JP2006017323A - Triple-effect absorption chiller/heater - Google Patents

Triple-effect absorption chiller/heater Download PDF

Info

Publication number
JP2006017323A
JP2006017323A JP2004192741A JP2004192741A JP2006017323A JP 2006017323 A JP2006017323 A JP 2006017323A JP 2004192741 A JP2004192741 A JP 2004192741A JP 2004192741 A JP2004192741 A JP 2004192741A JP 2006017323 A JP2006017323 A JP 2006017323A
Authority
JP
Japan
Prior art keywords
solution
liquid level
temperature regenerator
combustion
level detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004192741A
Other languages
Japanese (ja)
Other versions
JP4183188B2 (en
Inventor
Hironobu Kawamura
浩伸 川村
Akira Nishiguchi
章 西口
Tatsuro Fujii
達郎 藤居
Nobuyuki Takeda
伸之 武田
Masao Imanari
正雄 今成
Satoshi Miyake
聡 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004192741A priority Critical patent/JP4183188B2/en
Publication of JP2006017323A publication Critical patent/JP2006017323A/en
Application granted granted Critical
Publication of JP4183188B2 publication Critical patent/JP4183188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a triple-effect absorption chiller/heater for securing the performance of a gas-liquid separator during a time from start to a steady-state operation while preventing unloaded heating due to the short supply of solution to heat transfer tubes. <P>SOLUTION: The triple-effect absorption chiller/heater comprises an once-through high temperature regenerator 1 having a lower header 3, an upper header 2, the plurality of heat transfer tubes 4, a combustor 6, and the gas-liquid separator 8. The gas-liquid separator 8 has the upper part out of which refrigerant vapor flows and the lower part out of which rich solution flows. The triple-effect absorption chiller/heater also has a float box 18 which forms the liquid level of the rich solution flowing from the gas-liquid separator 8, a float valve 19 for adjusting the amount of dilute solution into the high temperature regenerator 1 depending on the liquid level of the rich solution in the float box 18, and a communication tube 20 communicating the lower header 3 with a vapor-phase portion of the float box 18 and having a liquid level detector 25 for detecting the liquid level of the high temperature regenerator 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、三重効用吸収冷温水機に係り、特に空気調和装置等に用いられる三重効用吸収冷温水機に好適なものである。   The present invention relates to a triple effect absorption chiller / heater, and is particularly suitable for a triple effect absorption chiller / heater used in an air conditioner or the like.

従来技術として、例えば特許文献1の三重効用吸収冷温水機では、貫流式ボイラ構造の高温再生器が、上部と下部に環状の上部管寄せ(上部ヘッダー)及び下部管寄せ(下部ヘッダー)を備え、これらの管寄せ間に鉛直方向の多数の上昇管を略円筒状に配設し、上部中央部に燃焼装置を備え、希溶液を下部管寄せに導入して加熱濃縮し、上部管寄せから気液混合物を取り出すように構成されている。また、上部管寄せには気液混合物導管を介して気液分離器が接続され、気液分離器の上部には蒸気抜出導管が接続され、気液分離器の下側部には吸収液抜出導管が接続され、気液分離器の下部と下部管寄せとが吸収液循環導管で接続され、吸収液循環導管または下部管寄せに吸収液供給管が接続されるとともに、気液分離器には上部液出入り管及び下部出入り管を介して接続された鉛直管を備え、鉛直管内の液面にマグネットを内蔵したフロートを浮かべ、鉛直管の外面に高位液面検出スイッチ及び低位液面検出スイッチを備えるように構成されている。上記従来技術では、高温再生器の空焚きを防止するために、起動時には液面が高くなり高位液面検出スイッチが作動検出されないと燃焼運転に入らないようにし、また、運転中に液面が低く低位液面検出スイッチが正常に作動検出されることを確認するテスト運転モードが備えられている。   As a conventional technique, for example, in the triple effect absorption chiller / heater of Patent Document 1, a high-temperature regenerator having a once-through boiler structure is provided with an annular upper header (upper header) and a lower header (lower header) at the upper and lower portions. A large number of vertical ascending pipes are arranged between these headers in a substantially cylindrical shape, and a combustion device is provided in the upper central part. A dilute solution is introduced into the lower header and concentrated by heating. It is configured to take out the gas-liquid mixture. In addition, a gas-liquid separator is connected to the upper header via a gas-liquid mixture conduit, a vapor extraction conduit is connected to the upper portion of the gas-liquid separator, and an absorption liquid is connected to the lower side of the gas-liquid separator. The extraction conduit is connected, the lower part of the gas-liquid separator and the lower header are connected by the absorption liquid circulation conduit, the absorption liquid supply pipe is connected to the absorption liquid circulation conduit or the lower header, and the gas-liquid separator Is equipped with a vertical pipe connected via an upper liquid inlet / outlet pipe and a lower inlet / outlet pipe, a float containing a magnet is floated on the liquid level in the vertical pipe, and a high liquid level detection switch and a low liquid level detection are provided on the outer surface of the vertical pipe. A switch is provided. In the above prior art, in order to prevent emptying of the high-temperature regenerator, the liquid level becomes high at the time of start-up, so that the combustion operation is not started unless the high level liquid level detection switch is detected. A test operation mode is provided to confirm that the low and low liquid level detection switch is normally detected.

特開2003−227662号公報(第12頁、図1〜6)Japanese Patent Laying-Open No. 2003-227762 (page 12, FIGS. 1 to 6)

上記従来技術では、高温再生器の下部管寄せと気液分離器の底部を連通して高温再生器の伝熱管内の液面を鉛直管に設けた高位液面検出スイッチと低位液面検出スイッチで検出する構成とし、空焚き防止のための高位液面検出スイッチが高温再生器の上部管寄せの管板近傍の設けられている。   In the above prior art, the high level liquid level detection switch and the low level liquid level detection switch in which the lower pipe header of the high temperature regenerator and the bottom part of the gas-liquid separator are communicated and the liquid level in the heat transfer pipe of the high temperature regenerator is provided in the vertical pipe. And a high liquid level detection switch for preventing emptying is provided in the vicinity of the tube sheet of the upper header of the high temperature regenerator.

起動時には、気液分離器内の液面が上昇し気液分離するための気相部分がかなり小さく限定されるとともに、高温再生器に供給される溶液の温度が外気温度程度と低く、圧力も約1/100気圧程度であるため、燃焼装置で加熱されて上昇管内で発生する冷媒蒸気の密度が定格運転時の約1/200と小さく、気液分離器内へ流入する冷媒蒸気の速度が大幅に増すことから、気液分離器内の液面を撹拌し、撹拌された液面から冷媒蒸気とともに溶液が蒸気抜出導管から中温再生器に導かれてしまう。   At the start-up, the liquid level in the gas-liquid separator rises and the gas phase part for gas-liquid separation is limited to a very small size, the temperature of the solution supplied to the high-temperature regenerator is as low as the outside air temperature, and the pressure is Since the pressure is about 1/100 atm, the density of the refrigerant vapor generated in the riser after being heated by the combustion device is as small as about 1/200 at the rated operation, and the speed of the refrigerant vapor flowing into the gas-liquid separator is Since the liquid level in the gas-liquid separator is greatly increased, the solution is introduced from the stirred liquid level together with the refrigerant vapor to the intermediate temperature regenerator from the vapor extraction conduit.

また、その後の運転中は気液分離器内の液面は低下し、燃焼装置での燃焼量と溶液の循環量で液面位置がバランスしても、気液分離器内には常に溶液の液面が存在するので、運転中に高温再生器の上部管寄せから気液分離器に流入する冷媒蒸気と溶液が混合した蒸気流により、気液分離器内の液面が乱され中温再生器に導入される冷媒蒸気に溶液が随伴されやすく、冷媒に溶液が混入してしまう。冷媒に溶液が混入すると、蒸発器内の冷媒の蒸発温度が上昇して性能低下の原因となり、三重効用吸収冷温水機の運転に支障をきたすことになる。また、気液分離器内に液面を形成させつつ気液分離性能を確保するためには、起動時の液面が上昇する場合でも気相部分を十分に確保する必要があるため気液分離器が大きくなってしまい、三重効用吸収冷温水機の機器配置に自由度が限定されてしまう。   In addition, during the subsequent operation, the liquid level in the gas-liquid separator decreases, and even if the liquid level position is balanced by the combustion amount in the combustion device and the circulation rate of the solution, the liquid level in the gas-liquid separator is always constant. Since the liquid level exists, the liquid level in the gas-liquid separator is disturbed by the vapor flow of the refrigerant vapor mixed with the solution flowing from the upper header of the high-temperature regenerator into the gas-liquid separator during operation. The solution is likely to be accompanied by the refrigerant vapor introduced into the refrigerant, and the solution is mixed into the refrigerant. If the solution is mixed into the refrigerant, the evaporation temperature of the refrigerant in the evaporator rises, causing a decrease in performance, which hinders the operation of the triple effect absorption chiller / heater. In addition, in order to ensure the gas-liquid separation performance while forming the liquid level in the gas-liquid separator, it is necessary to ensure a sufficient gas phase portion even when the liquid level at the start-up rises. The vessel becomes large, and the degree of freedom is limited to the equipment arrangement of the triple effect absorption chiller / heater.

