10と、液管10内で高温濃溶液Saと高温冷媒蒸気Vaとの混合流体Fmとなったものを収集する収集室としての上部管寄せ15と、液管10内の希溶液Swを加熱する燃焼ガスを生成する加熱装置としてのバーナー16と、これらの部材を収容する外容器13と、高温濃溶液Saと高温冷媒蒸気Vaとを分離する気液分離器22と、気液分離器22と連通する液面制御ケース24とを備えている。   FIG. 2 is a longitudinal sectional view of the high temperature regenerator 32A. The high-temperature regenerator 32A is a once-through regenerator, and includes a lower header 14 as a liquid chamber for introducing the dilute solution Sw, a plurality of liquid tubes 10 that flow the dilute solution Sw in the lower header 14 upward, An upper header 15 serving as a collection chamber for collecting the mixed fluid Fm of the high temperature concentrated solution Sa and the high temperature refrigerant vapor Va in the pipe 10 and a combustion gas for heating the dilute solution Sw in the liquid pipe 10 are generated. A burner 16 as a heating device, an outer container 13 for housing these members, a gas-liquid separator 22 for separating the hot concentrated solution Sa and the high-temperature refrigerant vapor Va, and a liquid level communicating with the gas-liquid separator 22 And a control case 24.

下部管寄せ14は、希溶液Swを複数の液管10に分配する部材である。下部管寄せ14は、典型的には、水平断面が円環状に、鉛直断面が矩形状に形成されている。なお、水平断面は円形以外の多角形状にひとまわりしているものであってもよく、環状につながれずにC字状に形成されていてもよい。鉛直断面は矩形以外の円形あるいは楕円形であってもよい。また、下部管寄せ14の中心部に形成された空洞部分には、耐火材17が充填されている。下部管寄せ14には、希溶液Swを導入する希溶液管45と、気液分離器22から導出された高温濃溶液Saを導入する戻り管25とが接続されている。   The lower header 14 is a member that distributes the dilute solution Sw to the plurality of liquid tubes 10. The lower header 14 typically has an annular horizontal section and a rectangular vertical section. The horizontal cross section may be a polygonal shape other than a circle, or may be formed in a C shape without being connected in an annular shape. The vertical cross section may be a circle other than a rectangle or an ellipse. In addition, a refractory material 17 is filled in a hollow portion formed in the central portion of the lower header 14. Connected to the lower header 14 are a dilute solution tube 45 for introducing dilute solution Sw and a return tube 25 for introducing a hot concentrated solution Sa derived from the gas-liquid separator 22.

下部管寄せ14には、複数の液管10がほぼ鉛直に配設されている。液管10がほぼ鉛直とは、液管10の軸がほぼ鉛直の状態である。ほぼ鉛直は、液管10内で加熱されて希溶液Swから蒸発して生じた高温冷媒蒸気Vaが高温濃溶液Saと共に円滑に排出される程度であればよい。また、複数の液管10は、下部管寄せ14とほぼ同心円上にほぼ等間隔に配設されている。下部管寄せ14と同心円上にほぼ等間隔に配設された複数の液管10の内側には、燃料を燃焼して燃焼ガスGbを生成する燃焼室20が形成されている。   In the lower header 14, a plurality of liquid tubes 10 are arranged substantially vertically. The liquid pipe 10 is substantially vertical means that the axis of the liquid pipe 10 is substantially vertical. The substantially vertical direction may be such that the high-temperature refrigerant vapor Va generated by evaporating from the dilute solution Sw by heating in the liquid pipe 10 is smoothly discharged together with the high-temperature concentrated solution Sa. The plurality of liquid tubes 10 are disposed substantially equidistantly on a concentric circle with the lower header 14. A combustion chamber 20 for combusting fuel and generating combustion gas Gb is formed inside a plurality of liquid pipes 10 arranged substantially equidistantly on a concentric circle with the lower header 14.

複数の液管10の頂部には、上部管寄せ15が接続されている。上部管寄せ15は、下部管寄せ14と同様に、典型的には、水平断面が円環状に、鉛直断面が矩形状に形成されている。上部管寄せ15には、高温濃溶液Saと高温冷媒蒸気Vaとの混合流体Fmを気液分離器22に導く混合流体管21が接続されている。上部管寄せ15の中心部に形成された空洞部分には、バーナー16が配設されている。バーナー16は、制御装置61(図1参照)からの信号を受信して点火及び停止することができるように構成されている。   An upper header 15 is connected to the tops of the plurality of liquid tubes 10. Similar to the lower header 14, the upper header 15 typically has an annular horizontal section and a rectangular vertical section. Connected to the upper header 15 is a mixed fluid pipe 21 that guides the mixed fluid Fm of the high-temperature concentrated solution Sa and the high-temperature refrigerant vapor Va to the gas-liquid separator 22. A burner 16 is disposed in a hollow portion formed at the center of the upper header 15. The burner 16 is configured to be able to ignite and stop by receiving a signal from the control device 61 (see FIG. 1).

外容器13は、燃焼室20で生成された燃焼ガスGbを外部に漏らさないガスシール構造となっており、典型的には、円筒形状を有している。外容器13は、下部管寄せ14及び上部管寄せ15とほぼ同心円となっており、下部管寄せ14及び上部管寄せ15を嵌め込むことができるような内径を有している。外容器13には、燃焼ガスGbを排出する煙道18が接続されている。   The outer container 13 has a gas seal structure that does not leak the combustion gas Gb generated in the combustion chamber 20 to the outside, and typically has a cylindrical shape. The outer container 13 is substantially concentric with the lower header 14 and the upper header 15 and has an inner diameter that allows the lower header 14 and the upper header 15 to be fitted therein. A flue 18 for discharging the combustion gas Gb is connected to the outer container 13.

気液分離器22は、典型的には、円筒状に形成されているが、四角柱形状や多角形形状、その他の形状であってもよい。気液分離器22は、鉛直方向に長手方向がくるようにして上部管寄せ15に近接した位置に配設されている。気液分離器22は、混合流体管21で上部管寄せ15と接続されている。本実施の形態では、上部管寄せ15の上端よりも気液分離器22の上端の方が高くなり、上部管寄せ15の上面と気液分離器22の上部側面とを90°曲がった混合流体管21で接続するようにしている。気液分離器22内には、混合流体管21を介して導入した混合流体Fmを高温冷媒蒸気Vaと高温濃溶液Saとに分離する気液分離板としてのバッフル板22aが設けられている。バッフル板22aは、気液分離器22の上部を2分割するように気液分離器22の天板に取り付けられている。バッフル板22aによって分割された空間の、混合流体管21が接続されていない方の領域の気液分離器22の上面には、分離した高温冷媒蒸気Vaを導出する高温冷媒蒸気導出口22eが形成されており、高温冷媒蒸気導出口22eには冷媒蒸気管57が接続されている。高温冷媒蒸気導出口22eは、気液分離器22の上部側面に形成されていてもよいが、冷媒蒸気管57に溶液が混入するのを防ぐようにする観点から、気液分離器22の上方に形成されていることが好ましい。   The gas-liquid separator 22 is typically formed in a cylindrical shape, but may be a quadrangular prism shape, a polygonal shape, or other shapes. The gas-liquid separator 22 is disposed at a position close to the upper header 15 so that the longitudinal direction is in the vertical direction. The gas-liquid separator 22 is connected to the upper header 15 by a mixed fluid pipe 21. In the present embodiment, the upper end of the gas-liquid separator 22 is higher than the upper end of the upper header 15, and a mixed fluid in which the upper surface of the upper header 15 and the upper side surface of the gas-liquid separator 22 are bent by 90 °. The tube 21 is connected. In the gas-liquid separator 22, a baffle plate 22a is provided as a gas-liquid separation plate for separating the mixed fluid Fm introduced via the mixed fluid pipe 21 into the high-temperature refrigerant vapor Va and the high-temperature concentrated solution Sa. The baffle plate 22a is attached to the top plate of the gas-liquid separator 22 so that the upper part of the gas-liquid separator 22 is divided into two. In the space divided by the baffle plate 22a, the upper surface of the gas-liquid separator 22 in the region where the mixed fluid pipe 21 is not connected is formed with a high-temperature refrigerant vapor outlet 22e for extracting the separated high-temperature refrigerant vapor Va. The refrigerant vapor pipe 57 is connected to the high-temperature refrigerant vapor outlet 22e. The high-temperature refrigerant vapor outlet 22e may be formed on the upper side surface of the gas-liquid separator 22, but from the viewpoint of preventing the solution from entering the refrigerant vapor pipe 57, the high-temperature refrigerant vapor outlet 22e is located above the gas-liquid separator 22. It is preferable to be formed.

また、気液分離器22の底面には分離した高温濃溶液Saを導出する高温濃溶液導出口22nが形成されており、高温濃溶液導出口22nには高温濃溶液管46が接続されている。高温濃溶液導出口22nは、典型的には気液分離器22の底面に形成されているが、気液分離器22の下部側面に形成されていてもよい。さらに気液分離器22の底面の別の部分には、分離した高温濃溶液Saのうちの余剰分を下部管寄せ14に戻す戻り管25が接続されている。本実施の形態では、戻り管25により下部管寄せ14と気液分離器22とが連絡している。下部管寄せ14と気液分離器22とが連絡していると、気液分離器22内に貯留した高温濃溶液Saを下部管寄せ14に還流でき、気液分離器22内の液位の上昇を抑制して、気液分離器22から導出される高温冷媒蒸気Vaに同伴する溶液量を少なくすることができる。   Further, a hot concentrated solution outlet 22n through which the separated hot concentrated solution Sa is led out is formed at the bottom of the gas-liquid separator 22, and a hot concentrated solution tube 46 is connected to the hot concentrated solution outlet 22n. . The hot concentrated solution outlet 22 n is typically formed on the bottom surface of the gas-liquid separator 22, but may be formed on the lower side surface of the gas-liquid separator 22. Further, a return pipe 25 for returning the surplus portion of the separated high-temperature concentrated solution Sa to the lower header 14 is connected to another part of the bottom surface of the gas-liquid separator 22. In the present embodiment, the lower header 14 and the gas-liquid separator 22 communicate with each other through the return pipe 25. When the lower header 14 and the gas-liquid separator 22 communicate with each other, the hot concentrated solution Sa stored in the gas-liquid separator 22 can be returned to the lower header 14, and the liquid level in the gas-liquid separator 22 can be reduced. The amount of solution accompanying the high-temperature refrigerant vapor Va derived from the gas-liquid separator 22 can be reduced by suppressing the rise.

気液分離器22は、混合流体管21及び戻り管25並びに上部管寄せ15及び下部管寄せ14を介して液管10と接続されていて、高温再生器32Aの運転中は、液管10内の混合流体Fmの液位に対して気液分離器22内の高温濃溶液Saの液位は高く現れる。そして、液管10が過熱されることによる損傷を防ぐ観点から液管10内の溶液(希溶液Swから高温濃溶液Saに移行する溶液)の液位に応じて現れる気液分離器22内の高温濃溶液Saの液位が損傷防止液位Lpよりも高くなるように気液分離器22が配置され、高液位Lt及び低液位Lsが設定される。ここで、損傷防止液位Lpは、液管10内に溶液(希溶液Swから高温濃溶液Saに移行する溶液)がない状態で液管10を加熱することによって液管10が過熱されることによる損傷を防ぐために最低限液管10内に溶液を満たしておくべき液位に余裕分(高温再生器32Aが停止動作を開始してから停止するまでの間に液位が降下する分)だけ上方に設定した液管10内の液位が気液分離器22に現れる液位である。余裕分は適宜決定することができる。高液位Ltは、本実施の形態では下部管寄せ14に供給される希溶液Swの流量を減少させる信号を高温溶液ポンプ48(図1参照)に送信する液位である。低液位Lsは、本実施の形態では下部管寄せ14に供給される希溶液Swの流量を増加させる信号を高温溶液ポンプ48(図1参照)に送信する液位である。   The gas-liquid separator 22 is connected to the liquid pipe 10 through the mixed fluid pipe 21 and the return pipe 25, and the upper header 15 and the lower header 14, and the liquid pipe 10 is in the liquid pipe 10 during the operation of the high temperature regenerator 32A. The liquid level of the hot concentrated solution Sa in the gas-liquid separator 22 appears higher than the liquid level of the mixed fluid Fm. And from the viewpoint of preventing damage due to overheating of the liquid pipe 10, the inside of the gas-liquid separator 22 that appears according to the liquid level of the solution in the liquid pipe 10 (the solution that moves from the dilute solution Sw to the high-temperature concentrated solution Sa). The gas-liquid separator 22 is arranged so that the liquid level of the hot concentrated solution Sa is higher than the damage prevention liquid level Lp, and the high liquid level Lt and the low liquid level Ls are set. Here, the damage prevention liquid level Lp is that the liquid pipe 10 is overheated by heating the liquid pipe 10 in a state where there is no solution (solution that moves from the dilute solution Sw to the hot concentrated solution Sa) in the liquid pipe 10. In order to prevent damage due to spillage, at least the liquid level that should be filled with the solution in the liquid tube 10 (the amount that the liquid level drops between the start of the high temperature regenerator 32A and the stoppage) The liquid level in the liquid pipe 10 set above is the liquid level that appears in the gas-liquid separator 22. The margin can be determined as appropriate. In the present embodiment, the high liquid level Lt is a liquid level at which a signal for reducing the flow rate of the dilute solution Sw supplied to the lower header 14 is transmitted to the high temperature solution pump 48 (see FIG. 1). In the present embodiment, the low liquid level Ls is a liquid level at which a signal for increasing the flow rate of the dilute solution Sw supplied to the lower header 14 is transmitted to the high temperature solution pump 48 (see FIG. 1).

液面制御ケース24は、典型的には、円筒状に形成されているが、四角柱形状や多角形形状、その他の形状であってもよい。液面制御ケース24の内部には、損傷防止液位Lpを検出する損傷防止電極棒23pと、低液位Lsを検出する低液位電極棒23sと、高液位Ltを検出する高液位電極棒23tとが鉛直方向に延びるようにして収納されている。以下、損傷防止電極棒23p、低液位電極棒23s、高液位電極棒23tを総称して「液位検出電極棒23」ということもある。液位検出電極棒23は、それぞれ液面制御ケース24の天板に取り付けられている。損傷防止電極棒23pの下端は損傷防止液位Lpに位置している。低液位電極棒23sの下端は低液位Lsに位置している。高液位電極棒23tの下端は高液位Ltに位置している。なお、液面制御ケース24には、必要に応じて、高温濃溶液Saを介して液位検出電極棒23と電気回路を形成するコモン電極棒(不図示)も配設されるが、以降の説明では、コモン電極棒についての言及を特に行わない。液位検出電極棒23は、吸収冷凍機30(図1参照)の制御装置61(図1参照)と信号ケーブルで接続されており、気液分離器22の高液位信号及び低液位信号並びに損傷防止液位信号を制御装置に送信することができるように構成されている。   The liquid level control case 24 is typically formed in a cylindrical shape, but may have a quadrangular prism shape, a polygonal shape, or other shapes. In the liquid level control case 24, there are a damage prevention electrode bar 23p for detecting the damage prevention liquid level Lp, a low liquid level electrode bar 23s for detecting the low liquid level Ls, and a high liquid level for detecting the high liquid level Lt. The electrode rod 23t is accommodated so as to extend in the vertical direction. Hereinafter, the damage preventing electrode bar 23p, the low liquid level electrode bar 23s, and the high liquid level electrode bar 23t may be collectively referred to as “liquid level detection electrode bar 23”. The liquid level detection electrode rods 23 are attached to the top plate of the liquid level control case 24, respectively. The lower end of the damage preventing electrode bar 23p is located at the damage preventing liquid level Lp. The lower end of the low liquid level electrode rod 23s is located at the low liquid level Ls. The lower end of the high liquid level electrode rod 23t is located at the high liquid level Lt. The liquid level control case 24 is also provided with a common electrode rod (not shown) that forms an electric circuit with the liquid level detection electrode rod 23 via the high-temperature concentrated solution Sa, if necessary. The description does not particularly refer to the common electrode rod. The liquid level detection electrode rod 23 is connected to the control device 61 (see FIG. 1) of the absorption refrigerator 30 (see FIG. 1) by a signal cable, and the high liquid level signal and the low liquid level signal of the gas-liquid separator 22 are connected. In addition, the damage prevention liquid level signal can be transmitted to the control device.