また、上記従来技術では、部分負荷運転時に燃焼装置の燃焼・停止を繰り返す場合の運転方法について記載されていない。   Moreover, in the said prior art, the operation method in the case of repeating combustion and a stop of a combustion apparatus at the time of partial load operation is not described.

本発明の目的は、起動から定常運転まで気液分離器の性能を確保するとともに、下部管寄せと上部管寄せに接続される複数本の伝熱管への溶液の供給不足が原因で生じる空焚きを防止できる三重効用吸収冷温水機を提供することにある。   The object of the present invention is to ensure the performance of the gas-liquid separator from start-up to steady operation, and to produce air that is caused by insufficient supply of the solution to the plurality of heat transfer tubes connected to the lower header and the upper header. It is providing the triple effect absorption cold / hot water machine which can prevent.

前記目的を達成するために、本発明は、高温再生器、中温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、中温熱交換器、低温熱交換器、溶液循環ポンプ、溶液散布ポンプ、冷媒ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、前記高温再生器は、希溶液が流入する下部管寄せと、濃溶液及び冷媒蒸気の混合物を流出する上部管寄せと、前記下部管寄せと前記上部管寄せとを接続する複数本の伝熱管と、複数本の伝熱管の外側に燃焼ガスを流通する燃焼装置と、前記上部管寄せから流出された混合物の濃溶液と冷媒蒸気とを分離する気液分離器とを備えた貫流式の高温再生器で構成され、前記気液分離器は、冷媒蒸気を上部から流出し、濃溶液を下部から流出するものである三重効用吸収冷温水機において、前記気液分離器から流出される濃溶液の液面を形成するフロートボックスと、前記フロートボックス内の濃溶液の液面によって前記高温再生器への希溶液量を調節するフロート弁と、前記下部管寄せと前記フロートボックスの気相部とを連通するとともに前記高温再生器の液面を検出するための液面検出器を設けた連通管とを備えたものである。   In order to achieve the above object, the present invention provides a high temperature regenerator, a medium temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a high temperature heat exchanger, a medium temperature heat exchanger, a low temperature heat exchanger, and a solution circulation. A solution / refrigerant circulation circuit is configured by connecting a pump, a solution spray pump, and a refrigerant pump with a solution pipe and a refrigerant pipe. The high-temperature regenerator includes a lower header into which a dilute solution flows, and a mixture of concentrated solution and refrigerant vapor. From the upper header, a plurality of heat transfer tubes connecting the lower header and the upper header, a combustion device for circulating a combustion gas outside the plurality of heat transfer tubes, and the upper header The flow-through high temperature regenerator includes a gas-liquid separator that separates the concentrated mixture solution and the refrigerant vapor, and the gas-liquid separator allows the refrigerant vapor to flow out from above and In the triple effect absorption chiller / heater that flows out from the bottom A float box for forming a liquid level of the concentrated solution flowing out from the gas-liquid separator, and a float valve for adjusting a dilute solution amount to the high temperature regenerator according to a liquid level of the concentrated solution in the float box; And a communication pipe provided with a liquid level detector for detecting the liquid level of the high temperature regenerator as well as communicating the lower header and the gas phase part of the float box.

また、前記目的を達成するために、本発明は、高温再生器、中温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、中温熱交換器、低温熱交換器、溶液循環ポンプ、溶液散布ポンプ、冷媒ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、前記高温再生器は、希溶液が流入する下部管寄せと、濃溶液及び冷媒蒸気の混合物を流出する上部管寄せと、前記下部管寄せと前記上部管寄せとを接続する複数本の伝熱管と、複数本の伝熱管の外側に燃焼ガスを流通する燃焼装置と、前記上部管寄せから流出された混合物の濃溶液と冷媒蒸気とを分離する気液分離器とを備えた貫流式の高温再生器で構成され、前記気液分離器は、冷媒蒸気を上部から流出し、濃溶液を下部から流出するものである三重効用吸収冷温水機において、前記気液分離器から流出される濃溶液の液面を形成するフロートボックスと、前記フロートボックス内の濃溶液の液面によって前記高温再生器への希溶液量を調節するフロート弁と、前記上部管寄せと前記フロートボックスの気相部とを連通させるUシール配管と、前記上部管寄せと前記下部管寄せとを連通するとともに前記高温再生器の液面を検出するための液面検出器を設けた連通管とを備えたものである。   In order to achieve the above object, the present invention provides a high temperature regenerator, a medium temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a high temperature heat exchanger, a medium temperature heat exchanger, a low temperature heat exchanger, A solution circulation pump, a solution spray pump, and a refrigerant pump are connected by a solution pipe and a refrigerant pipe to form a solution / refrigerant circulation circuit. The high temperature regenerator includes a lower header into which a dilute solution flows, a concentrated solution and a refrigerant vapor. An upper header that flows out the mixture of the above, a plurality of heat transfer tubes that connect the lower header and the upper header, a combustion device that circulates combustion gas outside the plurality of heat transfer tubes, and the upper tube It is composed of a once-through high temperature regenerator equipped with a gas-liquid separator that separates the concentrated solution of the mixture flowing out from the header and the refrigerant vapor. Triple effect absorption cold / hot water that drains solution from the bottom A float box that forms a liquid level of the concentrated solution that flows out of the gas-liquid separator, and a float valve that adjusts the amount of the diluted solution to the high-temperature regenerator according to the liquid level of the concentrated solution in the float box; Liquid level detection for detecting the liquid level of the high-temperature regenerator while communicating the U-seal pipe for communicating the upper header and the gas phase part of the float box, the upper header and the lower header And a communication pipe provided with a vessel.

また、本発明においてより好ましくは、次の構成としたことである。
(1)前記液面検出器は前記連通管内に形成される希溶液の液面を検出するための高位検知器と低位検知器とを高さの異なる位置に有すること。
(2)起動時に前記高位検知器が希溶液を検出すると、前記燃焼装置の燃焼を開始し、予め設定された設定時間中は燃焼量の下限値で燃焼を行うように制御するとともに、燃焼開始後に前記低位検知器が液面を検出すると、前記燃焼装置での燃焼を停止するように制御する制御装置を備えたこと。
(3)前記液面検出器は前記連通管内に溜まる希溶液の液面を検出するための高位検知器と中位検知器と低位検知器とを高さの異なる位置に設け、起動時に前記高位検知器が希溶液を検出すると、前記燃焼装置の燃焼を開始し、その後に前記液面検出器内の液面が低下して中位検知器で液面が検知されるまで前記燃焼装置を燃焼量の下限値で燃焼するように制御するとともに、燃焼開始後に前記低位検知器が液面を検出すると、前記燃焼装置での燃焼を停止するように制御する制御装置を備えたこと。
(4)蒸発器内を流れる冷水の出口温度を温度センサで検出し、温度センサで検出した温度と予め設定される第一及び第二の設定温度と比較して高温再生器の燃焼装置の燃焼量を調整する制御装置を備え、前記制御装置は、部分負荷時に冷水の出口温度が第一の設定温度に達すると前記燃焼装置を停止し、その後、検出される冷水の出口温度が第二の設定温度より高くなる状態と液面検出器の高位検知器で溶液が検出されている状態との両方が満たされると、前記燃焼装置を再度点火し燃焼を開始するように制御すること。
(5)前記高位検知器は前記伝熱管の上端近傍の高さに設けたこと。
(6)前記フロート弁は、前記吸収器下部に溜められる溶液が前記蒸発器へのオーバーフローを防止するための堰より高い位置に配置されたものであること。
(7)前記吸収器から前記高温再生器、前記中温再生器、前記低温再生器に希溶液を送る前記溶液循環ポンプを駆動する駆動電源の周波数を制御する制御装置を備え、前記制御装置は前記高温再生器の圧力もしくは温度の上昇にともない前記溶液循環ポンプを駆動する前記駆動電源の周波数を増加し、前記高温再生器の圧力もしくは温度の低下にともない前記溶液循環ポンプを駆動する前記駆動電源の周波数を減少させるように制御すること。
In the present invention, the following configuration is more preferable.
(1) The liquid level detector has a high level detector and a low level detector for detecting the liquid level of the diluted solution formed in the communication pipe at different heights.
(2) When the high-level detector detects a dilute solution at the start-up, the combustion device starts combustion, and controls to perform combustion at the lower limit value of the combustion amount during a preset set time, and starts combustion When the low level detector detects the liquid level later, a control device is provided for controlling to stop combustion in the combustion device.
(3) The liquid level detector is provided with a high level detector, a middle level detector, and a low level detector for detecting the liquid level of the dilute solution accumulated in the communication pipe at different heights. When the detector detects a dilute solution, combustion of the combustion device is started, and then the combustion device is burned until the liquid level in the liquid level detector is lowered and the liquid level is detected by the middle level detector. And a control device that controls to stop combustion in the combustion device when the low level detector detects the liquid level after starting combustion, while controlling to burn at the lower limit of the quantity.
(4) The outlet temperature of the cold water flowing in the evaporator is detected by a temperature sensor, and the combustion of the combustion device of the high temperature regenerator is compared with the temperature detected by the temperature sensor and the first and second preset temperatures set in advance. A control device for adjusting the amount, the control device stops the combustion device when the outlet temperature of the chilled water reaches the first set temperature at the time of partial load, and then the detected outlet temperature of the chilled water becomes the second temperature. Control is performed so that the combustion apparatus is ignited again and combustion is started when both the state where the temperature is higher than the set temperature and the state where the solution is detected by the high level detector of the liquid level detector are satisfied.
(5) The high level detector is provided at a height near the upper end of the heat transfer tube.
(6) The float valve is disposed at a position higher than the weir for preventing the solution stored in the lower part of the absorber from overflowing to the evaporator.
(7) A control device that controls the frequency of a drive power source that drives the solution circulation pump that sends a dilute solution from the absorber to the high-temperature regenerator, the intermediate-temperature regenerator, and the low-temperature regenerator, The frequency of the drive power source that drives the solution circulation pump is increased as the pressure or temperature of the high temperature regenerator increases, and the drive power source that drives the solution circulation pump is decreased as the pressure or temperature of the high temperature regenerator decreases. Control to reduce the frequency.

本発明によれば、起動から定常運転まで気液分離器の性能を確保するとともに、下部管寄せと上部管寄せに接続される複数本の伝熱管への溶液の供給不足が原因で生じる空焚きを防止できる三重効用吸収冷温水機を得ることができる。   According to the present invention, the performance of the gas-liquid separator is ensured from the start to the steady operation, and the air blown due to insufficient supply of the solution to the plurality of heat transfer tubes connected to the lower header and the upper header. A triple effect absorption chiller / heater can be obtained.

以下、本発明の複数の実施例について図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。
(実施例1)
先ず、本発明を実施するための最良の形態の実施例1について説明する。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.
Example 1
First, Example 1 of the best mode for carrying out the present invention will be described.

図1に本発明の実施の形態を示す。先ず本発明の三重効用吸収冷温水機の構成について説明する。三重効用吸収冷温水機は、一点鎖線で囲まれた高温再生器1、蒸発器7、吸収器8、凝縮器9、低温再生器10、中温再生器11、低温熱交換器15、中温熱交換器16、高温熱交換器17の熱交換器要素と、蒸発器7内の冷媒を循環させるための冷媒ポンプ12、吸収器8内の濃度の薄い希溶液を低温再生器10と中温再生器11と高温再生器1に循環させるための溶液循環ポンプ13、低温再生器10と中温再生器11と高温再生器1の溶液を吸収器8内に散布するための溶液散布ポンプ14、高温再生器1から流出する溶液量に対応して高温再生器1に流入する溶液量を調節するフロート弁19を備えたフロートボックス18とこれらを結ぶ溶液配管及び冷媒配管で構成されている。   FIG. 1 shows an embodiment of the present invention. First, the structure of the triple effect absorption chiller / heater of the present invention will be described. The triple effect absorption chiller / heater is composed of a high temperature regenerator 1, an evaporator 7, an absorber 8, a condenser 9, a low temperature regenerator 10, a medium temperature regenerator 11, a low temperature heat exchanger 15, and a medium temperature heat exchange surrounded by a chain line. The low-temperature regenerator 10 and the medium-temperature regenerator 11 are used as the heat exchanger elements of the heat exchanger 16 and the high-temperature heat exchanger 17, the refrigerant pump 12 for circulating the refrigerant in the evaporator 7, and the dilute dilute solution in the absorber 8. And a solution circulation pump 13 for circulating to the high temperature regenerator 1, a low temperature regenerator 10, a medium temperature regenerator 11, and a solution spray pump 14 for spraying the solution of the high temperature regenerator 1 into the absorber 8, the high temperature regenerator 1 The float box 18 is provided with a float valve 19 that adjusts the amount of solution flowing into the high-temperature regenerator 1 in accordance with the amount of solution flowing out of the solution, and a solution pipe and a refrigerant pipe connecting them.

一点鎖線で囲まれた高温再生器1は貫流式の高温再生器1で、バーナ6を備え、上部管寄せ2と下部管寄せ3が複数本の伝熱管4(以下、単に伝熱管4という)で接続されている。気液分離器5上部と中温再生器11が配管22で接続されている。配管22は途中で分岐され、分岐された配管28がバルブ29を介して吸収器8と接続されている。気液分離器5下部とフロートボックス18が配管23で接続されている。   A high-temperature regenerator 1 surrounded by an alternate long and short dash line is a once-through type high-temperature regenerator 1 and includes a burner 6, and an upper header 2 and a lower header 3 include a plurality of heat transfer tubes 4 (hereinafter simply referred to as heat transfer tubes 4). Connected with. The upper part of the gas-liquid separator 5 and the intermediate temperature regenerator 11 are connected by a pipe 22. The pipe 22 is branched in the middle, and the branched pipe 28 is connected to the absorber 8 via a valve 29. The lower part of the gas-liquid separator 5 and the float box 18 are connected by a pipe 23.

希溶液は、下部管寄せ3、伝熱管4、上部管寄せ2の順で流通し、伝熱管4の外側がバーナ6で加熱されることにより濃縮されて冷媒蒸気と濃溶液となる。冷媒蒸気と濃溶液が混合した状態で気液分離器5に流入し、冷媒蒸気と濃溶液に分離される。分離された冷媒蒸気は配管22を通って中温再生器11に導かれる。分離された濃溶液は配管23を通ってフロートボックス18に導かれる。また、下部管寄せ3とフロートボックス18の気相部とを連通する連通管20が設けられている。この連通管20の途中には、高位検知器26と低位検知器27とを備えた液面検出器25が設けられている。吸収器8からの希溶液が流入する配管24が下部管寄せ3に接続されている。   The dilute solution flows in the order of the lower header 3, the heat transfer tube 4, and the upper header 2, and is concentrated by heating the outside of the heat transfer tube 4 with the burner 6 to become a refrigerant vapor and a concentrated solution. The refrigerant vapor and the concentrated solution flow into the gas-liquid separator 5 in a mixed state, and are separated into the refrigerant vapor and the concentrated solution. The separated refrigerant vapor is guided to the intermediate temperature regenerator 11 through the pipe 22. The separated concentrated solution is guided to the float box 18 through the pipe 23. In addition, a communication pipe 20 that communicates the lower header 3 and the gas phase part of the float box 18 is provided. In the middle of the communication pipe 20, a liquid level detector 25 including a high level detector 26 and a low level detector 27 is provided. A pipe 24 into which a dilute solution from the absorber 8 flows is connected to the lower header 3.

フロートボックス18内のフロート弁19は、図1に示すようにフロート19dを備え、フロートボックス18内に溜められる濃溶液の液面位置を検出し、フロートボックス18内の濃溶液の液面が低下すると高温再生器1に供給する希溶液の流量を増加し、フロートボックス18内の濃溶液の液面が上昇すると高温再生器1に供給する希溶液の流量を減少するように調節する。また、フロートボックス18内のフロート弁19は、吸収器8と蒸発器7の間に設けられる堰(図示せず)より高い位置に設けられる。吸収器8と蒸発器7の間の堰は、運転停止時に溶液を希釈して高温再生器1と中温再生器11と低温再生器10の高圧側から吸収器8の低圧側に圧力差で溶液が流れ込んでも蒸発器7にオーバーフローしない高さに設計される。つまり、運転停止中には、フロートボックス18内の液面はフロート弁19より低い位置に形成されるように構成される。また、液面検出器25の高位検知器26は、例えば高温再生器1の伝熱管4が上部管寄せ2と接続する伝熱管4の上端の高さに設けるとともに、フロートボックス18側の連通管20も高位検知器26と同等の高さ位置でフロートボックス18に接続される。   The float valve 19 in the float box 18 includes a float 19d as shown in FIG. 1, detects the liquid level position of the concentrated solution stored in the float box 18, and the liquid level of the concentrated solution in the float box 18 decreases. Then, the flow rate of the dilute solution supplied to the high temperature regenerator 1 is increased, and when the liquid level of the concentrated solution in the float box 18 rises, the flow rate of the dilute solution supplied to the high temperature regenerator 1 is adjusted to decrease. The float valve 19 in the float box 18 is provided at a position higher than a weir (not shown) provided between the absorber 8 and the evaporator 7. The weir between the absorber 8 and the evaporator 7 dilutes the solution when the operation is stopped, and the solution is caused by a pressure difference from the high pressure side of the high temperature regenerator 1, the intermediate temperature regenerator 11, and the low temperature regenerator 10 to the low pressure side of the absorber 8. Is designed so that it does not overflow into the evaporator 7 even if it flows into the evaporator 7. That is, the liquid level in the float box 18 is formed at a position lower than the float valve 19 during operation stop. Further, the high level detector 26 of the liquid level detector 25 is provided at the height of the upper end of the heat transfer tube 4 where the heat transfer tube 4 of the high temperature regenerator 1 is connected to the upper header 2, and the communication tube on the float box 18 side, for example. 20 is connected to the float box 18 at the same height as the high level detector 26.