液位検出電極棒23を収納する液面制御ケース24は、下端(下面)が損傷防止液位Lpよりも下方に、上端(上面)が少なくとも液管10の上端より上方で好ましくは上部管寄せ15の上端よりも上方に位置するように配設されている。液面制御ケース24の上端は気液分離器22の上端より下方であってもよい。このようにすると、液面制御ケース24をコンパクトにすることができる。液面制御ケース24の上面は、気液分離器22の上部側面と上部連通管29Aで接続されている。また、液面制御ケース24は、損傷防止液位Lpより下方の部分と戻り管25とが下部連通管29Cで接続されている。また、液面制御ケース24は、上部連通管29Aと下部連通管29Cとの間に配設された中間連通管29Bで、戻り管25と接続されている。このように、液面制御ケース24が、上部連通管29Aと中間連通管29Bと下部連通管29Cとで気液分離器22あるいは戻り管25と接続されていることにより、気液分離器22内の高温濃溶液Saの液位及び液管10内の溶液の液位が液面制御ケース24内に正しく現れることになる。このようにして、気液分離器22の下部と上部とを液面制御ケース24に連通しただけでは溶液の性状の変化によって気液分離器22内の高温濃溶液Saの液位が液面制御ケース24内に正確に現れないという不都合を解消している。   The liquid level control case 24 that houses the liquid level detection electrode rod 23 has a lower end (lower surface) below the damage prevention liquid level Lp and an upper end (upper surface) at least above the upper end of the liquid pipe 10 and preferably an upper header. 15 is disposed so as to be located above the upper end of 15. The upper end of the liquid level control case 24 may be lower than the upper end of the gas-liquid separator 22. In this way, the liquid level control case 24 can be made compact. The upper surface of the liquid level control case 24 is connected to the upper side surface of the gas-liquid separator 22 by an upper communication pipe 29A. In the liquid level control case 24, a portion below the damage prevention liquid level Lp and the return pipe 25 are connected by a lower communication pipe 29C. The liquid level control case 24 is connected to the return pipe 25 by an intermediate communication pipe 29B disposed between the upper communication pipe 29A and the lower communication pipe 29C. As described above, the liquid level control case 24 is connected to the gas-liquid separator 22 or the return pipe 25 by the upper communication pipe 29A, the intermediate communication pipe 29B, and the lower communication pipe 29C. Thus, the liquid level of the hot concentrated solution Sa and the liquid level of the solution in the liquid pipe 10 appear correctly in the liquid level control case 24. In this way, the liquid level of the hot concentrated solution Sa in the gas-liquid separator 22 can be controlled by changing the properties of the solution only by connecting the lower and upper parts of the gas-liquid separator 22 to the liquid level control case 24. The inconvenience of not appearing correctly in the case 24 is solved.

再び図1に戻って、吸収冷凍機30の構成の説明を続ける。中温溶液ポンプ38の下流側の希溶液管55には、希溶液Swと混合濃溶液Scとの間で熱交換を行わせる低温溶液熱交換器36が配設されている。低温溶液熱交換器36には、また、混合濃溶液Scを流す濃溶液管56が接続されている。低温溶液熱交換器36は、典型的にはプレート型熱交換器が用いられるがシェルアンドチューブ型やその他の熱交換器であってもよい。   Returning to FIG. 1 again, the description of the configuration of the absorption refrigerator 30 will be continued. A low temperature solution heat exchanger 36 that performs heat exchange between the dilute solution Sw and the mixed concentrated solution Sc is disposed in the dilute solution tube 55 on the downstream side of the intermediate temperature solution pump 38. The low temperature solution heat exchanger 36 is also connected with a concentrated solution tube 56 for flowing the mixed concentrated solution Sc. The low temperature solution heat exchanger 36 is typically a plate heat exchanger, but may be a shell and tube type or other heat exchanger.

希溶液管55は、低温溶液熱交換器36の下流側で、中温再生器32Mに接続される希溶液管55Aと、低温再生器32Bに接続される希溶液管55Bとに分岐している。希溶液管55Aには、希溶液Swと中温濃溶液Smとの間で熱交換を行わせる中温溶液熱交換器35が配設されている。中温溶液熱交換器35には、また、中温濃溶液Smを流す中温濃溶液管56Aが接続されている。中温溶液熱交換器35は、典型的にはプレート型熱交換器が用いられるがシェルアンドチューブ型やその他の熱交換器であってもよい。   The dilute solution tube 55 is branched downstream of the low temperature solution heat exchanger 36 into a dilute solution tube 55A connected to the intermediate temperature regenerator 32M and a dilute solution tube 55B connected to the low temperature regenerator 32B. The dilute solution tube 55A is provided with an intermediate temperature solution heat exchanger 35 that performs heat exchange between the dilute solution Sw and the intermediate temperature concentrated solution Sm. The intermediate temperature solution heat exchanger 35 is also connected with an intermediate temperature concentrated solution tube 56A through which the intermediate temperature concentrated solution Sm flows. The medium temperature solution heat exchanger 35 is typically a plate type heat exchanger, but may be a shell and tube type or other heat exchanger.

中温再生器32Mには、希溶液Swを加熱するための加熱源となる高温冷媒蒸気Vaを流す加熱蒸気管32Maが配設されている。加熱蒸気管32Maは、一端が冷媒蒸気管57に接続されている。他端は、凝縮冷媒管57Dに接続されている。中温再生器32Mには、導入した希溶液Swを加熱蒸気管32Maに向けて散布する希溶液散布ノズル32Mbが配設されている。希溶液散布ノズル32Mbは、希溶液管55Aに接続されている。中温再生器32Mの底部には、温度が上昇した中温濃溶液Smを通す中温濃溶液管56Aが接続されている。中温濃溶液管56Aは、中温溶液熱交換器35を経由して低温濃溶液管56Bに接続されている。また、中温再生器32Mには、発生した中温冷媒蒸気Vmを流す冷媒蒸気管58が接続されている。冷媒蒸気管58には、上述の凝縮冷媒管57Dが接続されている。   The intermediate temperature regenerator 32M is provided with a heating steam pipe 32Ma for flowing a high-temperature refrigerant vapor Va serving as a heating source for heating the dilute solution Sw. One end of the heating steam pipe 32Ma is connected to the refrigerant steam pipe 57. The other end is connected to the condensed refrigerant pipe 57D. The intermediate temperature regenerator 32M is provided with a dilute solution spray nozzle 32Mb for spraying the introduced dilute solution Sw toward the heating steam pipe 32Ma. The dilute solution spray nozzle 32Mb is connected to the dilute solution tube 55A. Connected to the bottom of the intermediate temperature regenerator 32M is an intermediate temperature concentrated solution tube 56A through which the temperature increased intermediate temperature concentrated solution Sm is passed. The medium temperature concentrated solution tube 56A is connected to the low temperature concentrated solution tube 56B via the medium temperature solution heat exchanger 35. Further, a refrigerant vapor pipe 58 through which the generated intermediate temperature refrigerant vapor Vm flows is connected to the intermediate temperature regenerator 32M. The above-described condensing refrigerant pipe 57D is connected to the refrigerant vapor pipe 58.

低温再生器32Bには、希溶液Swを加熱するための加熱源となる混合冷媒蒸気Vnを流す加熱蒸気管32Baが配設されている。加熱蒸気管32Baは、一端が冷媒蒸気管58に接続されている。他端は、凝縮冷媒管59に接続されている。凝縮冷媒管59は、加熱蒸気管32Ba内で混合冷媒蒸気Vnが凝縮した冷媒液Vdを凝縮器33へと導く配管である。低温再生器32Bには、導入した希溶液Swを加熱蒸気管32Baに向けて散布する希溶液散布ノズル32Bbが配設されている。希溶液散布ノズル32Bbは、希溶液管55Bに接続されている。   The low temperature regenerator 32B is provided with a heating steam pipe 32Ba for flowing a mixed refrigerant vapor Vn serving as a heating source for heating the dilute solution Sw. One end of the heating steam pipe 32Ba is connected to the refrigerant steam pipe 58. The other end is connected to the condensed refrigerant pipe 59. The condensed refrigerant pipe 59 is a pipe that guides the refrigerant liquid Vd, in which the mixed refrigerant vapor Vn is condensed in the heating vapor pipe 32Ba, to the condenser 33. The low temperature regenerator 32B is provided with a dilute solution spray nozzle 32Bb for spraying the introduced dilute solution Sw toward the heating steam pipe 32Ba. The dilute solution spray nozzle 32Bb is connected to the dilute solution tube 55B.

凝縮器33には、低温再生器32Bで発生した低温冷媒蒸気Vbを冷却するための冷却水qを流す冷却水管33aが配設されている。冷却水管33aは、一端が吸収器31内の冷却水管31aと配管53を介して、他端が冷却塔(不図示)と配管54を介して、それぞれ接続されている。   The condenser 33 is provided with a cooling water pipe 33a through which the cooling water q for cooling the low-temperature refrigerant vapor Vb generated in the low-temperature regenerator 32B flows. One end of the cooling water pipe 33a is connected to the cooling water pipe 31a in the absorber 31 via a pipe 53, and the other end is connected to a cooling tower (not shown) via a pipe 54.

凝縮器33と低温再生器32Bとは共に1つの缶胴内にシェルアンドチューブ型に形成され、両者の間には仕切壁33dが設けられている。凝縮器33と低温再生器32Bとは仕切壁33dの上部で連通しており、低温再生器32Bで発生した低温冷媒蒸気Vbを凝縮器33に移動させることができるように構成されている。凝縮器33と低温再生器32Bとが形成された缶胴は、吸収器31と蒸発器34とが形成された缶胴よりも上方に配設されており、低温再生器32B内の低温濃溶液Sbを吸収器31に、凝縮器33内の冷媒液Vfを蒸発器34に、それぞれ重力によって送液することができるように構成されている。   Both the condenser 33 and the low temperature regenerator 32B are formed in a shell and tube type in one can body, and a partition wall 33d is provided between them. The condenser 33 and the low temperature regenerator 32B communicate with each other at the upper part of the partition wall 33d, and the low temperature refrigerant vapor Vb generated in the low temperature regenerator 32B can be moved to the condenser 33. The can body in which the condenser 33 and the low temperature regenerator 32B are formed is disposed above the can body in which the absorber 31 and the evaporator 34 are formed, and the low temperature concentrated solution in the low temperature regenerator 32B. Sb can be sent to the absorber 31 and the refrigerant liquid Vf in the condenser 33 can be sent to the evaporator 34 by gravity, respectively.

低温再生器32Bの底部には、濃度が上昇した低温濃溶液Sbを通す低温濃溶液管56Bが接続されている。低温濃溶液管56Bには中温濃溶液管56Aが接続されて濃溶液管56となっている。濃溶液管56は、低温溶液熱交換器36を経由して濃溶液管86に接続されている。濃溶液管86は、濃溶液散布ノズル31bに接続されている。凝縮器33の底部には、冷媒液Vfを蒸発器34に向けて導出する冷媒液管60が接続されている。冷媒液Vfは、低温冷媒蒸気Vbが凝縮した冷媒液Vcと、加熱蒸気管32Ba内で混合冷媒蒸気Vnが凝縮し、凝縮器33で冷却された冷媒液Vdとが混合した冷媒液である。   Connected to the bottom of the low temperature regenerator 32B is a low temperature concentrated solution pipe 56B through which the low temperature concentrated solution Sb having an increased concentration passes. A medium temperature concentrated solution tube 56A is connected to the low temperature concentrated solution tube 56B to form a concentrated solution tube 56. The concentrated solution tube 56 is connected to the concentrated solution tube 86 via the low temperature solution heat exchanger 36. The concentrated solution tube 86 is connected to the concentrated solution spray nozzle 31b. Connected to the bottom of the condenser 33 is a refrigerant liquid pipe 60 that guides the refrigerant liquid Vf toward the evaporator 34. The refrigerant liquid Vf is a refrigerant liquid in which the refrigerant liquid Vc in which the low-temperature refrigerant vapor Vb is condensed and the refrigerant liquid Vd in which the mixed refrigerant vapor Vn is condensed in the heating vapor pipe 32Ba and cooled in the condenser 33 are mixed.

高温再生器32Aから中温再生器32Mへ高温冷媒蒸気Vaを導く冷媒蒸気管57には、高温冷媒蒸気バイパス流路としての冷媒蒸気バイパス管57Bの一端が接続されている。冷媒蒸気バイパス管57Bは、冷媒蒸気吸収器バイパス管57Baと冷媒蒸気凝縮器バイパス管57Bcとに分岐している。冷媒蒸気吸収器バイパス管57Ba及び冷媒蒸気凝縮器バイパス管57Bcも冷媒蒸気バイパス管57Bの一部である。冷媒蒸気吸収器バイパス管57Baは、吸収器31の気相部(典型的には濃溶液散布ノズル31bの上方)に接続されており、吸収器31の気相部に高温冷媒蒸気Vaを流入させることができるように構成されている。冷媒蒸気凝縮器バイパス管57Bcは、凝縮器33の気相部(典型的には冷却水管33aの上方)に接続されており、凝縮器33の気相部に高温冷媒蒸気Vaを流入させることができるように構成されている。冷媒蒸気吸収器バイパス管57Baには、高温冷媒蒸気Vaの流通を遮断可能な冷媒蒸気バイパス弁67が設けられている。冷媒蒸気凝縮器バイパス管57Bcには、高温冷媒蒸気Vaの流通を遮断可能な冷媒蒸気バイパス弁68が設けられている。   One end of a refrigerant vapor bypass pipe 57B as a high-temperature refrigerant vapor bypass flow path is connected to the refrigerant vapor pipe 57 that guides the high-temperature refrigerant vapor Va from the high-temperature regenerator 32A to the intermediate temperature regenerator 32M. The refrigerant vapor bypass pipe 57B is branched into a refrigerant vapor absorber bypass pipe 57Ba and a refrigerant vapor condenser bypass pipe 57Bc. The refrigerant vapor absorber bypass pipe 57Ba and the refrigerant vapor condenser bypass pipe 57Bc are also part of the refrigerant vapor bypass pipe 57B. The refrigerant vapor absorber bypass pipe 57Ba is connected to the gas phase part of the absorber 31 (typically above the concentrated solution spray nozzle 31b), and allows the high-temperature refrigerant vapor Va to flow into the gas phase part of the absorber 31. It is configured to be able to. The refrigerant vapor condenser bypass pipe 57Bc is connected to the gas phase part of the condenser 33 (typically above the cooling water pipe 33a), and allows the high-temperature refrigerant vapor Va to flow into the gas phase part of the condenser 33. It is configured to be able to. The refrigerant vapor absorber bypass pipe 57Ba is provided with a refrigerant vapor bypass valve 67 that can block the flow of the high-temperature refrigerant vapor Va. The refrigerant vapor condenser bypass pipe 57Bc is provided with a refrigerant vapor bypass valve 68 that can block the flow of the high-temperature refrigerant vapor Va.

制御装置61は、希溶液バイパス弁65、冷媒蒸気バイパス弁67、冷媒蒸気バイパス弁68と、それぞれ信号ケーブルで接続されている。これにより、制御装置61は各弁65、67、68に信号を送信し、制御装置61からの信号を受信した各弁65、67、68は信号に応じて弁の開閉動作が行われるように構成されている。また、制御装置61は、圧力センサ71、温度センサ72、温度センサ73と、それぞれ信号ケーブルで接続されており、各センサ71、72、73で検出した圧力又は温度を信号として受信できるように構成されている。   The control device 61 is connected to the dilute solution bypass valve 65, the refrigerant vapor bypass valve 67, and the refrigerant vapor bypass valve 68 through signal cables. Thus, the control device 61 transmits a signal to each of the valves 65, 67, 68, and the valves 65, 67, 68 that have received the signal from the control device 61 perform the opening / closing operation of the valve according to the signal. It is configured. The control device 61 is connected to the pressure sensor 71, the temperature sensor 72, and the temperature sensor 73 through signal cables, respectively, and is configured to receive the pressure or temperature detected by each sensor 71, 72, 73 as a signal. Has been.

制御装置61は、高液位電極棒23t(図2参照)から高液位信号を受信することにより気液分離器22(図2参照)内の高温濃溶液Saの液位が高液位Ltに至ったことを検出したときに、高温溶液ポンプ48に信号を送信して回転数(rpm)を減少させる。また、制御装置61は、低液位電極棒23s(図2参照)から低液位信号を受信することにより気液分離器22(図2参照)内の高温濃溶液Saの液位が低液位Lsに至ったことを検出したときに、高温溶液ポンプ48に信号を送信して回転数(rpm)を増加させる。また、制御装置61は、損傷防止電極棒23p(図2参照)から損傷防止液位信号を受信することにより気液分離器22(図2参照)内の高温濃溶液Saの液位が戻り管25内の損傷防止液位Lpまで降下したことを検出したときに、バーナー16(図2参照)に信号を送信してバーナー16(図2参照)における燃焼を停止させ、液管10(図2参照)の加熱を停止させる。また、制御装置61は、吸収冷凍機30の運転負荷に応じて高温溶液ポンプ48及び中温溶液ポンプ38の回転数(rpm)を調節する他、冷媒ポンプ39の発停等、吸収冷凍機30の運転を制御する。なお、冷却水管31a、33a、53、54を流れる冷却水qは、第2の制御装置としての制御盤(不図示)によって運転が制御され、吸収冷凍機30外に設けられる冷却水ポンプ(不図示)の起動により流動するように構成されている。制御装置61と制御盤(不図示)とを信号ケーブルで接続し、制御装置61が制御盤(不図示)に冷却水ポンプ(不図示)の起動信号を送信できるように構成してもよい。   The control device 61 receives the high liquid level signal from the high liquid level electrode rod 23t (see FIG. 2), so that the liquid level of the hot concentrated solution Sa in the gas-liquid separator 22 (see FIG. 2) becomes the high liquid level Lt. Is detected, a signal is transmitted to the high temperature solution pump 48 to reduce the rotational speed (rpm). Further, the control device 61 receives the low liquid level signal from the low liquid level electrode rod 23s (see FIG. 2), so that the liquid level of the hot concentrated solution Sa in the gas-liquid separator 22 (see FIG. 2) is low. When it is detected that the position Ls has been reached, a signal is transmitted to the high temperature solution pump 48 to increase the rotation speed (rpm). Further, the control device 61 receives the damage prevention liquid level signal from the damage prevention electrode bar 23p (see FIG. 2), whereby the liquid level of the hot concentrated solution Sa in the gas-liquid separator 22 (see FIG. 2) is returned to the return pipe. When it is detected that the liquid has fallen to the damage prevention liquid level Lp in 25, a signal is transmitted to the burner 16 (see FIG. 2) to stop the combustion in the burner 16 (see FIG. 2), and the liquid pipe 10 (see FIG. 2). (Refer to the above). Further, the control device 61 adjusts the rotation speed (rpm) of the high temperature solution pump 48 and the intermediate temperature solution pump 38 according to the operation load of the absorption refrigerator 30, and starts and stops the refrigerant pump 39, etc. Control driving. The operation of the cooling water q flowing through the cooling water pipes 31a, 33a, 53, and 54 is controlled by a control panel (not shown) as a second control device, and a cooling water pump (not shown) provided outside the absorption chiller 30 is used. It is configured to flow upon activation of (shown). The control device 61 and a control panel (not shown) may be connected by a signal cable so that the control device 61 can transmit a start signal of a cooling water pump (not shown) to the control panel (not shown).

引き続き図1及び図2を参照して吸収冷凍機30の作用を説明する。まず、定常運転時の吸収冷凍機30の冷媒側のサイクルを説明する。定常運転時は、希釈冷媒弁44v、希溶液バイパス弁65、冷媒蒸気バイパス弁67、68がそれぞれ閉になっている。凝縮器33では、低温再生器32Bで蒸発した低温冷媒蒸気Vbを受け入れて、冷却塔(不図示)から供給された、冷却水管33aを流れる冷却水qで冷却して凝縮し、冷媒液Vcとする。凝縮した冷媒液Vcは、冷媒液Vdと混合され冷媒液Vfとなって蒸発器34へと送られ、貯留部34cに冷媒液Vfとして貯留される。貯留部34cに貯留された冷媒液Vfは、冷媒ポンプ39により冷媒液散布ノズル34bに送液される。蒸発器34の冷媒液Vfが冷媒液散布ノズル34bから冷水管34aに散布されると、冷媒液Vfは冷水管34a内の冷水pから熱を受けて蒸発する一方、冷水pは冷やされる。冷やされた冷水pは冷熱を利用する場所(不図示)に送られて使われる。他方、蒸発器34で蒸発した冷媒液Vfは冷媒蒸気Veとなって、連通している吸収器31へと移動する。   The operation of the absorption refrigerator 30 will be described with reference to FIGS. First, the refrigerant cycle of the absorption refrigerator 30 during steady operation will be described. During steady operation, the diluted refrigerant valve 44v, the diluted solution bypass valve 65, and the refrigerant vapor bypass valves 67 and 68 are closed. In the condenser 33, the low-temperature refrigerant vapor Vb evaporated in the low-temperature regenerator 32B is received, cooled and condensed by the cooling water q supplied from the cooling tower (not shown) and flowing through the cooling water pipe 33a, and the refrigerant liquid Vc. To do. The condensed refrigerant liquid Vc is mixed with the refrigerant liquid Vd to be sent to the evaporator 34 as the refrigerant liquid Vf, and stored in the storage section 34c as the refrigerant liquid Vf. The refrigerant liquid Vf stored in the storage part 34c is sent to the refrigerant liquid spray nozzle 34b by the refrigerant pump 39. When the refrigerant liquid Vf of the evaporator 34 is sprayed from the refrigerant liquid spray nozzle 34b to the cold water pipe 34a, the refrigerant liquid Vf receives heat from the cold water p in the cold water pipe 34a and evaporates, while the cold water p is cooled. The chilled cold water p is sent to a place (not shown) that uses cold heat for use. On the other hand, the refrigerant liquid Vf evaporated by the evaporator 34 becomes the refrigerant vapor Ve and moves to the absorber 31 in communication.

次に、定常運転時の吸収冷凍機30の溶液側のサイクルを説明する。吸収器31では、高濃度の混合濃溶液Sdが濃溶液散布ノズル31bから散布され、蒸発器34で発生した冷媒蒸気Veを混合濃溶液Sdが吸収して希溶液Swとなる。希溶液Swは、貯留部31cに貯留される。混合濃溶液Sdが冷媒蒸気Veを吸収する際に発生する吸収熱は、冷却水管31aを流れる冷却水qによって除去される。貯留部31cの希溶液Swは、高温溶液ポンプ48で高温再生器32Aへ、中温溶液ポンプ38で中温再生器32M及び低温再生器32Bへ、それぞれ圧送される。なお、貯留部31cに溜まった溶液を溶液循環ポンプ(不図示)により循環させて冷却水管31aに散布する構成としてもよい。このようにすると、冷却水管31aを溶液で十分に濡らすことができ、冷却水管31aに接触する溶液の偏りを防止することができる。また、中温溶液ポンプ38が溶液循環ポンプを兼ねるように構成してもよい。この場合は、中温溶液ポンプ38と低温溶液熱交換器36との間の希溶液管55から配管を分岐して濃溶液散布ノズル31bに接続するとよい。   Next, the solution-side cycle of the absorption refrigerator 30 during steady operation will be described. In the absorber 31, the high concentration mixed concentrated solution Sd is sprayed from the concentrated solution spraying nozzle 31b, and the refrigerant vapor Ve generated in the evaporator 34 is absorbed by the mixed concentrated solution Sd to become a diluted solution Sw. The dilute solution Sw is stored in the storage unit 31c. Absorption heat generated when the mixed concentrated solution Sd absorbs the refrigerant vapor Ve is removed by the cooling water q flowing through the cooling water pipe 31a. The dilute solution Sw in the reservoir 31c is pumped to the high temperature regenerator 32A by the high temperature solution pump 48 and to the intermediate temperature regenerator 32M and the low temperature regenerator 32B by the intermediate temperature solution pump 38, respectively. In addition, it is good also as a structure which circulates the solution collected in the storage part 31c with a solution circulation pump (not shown), and sprays it on the cooling water pipe 31a. If it does in this way, the cooling water pipe | tube 31a can be fully wetted with a solution, and the bias | inclination of the solution which contacts the cooling water pipe | tube 31a can be prevented. Moreover, you may comprise so that the intermediate temperature solution pump 38 may serve as a solution circulation pump. In this case, a pipe may be branched from the dilute solution pipe 55 between the intermediate temperature solution pump 38 and the low temperature solution heat exchanger 36 and connected to the concentrated solution spray nozzle 31b.

高温溶液ポンプ48で圧送されて希溶液管45を流れる希溶液Swは、高温溶液熱交換器37で高温再生器32Aから導出された高温濃溶液Saと熱交換して温度が上昇した後に高温再生器32Aへと導入される。希溶液管45を流れて高温再生器32Aへと導入された希溶液Swは、下部管寄せ14に流入する。下部管寄せ14に流入した希溶液Swは、各液管10の下部に達し、高温溶液ポンプ48の圧力により複数の液管10内を上昇して上部管寄せ15へと向かう。希溶液Swは、各液管10を上昇する過程でバーナー16の火炎及び燃焼ガスGbにより加熱され、冷媒が蒸発して高温冷媒蒸気Vaが発生し、溶液自体の濃度は上昇して高温濃溶液Saとなる。希溶液Swから濃度が上昇した高温濃溶液Saと高温冷媒蒸気Vaとは、混合流体Fmとして各液管10から上部管寄せ15に流入して収集され、混合流体管21を介して気液分離器22に流入される。   The dilute solution Sw that is pumped by the high temperature solution pump 48 and flows through the dilute solution tube 45 is heat regenerated after the temperature is increased by heat exchange with the high temperature concentrated solution Sa derived from the high temperature regenerator 32A by the high temperature solution heat exchanger 37. Introduced into the vessel 32A. The dilute solution Sw flowing through the dilute solution tube 45 and introduced into the high temperature regenerator 32 </ b> A flows into the lower header 14. The dilute solution Sw that has flowed into the lower header 14 reaches the lower portion of each liquid tube 10, rises in the plurality of liquid tubes 10 by the pressure of the high-temperature solution pump 48, and moves toward the upper header 15. The dilute solution Sw is heated by the flame of the burner 16 and the combustion gas Gb in the process of ascending each liquid pipe 10, and the refrigerant evaporates to generate the high-temperature refrigerant vapor Va. The concentration of the solution itself increases and the high-temperature concentrated solution Sa. The high-temperature concentrated solution Sa and the high-temperature refrigerant vapor Va whose concentration is increased from the dilute solution Sw are collected as flowing into the upper header 15 from each liquid pipe 10 as the mixed fluid Fm, and are separated into gas and liquid via the mixed fluid pipe 21. Into the vessel 22.

気液分離器22に流入した混合流体Fmは、バッフル板22aに衝突後にバッフル板22aの面に案内されて下方に流れる際に高温冷媒蒸気Vaと高温濃溶液Saとに分離され、高温冷媒蒸気Vaはバッフル板22aの下端を反転して上方に移動し、高温濃溶液Saは気液分離器22の下部に溜まる。気液分離器22の上方に移動した高温冷媒蒸気Vaは、高温冷媒蒸気導出口22eから導出され、冷媒蒸気管57を中温再生器32Mに向かって流れる。他方、気液分離器22の下部に溜まった高温濃溶液Saは、高温濃溶液導出口22nから導出され、高温濃溶液管46を吸収器31に向かって流れる。また、気液分離器22の下部に溜まった高温濃溶液Saの余剰分が、戻り管25を流れて下部管寄せ14に還流する。   The mixed fluid Fm that has flowed into the gas-liquid separator 22 is separated into the high-temperature refrigerant vapor Va and the high-temperature concentrated solution Sa when it is guided to the surface of the baffle plate 22a and flows downward after colliding with the baffle plate 22a. Va reverses the lower end of the baffle plate 22a and moves upward, and the hot concentrated solution Sa accumulates in the lower part of the gas-liquid separator 22. The high-temperature refrigerant vapor Va that has moved above the gas-liquid separator 22 is derived from the high-temperature refrigerant vapor outlet 22e, and flows through the refrigerant vapor pipe 57 toward the intermediate temperature regenerator 32M. On the other hand, the hot concentrated solution Sa accumulated in the lower portion of the gas-liquid separator 22 is led out from the hot concentrated solution outlet 22n and flows through the hot concentrated solution tube 46 toward the absorber 31. Further, the excess of the hot concentrated solution Sa accumulated in the lower part of the gas-liquid separator 22 flows through the return pipe 25 and returns to the lower header 14.