また、三重効用吸収冷温水機は制御装置33を備えている。制御装置33には、バーナ6、高位検知器26、低位検知器27、バルブ29、蒸発器7内の管群を流れる冷水の出口温度センサ31、溶液散布ポンプ14、溶液循環ポンプ13の周波数を調節するためのインバータ32が破線で示す信号線で接続されている。本実施の形態においては、三重効用吸収冷温水機の冷媒には水、吸収剤には臭化リチウム水溶液が用いられている。以下の説明で図1と同様の部位については同一符号で示す。   The triple effect absorption chiller / heater includes a control device 33. The control device 33 includes the burner 6, the high level detector 26, the low level detector 27, the valve 29, the outlet temperature sensor 31 of the cold water flowing through the tube group in the evaporator 7, the solution spray pump 14, and the frequency of the solution circulation pump 13. An inverter 32 for adjustment is connected by a signal line indicated by a broken line. In the present embodiment, water is used as the refrigerant of the triple effect absorption chiller / heater, and an aqueous lithium bromide solution is used as the absorbent. In the following description, the same parts as those in FIG.

次に、かかる三重効用吸収冷温水機の冷房運転中の動作について説明する。   Next, the operation | movement in the air_conditionaing | cooling operation | movement of this triple effect absorption cold / hot water machine is demonstrated.

バーナ6により高温再生器1の下部管寄せ3から伝熱管4に流入する希溶液が加熱され濃縮されて濃溶液と冷媒蒸気となり上部管寄せ2から配管21を通り気液分離器5に導かれる。気液分離器5で分離された冷媒蒸気は、配管22を通り中温再生器11内の希溶液を加熱濃縮し冷媒蒸気を発生させて凝縮液化し凝縮器9に流入する。中温再生器11で発生した冷媒蒸気は、低温再生器10内の希溶液を加熱濃縮し冷媒蒸気を発生させて凝縮液化し凝縮器9に流入する。低温再生器10で発生した冷媒蒸気は凝縮器9で凝縮器9内を流れる冷却水で冷却され凝縮液化し、高温再生器1と中温再生器11からの冷媒とともに蒸発器7に送られる。一方、気液分離器5で分離された濃溶液は、フロートボックス18で液面を形成した後に高温熱交換器17を通り、中温再生器11で濃縮されて中温熱交換器16を通った濃溶液と低温再生器10で濃縮された濃溶液とともに、溶液散布ポンプ14により低温熱交換器15を通り吸収器8に導かれ吸収器8内の管群に散布される。   The dilute solution flowing from the lower header 3 of the high-temperature regenerator 1 into the heat transfer tube 4 is heated and concentrated by the burner 6 to become a concentrated solution and refrigerant vapor, and is led from the upper header 2 to the gas-liquid separator 5 through the pipe 21. . The refrigerant vapor separated by the gas-liquid separator 5 passes through the pipe 22 and heats and concentrates the diluted solution in the intermediate temperature regenerator 11 to generate refrigerant vapor, which is condensed and liquefied and flows into the condenser 9. The refrigerant vapor generated in the intermediate temperature regenerator 11 is heated and concentrated in the dilute solution in the low temperature regenerator 10 to generate refrigerant vapor, which is condensed and liquefied and flows into the condenser 9. The refrigerant vapor generated in the low temperature regenerator 10 is cooled by the condenser 9 with the cooling water flowing in the condenser 9 to be condensed and liquefied, and is sent to the evaporator 7 together with the refrigerant from the high temperature regenerator 1 and the medium temperature regenerator 11. On the other hand, the concentrated solution separated by the gas-liquid separator 5 forms a liquid level in the float box 18, passes through the high temperature heat exchanger 17, is concentrated in the intermediate temperature regenerator 11, and passes through the intermediate temperature heat exchanger 16. Along with the solution and the concentrated solution concentrated in the low-temperature regenerator 10, the solution spray pump 14 passes through the low-temperature heat exchanger 15 to the absorber 8 and is sprayed on the tube group in the absorber 8.

蒸発器7内の冷媒は、蒸発器7下部に溜められ冷媒ポンプ12で蒸発器7内の管群に散布され、管群内を流れる冷水と熱交換する。このとき蒸発器7内の管群内へ、蒸発器7内の冷媒の飽和温度より高い温度の冷水が流し込まれるため、蒸発器7内の管群内を流れる冷水が蒸発器7内の管群表面を流下する冷媒を加熱して冷媒が蒸発気化する。その際の蒸発潜熱により冷房作用を発揮する。また、蒸発器7内の圧力を一定に保つために、吸収器8内の管群に高温再生器1と中温再生器11と低温再生器10で濃縮された濃溶液を散布し、蒸発器7で蒸発気化した冷媒を吸収させる。   The refrigerant in the evaporator 7 is stored in the lower part of the evaporator 7 and sprayed to the tube group in the evaporator 7 by the refrigerant pump 12, and exchanges heat with the cold water flowing in the tube group. At this time, since cold water having a temperature higher than the saturation temperature of the refrigerant in the evaporator 7 is poured into the tube group in the evaporator 7, the cold water flowing in the tube group in the evaporator 7 is moved to the tube group in the evaporator 7. The refrigerant flowing down the surface is heated and the refrigerant evaporates. The cooling effect is exhibited by the latent heat of vaporization at that time. Further, in order to keep the pressure in the evaporator 7 constant, the concentrated solution concentrated by the high temperature regenerator 1, the medium temperature regenerator 11, and the low temperature regenerator 10 is sprayed on the tube group in the absorber 8, and the evaporator 7 Absorbs the refrigerant evaporated in

このとき冷媒蒸気を吸収する際に発生する吸収熱を吸収器8内の管群内を流れる冷却水で除去するとともに、蒸発器7からの冷媒蒸気を吸収して希釈された希溶液を溶液循環ポンプ13で低温熱交換器15を経由して供給する。この希溶液を分岐し、一方を低温再生器10に供給し、他方の一部を中温熱交換器16を経由させて中温再生器11に供給し、残りを高温熱交換器17を経由させてフロートボックス18内のフロート弁19を通り高温再生器1に供給する。ここで希溶液は再度バーナ6で加熱濃縮され冷媒蒸気と分離される。   At this time, the absorption heat generated when the refrigerant vapor is absorbed is removed by the cooling water flowing in the tube group in the absorber 8, and the diluted solution diluted with the refrigerant vapor from the evaporator 7 is circulated in the solution. It is supplied via a low temperature heat exchanger 15 by a pump 13. This dilute solution is branched, one is supplied to the low temperature regenerator 10, the other part is supplied via the intermediate temperature heat exchanger 16 to the intermediate temperature regenerator 11, and the rest is supplied via the high temperature heat exchanger 17. The high temperature regenerator 1 is supplied through the float valve 19 in the float box 18. Here, the dilute solution is again heated and concentrated by the burner 6 and separated from the refrigerant vapor.

以上のように冷房サイクルが構成される。このとき、高温再生器1内の圧力は従来の再生器が2個の二重効用吸収冷温水機の約3倍以上となり、大気圧を超えて運転される。   The cooling cycle is configured as described above. At this time, the pressure in the high temperature regenerator 1 is more than about three times that of the conventional double regenerator absorption double chiller / heater, and is operated exceeding the atmospheric pressure.

次に、図1により本発明に係わる高温再生器1とフロートボックス18周りの動作と効果について説明する。   Next, operations and effects around the high-temperature regenerator 1 and the float box 18 according to the present invention will be described with reference to FIG.

先ず起動時について説明する。起動時は、先ず溶液循環ポンプ13を運転し希溶液を循環させる。希溶液はフロート弁19により流量調節されて下部管寄せ3に流入する。ここで、運転停止中にはフロートボックス18内の液面はフロート弁19より低い位置に形成されフロート弁19は開状態となっているので、必ず希溶液は下部管寄せ3に供給することができる。下部管寄せ3に供給された希溶液は、各伝熱管4に分配されて伝熱管4内を上昇するとともに、連通管20及び液面検出器25内を上昇する。このとき、高温再生器1の気相部とフロートボックス18の気相部は気液分離器5を介して連通されているので、伝熱管4内の液面と液面検出器25内の液面を同時に上昇させることができる。液面検出器25内を上昇した希溶液は、連通管20を通りフロートボックス18に流入し、フロートボックス18内で液面を形成して溶液散布ポンプ14で吸収器8に導入される。また、伝熱管4内を上昇した希溶液は、伝熱管4の上端より高い上部管寄せ2内の高さで液面を形成する。このとき、液面検出器25内を上昇した希溶液は、液面検出器25の高位検知器26により液面が検知される。高位検知器26は、制御装置33に信号線で接続され、例えば連続して検知していることを確認することを条件にバーナ6を点火し燃焼を開始し、予め設定される設定時間中は燃焼量が下限値で燃焼されるように制御する。つまり、高位検知器26が伝熱管4の上端の高さ位置に設け、液面を高位検知器26で連続して検知することを条件に、溶液循環ポンプ13で高温再生器1に供給された希溶液は、伝熱管4を上昇して上部管寄せ2で液面を形成するとともに、連通管20及び液面検出器25を通ってフロートボックス18に導入でき、安定して希溶液が循環している状態でバーナ6による燃焼を開始するので、希溶液の供給不足による伝熱管4の空焚きを防止することができる。   First, the startup will be described. When starting up, first, the solution circulation pump 13 is operated to circulate the dilute solution. The dilute solution is adjusted in flow rate by the float valve 19 and flows into the lower header 3. Here, when the operation is stopped, the liquid level in the float box 18 is formed at a position lower than the float valve 19 and the float valve 19 is in an open state, so that the dilute solution must be supplied to the lower header 3 without fail. it can. The dilute solution supplied to the lower header 3 is distributed to the heat transfer tubes 4 and rises in the heat transfer tubes 4 and rises in the communication tubes 20 and the liquid level detector 25. At this time, since the gas phase part of the high temperature regenerator 1 and the gas phase part of the float box 18 are communicated with each other via the gas-liquid separator 5, the liquid level in the heat transfer tube 4 and the liquid level in the liquid level detector 25. The plane can be raised simultaneously. The diluted solution that has risen in the liquid level detector 25 flows into the float box 18 through the communication pipe 20, forms a liquid level in the float box 18, and is introduced into the absorber 8 by the solution spray pump 14. The dilute solution that has risen in the heat transfer tube 4 forms a liquid surface at a height in the upper header 2 that is higher than the upper end of the heat transfer tube 4. At this time, the liquid level of the diluted solution rising in the liquid level detector 25 is detected by the high level detector 26 of the liquid level detector 25. The high level detector 26 is connected to the control device 33 by a signal line, and ignites the burner 6 on the condition that it is continuously detected, for example, and starts combustion. During a preset set time, Control so that the combustion amount is burned at the lower limit. That is, the high level detector 26 is provided at the height position of the upper end of the heat transfer tube 4, and is supplied to the high temperature regenerator 1 by the solution circulation pump 13 on condition that the liquid level is continuously detected by the high level detector 26. The dilute solution rises up the heat transfer tube 4 to form the liquid level in the upper header 2 and can be introduced into the float box 18 through the communication tube 20 and the liquid level detector 25, so that the dilute solution circulates stably. Since combustion by the burner 6 is started in this state, it is possible to prevent emptying of the heat transfer tube 4 due to insufficient supply of the dilute solution.

また、起動時には、溶液循環ポンプ13は、三重効用吸収冷温水機では定格時に必要な揚程が二重効用吸収冷温水機の約2倍になるとともに、溶液循環ポンプ13にいきなり定格周波数の電源を供給するとサージ圧が発生し、溶液循環ポンプ13の吐出側にある低温熱交換器15、中温熱交換器16、高温熱交換器17へ与える衝撃が大きくなり耐久性に問題が生じる。そこで、高温再生器1の気液分離器5に備えた圧力センサ30で検出した値により、制御装置33で電源を供給するインバータ32の周波数を制御し、圧力が低い起動時には周波数を低く抑えるとともに、設定される周波数までの起動時間を設けて溶液循環ポンプ13の吐出側にある低温熱交換器15、中温熱交換器16、高温熱交換器17への衝撃を緩和するように制御する。   In addition, at the time of start-up, the solution circulation pump 13 has a double-effect absorption chiller / heater having a head twice as high as that required for a triple-effect absorption chiller / heater, and the solution circulation pump 13 suddenly turns on the power supply at the rated frequency. When supplied, a surge pressure is generated, and the impact applied to the low temperature heat exchanger 15, the medium temperature heat exchanger 16, and the high temperature heat exchanger 17 on the discharge side of the solution circulation pump 13 is increased, resulting in a problem in durability. Therefore, the frequency of the inverter 32 that supplies power is controlled by the control device 33 based on the value detected by the pressure sensor 30 provided in the gas-liquid separator 5 of the high-temperature regenerator 1, and the frequency is kept low during startup when the pressure is low. Control is performed so as to alleviate the impact on the low temperature heat exchanger 15, intermediate temperature heat exchanger 16, and high temperature heat exchanger 17 on the discharge side of the solution circulation pump 13 by providing a startup time up to the set frequency.

さらに、起動時には、高温再生器1に供給される希溶液の温度が外気温度程度、高温再生器1内の圧力が約1/100気圧となっていることから、バーナ6による燃焼開始直後は、伝熱管4内で発生する冷媒蒸気の密度が定格運転時の約1/200と小さく、気液分離器5内へ流入する気液二相状態の冷媒蒸気と濃溶液の速度が大幅に増すことになるが、従来技術の特開2003−227662号公報記載の高温再生器(図示せず)のように気液分離器5内に濃溶液の液面が形成されていると、濃溶液の液面が撹拌され濃溶液が冷媒蒸気に随伴されて冷媒側に混入し、蒸発器7内の冷媒の蒸発温度が上昇することにより性能が低下する問題が懸念される。しかし、図1に示すように実施例1の形態では、気液分離器5内に濃溶液を溜めない構成としているので、気液分離器5全体を気液分離に利用できるので気液分離器5の性能を十分に発揮することができ、濃溶液が冷媒蒸気に随伴して冷媒側に混入することを最小限に抑えることができる。また、液面検出器25の高位検知器26で液面を連続して検知してから開始されるバーナ6の燃焼を、予め設定される設定時間中は燃焼量を下限値で燃焼させることにより、希溶液が加熱されて発生する冷媒蒸気量を少なく抑えることができるとともに、例えば予め設定される設定時間を10分とすると、この間に高温再生器1の上部管寄せ2に形成された液面が徐々に低下して伝熱管4内に液面が形成される。これにより、高温再生器1内に形成され冷媒蒸気と濃溶液により撹拌される液面の面積を減少させることができるので、撹拌により冷媒蒸気に随伴される濃溶液量を減少させることができる。その後、バーナ6の燃焼量を冷房負荷に応じて増加させても、高温再生器1内に形成される冷媒蒸気と濃溶液により撹拌される液面の面積を伝熱管4のみにすることができるので、撹拌により冷媒蒸気に随伴される濃溶液量を最小限に抑えることができる。   Furthermore, at the time of start-up, since the temperature of the dilute solution supplied to the high temperature regenerator 1 is about the outside air temperature and the pressure in the high temperature regenerator 1 is about 1/100 atm. The density of the refrigerant vapor generated in the heat transfer tube 4 is as small as about 1/200 of the rated operation, and the speed of the vapor and liquid refrigerant vapor and concentrated solution flowing into the gas-liquid separator 5 is greatly increased. However, if a liquid surface of a concentrated solution is formed in the gas-liquid separator 5 as in a high-temperature regenerator (not shown) described in Japanese Patent Application Laid-Open No. 2003-227661, the liquid of the concentrated solution is formed. There is a concern that the surface is agitated and the concentrated solution is accompanied by the refrigerant vapor and mixed into the refrigerant side, and the evaporation temperature of the refrigerant in the evaporator 7 increases and the performance deteriorates. However, as shown in FIG. 1, in the form of the first embodiment, since the concentrated solution is not stored in the gas-liquid separator 5, the entire gas-liquid separator 5 can be used for gas-liquid separation. 5 can be sufficiently exerted, and it is possible to minimize the concentration of the concentrated solution accompanying the refrigerant vapor on the refrigerant side. Further, by burning the burner 6 started after the liquid level is continuously detected by the high level detector 26 of the liquid level detector 25, the combustion amount is burned at the lower limit value during a preset set time. The amount of refrigerant vapor generated when the dilute solution is heated can be suppressed to a low level. For example, if the preset time is 10 minutes, the liquid level formed in the upper header 2 of the high-temperature regenerator 1 during this time Gradually decreases to form a liquid surface in the heat transfer tube 4. Thereby, since the area of the liquid level formed in the high temperature regenerator 1 and stirred by the refrigerant vapor and the concentrated solution can be reduced, the amount of the concentrated solution accompanying the refrigerant vapor by the stirring can be reduced. Thereafter, even if the combustion amount of the burner 6 is increased in accordance with the cooling load, the area of the liquid surface stirred by the refrigerant vapor and concentrated solution formed in the high-temperature regenerator 1 can be limited to the heat transfer tube 4 only. Therefore, the amount of the concentrated solution accompanying the refrigerant vapor by stirring can be minimized.

したがって、本実施例1によれば、起動時には、高温再生器1の伝熱管4の空焚き防止と冷媒側への濃溶液の混入防止を同時に行うことができ安全性の向上を図ることができる。   Therefore, according to the first embodiment, at the time of start-up, it is possible to simultaneously prevent the heat transfer tube 4 of the high-temperature regenerator 1 from being blown and prevent the concentrated solution from being mixed into the refrigerant side, thereby improving safety. .