吸収冷凍機30の定常運転時には、下部管寄せ14に流入する希溶液Swの流量は、気液分離器22内の高温濃溶液Saの液位に基づいて調節される。気液分離器22内の液位が高液位電極棒23tの検出液位迄上昇すると、高液位電極棒23tが信号を発信して高温溶液ポンプ48の回転数(rpm)を所定の回転数減少させ、これにより希溶液Swの供給量を減少させて、気液分離器22内の液位を低下させる。ここで「所定の回転数」は、典型的には気液分離器22内の高温濃溶液Saの増加を抑制して気液分離器22内の高温濃溶液Saを適切な量に維持できるような回転数である。検出直後は気液分離器22内の高温濃溶液Saが減少するようにし、その後液位を気液分離器22内の適切な位置に維持するようにしてもよい。   During steady operation of the absorption refrigerator 30, the flow rate of the dilute solution Sw flowing into the lower header 14 is adjusted based on the liquid level of the hot concentrated solution Sa in the gas-liquid separator 22. When the liquid level in the gas-liquid separator 22 rises to the detection liquid level of the high liquid level electrode rod 23t, the high liquid level electrode rod 23t transmits a signal to rotate the rotation speed (rpm) of the high temperature solution pump 48 by a predetermined rotation. The liquid level in the gas-liquid separator 22 is lowered by reducing the supply amount of the dilute solution Sw. Here, the “predetermined rotational speed” typically suppresses an increase in the hot concentrated solution Sa in the gas-liquid separator 22 so that the hot concentrated solution Sa in the gas-liquid separator 22 can be maintained at an appropriate amount. The number of revolutions. Immediately after the detection, the hot concentrated solution Sa in the gas-liquid separator 22 may be decreased, and then the liquid level may be maintained at an appropriate position in the gas-liquid separator 22.

他方、気液分離器22内の液位が低液位電極棒23sの検出液位迄下降すると、低液位電極棒23sが信号を発信して高温溶液ポンプ48の回転数(rpm)を所定の回転数増加させ、これにより希溶液Swの供給量を増加させて、気液分離器22内の液位を上昇させる。ここで「所定の回転数」は、典型的には気液分離器22内の高温濃溶液Saの減少を抑制して気液分離器22内の高温濃溶液Saを適切な量に維持できるような回転数である。検出直後は気液分離器22内の高温濃溶液Saが増加するようにし、その後液位を気液分離器22内の適切な位置に維持するようにしてもよい。また、気液分離器22内の高温濃溶液Saの液位が損傷防止液位Lp迄下降すると、損傷防止電極棒23pが信号を発信してバーナー16の燃焼を停止させる。   On the other hand, when the liquid level in the gas-liquid separator 22 falls to the detection liquid level of the low liquid level electrode rod 23s, the low liquid level electrode rod 23s transmits a signal to set the rotation speed (rpm) of the high temperature solution pump 48 to a predetermined value. , Thereby increasing the supply amount of the dilute solution Sw and raising the liquid level in the gas-liquid separator 22. Here, the “predetermined rotational speed” typically suppresses the decrease in the hot concentrated solution Sa in the gas-liquid separator 22 so that the hot concentrated solution Sa in the gas-liquid separator 22 can be maintained at an appropriate amount. The number of revolutions. Immediately after detection, the hot concentrated solution Sa in the gas-liquid separator 22 may be increased, and then the liquid level may be maintained at an appropriate position in the gas-liquid separator 22. When the liquid level of the hot concentrated solution Sa in the gas-liquid separator 22 is lowered to the damage prevention liquid level Lp, the damage prevention electrode bar 23p transmits a signal to stop the burner 16 from burning.

高温再生器32Aから導出されて高温濃溶液管46を流れる高温濃溶液Saは、高温溶液熱交換器37に導かれて高温再生器32Aに向かう希溶液Swと熱交換を行い温度が低下する。他方、高温再生器32Aから導出されて冷媒蒸気管57を流れる高温冷媒蒸気Vaは、中温再生器32Mの加熱蒸気管32Maに流入する。   The high-temperature concentrated solution Sa that is led out from the high-temperature regenerator 32A and flows through the high-temperature concentrated solution tube 46 is guided to the high-temperature solution heat exchanger 37 to exchange heat with the dilute solution Sw toward the high-temperature regenerator 32A, and the temperature decreases. On the other hand, the high-temperature refrigerant vapor Va derived from the high-temperature regenerator 32A and flowing through the refrigerant vapor pipe 57 flows into the heating vapor pipe 32Ma of the intermediate-temperature regenerator 32M.

ここから低温再生器21B及び中温再生器32Mまわりの作用に視点を移すと、中温溶液ポンプ38で圧送されて希溶液管55を流れる希溶液Swは、まず低温溶液熱交換器36で混合濃溶液Scと熱交換して熱回収した後に分流し、一部は希溶液管55Aを流れて中温溶液熱交換器35へと導かれ、残りは希溶液管55Bを流れて低温再生器32Bへと導かれる。希溶液管55Aを流れて中温溶液熱交換器35へ流入した希溶液Swは、中温再生器32Mから導出された中温濃溶液Smと熱交換して温度が上昇した後に希溶液管55Aを流れて中温再生器32Mへと導入される。   Turning now to the operation around the low temperature regenerator 21B and the medium temperature regenerator 32M, the dilute solution Sw that is pumped by the medium temperature solution pump 38 and flows through the dilute solution tube 55 is first mixed with the concentrated solution by the low temperature solution heat exchanger 36. After heat recovery by exchanging heat with Sc, the flow is divided and a part flows through the dilute solution pipe 55A and is led to the intermediate temperature solution heat exchanger 35, and the rest flows through the dilute solution pipe 55B to the low temperature regenerator 32B. It is burned. The dilute solution Sw flowing through the dilute solution tube 55A and flowing into the intermediate temperature solution heat exchanger 35 heat-exchanges with the intermediate temperature concentrated solution Sm derived from the intermediate temperature regenerator 32M to rise in temperature, and then flows through the dilute solution tube 55A. It is introduced into the medium temperature regenerator 32M.

中温再生器32Mに導かれた希溶液Swは、希溶液散布ノズル32Mbから散布される。希溶液散布ノズル32Mbから散布された希溶液Swは、加熱蒸気管32Maを流れる高温冷媒蒸気Vaによって加熱され、中温再生器32M内の希溶液Sw中の冷媒が蒸発して中温濃溶液Smとなる。高温冷媒蒸気Vaからの受熱により温度が上昇した中温濃溶液Smは、重力及び中温再生器32M内の圧力により中温濃溶液管56Aへ導出される。他方、希溶液Swから蒸発した冷媒は中温冷媒蒸気Vmとして冷媒蒸気管58を流れる。加熱蒸気管32Maを流れる高温冷媒蒸気Vaは、希溶液Swに熱を奪われ凝縮して冷媒液となり、凝縮冷媒管57Dを介して冷媒蒸気管58に流入し、中温冷媒蒸気Vmと混合される。冷媒蒸気管58を流れる中温冷媒蒸気Vmは、冷媒液が混入して混合冷媒蒸気Vnとなり、低温再生器32Bの加熱蒸気管32Baへと送られる。   The dilute solution Sw guided to the intermediate temperature regenerator 32M is sprayed from the dilute solution spray nozzle 32Mb. The dilute solution Sw sprayed from the dilute solution spray nozzle 32Mb is heated by the high-temperature refrigerant vapor Va flowing through the heating steam pipe 32Ma, and the refrigerant in the dilute solution Sw in the intermediate-temperature regenerator 32M evaporates to become the intermediate-temperature concentrated solution Sm. . The medium-temperature concentrated solution Sm whose temperature has been increased by receiving heat from the high-temperature refrigerant vapor Va is led out to the medium-temperature concentrated solution tube 56A by gravity and the pressure in the medium temperature regenerator 32M. On the other hand, the refrigerant evaporated from the dilute solution Sw flows through the refrigerant vapor pipe 58 as the medium temperature refrigerant vapor Vm. The high-temperature refrigerant vapor Va flowing through the heated vapor pipe 32Ma is deprived of heat by the dilute solution Sw to be condensed into a refrigerant liquid, flows into the refrigerant vapor pipe 58 via the condensed refrigerant pipe 57D, and is mixed with the intermediate-temperature refrigerant vapor Vm. . The intermediate temperature refrigerant vapor Vm flowing through the refrigerant vapor pipe 58 is mixed with the refrigerant liquid to become the mixed refrigerant vapor Vn, and is sent to the heating vapor pipe 32Ba of the low temperature regenerator 32B.

他方、希溶液管55Bを流れて低温再生器32Bに導かれた希溶液Swは、希溶液散布ノズル32Bbから散布される。希溶液散布ノズル32Bbから散布された希溶液Swは、加熱蒸気管32Baを流れる混合冷媒蒸気Vnによって加熱され、低温再生器32B内の希溶液Sw中の冷媒が蒸発して低温濃溶液Sbとなる。他方、希溶液Swから蒸発した冷媒は低温冷媒蒸気Vbとして凝縮器33へと送られる。混合冷媒蒸気Vnからの受熱により温度が上昇した低温濃溶液Sbは、低温再生器32B内の圧力や重力により低温濃溶液管56Bへ導出される。なお、加熱蒸気管32Baを流れる混合冷媒蒸気Vnは、希溶液Swに熱を奪われ凝縮して冷媒液Vdとなり、凝縮冷媒管59を流れて凝縮器33に導入される。   On the other hand, the dilute solution Sw flowing through the dilute solution tube 55B and guided to the low temperature regenerator 32B is sprayed from the dilute solution spray nozzle 32Bb. The dilute solution Sw sprayed from the dilute solution spray nozzle 32Bb is heated by the mixed refrigerant vapor Vn flowing through the heating steam pipe 32Ba, and the refrigerant in the dilute solution Sw in the low temperature regenerator 32B evaporates to become the low temperature concentrated solution Sb. . On the other hand, the refrigerant evaporated from the dilute solution Sw is sent to the condenser 33 as the low-temperature refrigerant vapor Vb. The low-temperature concentrated solution Sb whose temperature has been increased by receiving heat from the mixed refrigerant vapor Vn is led out to the low-temperature concentrated solution tube 56B by the pressure and gravity in the low-temperature regenerator 32B. Note that the mixed refrigerant vapor Vn flowing through the heating vapor pipe 32Ba is deprived of heat by the dilute solution Sw and condensed into the refrigerant liquid Vd, flows through the condensed refrigerant pipe 59, and is introduced into the condenser 33.

低温再生器32Bから導出されて低温濃溶液管56Bを流れる低温濃溶液Sbは、中温溶液熱交換器35から導出されて中温濃溶液管56Aを流れてきた中温濃溶液Smと合流して混合濃溶液Scとなって濃溶液管56を流れる。その後混合濃溶液Scは、低温溶液熱交換器36に流入して吸収器31から導出された希溶液Swと熱交換を行い温度が低下する。温度が低下した混合濃溶液Scは、高温溶液熱交換器37で熱交換を行って温度が低下した高温濃溶液Saと混ざり合って混合濃溶液Sdとなる。混合濃溶液Sdは、吸収器31に導かれ、濃溶液散布ノズル31bから冷却水管31aに向けて散布される。以降、同様のサイクルを繰り返す。   The low temperature concentrated solution Sb derived from the low temperature regenerator 32B and flowing through the low temperature concentrated solution tube 56B is merged with the medium temperature concentrated solution Sm derived from the intermediate temperature solution heat exchanger 35 and flowing through the intermediate temperature concentrated solution tube 56A. It becomes the solution Sc and flows through the concentrated solution tube 56. Thereafter, the mixed concentrated solution Sc flows into the low-temperature solution heat exchanger 36 and exchanges heat with the dilute solution Sw derived from the absorber 31, and the temperature decreases. The mixed concentrated solution Sc whose temperature has been reduced is mixed with the high temperature concentrated solution Sa whose temperature has been reduced by performing heat exchange in the high temperature solution heat exchanger 37 to become a mixed concentrated solution Sd. The mixed concentrated solution Sd is guided to the absorber 31 and sprayed from the concentrated solution spray nozzle 31b toward the cooling water pipe 31a. Thereafter, the same cycle is repeated.

上述のように作用する吸収冷凍機30は、吸収冷凍機30の運転を止める際に即時に溶液Sの流れを止めると、濃度が高い高温濃溶液Saがそのままの濃度で高温再生器32A内や高温濃溶液管46等に滞留することとなり、その状態で吸収冷凍機30の運転停止後に温度が低下すると濃度が高い部分が結晶して、再び吸収冷凍機30を運転させる際に溶液Sが流れなくなるという不都合が生じる場合がある。このような不都合を回避するために、運転停止時に溶液Sを循環させて希釈する希釈運転が行われる。この希釈運転が不十分であると、内圧が高い高温再生器32Aから内圧が低い吸収器31へ高温濃溶液Saが逆流し、逆流した高温濃溶液Saが仕切壁31dを越えて蒸発器34に流入して冷媒液Vfを汚してしまい、予定している冷凍能力が出なくなる場合がある。加えて、特に、高温再生器32Aの温度及び圧力が高くなる三重効用吸収冷凍機の場合は、希釈運転が不十分であるために余熱で発生した高温冷媒蒸気Vaや高温濃溶液Saが希溶液管45を逆流すると、高温溶液ポンプ48が過熱により損傷する場合があり、また、希釈運転が不十分であるために高温濃溶液管46から濃溶液管86を経て濃溶液散布ノズル31bへと余熱で発生した高温冷媒蒸気Vaが吹き抜けると、濃溶液散布ノズル31bが過熱により損傷する場合がある(再生された吸収溶液が流れるラインに再生器の余熱で発生した冷媒蒸気が流れると、再生された吸収溶液を吸収器内に散布する散布装置が過熱により損傷する場合がある)。このような特有の問題点が生じうる三重効用吸収冷凍機の場合は、短時間の希釈運転で高温再生器32Aの温度及び圧力を下げることが望ましい。このような事情を背景に、吸収冷凍機30は、以下のように希釈運転を行う。   When the absorption refrigerator 30 acting as described above immediately stops the flow of the solution S when the operation of the absorption refrigerator 30 is stopped, the high-temperature concentrated solution Sa having a high concentration remains in the high-temperature regenerator 32A with the same concentration. When the temperature decreases after the operation of the absorption refrigerator 30 is stopped in this state, the high concentration portion crystallizes, and the solution S flows when the absorption refrigerator 30 is operated again. Inconvenience that it may disappear may occur. In order to avoid such inconvenience, a dilution operation in which the solution S is circulated and diluted when the operation is stopped is performed. If this dilution operation is insufficient, the high temperature concentrated solution Sa flows backward from the high temperature regenerator 32A having a high internal pressure to the absorber 31 having a low internal pressure, and the high temperature concentrated solution Sa that has flowed back passes through the partition wall 31d to the evaporator 34. Inflow may contaminate the refrigerant liquid Vf, and the planned refrigeration capacity may not be obtained. In addition, particularly in the case of a triple effect absorption refrigerator in which the temperature and pressure of the high-temperature regenerator 32A are high, the high-temperature refrigerant vapor Va and the high-temperature concentrated solution Sa generated by the residual heat are rare solutions because the dilution operation is insufficient. If the pipe 45 is flown backward, the high temperature solution pump 48 may be damaged due to overheating, and since the dilution operation is insufficient, preheating from the high temperature concentrated solution pipe 46 through the concentrated solution pipe 86 to the concentrated solution spraying nozzle 31b. When the high-temperature refrigerant vapor Va generated in step B is blown through, the concentrated solution spray nozzle 31b may be damaged due to overheating (if the refrigerant vapor generated by the residual heat of the regenerator flows in the line through which the regenerated absorbent solution flows, it is regenerated. The spraying device that sprays the absorbent solution into the absorber may be damaged by overheating). In the case of a triple effect absorption refrigerating machine in which such a specific problem may occur, it is desirable to lower the temperature and pressure of the high temperature regenerator 32A through a short dilution operation. Against this background, the absorption refrigerator 30 performs a dilution operation as follows.