次に、起動から安定までについて説明する。起動後バーナ6による燃焼が開始され伝熱管4内には希溶液が沸騰し多くのボイドが発生することにより、液面検出器25内の液面は徐々に低下し、予め設定される設定時間後は、制御装置33で制御するバーナ6の燃焼量とフロート弁19で流量調節される希溶液の流量のバランスしたところで液面検出器25内の液面が安定する。バーナ6の燃焼量は、制御装置33で冷水の出口に設けた出口温度センサ31で検出した温度と予め設定される第一の設定値と比較し、第一の設定値より高く温度差が大きければ燃焼量を多く、第一の設定値より高く温度差が小さければ燃焼量を少なくなるように制御装置33で制御する。また、バーナ6による燃焼後は高温再生器1内の圧力が徐々に上昇するため、溶液循環ポンプ13のインバータ32の周波数を起動時の低く抑えたままだと、希溶液の循環量が減少してしまう。そこで、制御装置33により、圧力センサ30で検出した圧力が上昇した場合には、溶液循環ポンプ13のインバータ32の周波数が増加するように制御し、逆に圧力センサ30で検出した圧力が低下した場合には、溶液循環ポンプ13のインバータ32の周波数が減少するように制御する。   Next, the process from start to stability will be described. After the start-up, combustion by the burner 6 is started and the dilute solution boils in the heat transfer tube 4 and a lot of voids are generated, so that the liquid level in the liquid level detector 25 gradually decreases, and a preset set time is set. Thereafter, the liquid level in the liquid level detector 25 is stabilized when the combustion amount of the burner 6 controlled by the control device 33 and the flow rate of the diluted solution whose flow rate is adjusted by the float valve 19 are balanced. The combustion amount of the burner 6 is higher than the first set value by comparing the temperature detected by the outlet temperature sensor 31 provided at the cold water outlet with the control device 33 and the first set value set in advance. If the amount of combustion is large, and the temperature difference is higher than the first set value and the temperature difference is small, the controller 33 controls the amount of combustion to be small. Moreover, since the pressure in the high-temperature regenerator 1 gradually increases after combustion by the burner 6, if the frequency of the inverter 32 of the solution circulation pump 13 is kept low at the time of startup, the circulation amount of the diluted solution decreases. End up. Therefore, when the pressure detected by the pressure sensor 30 is increased by the control device 33, control is performed so that the frequency of the inverter 32 of the solution circulation pump 13 is increased, and conversely, the pressure detected by the pressure sensor 30 is decreased. In this case, control is performed so that the frequency of the inverter 32 of the solution circulation pump 13 decreases.

図1に示す本実施例1の三重効用吸収冷温水機が、起動から停止するまで運転されている状態において、例えば、溶液循環ポンプ13の故障、溶液循環ポンプ13を制御するための圧力センサ30やインバータ32や制御装置33のポンプ制御機能の故障、溶液配管のつまり等が発生した場合には、高温再生器1への希溶液の供給不足が生じるため、高温再生器1の伝熱管4が空焚きとなり、高温再生器1の破損や破裂の可能性がある。しかし、本実施例によれば、上記原因により希溶液の高温再生器1への不足が生じた場合には、高温再生器1の伝熱管4内の液面は液面検出器25内の液面と連動しているので液面が減少しても、所謂空焚きとなる液面より裕度分高い位置に液面検出器25の低位検知器27を設け、低位検知器27で連続して液面を検知すると制御装置33でバーナ6への燃料を遮断し燃焼を停止させるように制御することにより、伝熱管4の空焚きを防止することができる。このとき、液面検出器25の低位検知器27を設置する高さは、バーナ6の燃焼量や高温再生器1への希溶液の供給量が変化したときの伝熱管4の壁温度がこれまでの実績や経験則から求められた安全な温度範囲内であることを確認できる高さに設定する。   In the state where the triple effect absorption chiller / heater of the first embodiment shown in FIG. 1 is operated from the start to the stop, for example, a failure of the solution circulation pump 13, a pressure sensor 30 for controlling the solution circulation pump 13, etc. If the pump control function of the inverter 32 or the control device 33 fails, or the solution piping is clogged, the supply of the dilute solution to the high temperature regenerator 1 is insufficient. There is a possibility that the high-temperature regenerator 1 may be damaged or ruptured. However, according to the present embodiment, when the shortage of the dilute solution to the high temperature regenerator 1 occurs due to the above cause, the liquid level in the heat transfer tube 4 of the high temperature regenerator 1 is the liquid level in the liquid level detector 25. Even if the liquid level decreases, a low level detector 27 of the liquid level detector 25 is provided at a position higher than the so-called empty liquid level by a margin, and the low level detector 27 continuously. When the liquid level is detected, the control device 33 controls the fuel to be burned to the burner 6 to stop combustion, thereby preventing the heat transfer tube 4 from being blown. At this time, the height at which the low level detector 27 of the liquid level detector 25 is installed depends on the wall temperature of the heat transfer tube 4 when the combustion amount of the burner 6 or the supply amount of the dilute solution to the high temperature regenerator 1 changes. Set the height so that it can be confirmed that the temperature is within the safe temperature range determined from the actual results and experience.

また、例えば、液面検出器25の低位検知器27で液面を検知したときには、制御装置33でバーナ6の燃焼停止と同時に、溶液循環ポンプ13と溶液散布ポンプを停止し、配管28のバルブ29を開ける。つまり、高温再生器1への供給不足が生じ低位検知器27で、空焚き防止のためにバーナ6の燃焼を停止したときに、溶液循環ポンプ13と溶液散布ポンプ14が運転されていると、溶液循環ポンプ13側に希溶液の循環不良が生じているので、吸収器8から流出する希溶液より吸収器8へ流入する濃溶液の割合が多くなって、吸収器8下部に溜まる溶液が増加して許容量を超え蒸発器7へオーバーフローしてしまう。さらに、その後も溶液循環ポンプ13と溶液散布ポンプ14が運転されていると、溶液散布ポンプ14吸込側の濃溶液が不足する状態となることから、キャビテーション等による溶液散布ポンプ14が破損する危険性がある。また、配管28のバルブ29を開けることにより、高温再生器1と吸収器8との圧力差を低減することで、吸収器8から蒸発器7への溶液のオーバーフローを防止することができる。これにより、サイクルの性能低下や運転不能といった不具合を防止できる。   Further, for example, when the liquid level is detected by the low level detector 27 of the liquid level detector 25, the control device 33 stops the combustion of the burner 6 and simultaneously stops the solution circulation pump 13 and the solution spray pump, and the valve of the pipe 28. 29 is opened. That is, when the supply of heat to the high temperature regenerator 1 is insufficient and the low level detector 27 stops the combustion of the burner 6 to prevent emptying, the solution circulation pump 13 and the solution spray pump 14 are operated. Since the circulation failure of the dilute solution has occurred on the solution circulation pump 13 side, the ratio of the concentrated solution flowing into the absorber 8 becomes larger than the dilute solution flowing out from the absorber 8, and the solution accumulated in the lower portion of the absorber 8 increases. As a result, the allowable amount is exceeded and the evaporator 7 overflows. Furthermore, if the solution circulation pump 13 and the solution spray pump 14 are operated thereafter, the concentrated solution on the suction side of the solution spray pump 14 becomes insufficient, so that the solution spray pump 14 may be damaged due to cavitation or the like. There is. Moreover, the overflow of the solution from the absorber 8 to the evaporator 7 can be prevented by reducing the pressure difference between the high temperature regenerator 1 and the absorber 8 by opening the valve 29 of the pipe 28. As a result, problems such as cycle performance degradation and inability to operate can be prevented.

次に、バーナ6の燃焼量が下限値で対応できるよりも低い部分負荷時の運転について説明する。部分負荷時において、冷水の出口温度センサ31で検出される温度と予め設定される第一の設定値との温度差が小さく、制御装置33でバーナ6の燃焼量が下限値で運転されている場合、冷水の出口温度センサ31で検出される温度が第一の設定値に達したときには、高温再生器1のバーナ6の燃焼、停止の繰り返し運転を行うように制御装置33で制御する。このように部分負荷で運転されている場合、制御装置33によりバーナ6の燃焼が停止したときには、溶液循環ポンプ13と溶液散布ポンプ14は運転されているので、高温再生器1の伝熱管4内のボイドが無くなり、液面検出器25内の液面が伝熱管4の上端の高さに設けた高位検出器26まで液面が上昇する。このとき、制御装置33で部分負荷時にバーナ6が停止しているときには、制御装置33で冷水の出口温度センサ31で検知した温度が第一の設定値より高く第二の設定値以上となった状態と、液面検出器25の高位検知器26が連続して希溶液を検知している状態の両方を満たしたときに、バーナ6の燃焼を開始するように制御する。これにより、部分負荷時においても、再度高温再生器1のバーナ6が燃焼を開始する場合に、伝熱管4内の希溶液の液面を伝熱管4の上端より高くすることができるので、希溶液の供給不足による空焚きを防止することができ、スムーズにバーナ6の燃焼・停止を繰り返すことができる。   Next, the operation at the partial load when the combustion amount of the burner 6 is lower than can be handled by the lower limit value will be described. At the time of partial load, the temperature difference between the temperature detected by the cold water outlet temperature sensor 31 and the first set value set in advance is small, and the combustion amount of the burner 6 is operated by the control device 33 at the lower limit value. In this case, when the temperature detected by the cold water outlet temperature sensor 31 reaches the first set value, the controller 33 performs control so that the burner 6 of the high-temperature regenerator 1 is repeatedly burned and stopped. When operating with a partial load in this way, when combustion of the burner 6 is stopped by the control device 33, the solution circulation pump 13 and the solution spray pump 14 are operated, so that the inside of the heat transfer tube 4 of the high-temperature regenerator 1. The liquid level rises to the high level detector 26 provided at the height of the upper end of the heat transfer tube 4. At this time, when the burner 6 is stopped at the time of partial load in the control device 33, the temperature detected by the outlet temperature sensor 31 of the cold water in the control device 33 is higher than the first set value and equal to or higher than the second set value. Control is performed to start burning of the burner 6 when both the state and the state in which the high level detector 26 of the liquid level detector 25 continuously detects the diluted solution are satisfied. Thereby, even when the partial load is applied, when the burner 6 of the high-temperature regenerator 1 starts to burn again, the liquid level of the dilute solution in the heat transfer tube 4 can be made higher than the upper end of the heat transfer tube 4. It is possible to prevent emptying due to insufficient supply of the solution, and to smoothly burn and stop the burner 6.