図3は、吸収冷凍機30の希釈運転時の作用を説明するフローチャートである。以下の説明において言及する吸収冷凍機30の構成の符号については、適宜図1及び図2を参照することとする。制御装置61は、外部から吸収冷凍機30の運転を停止する指令信号を受けると、高温再生器32Aのバーナー16の火を消して加熱を停止し、吸収冷凍機30の希釈運転を開始する。希釈運転になっても、制御装置61は、中温溶液ポンプ38及び高温溶液ポンプ48を作動させたままにしている。また、制御盤(不図示)は、冷却水管31a、33a内を冷却水qが流れるように冷却水ポンプ(不図示)を作動させたままにしている。このとき、希釈冷媒弁44vを所定時間開けて冷媒液Vfを希溶液管45に流入させ、希溶液Swの濃度をさらに低下させてもよい。そして、希釈運転を開始すると、制御装置61は、希溶液バイパス弁65を開にする(S1)。このとき、制御装置61は、温度センサ73で検出される高温濃溶液Saが所定の温度以下になるように、希溶液バイパス弁65の開度を調節する。希溶液バイパス弁65の開度を調節することで、希溶液Swの一部(全部に近くなる場合もある)が、高温溶液熱交換器37を迂回して希溶液バイパス管45Bを流れる。これにより、希溶液Swと高温濃溶液Saとの交換熱量が少なくなり、温度センサ73で検出される高温濃溶液Saの温度が高くなるが、濃溶液散布ノズル31bの過熱による損傷を回避する観点から、温度センサ73で検出される高温濃溶液Saの温度が濃溶液散布ノズル31bの熱による損傷が生じうる温度よりも低い所定の温度以下となる範囲で希溶液バイパス管45Bを流れる希溶液Swの流量が極力多くなるように、希溶液バイパス弁65の開度が調節される。また、希溶液Swが希溶液バイパス管45Bを流れると、全量の両溶液Sw、Saの熱交換が行われる時よりも温度が低い希溶液Swが高温再生器32Aに流入して、高温再生器32A内の温度が全量の両溶液Sw、Saの熱交換が行われる時よりも低下する。高温再生器32A内の温度が低下することにより、高温再生器32A内の圧力も全量の両溶液Sw、Saの熱交換が行われる時よりも低下する。高温再生器32A内の温度及び圧力が低下することにより、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けが抑制される。高温濃溶液Saの逆流が抑制されることにより、希釈運転後に再起動する際にも高温溶液ポンプ48が送液する溶液Sの温度が高温溶液ポンプ48を過熱により損傷するほど上昇していないため、高温溶液ポンプ48の絶縁等級を上げることを要しない(一般に絶縁等級が上がると耐熱性が向上する)。また、高温冷媒蒸気の吹き抜けが抑制されることにより、濃溶液散布ノズル31bが過熱により損傷することを抑制できるため、濃溶液散布ノズル31bの材質を成形が容易な合成樹脂とすることが可能になる。なお、希溶液バイパス弁65の開度を調節する指標となる所定の温度は、時間経過に伴って徐々に高くなるようにしてもよい。このように制御すると、高温再生器32Aへの溶液Sの送り量を徐々に増加させることができ、高温再生器32Aの急激な温度及び圧力の変動を抑制することができて、溶液Sのバランスの崩れを抑制することができる。   FIG. 3 is a flowchart for explaining the operation during the dilution operation of the absorption refrigerator 30. 1 and 2 will be referred to as appropriate for the reference numerals of the absorption refrigerator 30 referred to in the following description. When receiving a command signal for stopping the operation of the absorption refrigerator 30 from the outside, the control device 61 extinguishes the fire of the burner 16 of the high-temperature regenerator 32 </ b> A, stops the heating, and starts the dilution operation of the absorption refrigerator 30. Even in the dilution operation, the control device 61 keeps the intermediate temperature solution pump 38 and the high temperature solution pump 48 operated. The control panel (not shown) keeps the cooling water pump (not shown) operating so that the cooling water q flows through the cooling water pipes 31a and 33a. At this time, the concentration of the dilute solution Sw may be further reduced by opening the dilute refrigerant valve 44v for a predetermined time and allowing the refrigerant liquid Vf to flow into the dilute solution tube 45. When the dilution operation is started, the control device 61 opens the dilute solution bypass valve 65 (S1). At this time, the control device 61 adjusts the opening degree of the dilute solution bypass valve 65 so that the hot concentrated solution Sa detected by the temperature sensor 73 becomes a predetermined temperature or less. By adjusting the opening degree of the dilute solution bypass valve 65, a part of the dilute solution Sw (may be close to all) flows through the dilute solution bypass pipe 45B bypassing the high temperature solution heat exchanger 37. As a result, the amount of heat exchanged between the dilute solution Sw and the hot concentrated solution Sa decreases, and the temperature of the hot concentrated solution Sa detected by the temperature sensor 73 increases, but the viewpoint of avoiding damage due to overheating of the concentrated solution spray nozzle 31b. To the dilute solution Sw flowing through the dilute solution bypass pipe 45B in a range where the temperature of the hot concentrated solution Sa detected by the temperature sensor 73 is equal to or lower than a predetermined temperature lower than the temperature at which the concentrated solution spray nozzle 31b can be damaged by heat. The opening degree of the dilute solution bypass valve 65 is adjusted so that the flow rate of the solution increases as much as possible. Further, when the dilute solution Sw flows through the dilute solution bypass pipe 45B, the dilute solution Sw having a lower temperature than when the heat exchange of the total amount of both the solutions Sw and Sa is performed flows into the high temperature regenerator 32A. The temperature in 32A is lower than when heat exchange is performed for both solutions Sw and Sa in the entire amount. As the temperature in the high-temperature regenerator 32A decreases, the pressure in the high-temperature regenerator 32A also decreases than when heat exchange is performed for both solutions Sw and Sa. By reducing the temperature and pressure in the high temperature regenerator 32A, the back flow of the hot concentrated solution Sa and the back flow and blow-through of the high temperature refrigerant vapor Va from the high temperature regenerator 32A to the absorber 31 are suppressed. Since the back flow of the hot concentrated solution Sa is suppressed, the temperature of the solution S sent by the high temperature solution pump 48 does not increase so as to damage the high temperature solution pump 48 due to overheating even when restarting after the dilution operation. It is not necessary to increase the insulation grade of the high-temperature solution pump 48 (generally, heat resistance improves as the insulation grade increases). Moreover, since the blowout of the high-temperature refrigerant vapor is suppressed, the concentrated solution spray nozzle 31b can be prevented from being damaged by overheating, and therefore the material of the concentrated solution spray nozzle 31b can be a synthetic resin that can be easily molded. Become. Note that the predetermined temperature that serves as an index for adjusting the opening of the dilute solution bypass valve 65 may gradually increase with time. By controlling in this way, the feeding amount of the solution S to the high temperature regenerator 32A can be gradually increased, and rapid temperature and pressure fluctuations of the high temperature regenerator 32A can be suppressed, and the balance of the solution S can be reduced. Can be prevented from collapsing.

また、制御装置61は、定常運転時に閉となっている冷媒蒸気バイパス弁67又は冷媒蒸気バイパス弁68を開にする(S2)。すると、高温冷媒蒸気Vaが冷媒蒸気バイパス管57Bを通って吸収器31又は凝縮器33内に流入する。吸収器31又は凝縮器33内に流入した高温冷媒蒸気Vaは、それぞれ冷却水qによって冷却されて凝縮する。このように、冷媒蒸気バイパス弁67(又は68)を開にすることにより、高温再生器32A内の熱が高温冷媒蒸気Va及び冷却水qを介して吸収冷凍機30外に放出されることとなり、高温再生器32A内の圧力及び温度を低下させることができる。なお、冷媒蒸気バイパス弁67(又は68)を開にする工程(S2)では、両方の弁67、68を開にして、高温冷媒蒸気Vaを吸収器31及び凝縮器33の両方に導いて外部に放熱することとしてもよい。   In addition, the control device 61 opens the refrigerant vapor bypass valve 67 or the refrigerant vapor bypass valve 68 that is closed during steady operation (S2). Then, the high-temperature refrigerant vapor Va flows into the absorber 31 or the condenser 33 through the refrigerant vapor bypass pipe 57B. The high-temperature refrigerant vapor Va flowing into the absorber 31 or the condenser 33 is cooled by the cooling water q and condensed. As described above, by opening the refrigerant vapor bypass valve 67 (or 68), the heat in the high temperature regenerator 32A is released to the outside of the absorption refrigerator 30 through the high temperature refrigerant vapor Va and the cooling water q. The pressure and temperature in the high temperature regenerator 32A can be reduced. In the step (S2) of opening the refrigerant vapor bypass valve 67 (or 68), both the valves 67 and 68 are opened, and the high-temperature refrigerant vapor Va is guided to both the absorber 31 and the condenser 33 to externally. It is also possible to dissipate heat.

そして、制御装置61は、高温再生器32A内の圧力及び温度が、随時受信する圧力センサ71及び温度センサ72で検出された圧力及び温度からみて、所定の圧力及び温度になったか否かを判断する(S3)。所定の圧力及び温度になっていない場合は、所定の圧力及び温度になるまで、各弁65、67(又は68)を開にした状態での希釈運転を継続する。他方、高温再生器32A内の圧力及び温度が所定の圧力及び温度になったか否かを判断する工程(S3)において、所定の圧力及び温度になった場合は、制御装置61は、高温溶液ポンプ48、中温溶液ポンプ38及び冷媒ポンプ39を停止し(S4)、各弁65、67(又は68)を閉にして(S5)、希釈運転を終了する。希釈運転が終了すると冷却水管33a、31a内に冷却水qを流す冷却水ポンプ(不図示)も停止されるが、この場合に制御装置61から制御盤(不図示)に冷却水ポンプ停止信号を送信して冷却水ポンプ(不図示)を停止させてもよい。このように、希溶液バイパス管45Bあるいは冷媒蒸気バイパス管57Bを利用して高温再生器32Aの温度及び圧力を下げるようにすると、希釈運転に要する時間を大幅に短縮することが可能になる(例えば約1/4〜1/6の所要時間とすることができる)。   Then, the control device 61 determines whether or not the pressure and temperature in the high temperature regenerator 32A have reached a predetermined pressure and temperature from the pressure and temperature detected by the pressure sensor 71 and the temperature sensor 72 that are received as needed. (S3). If the predetermined pressure and temperature are not reached, the dilution operation with the valves 65 and 67 (or 68) opened is continued until the predetermined pressure and temperature are reached. On the other hand, in the step (S3) of determining whether or not the pressure and temperature in the high temperature regenerator 32A have reached the predetermined pressure and temperature, when the predetermined pressure and temperature are reached, the control device 61 sets the high temperature solution pump. 48, the intermediate temperature solution pump 38 and the refrigerant pump 39 are stopped (S4), the valves 65 and 67 (or 68) are closed (S5), and the dilution operation is terminated. When the dilution operation is completed, the cooling water pump (not shown) for flowing the cooling water q into the cooling water pipes 33a and 31a is also stopped. In this case, the control device 61 sends a cooling water pump stop signal to the control panel (not shown). The cooling water pump (not shown) may be stopped by transmitting. Thus, if the temperature and pressure of the high-temperature regenerator 32A are reduced using the dilute solution bypass pipe 45B or the refrigerant vapor bypass pipe 57B, the time required for the dilution operation can be greatly shortened (for example, The required time can be about 1/4 to 1/6).

以上の説明では、溶液バイパス流路として、希溶液バイパス弁65が配設された希溶液バイパス管45Bが設けられているとしたが、高温溶液熱交換器37まわりを以下のように構成してもよい。
図4は、高温溶液熱交換器37まわりの変形例を示す部分詳細図である。
図4(a)に示す第1の変形例では、溶液バイパス流路として、高温溶液熱交換器37を迂回するように高温溶液熱交換器37の上流側と下流側とに接続された高温濃溶液バイパス管46Bが設けられている。高温濃溶液バイパス管46Bには、高温濃溶液Saの流通を遮断可能な高温濃溶液バイパス弁66が設けられている。高温濃溶液バイパス弁66は、制御装置61(図1参照)からの信号を受信して弁の開閉動作(開度の調節を含む)が行われるように構成されている。第1の変形例の希釈運転時は、図3のフローチャートにおいて希溶液バイパス弁65が動作するタイミングで希溶液バイパス弁65の代わりに、温度センサ73で検出される高温濃溶液Saが所定の温度以下になるように、高温濃溶液バイパス弁66の開度が調節される。この制御により、図1に示す希溶液バイパス弁65を備える実施の形態と同様、希溶液Swと高温濃溶液Saとの交換熱量が少なくなり、全量の両溶液Sw、Saの熱交換が行われる時よりも温度が低い希溶液Swが高温再生器32Aに流入して高温再生器32A内の温度が低下し、高温再生器32A内の圧力も低下して、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けが抑制される。
In the above description, the dilute solution bypass pipe 45B provided with the dilute solution bypass valve 65 is provided as the solution bypass flow path. However, the periphery of the high temperature solution heat exchanger 37 is configured as follows. Also good.
FIG. 4 is a partial detail view showing a modification around the high-temperature solution heat exchanger 37.
In the first modification shown in FIG. 4 (a), a high-temperature concentration connected to the upstream side and the downstream side of the high-temperature solution heat exchanger 37 so as to bypass the high-temperature solution heat exchanger 37 as a solution bypass flow path. A solution bypass pipe 46B is provided. The high temperature concentrated solution bypass pipe 46B is provided with a high temperature concentrated solution bypass valve 66 capable of blocking the flow of the high temperature concentrated solution Sa. The high-temperature concentrated solution bypass valve 66 is configured to receive a signal from the control device 61 (see FIG. 1) and perform valve opening / closing operations (including adjustment of the opening degree). At the time of the dilution operation of the first modified example, the hot concentrated solution Sa detected by the temperature sensor 73 instead of the dilute solution bypass valve 65 at the timing when the dilute solution bypass valve 65 operates in the flowchart of FIG. The opening degree of the hot concentrated solution bypass valve 66 is adjusted so as to be as follows. By this control, as in the embodiment including the dilute solution bypass valve 65 shown in FIG. 1, the exchange heat amount between the dilute solution Sw and the hot concentrated solution Sa is reduced, and the heat exchange of the total amount of both solutions Sw and Sa is performed. The dilute solution Sw whose temperature is lower than the time flows into the high temperature regenerator 32A, the temperature in the high temperature regenerator 32A decreases, the pressure in the high temperature regenerator 32A also decreases, and the high temperature regenerator 32A transfers to the absorber 31. The backflow of the hot concentrated solution Sa and the backflow and blow-through of the high-temperature refrigerant vapor Va are suppressed.

図4(b)に示す第2の変形例では、図1に示す実施の形態に対して、高温溶液熱交換器37よりも下流側の高温濃溶液管46に、オリフィス75を迂回するようにオリフィス75の上流側と下流側とに接続された流量調節バイパス流路としての流量調節バイパス管76が設けられている。流量調節バイパス管76には、高温濃溶液Saの流通を遮断可能な流量調節バイパス弁76vが設けられている。流量調節バイパス弁76vは、制御装置61(図1参照)からの信号を受信して弁の開閉動作(開度の調節を含む)が行われるように構成されている。第2の変形例の希釈運転時は、図3のフローチャートにおいて、希溶液バイパス弁65を開にする際に(S1)併せて流量調節バイパス弁76vを開(開度を調節することを含む)にする。これにより、高温濃溶液Saがオリフィス75に加えて流量調節バイパス管76をも流れることとなり、溶液Sの循環量が増大して、高温再生器32A内の温度及び圧力の低下が促進され、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けがさらに抑制される。なお、流量調節バイパス弁76vが配設された流量調節バイパス管76は、図4(a)に示す第1の変形例の構成に対して設けられていてもよく、その場合は、第1の変形例における高温溶液熱交換器37よりも下流側の高温濃溶液管46のオリフィス75の上流側と下流側とに流量調節バイパス弁76vが配設された流量調節バイパス管76設けられる。   In the second modification shown in FIG. 4B, the orifice 75 is bypassed to the hot concentrated solution pipe 46 on the downstream side of the hot solution heat exchanger 37 with respect to the embodiment shown in FIG. A flow rate control bypass pipe 76 is provided as a flow rate control bypass channel connected to the upstream side and the downstream side of the orifice 75. The flow rate adjustment bypass pipe 76 is provided with a flow rate adjustment bypass valve 76v that can block the flow of the hot concentrated solution Sa. The flow rate adjustment bypass valve 76v is configured to receive a signal from the control device 61 (see FIG. 1) and perform an opening / closing operation (including adjustment of the opening degree) of the valve. During the dilution operation of the second modification, in the flowchart of FIG. 3, when the dilute solution bypass valve 65 is opened (S1), the flow rate control bypass valve 76v is also opened (including adjusting the opening). To. As a result, the hot concentrated solution Sa flows through the flow rate adjusting bypass pipe 76 in addition to the orifice 75, the circulation amount of the solution S is increased, and the decrease in the temperature and pressure in the high temperature regenerator 32A is promoted. The backflow of the hot concentrated solution Sa and the backflow and blow-through of the high-temperature refrigerant vapor Va from the regenerator 32A to the absorber 31 are further suppressed. In addition, the flow control bypass pipe 76 in which the flow control bypass valve 76v is disposed may be provided for the configuration of the first modification shown in FIG. In the modified example, a flow rate adjusting bypass pipe 76 having a flow rate adjusting bypass valve 76v is provided on the upstream side and the downstream side of the orifice 75 of the high temperature concentrated solution pipe 46 on the downstream side of the high temperature solution heat exchanger 37.

図4(c)に示す第3の変形例では、溶液バイパス流路兼流量調節バイパス流路として、高温溶液熱交換器37及びオリフィス75を同時に迂回するように、高温溶液熱交換器37の上流側とオリフィス75の下流側とに接続された高温濃溶液流量調節バイパス管46Cが設けられている。高温濃溶液流量調節バイパス管46Cには、高温濃溶液Saの流通を遮断可能な高温濃溶液流量調節バイパス弁66Cが設けられている。高温濃溶液流量調節バイパス弁66Cは、制御装置61(図1参照)からの信号を受信して弁の開閉動作(開度の調節を含む)が行われるように構成されている。第3の変形例の希釈運転時は、図3のフローチャートにおいて希溶液バイパス弁65が動作するタイミングで希溶液バイパス弁65の代わりに、温度センサ73で検出される高温濃溶液Saが所定の温度以下になるように、高温濃溶液流量調節バイパス弁66Cの開度が調節される。高温濃溶液流量調節バイパス弁66Cが開けられることで、図1に示す希溶液バイパス弁65を備える実施の形態と同様、希溶液Swと高温濃溶液Saとの交換熱量が少なくなり、全量の両溶液Sw、Saの熱交換が行われる時よりも温度が低い希溶液Swが高温再生器32Aに流入して高温再生器32A内の温度が低下し、高温再生器32A内の圧力も低下して、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けが抑制されると共に、図4(b)に示す第2の変形例と同様、高温濃溶液Saがオリフィス75に加えて高温濃溶液流量調節バイパス管46Cをも流れることとなり、溶液Sの循環量が増大して、高温再生器32A内の温度及び圧力の低下が促進され、高温再生器32Aから吸収器31への高温濃溶液Saや高温冷媒蒸気Vaの逆流がさらに抑制される。   In the third modification shown in FIG. 4C, the upstream side of the high temperature solution heat exchanger 37 is configured to bypass the high temperature solution heat exchanger 37 and the orifice 75 at the same time as the solution bypass flow rate / flow control bypass flow channel. A high temperature concentrated solution flow rate adjustment bypass pipe 46C connected to the downstream side of the orifice 75 is provided. The high temperature concentrated solution flow rate adjustment bypass pipe 46C is provided with a high temperature concentrated solution flow rate adjustment bypass valve 66C capable of blocking the flow of the high temperature concentrated solution Sa. The high-temperature concentrated solution flow rate adjustment bypass valve 66C is configured to receive a signal from the control device 61 (see FIG. 1) and perform valve opening / closing operations (including adjustment of the opening degree). During the dilution operation of the third modified example, the hot concentrated solution Sa detected by the temperature sensor 73 instead of the dilute solution bypass valve 65 at the timing when the dilute solution bypass valve 65 operates in the flowchart of FIG. The opening degree of the hot concentrated solution flow rate adjustment bypass valve 66C is adjusted so as to be as follows. By opening the high temperature concentrated solution flow rate adjustment bypass valve 66C, the amount of heat exchanged between the diluted solution Sw and the high temperature concentrated solution Sa is reduced as in the embodiment including the diluted solution bypass valve 65 shown in FIG. The dilute solution Sw having a lower temperature than when the heat exchange of the solutions Sw and Sa is performed flows into the high temperature regenerator 32A, the temperature in the high temperature regenerator 32A is decreased, and the pressure in the high temperature regenerator 32A is also decreased. Further, the backflow of the hot concentrated solution Sa and the backflow and blow-through of the high temperature refrigerant vapor Va from the high temperature regenerator 32A to the absorber 31 are suppressed, and the hot concentrated solution is the same as in the second modification shown in FIG. Sa flows in the high-temperature concentrated solution flow rate adjusting bypass pipe 46C in addition to the orifice 75, the circulation amount of the solution S is increased, and the decrease in the temperature and pressure in the high-temperature regenerator 32A is promoted, and the high-temperature regenerator 32A. Suck from Backflow of hot concentrated solution Sa or the high-temperature refrigerant vapor Va to vessel 31 is further suppressed.

なお、図1に示す実施の形態に対して、図4(a)に示す第1の変形例、又は図4(c)に示す第3の変形例を重畳して適用してもよく、あるいは、図4(b)に示す第2の変形例に対して図4(a)に示す第1の変形例を重畳して適用してもよい。このように希溶液バイパス管45B及び高温濃溶液バイパス管46B(又は高温濃溶液流量調節バイパス管46C)の双方を設けることとすると、希釈運転時に希溶液Sw及び高温濃溶液Saが共に高温溶液熱交換器37を迂回することとなり、溶液Sw、Saの流動抵抗が低減される。   The first modification shown in FIG. 4A or the third modification shown in FIG. 4C may be applied to the embodiment shown in FIG. The first modification example shown in FIG. 4A may be applied to the second modification example shown in FIG. If both the dilute solution bypass pipe 45B and the high temperature concentrated solution bypass pipe 46B (or the high temperature concentrated solution flow rate adjustment bypass pipe 46C) are provided in this way, both the dilute solution Sw and the high temperature concentrated solution Sa are heated at high temperature during the dilution operation. By detouring the exchanger 37, the flow resistance of the solutions Sw and Sa is reduced.

本発明の実施の形態の説明では、冷媒蒸気バイパス管57Bが冷媒蒸気吸収器バイパス管57Baと冷媒蒸気凝縮器バイパス管57Bcとに分岐しているとしたが、冷媒蒸気吸収器バイパス管57Ba及び冷媒蒸気凝縮器バイパス管57Bcの一方を省略して(設けずに)、吸収器31と凝縮器33のうちいずれか一方に高温冷媒蒸気Vaを導くように構成されていてもよい。   In the description of the embodiment of the present invention, the refrigerant vapor bypass pipe 57B is branched into the refrigerant vapor absorber bypass pipe 57Ba and the refrigerant vapor condenser bypass pipe 57Bc, but the refrigerant vapor absorber bypass pipe 57Ba and the refrigerant One of the steam condenser bypass pipes 57Bc may be omitted (not provided), and the high-temperature refrigerant vapor Va may be guided to either the absorber 31 or the condenser 33.

本発明の実施の形態の説明では、吸収冷凍機30(図1参照)の溶液Sのフローが、吸収器31で冷媒蒸気Veを吸収した希溶液Swが、希溶液管45を介して高温再生器32Aに、希溶液管55を介して中温再生器32M及び低温再生器32Bにそれぞれ供給され、高温再生器32Aで生成された高温濃溶液Sa、中温再生器32Mで生成された中温濃溶液Sm、低温再生器32Bで生成された低温濃溶液Sbのそれぞれが他の再生器を経由せずに吸収器31に導入されることとした(図1及び図5(a)参照)。これに対し、以下に述べるように溶液のフローを変形してもよい。   In the description of the embodiment of the present invention, the flow of the solution S of the absorption refrigerator 30 (see FIG. 1) is the same as that of the diluted solution Sw in which the refrigerant vapor Ve is absorbed by the absorber 31 through the diluted solution tube 45. The high temperature concentrated solution Sa generated by the high temperature regenerator 32A and the middle temperature concentrated solution Sm generated by the medium temperature regenerator 32M are respectively supplied to the regenerator 32A via the dilute solution tube 55 to the medium temperature regenerator 32M and the low temperature regenerator 32B. Each of the low temperature concentrated solutions Sb produced by the low temperature regenerator 32B is introduced into the absorber 31 without passing through other regenerators (see FIGS. 1 and 5A). In contrast, the solution flow may be modified as described below.

図5(b)は、第4の変形例に係る溶液フローの模式的ブロック図である。第4の変形例では、吸収器31の希溶液Swを高温再生器32Aに導く希溶液管145で吸収器31と高温再生器32Aとが接続されている。また、高温再生器32Aで生成された高温濃溶液Saを中温再生器32Mに導く高温濃溶液管146で高温再生器32Aと中温再生器32Mとが接続されている。また、中温再生器32Mで生成された中温濃溶液Smを低温再生器32Bに導く中温濃溶液管156Aで中温再生器32Mと低温再生器32Bとが接続されている。また、低温再生器32Bで生成された低温濃溶液Sbを吸収器31に導く低温濃溶液管156Bで低温再生器32Bと吸収器31とが接続されている。低温溶液熱交換器36は、希溶液Swと低温濃溶液Sbとで熱交換を行わせるように、希溶液管145及び低温濃溶液管156Bに挿入配置されている。中温溶液熱交換器35は、低温溶液熱交換器36から導出された希溶液Swと中温濃溶液Smとで熱交換を行わせるように、低温溶液熱交換器36より下流側の希溶液管145及び中温濃溶液管156Aに挿入配置されている。高温溶液熱交換器37は、中温溶液熱交換器35から導出された希溶液Swと高温濃溶液Saとで熱交換を行わせるように、中温溶液熱交換器35より下流側の希溶液管145及び高温濃溶液管146に挿入配置されている。   FIG. 5B is a schematic block diagram of a solution flow according to the fourth modification. In the fourth modification, the absorber 31 and the high temperature regenerator 32A are connected by a dilute solution tube 145 that guides the dilute solution Sw of the absorber 31 to the high temperature regenerator 32A. The high temperature regenerator 32A and the intermediate temperature regenerator 32M are connected by a high temperature concentrated solution tube 146 that guides the high temperature concentrated solution Sa generated by the high temperature regenerator 32A to the intermediate temperature regenerator 32M. Further, the intermediate temperature regenerator 32M and the low temperature regenerator 32B are connected by a medium temperature concentrated solution tube 156A that guides the medium temperature concentrated solution Sm generated by the intermediate temperature regenerator 32M to the low temperature regenerator 32B. The low temperature regenerator 32B and the absorber 31 are connected by a low temperature concentrated solution tube 156B that guides the low temperature concentrated solution Sb generated by the low temperature regenerator 32B to the absorber 31. The low-temperature solution heat exchanger 36 is inserted and arranged in the dilute solution tube 145 and the low-temperature concentrated solution tube 156B so that heat exchange is performed between the dilute solution Sw and the low-temperature concentrated solution Sb. The intermediate temperature solution heat exchanger 35 is connected to the diluted solution tube 145 on the downstream side of the low temperature solution heat exchanger 36 so that heat exchange is performed between the diluted solution Sw derived from the low temperature solution heat exchanger 36 and the intermediate temperature concentrated solution Sm. And it is inserted into the medium temperature concentrated solution tube 156A. The high-temperature solution heat exchanger 37 has a dilute solution tube 145 on the downstream side of the intermediate-temperature solution heat exchanger 35 so that heat exchange is performed between the dilute solution Sw derived from the intermediate-temperature solution heat exchanger 35 and the high-temperature concentrated solution Sa. And the hot concentrated solution tube 146 is inserted.

さらに、希溶液管145には、図5(a)に示す実施の形態と同様、高温溶液熱交換器37を迂回するように、希溶液バイパス弁65が配設された希溶液バイパス管45Bが、高温溶液熱交換器37の上流側と下流側とに接続されている。また、希溶液管145には、中温溶液熱交換器35を迂回するように、希溶液バイパス弁65mが配設された希溶液バイパス管145mが、中温溶液熱交換器35の上流側と下流側とに接続されている。また、希溶液管145には、低温溶液熱交換器36を迂回するように、希溶液バイパス弁65bが配設された希溶液バイパス管145bが、低温溶液熱交換器36の上流側と下流側とに接続されている。なお、冷媒蒸気(Va、Vm、Vn)の系統の構成は、図1に示す実施の形態と同様である。   Further, the dilute solution pipe 145 has a dilute solution bypass pipe 45B provided with a dilute solution bypass valve 65 so as to bypass the high temperature solution heat exchanger 37, as in the embodiment shown in FIG. The high temperature solution heat exchanger 37 is connected to the upstream side and the downstream side. The dilute solution pipe 145 includes dilute solution bypass pipes 145m provided with a dilute solution bypass valve 65m so as to bypass the intermediate temperature solution heat exchanger 35. The dilute solution bypass pipe 145m includes an upstream side and a downstream side of the intermediate temperature solution heat exchanger 35. And connected to. A dilute solution bypass pipe 145b provided with a dilute solution bypass valve 65b is provided in the dilute solution pipe 145 so as to bypass the low temperature solution heat exchanger 36. And connected to. The configuration of the refrigerant vapor (Va, Vm, Vn) system is the same as that of the embodiment shown in FIG.