以上のように構成し制御することにより、起動時と安定時と部分負荷時の運転において、高温再生器1の伝熱管4の空焚きを防止し安全性を向上させるとともに、高温再生器1の気液分離器5内に濃溶液を溜めることなく運転することが可能となるので、冷媒側に濃溶液の混入を最小限に抑えることができる。   By configuring and controlling as described above, the operation of the high-temperature regenerator 1 is improved while preventing the heat transfer tube 4 of the high-temperature regenerator 1 from being blown in the start-up, stable operation, and partial load operation. Since it becomes possible to operate without accumulating the concentrated solution in the gas-liquid separator 5, it is possible to minimize the concentration of the concentrated solution on the refrigerant side.

本実施例によれば、下記に示す効果を得ることができる。
(1)気液分離器出口部に液面を形成するフロートボックスを設け、気液分離器内に溶液を溜めない構成としたので、気液分離器全体を冷媒蒸気と溶液の分離に利用することができる。つまり、冷媒蒸気と溶液との分離を効率よく行うことができ、冷媒中への溶液の混入を防止することができる。さらに、気液分離器内に溶液を溜めるための容積を必要としないので気液分離器を小形化することができる。
(2)気液分離器出口部のフロートボックスの気相部と高温再生器の下部管寄せを連通させる連通管に液面検出器を設けることにより、起動時から定常運転まで、さらには部分負荷時の燃焼装置の燃焼・停止の繰り返し運転においても、溶液の供給不足で生じる高温再生器の伝熱管の空焚きを防止することができ、三重効用吸収冷温水機の安全性を確保し効率よく運転することができる。
(実施例2)
次に、図2により本発明を実施するための最良の形態の実施例2について説明する。図2に示す実施例2の形態は、図1に示す実施例1の形態に対して、液面検出器25の高位検知器26と低位検知器27の間に中位検知器36を設け、制御装置33と信号線で接続した構成としている。つまり、中位検知器36は伝熱管4の上端より低い位置に設けられる。ここで、起動時に、図1の実施例1の形態では、バーナ6の燃焼開始後に予め設定される設定時間の間燃焼量が下限値で燃焼を行うとしたが、図2の実施例2の形態では、バーナ6での燃焼開始後液面検出器25に設けた中位検知器36で液面を検知するまで燃焼量を下限値で行うように制御する。これにより、バーナ6による燃焼開始後にボイドの発生により低下する高温再生器1内の液面を上部管寄せ2から、より確実に伝熱管4内にすることができ、希溶液が加熱されて発生する冷媒蒸気と濃溶液で撹拌される液面の面積を減少され、冷媒蒸気に随伴される濃溶液量を最小限に抑えることができる。
(実施例3)
次に、図3により本発明を実施するための最良の形態の実施例3について説明する。図3の実施例3の形態の基本構成要素は、図1の実施例1の形態と同様である。
According to the present embodiment, the following effects can be obtained.
(1) Since a float box that forms a liquid surface is provided at the gas-liquid separator outlet and the solution is not stored in the gas-liquid separator, the entire gas-liquid separator is used for separation of the refrigerant vapor and the solution. be able to. That is, the refrigerant vapor and the solution can be efficiently separated, and the solution can be prevented from being mixed into the refrigerant. Furthermore, since a volume for storing the solution in the gas-liquid separator is not required, the gas-liquid separator can be miniaturized.
(2) By providing a liquid level detector in the communication pipe that communicates the gas phase part of the float box at the outlet of the gas-liquid separator and the lower header of the high-temperature regenerator, from start-up to steady operation, and even partial load Even during repeated operation of combustion / stop of the combustion device at the time, it is possible to prevent emptying of the heat transfer tube of the high-temperature regenerator caused by insufficient supply of solution, ensuring the safety of the triple effect absorption chiller / heater efficiently You can drive.
(Example 2)
Next, Example 2 of the best mode for carrying out the present invention will be described with reference to FIG. The embodiment 2 shown in FIG. 2 is different from the embodiment 1 shown in FIG. 1 in that a middle detector 36 is provided between the high level detector 26 and the low level detector 27 of the liquid level detector 25. It is configured to be connected to the control device 33 by a signal line. That is, the middle detector 36 is provided at a position lower than the upper end of the heat transfer tube 4. Here, at the time of start-up, in the form of the first embodiment of FIG. 1, it is assumed that the combustion amount is burned at the lower limit value for a preset time after the start of the combustion of the burner 6, but in the second embodiment of FIG. In the embodiment, the combustion amount is controlled to be the lower limit value until the liquid level is detected by the middle level detector 36 provided in the liquid level detector 25 after the start of combustion in the burner 6. As a result, the liquid level in the high-temperature regenerator 1 that decreases due to the generation of voids after the start of combustion by the burner 6 can be more reliably brought into the heat transfer tube 4 from the upper header 2, and the dilute solution is heated and generated. The area of the liquid surface stirred with the refrigerant vapor and the concentrated solution is reduced, and the amount of the concentrated solution accompanying the refrigerant vapor can be minimized.
Example 3
Next, a third embodiment of the best mode for carrying out the present invention will be described with reference to FIG. The basic components of the embodiment 3 in FIG. 3 are the same as those in the embodiment 1 in FIG.

図1の実施例1の形態と異なる点は、上部管寄せ2とフロートボックス18の気相部をUシール配管35で接続し、高位検知器26と低位検知器27を備えた液面検出器25を、上部管寄せ2と下部管寄せ3を連通する連通管34の途中に設けたことである。   1 is different from the first embodiment in FIG. 1 in that a liquid level detector including a high level detector 26 and a low level detector 27 in which the upper header 2 and the gas phase portion of the float box 18 are connected by a U seal pipe 35. 25 is provided in the middle of the communication pipe 34 that communicates the upper header 2 and the lower header 3.

起動時には、溶液循環ポンプ13で下部管寄せ3に供給された希溶液は、各伝熱管4に分配されて伝熱管4内を上昇するとともに、連通管34及び液面検出器25内を上昇する。このとき、伝熱管4と連通管34は上部管寄せ2を介して連通されているので、伝熱管4内の液面と液面検出器25内の液面を同時に上昇させることができる。伝熱管4内と液面検出器25内を上昇した希溶液は、上部管寄せ2まで上昇しUシール配管35を通りフロートボックス18に流入し、フロートボックス18内で液面を形成して溶液散布ポンプ14で吸収器8に導入される。フロートボックス18側に接続されるUシール配管35は、上部管寄せ2より低い位置に接続される。また、Uシール配管35はバーナ6の燃焼時に冷媒蒸気と濃溶液が上部管寄せ2からフロートボックス18に吹き抜けないようにUシール高さが設計される。このとき、液面検出器25内を上昇した希溶液は、液面検出器25の高位検知器26により液面が検知される。高位検知器26は、制御装置33に信号線で接続され、例えば連続して検知していることを確認することによりバーナ6を点火し燃焼を開始し、予め設定される設定時間中は燃焼量が下限値で燃焼するように制御する。つまり、高位検知器26が伝熱管4の上端の高さ位置に設け、液面を高位検知器26で連続して検知することにより、溶液循環ポンプ13で高温再生器1に供給された希溶液は、伝熱管4を上昇して上部管寄せ2で液面を形成するとともに、Uシール配管35を通ってフロートボックス18に導入でき、安定して希溶液が循環している状態でバーナ6による燃焼を開始することができる。これにより、図1の実施例1の形態と同様の動作と効果を得ることができる。   At the time of start-up, the dilute solution supplied to the lower header 3 by the solution circulation pump 13 is distributed to each heat transfer tube 4 and rises in the heat transfer tube 4 and rises in the communication tube 34 and the liquid level detector 25. . At this time, since the heat transfer tube 4 and the communication tube 34 communicate with each other via the upper header 2, the liquid level in the heat transfer tube 4 and the liquid level in the liquid level detector 25 can be raised simultaneously. The dilute solution that has risen in the heat transfer tube 4 and the liquid level detector 25 rises to the upper header 2, flows into the float box 18 through the U-seal pipe 35, forms a liquid surface in the float box 18, and forms a solution. It is introduced into the absorber 8 by the spray pump 14. The U seal pipe 35 connected to the float box 18 side is connected to a position lower than the upper header 2. Further, the U seal pipe 35 is designed to have a U seal height so that the refrigerant vapor and the concentrated solution do not blow from the upper header 2 into the float box 18 when the burner 6 is burned. At this time, the liquid level of the diluted solution rising in the liquid level detector 25 is detected by the high level detector 26 of the liquid level detector 25. The high level detector 26 is connected to the control device 33 by a signal line, and for example, by confirming that the detection is continuously performed, the burner 6 is ignited to start combustion, and the combustion amount is set during a preset time. Is controlled to burn at the lower limit. That is, the high level detector 26 is provided at the height position of the upper end of the heat transfer tube 4, and the liquid level is continuously detected by the high level detector 26, whereby the dilute solution supplied to the high temperature regenerator 1 by the solution circulation pump 13. Can rise up the heat transfer tube 4 to form the liquid level at the upper header 2 and can be introduced into the float box 18 through the U-seal pipe 35, and the burner 6 can be used to stably circulate the dilute solution. Combustion can begin. Thereby, the operation | movement and effect similar to the form of Example 1 of FIG. 1 can be acquired.