図5(b)に示す第4の変形例では、定常運転時に希溶液バイパス弁65、65m、65bが閉じられており、その溶液Sのフローは、まず、吸収器31から導出された希溶液Swが低温溶液熱交換器36、中温溶液熱交換器35、高温溶液熱交換器37の順に通過するごとに濃度が変わらずに昇温して高温再生器32Aに導入される。希溶液Swは、高温再生器32Aで加熱濃縮され、高温濃溶液Saとなって高温再生器32Aから導出され、高温溶液熱交換器37を通って温度が低下した後に中温再生器32Mに導入される。高温濃溶液Saは、中温再生器32Mで高温冷媒蒸気(Va)の熱でさらに加熱濃縮され、中温濃溶液Smとなって中温再生器32Mから導出され、中温溶液熱交換器35を通って温度が低下した後に低温再生器32Bに導入される。中温濃溶液Smは、低温再生器32Bで混合冷媒蒸気(Vn)の熱でさらに加熱濃縮され、低温濃溶液Sbとなって低温再生器32Bから導出され、低温溶液熱交換器36を通って温度が低下した後に吸収器31に導入される。   In the fourth modification shown in FIG. 5B, the dilute solution bypass valves 65, 65m, 65b are closed during steady operation, and the flow of the solution S is first dilute solution derived from the absorber 31. Each time Sw passes through the low-temperature solution heat exchanger 36, the medium-temperature solution heat exchanger 35, and the high-temperature solution heat exchanger 37 in this order, the temperature rises without change and is introduced into the high-temperature regenerator 32A. The dilute solution Sw is concentrated by heating in the high temperature regenerator 32A, is converted into a high temperature concentrated solution Sa, is derived from the high temperature regenerator 32A, and is introduced into the intermediate temperature regenerator 32M after the temperature is lowered through the high temperature solution heat exchanger 37. The The high-temperature concentrated solution Sa is further heated and concentrated by the heat of the high-temperature refrigerant vapor (Va) in the intermediate temperature regenerator 32M, is converted to the intermediate temperature concentrated solution Sm, is led out from the intermediate temperature regenerator 32M, and passes through the intermediate temperature solution heat exchanger 35. Is introduced into the low temperature regenerator 32B. The medium temperature concentrated solution Sm is further heated and concentrated with the heat of the mixed refrigerant vapor (Vn) in the low temperature regenerator 32B, is converted into a low temperature concentrated solution Sb, is led out from the low temperature regenerator 32B, and passes through the low temperature solution heat exchanger 36. Is introduced into the absorber 31.

そして、希釈運転時は、制御装置61(図1参照)によって希溶液バイパス弁65、65m、65bが開けられると共に、温度センサ73で検出される高温濃溶液Saが所定の温度以下になるように希溶液バイパス弁65の開度が調節される。この制御により、図1に示す実施の形態と同様、希溶液Swと各濃溶液Sa、Sm、Sbとの交換熱量が少なくなり、全量の各溶液Sw、Sa、Sm、Sbの熱交換が行われる時よりも温度が低い希溶液Swが高温再生器32Aに流入して高温再生器32A内の温度が低下し、高温再生器32A内の圧力も低下して、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けが抑制される。なお、中温溶液熱交換器35及び/又は低温溶液熱交換器36における交換熱量が、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けを惹起するほど多くない場合は、希溶液バイパス弁65mが配設された希溶液バイパス管145m及び/又は希溶液バイパス弁65bが配設された希溶液バイパス管145bを設けなくてもよい。   During the dilution operation, the dilute solution bypass valves 65, 65m, and 65b are opened by the control device 61 (see FIG. 1), and the hot concentrated solution Sa detected by the temperature sensor 73 is set to a predetermined temperature or lower. The opening degree of the diluted solution bypass valve 65 is adjusted. By this control, as in the embodiment shown in FIG. 1, the amount of exchange heat between the dilute solution Sw and each of the concentrated solutions Sa, Sm, Sb is reduced, and the heat exchange of the total amount of each solution Sw, Sa, Sm, Sb is performed. The dilute solution Sw having a temperature lower than that of the hot water flows into the high temperature regenerator 32A, the temperature in the high temperature regenerator 32A decreases, the pressure in the high temperature regenerator 32A also decreases, and the absorber 31 from the high temperature regenerator 32A decreases. The backflow of the hot concentrated solution Sa and the backflow and blow-through of the high-temperature refrigerant vapor Va are suppressed. Note that the amount of heat exchanged in the intermediate temperature solution heat exchanger 35 and / or the low temperature solution heat exchanger 36 causes a back flow of the hot concentrated solution Sa and a back flow or blow-through of the high temperature refrigerant vapor Va from the high temperature regenerator 32A to the absorber 31. If the number is not so large, the dilute solution bypass pipe 145m provided with the dilute solution bypass valve 65m and / or the dilute solution bypass pipe 145b provided with the dilute solution bypass valve 65b may not be provided.

次に、図5(c)は、第5の変形例に係る溶液フローの模式的ブロック図である。第5の変形例では、吸収器31の希溶液Swを高温再生器32Aに導く希溶液管245で吸収器31と高温再生器32Aとが接続されている。そして、希溶液管245から分岐する希溶液管255Bが低温再生器32Bに接続されており、希溶液管245を流れる希溶液Swの一部を低温再生器32Bに導入することができるように構成されている。また、希溶液管255Bとの分岐点より下流側で希溶液管245から分岐する希溶液管255Aが中温再生器32Mに接続されており、希溶液管255Bとの分岐点より下流側の希溶液管245を流れる希溶液Swの一部を中温再生器32Mに導入することができるように構成されている。高温再生器32Aには、高温再生器32Aで生成された高温濃溶液Saを吸収器31に向けて導出する高温濃溶液管246が接続されている。中温再生器32Mには、中温再生器32Mで生成された中温濃溶液Smを吸収器31に向けて導出する中温濃溶液管256Aが接続されている。中温濃溶液管256Aは、高温濃溶液管246に接続されて1つの濃溶液管246Aとなっている。低温再生器32Bには、低温再生器32Bで生成された低温濃溶液Sbを吸収器31に向けて導出する低温濃溶液管256Bが接続されている。低温濃溶液管256Bは、濃溶液管246Aに接続されて1つの濃溶液管286となっている。高温溶液熱交換器37は、希溶液Swと高温濃溶液Saとで熱交換を行わせるように、希溶液管255Aとの分岐点より下流側の希溶液管245及び高温濃溶液管246に挿入配置されている。中温溶液熱交換器35は、高温濃溶液Sa及び中温濃溶液Smが混合した濃溶液と希溶液Swとで熱交換を行わせるように、希溶液管255Bとの分岐点より下流側の希溶液管245及び濃溶液管246Aに挿入配置されている。低温溶液熱交換器36は、高温濃溶液Sa、中温濃溶液Sm及び低温濃溶液Sbが混合した混合濃溶液Sdと希溶液Swとで熱交換を行わせるように、希溶液管255Bとの分岐点より上流側の希溶液管245及び濃溶液管286に挿入配置されている。   Next, FIG.5 (c) is a typical block diagram of the solution flow which concerns on a 5th modification. In the fifth modification, the absorber 31 and the high temperature regenerator 32A are connected by a dilute solution tube 245 that guides the dilute solution Sw of the absorber 31 to the high temperature regenerator 32A. A dilute solution tube 255B branched from the dilute solution tube 245 is connected to the low temperature regenerator 32B, and a part of the dilute solution Sw flowing through the dilute solution tube 245 can be introduced into the low temperature regenerator 32B. Has been. In addition, a dilute solution tube 255A branched from the dilute solution tube 245 downstream from the branch point with the dilute solution tube 255B is connected to the intermediate temperature regenerator 32M, and the dilute solution downstream from the branch point with the dilute solution tube 255B. A part of the dilute solution Sw flowing through the tube 245 can be introduced into the intermediate temperature regenerator 32M. Connected to the high temperature regenerator 32A is a high temperature concentrated solution tube 246 that leads out the high temperature concentrated solution Sa generated by the high temperature regenerator 32A toward the absorber 31. Connected to the intermediate temperature regenerator 32M is an intermediate temperature concentrated solution tube 256A that leads out the intermediate temperature concentrated solution Sm generated by the intermediate temperature regenerator 32M toward the absorber 31. The medium temperature concentrated solution tube 256A is connected to the high temperature concentrated solution tube 246 to form one concentrated solution tube 246A. The low temperature regenerator 32B is connected to a low temperature concentrated solution tube 256B that guides the low temperature concentrated solution Sb generated by the low temperature regenerator 32B toward the absorber 31. The low temperature concentrated solution tube 256B is connected to the concentrated solution tube 246A to form one concentrated solution tube 286. The high temperature solution heat exchanger 37 is inserted into the dilute solution tube 245 and the high temperature concentrated solution tube 246 downstream from the branch point with the dilute solution tube 255A so that heat exchange is performed between the dilute solution Sw and the high temperature concentrated solution Sa. Has been placed. The intermediate temperature solution heat exchanger 35 is a dilute solution downstream from the branch point of the dilute solution tube 255B so that heat exchange is performed between the concentrated solution mixed with the high temperature concentrated solution Sa and the intermediate temperature concentrated solution Sm and the diluted solution Sw. Inserted into the tube 245 and the concentrated solution tube 246A. The low temperature solution heat exchanger 36 is branched from the dilute solution tube 255B so that heat exchange is performed between the mixed concentrated solution Sd in which the high temperature concentrated solution Sa, the intermediate temperature concentrated solution Sm, and the low temperature concentrated solution Sb are mixed, and the diluted solution Sw. They are inserted into the dilute solution tube 245 and the concentrated solution tube 286 upstream from the point.

さらに、希溶液管245には、図5(b)に示す第4の変形例と同様、高温溶液熱交換器37を迂回するように、希溶液バイパス弁65が配設された希溶液バイパス管45Bが、高温溶液熱交換器37の上流側と下流側とに接続され、中温溶液熱交換器35を迂回するように、希溶液バイパス弁65mが配設された希溶液バイパス管145mが、中温溶液熱交換器35の上流側と下流側とに接続され、低温溶液熱交換器36を迂回するように、希溶液バイパス弁65bが配設された希溶液バイパス管145bが、低温溶液熱交換器36の上流側と下流側とに接続されている。なお、冷媒蒸気(Va、Vm、Vn)の系統の構成は、図1に示す実施の形態と同様である。   Further, the dilute solution pipe 245 is provided with a dilute solution bypass valve 65 so as to bypass the high temperature solution heat exchanger 37, as in the fourth modification shown in FIG. 5B. 45B is connected to the upstream side and the downstream side of the high-temperature solution heat exchanger 37, and a dilute solution bypass pipe 145m provided with a dilute solution bypass valve 65m is arranged so as to bypass the intermediate-temperature solution heat exchanger 35. A dilute solution bypass pipe 145b connected to the upstream side and the downstream side of the solution heat exchanger 35 and having a dilute solution bypass valve 65b disposed so as to bypass the low temperature solution heat exchanger 36 is a low temperature solution heat exchanger. 36 is connected to the upstream side and the downstream side. The configuration of the refrigerant vapor (Va, Vm, Vn) system is the same as that of the embodiment shown in FIG.

図5(c)に示す第5の変形例では、定常運転時に希溶液バイパス弁65、65m、65bが閉じられており、その溶液Sのフローは、まず、吸収器31から導出された希溶液Swが低温溶液熱交換器36で昇温される。低温溶液熱交換器36で昇温された希溶液Swは、一部が低温再生器32Bに導入され、残りは中温溶液熱交換器35に導入されて昇温される。中温溶液熱交換器35で昇温された希溶液Swは、その一部が中温再生器32Mに導入され、残りは高温溶液熱交換器37に導入されて昇温された後に高温再生器32Aに導入される。高温再生器32Aに導入された希溶液Swは、加熱濃縮され、高温濃溶液Saとなって高温再生器32Aから導出され、高温溶液熱交換器37を通って温度が低下する。中温再生器32Mに導入された希溶液Swは、高温冷媒蒸気(Va)の熱で加熱濃縮され、中温濃溶液Smとなって中温再生器32Mから導出され、高温溶液熱交換器37で温度が低下した高温濃溶液Saと合流して濃溶液となった後に中温溶液熱交換器35を通って温度が低下する。低温再生器32Bに導入された希溶液Swは、混合冷媒蒸気(Vn)の熱で加熱濃縮され、低温濃溶液Sbとなって低温再生器32Bから導出され、中温溶液熱交換器35で温度が低下した濃溶液と合流して混合濃溶液Sdとなった後に低温溶液熱交換器36を通って温度が低下し、その後吸収器31に導入される。   In the fifth modification shown in FIG. 5C, the dilute solution bypass valves 65, 65m and 65b are closed during steady operation, and the flow of the solution S is first dilute solution derived from the absorber 31. Sw is heated by the low temperature solution heat exchanger 36. A part of the diluted solution Sw heated by the low-temperature solution heat exchanger 36 is introduced into the low-temperature regenerator 32B, and the rest is introduced into the intermediate-temperature solution heat exchanger 35 and heated. A part of the dilute solution Sw heated by the intermediate temperature solution heat exchanger 35 is introduced into the intermediate temperature regenerator 32M, and the rest is introduced into the high temperature solution heat exchanger 37 and heated to the high temperature regenerator 32A. be introduced. The dilute solution Sw introduced into the high temperature regenerator 32A is concentrated by heating, becomes a high temperature concentrated solution Sa, is led out from the high temperature regenerator 32A, and the temperature decreases through the high temperature solution heat exchanger 37. The dilute solution Sw introduced into the intermediate temperature regenerator 32M is heated and concentrated with the heat of the high-temperature refrigerant vapor (Va) to become an intermediate temperature concentrated solution Sm, which is derived from the intermediate temperature regenerator 32M. After joining the lowered hot concentrated solution Sa to form a concentrated solution, the temperature drops through the intermediate temperature solution heat exchanger 35. The dilute solution Sw introduced into the low temperature regenerator 32B is heated and concentrated with the heat of the mixed refrigerant vapor (Vn) to become a low temperature concentrated solution Sb, which is led out from the low temperature regenerator 32B. After joining the lowered concentrated solution to form a mixed concentrated solution Sd, the temperature is lowered through the low-temperature solution heat exchanger 36 and then introduced into the absorber 31.

そして、希釈運転時は、制御装置61(図1参照)によって希溶液バイパス弁65、65m、65bが開けられると共に、温度センサ73で検出される高温濃溶液Saが所定の温度以下になるように希溶液バイパス弁65の開度が調節される。この制御により、図1に示す実施の形態と同様、希溶液Swと各濃溶液Sa、Sd等との交換熱量が少なくなり、全量の各溶液Sw、Sa、Sd等の熱交換が行われる時よりも温度が低い希溶液Swが高温再生器32Aに流入して高温再生器32A内の温度が低下し、高温再生器32A内の圧力も低下して、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けが抑制される。なお、中温溶液熱交換器35及び/又は低温溶液熱交換器36における交換熱量が、高温再生器32Aから吸収器31への高温濃溶液Saの逆流及び高温冷媒蒸気Vaの逆流や吹き抜けを惹起するほど多くない場合は、希溶液バイパス弁65mが配設された希溶液バイパス管145m及び/又は希溶液バイパス弁65bが配設された希溶液バイパス管145bを設けなくてもよい。   During the dilution operation, the dilute solution bypass valves 65, 65m, and 65b are opened by the control device 61 (see FIG. 1), and the hot concentrated solution Sa detected by the temperature sensor 73 is set to a predetermined temperature or lower. The opening degree of the diluted solution bypass valve 65 is adjusted. As in the embodiment shown in FIG. 1, this control reduces the amount of heat exchanged between the dilute solution Sw and each of the concentrated solutions Sa, Sd, etc., and the heat exchange of the total amount of each solution Sw, Sa, Sd, etc. is performed. The dilute solution Sw having a lower temperature flows into the high temperature regenerator 32A, the temperature in the high temperature regenerator 32A decreases, the pressure in the high temperature regenerator 32A also decreases, and the high temperature regenerator 32A supplies the absorber 31. The backflow of the hot concentrated solution Sa and the backflow and blow-through of the high-temperature refrigerant vapor Va are suppressed. Note that the amount of heat exchanged in the intermediate temperature solution heat exchanger 35 and / or the low temperature solution heat exchanger 36 causes a back flow of the hot concentrated solution Sa and a back flow or blow-through of the high temperature refrigerant vapor Va from the high temperature regenerator 32A to the absorber 31. If the number is not so large, the dilute solution bypass pipe 145m provided with the dilute solution bypass valve 65m and / or the dilute solution bypass pipe 145b provided with the dilute solution bypass valve 65b may not be provided.

なお、図5(b)に示す第4の変形例及び図5(c)に示す第5の変形例に対して、図4(a)に示す第1の変形例を適用して高温濃溶液バイパス弁66が配設された高温濃溶液バイパス管46Bを設けてもよく、図4(b)に示す第2の変形例を適用してオリフィス75を迂回するように流量調節バイパス弁76vが配設された流量調節バイパス管76を設けてもよく、あるいは、図4(c)に示す第3の変形例を適用して高温溶液熱交換器37及びオリフィス75を迂回するように高温濃溶液流量調節バイパス弁66Cが配設された高温濃溶液流量調節バイパス管46Cを設けてもよい。   Note that the high-temperature concentrated solution is obtained by applying the first modification shown in FIG. 4 (a) to the fourth modification shown in FIG. 5 (b) and the fifth modification shown in FIG. 5 (c). A high temperature concentrated solution bypass pipe 46B provided with a bypass valve 66 may be provided, and a flow rate adjustment bypass valve 76v is arranged so as to bypass the orifice 75 by applying the second modification shown in FIG. A flow rate adjusting bypass pipe 76 may be provided, or a high temperature concentrated solution flow rate may be bypassed by applying the third modification shown in FIG. 4C to bypass the high temperature solution heat exchanger 37 and the orifice 75. A hot concentrated solution flow rate adjustment bypass pipe 46C in which the adjustment bypass valve 66C is disposed may be provided.

さらに、図5(b)に示す第4の変形例及び図5(c)に示す第5の変形例以外の溶液Sのフローとして、図示は省略するが、低温再生器32Bが、希溶液Swを導入すること(図5(a)、(c)参照)又は中温濃溶液Smを導入すること(図5(b)参照)に代えて高温濃溶液Saを導入する溶液Sのフローとしてもよい。上述のように「高温再生器32Aから吸収器31へ向けて導出された濃溶液」には、高温再生器32Aから導出された高温濃溶液Saが、吸収器31に直接流入される場合のほか、中温再生器32M又は低温再生器32Bを経由して吸収器31に流入される場合も含まれることを意図している。   Further, the flow of the solution S other than the fourth modified example shown in FIG. 5B and the fifth modified example shown in FIG. 5C is omitted, but the low temperature regenerator 32B includes a dilute solution Sw. It is good also as a flow of the solution S which introduces high temperature concentrated solution Sa instead of introducing (refer FIG. 5 (a), (c)) or introducing medium temperature concentrated solution Sm (refer FIG. 5 (b)). . As described above, the “concentrated solution derived from the high temperature regenerator 32 </ b> A toward the absorber 31” includes the case where the high temperature concentrated solution Sa derived from the high temperature regenerator 32 </ b> A flows directly into the absorber 31. In addition, it is intended that the case where it flows into the absorber 31 via the intermediate temperature regenerator 32M or the low temperature regenerator 32B is also included.

以上の説明では、吸収冷凍機30が三重効用吸収冷凍機であるとして説明したが、単効用吸収冷凍機や二重効用吸収冷凍機であってもよい。単効用吸収冷凍機とした場合は、上述した高温再生器32Aを再生器とすることができ、二重効用吸収冷凍機とした場合は、上述した高温再生器32Aを作動温度が高い方の再生器とするとよい。   In the above description, the absorption refrigerator 30 is described as being a triple effect absorption refrigerator, but may be a single effect absorption refrigerator or a double effect absorption refrigerator. In the case of a single-effect absorption refrigerator, the above-described high-temperature regenerator 32A can be used as a regenerator, and in the case of a double-effect absorption refrigerator, the above-described high-temperature regenerator 32A is regenerated with a higher operating temperature. It is good to use a vessel.

本発明の実施の形態に係る吸収冷凍機の模式的系統図である。1 is a schematic system diagram of an absorption refrigerator according to an embodiment of the present invention. 本発明の実施の形態に係る吸収冷凍機を構成する高温再生器の縦断面図である。It is a longitudinal cross-sectional view of the high temperature regenerator which comprises the absorption refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収冷凍機の希釈運転時の作用を説明するフローチャートである。It is a flowchart explaining the effect | action at the time of the dilution operation of the absorption refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収冷凍機の高温溶液熱交換器まわりの変形例を示す部分詳細図である。(a)は第1の変形例、(b)は第2の変形例、(c)は第3の変形例を示す図である。It is a partial detail drawing which shows the modification around the high temperature solution heat exchanger of the absorption refrigerator which concerns on embodiment of this invention. (A) is a 1st modification, (b) is a 2nd modification, (c) is a figure which shows a 3rd modification. 本発明の実施の形態に係る吸収冷凍機の溶液フローの模式的ブロック図である。(a)は図1に示す実施の形態のフロー、(b)は第4の変形例のフロー、(c)は第5の変形例のフローを示す図である。It is a typical block diagram of the solution flow of the absorption refrigerator which concerns on embodiment of this invention. (A) is a flow of the embodiment shown in FIG. 1, (b) is a flow of the fourth modification, (c) is a diagram showing a flow of the fifth modification.

符号の説明Explanation of symbols

31 吸収器
32A 高温再生器
32M 中温再生器
33 凝縮器
37 高温溶液熱交換器
45B 希溶液バイパス管
46B 高温濃溶液バイパス管
46 高温濃溶液管
57B 高温冷媒蒸気バイパス管
61 制御装置
75 オリフィス
76 流量調節バイパス管
Sa 高温濃溶液
Sd 混合濃溶液
Sw 希溶液
Va 高温冷媒蒸気
Vb 低温冷媒蒸気
Ve 冷媒蒸気
31 Absorber 32A High temperature regenerator 32M Medium temperature regenerator 33 Condenser 37 High temperature solution heat exchanger 45B Diluted solution bypass pipe 46B High temperature concentrated solution bypass pipe 46 High temperature concentrated solution pipe 57B High temperature refrigerant vapor bypass pipe 61 Controller 75 Orifice 76 Flow rate adjustment Bypass pipe Sa High temperature concentrated solution Sd Mixed concentrated solution Sw Dilute solution Va High temperature refrigerant vapor Vb Low temperature refrigerant vapor Ve Refrigerant vapor

Claims (2)

冷媒蒸気を溶液で吸収し、前記溶液を濃度が低下した希溶液とする吸収器と;
前記希溶液を導入し加熱することにより冷媒を蒸発させて濃度が上昇した濃溶液とする高温再生器と;
前記吸収器から前記高温再生器へ向けて導出された前記希溶液と前記高温再生器から前記吸収器へ向けて導出された前記濃溶液とで熱交換を行わせる溶液熱交換器と;
前記希溶液又は前記濃溶液の前記溶液熱交換器への流入を回避させる溶液バイパス流路と;
希釈運転時に、前記希溶液又は前記濃溶液を前記溶液バイパス流路に流入させるように溶液の流れを制御する制御装置とを備える;
吸収冷凍機。
An absorber that absorbs the refrigerant vapor with a solution and makes the solution a dilute solution with reduced concentration;
A high temperature regenerator in which the diluted solution is introduced and heated to evaporate the refrigerant to obtain a concentrated solution;
A solution heat exchanger for exchanging heat between the dilute solution derived from the absorber toward the high-temperature regenerator and the concentrated solution derived from the high-temperature regenerator toward the absorber;
A solution bypass channel for avoiding inflow of the dilute solution or the concentrated solution into the solution heat exchanger;
A controller for controlling the flow of the solution so that the dilute solution or the concentrated solution flows into the solution bypass channel during the dilution operation;
Absorption refrigerator.
冷媒蒸気を吸収した溶液と前記高温再生器で発生した高温冷媒蒸気とを導入し、前記高温冷媒蒸気の熱により導入した溶液の濃度を上昇させる、前記高温再生器よりも作動温度が低い再生器と;
冷媒蒸気を冷却凝縮させる凝縮器と;
前記高温冷媒蒸気を、前記高温再生器から前記吸収器又は前記凝縮器へ直接導く高温冷媒蒸気バイパス流路とを備え;
前記制御装置が、希釈運転時に、前記高温冷媒蒸気を、前記高温冷媒蒸気バイパス流路を介して前記吸収器又は前記凝縮器へと導くように前記高温冷媒蒸気の流れを制御する;
請求項1に記載の吸収冷凍機。
A regenerator having a lower operating temperature than the high-temperature regenerator, which introduces a solution that has absorbed refrigerant vapor and the high-temperature refrigerant vapor generated in the high-temperature regenerator and increases the concentration of the solution introduced by the heat of the high-temperature refrigerant vapor. When;
A condenser that cools and condenses the refrigerant vapor;
A high-temperature refrigerant vapor bypass channel for directing the high-temperature refrigerant vapor from the high-temperature regenerator to the absorber or the condenser;
The control device controls the flow of the high-temperature refrigerant vapor so as to guide the high-temperature refrigerant vapor to the absorber or the condenser via the high-temperature refrigerant vapor bypass flow path during a dilution operation;
The absorption refrigerator according to claim 1.
JP2008152399A 2008-06-11 2008-06-11 Absorption refrigerating machine Pending JP2009299936A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008152399A JP2009299936A (en) 2008-06-11 2008-06-11 Absorption refrigerating machine
CN2009101454797A CN101603744B (en) 2008-06-11 2009-06-09 Absorption refrigeration machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152399A JP2009299936A (en) 2008-06-11 2008-06-11 Absorption refrigerating machine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012251449A Division JP5536855B2 (en) 2012-11-15 2012-11-15 Absorption refrigerator
JP2012251448A Division JP5499139B2 (en) 2012-11-15 2012-11-15 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JP2009299936A true JP2009299936A (en) 2009-12-24

Family

ID=41469575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152399A Pending JP2009299936A (en) 2008-06-11 2008-06-11 Absorption refrigerating machine

Country Status (2)

Country Link
JP (1) JP2009299936A (en)
CN (1) CN101603744B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2584287A1 (en) * 2011-10-21 2013-04-24 AGO AG Energie + Anlagen Circuit process for operating an absorption cooling machine and absorption cooling machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084485B2 (en) * 2012-04-06 2017-02-22 荏原冷熱システム株式会社 Absorption heat pump and operation method of absorption heat pump
JP6280170B2 (en) * 2015-10-13 2018-02-14 荏原冷熱システム株式会社 Concentrator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896963A (en) * 1981-12-07 1983-06-09 三洋電機株式会社 Controller for absorption refrigerator
JPH08114360A (en) * 1994-10-18 1996-05-07 Ebara Corp Double effective absorption type water cooler/heater
JPH08121900A (en) * 1994-10-21 1996-05-17 Nippondenso Co Ltd Absorption type refrigerating machine using engine exhaust heat
JP2007263411A (en) * 2006-03-27 2007-10-11 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263437A (en) * 1964-01-17 1966-08-02 Worthington Corp Absorption refrigeration system control
JP4279917B2 (en) * 1998-06-10 2009-06-17 パロマ工業株式会社 Absorption refrigerator
EP1621827A1 (en) * 2004-07-30 2006-02-01 SFT Services SA Absorption cooling system of a vehicle
JP4598633B2 (en) * 2005-09-09 2010-12-15 荏原冷熱システム株式会社 Absorption refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896963A (en) * 1981-12-07 1983-06-09 三洋電機株式会社 Controller for absorption refrigerator
JPH08114360A (en) * 1994-10-18 1996-05-07 Ebara Corp Double effective absorption type water cooler/heater
JPH08121900A (en) * 1994-10-21 1996-05-17 Nippondenso Co Ltd Absorption type refrigerating machine using engine exhaust heat
JP2007263411A (en) * 2006-03-27 2007-10-11 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2584287A1 (en) * 2011-10-21 2013-04-24 AGO AG Energie + Anlagen Circuit process for operating an absorption cooling machine and absorption cooling machine

Also Published As

Publication number Publication date
CN101603744A (en) 2009-12-16
CN101603744B (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP2008064422A (en) High temperature regenerator and absorption refrigerating machine
JP2009299936A (en) Absorption refrigerating machine
JP5536855B2 (en) Absorption refrigerator
JP6081844B2 (en) Absorption heat source equipment
JP5514003B2 (en) Absorption heat pump
JP5499139B2 (en) Absorption refrigerator
JP5331232B2 (en) Regenerator and absorption refrigerator
JP2007263411A (en) Absorption refrigerator
JP4519744B2 (en) High temperature regenerator and absorption refrigerator
JP6084485B2 (en) Absorption heat pump and operation method of absorption heat pump
JP2007232271A (en) Triple effect absorption refrigerating machine
JP5053148B2 (en) High temperature regenerator
JP2007071475A (en) Triple-effect absorption refrigerating machine
JP5037987B2 (en) High temperature regenerator and absorption refrigerator
JP5148264B2 (en) High temperature regenerator and absorption refrigerator
JP5259124B2 (en) High temperature regenerator and absorption refrigerator
JP2010276244A (en) Absorption type water chiller/heater
JP4249588B2 (en) Absorption chiller / heater
JP2006017323A (en) Triple-effect absorption chiller/heater
JP3813348B2 (en) Absorption refrigerator
JP2006308151A (en) Absorption water cooler/heater
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP6337055B2 (en) Absorption heat pump
JP2005300069A (en) Absorption refrigerating machine
JP3484142B2 (en) 2-stage double-effect absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129