さらには、起動時と同様に安定時と部分負荷時の運転においても、図1の実施例1の形態と同様の動作を行うことができるので、高温再生器1の伝熱管4の空焚きを防止し安全性を向上させるとともに、高温再生器1の気液分離器5内に濃溶液を溜めることなく運転することが可能となるので、冷媒側に濃溶液の混入を最小限に抑えることができる。
(実施例4)
次に、図4により本発明を実施するための最良の形態の実施例4について説明する。
Furthermore, since the operation similar to that of the first embodiment shown in FIG. 1 can be performed in the stable and partial load operation as in the start-up, the emptying of the heat transfer tube 4 of the high-temperature regenerator 1 can be performed. It is possible to prevent and improve safety, and to operate without accumulating the concentrated solution in the gas-liquid separator 5 of the high-temperature regenerator 1, thereby minimizing the concentration of the concentrated solution on the refrigerant side. it can.
Example 4
Next, Example 4 of the best mode for carrying out the present invention will be described with reference to FIG.

図4に示す実施例4の形態は、図3に示す実施例3の形態に対して、液面検出器25の高位検知器26と低位検知器27の間に中位検知器36を設け、制御装置33と信号線で接続した構成としている。つまり、中位検知器36は伝熱管4の上端より低い位置に設けられる。ここで、起動時に、図4の実施例4の形態では、バーナ6での燃焼開始後液面検出器25に設けた中位検知器36で液面を検知するまで燃焼量を下限値で行うように制御する。これにより、バーナ6による燃焼開始後にボイドの発生により低下する高温再生器1内の液面を上部管寄せ2から、より確実に伝熱管4内にすることができ、希溶液が加熱されて発生する冷媒蒸気と濃溶液で撹拌される液面の面積を減少され、冷媒蒸気に随伴される濃溶液量を最小限に抑えることができる。   The embodiment 4 shown in FIG. 4 is different from the embodiment 3 shown in FIG. 3 in that a middle level detector 36 is provided between the high level detector 26 and the low level detector 27 of the liquid level detector 25. It is configured to be connected to the control device 33 by a signal line. That is, the middle detector 36 is provided at a position lower than the upper end of the heat transfer tube 4. Here, at the time of start-up, in the form of Example 4 in FIG. 4, the combustion amount is performed at the lower limit until the liquid level is detected by the middle level detector 36 provided in the liquid level detector 25 after the start of combustion in the burner 6. To control. As a result, the liquid level in the high-temperature regenerator 1 that decreases due to the generation of voids after the start of combustion by the burner 6 can be more reliably brought into the heat transfer tube 4 from the upper header 2, and the dilute solution is heated and generated. The area of the liquid surface stirred with the refrigerant vapor and the concentrated solution is reduced, and the amount of the concentrated solution accompanying the refrigerant vapor can be minimized.

本発明の実施の形態に係る三重効用吸収冷温水機のサイクルフローを示す図である。It is a figure which shows the cycle flow of the triple effect absorption cold / hot water machine which concerns on embodiment of this invention. 本発明の他の実施の形態に係る三重効用吸収冷温水機のサイクルフローを示す図である。It is a figure which shows the cycle flow of the triple effect absorption cold / hot water machine which concerns on other embodiment of this invention. 本発明の他の実施の形態に係る三重効用吸収冷温水機のサイクルフローを示す図である。It is a figure which shows the cycle flow of the triple effect absorption cold / hot water machine which concerns on other embodiment of this invention. 本発明の他の実施の形態に係る三重効用吸収冷温水機のサイクルフローを示す図である。It is a figure which shows the cycle flow of the triple effect absorption cold / hot water machine which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 高温再生器
2 上部管寄せ
3 下部管寄せ
4 伝熱管
5 気液分離器
6 バーナ
7 蒸発器
8 吸収器
9 凝縮器
10 低温再生器
11 中温再生器
12 冷媒ポンプ
13 溶液循環ポンプ
14 溶液散布ポンプ
15 低温熱交換器
16 中温熱交換器
17 高温熱交換器
18 フロートボックス
19 フロート弁
20 連通管1
25 液面検出器
26 高位検知器
27 低位検知器
29 バルブ
30 圧力センサ
31 冷水出口温度センサ
32 インバータ
33 制御装置
34 連通管2
35 Uシール配管
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Upper header 3 Lower header 4 Heat transfer tube 5 Gas-liquid separator 6 Burner 7 Evaporator 8 Absorber 9 Condenser 10 Low temperature regenerator 11 Medium temperature regenerator 12 Refrigerant pump 13 Solution circulation pump 14 Solution spray pump 15 Low temperature heat exchanger 16 Medium temperature heat exchanger 17 High temperature heat exchanger 18 Float box 19 Float valve 20 Communication pipe 1
25 Liquid level detector 26 High level detector 27 Low level detector 29 Valve 30 Pressure sensor 31 Cold water outlet temperature sensor 32 Inverter 33 Controller 34 Communication pipe 2
35 U seal piping

Claims (9)

高温再生器、中温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、中温熱交換器、低温熱交換器、溶液循環ポンプ、溶液散布ポンプ、冷媒ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、
前記高温再生器は、希溶液が流入する下部管寄せと、濃溶液及び冷媒蒸気の混合物を流出する上部管寄せと、前記下部管寄せと前記上部管寄せとを接続する複数本の伝熱管と、複数本の伝熱管の外側に燃焼ガスを流通する燃焼装置と、前記上部管寄せから流出された混合物の濃溶液と冷媒蒸気とを分離する気液分離器とを備えた貫流式の高温再生器で構成され、
前記気液分離器は、冷媒蒸気を上部から流出し、濃溶液を下部から流出するものである三重効用吸収冷温水機において、
前記気液分離器から流出される濃溶液の液面を形成するフロートボックスと、前記フロートボックス内の濃溶液の液面によって前記高温再生器への希溶液量を調節するフロート弁と、前記下部管寄せと前記フロートボックスの気相部とを連通するとともに前記高温再生器の液面を検出するための液面検出器を設けた連通管とを備えた
ことを特徴とする三重効用吸収式冷温水機。
High temperature regenerator, medium temperature regenerator, low temperature regenerator, condenser, evaporator, absorber, high temperature heat exchanger, medium temperature heat exchanger, low temperature heat exchanger, solution circulation pump, solution spray pump, refrigerant pump with solution piping and Connect with refrigerant piping to form a solution / refrigerant circulation circuit,
The high-temperature regenerator includes a lower header into which a dilute solution flows, an upper header from which a mixture of concentrated solution and refrigerant vapor flows out, and a plurality of heat transfer tubes connecting the lower header and the upper header. A once-through high temperature regeneration system comprising a combustion device for circulating combustion gas outside a plurality of heat transfer tubes, and a gas-liquid separator for separating a concentrated solution and refrigerant vapor flowing out of the upper header Composed of
In the triple-effect absorption chiller / heater, the gas-liquid separator is a refrigerant vapor that flows out from the upper part and a concentrated solution flows out from the lower part.
A float box for forming a liquid level of the concentrated solution flowing out from the gas-liquid separator; a float valve for adjusting a dilute solution amount to the high temperature regenerator according to a liquid level of the concentrated solution in the float box; A triple effect absorption cold temperature characterized by comprising a communicating pipe that communicates the header and the gas phase part of the float box and that is provided with a liquid level detector for detecting the liquid level of the high temperature regenerator. Water machine.
高温再生器、中温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、中温熱交換器、低温熱交換器、溶液循環ポンプ、溶液散布ポンプ、冷媒ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、
前記高温再生器は、希溶液が流入する下部管寄せと、濃溶液及び冷媒蒸気の混合物を流出する上部管寄せと、前記下部管寄せと前記上部管寄せとを接続する複数本の伝熱管と、複数本の伝熱管の外側に燃焼ガスを流通する燃焼装置と、前記上部管寄せから流出された混合物の濃溶液と冷媒蒸気とを分離する気液分離器とを備えた貫流式の高温再生器で構成され、
前記気液分離器は、冷媒蒸気を上部から流出し、濃溶液を下部から流出するものである三重効用吸収冷温水機において、
前記気液分離器から流出される濃溶液の液面を形成するフロートボックスと、前記フロートボックス内の濃溶液の液面によって前記高温再生器への希溶液量を調節するフロート弁と、前記上部管寄せと前記フロートボックスの気相部とを連通させるUシール配管と、前記上部管寄せと前記下部管寄せとを連通するとともに前記高温再生器の液面を検出するための液面検出器を設けた連通管とを備えた
ことを特徴とする三重効用吸収冷温水機。
High temperature regenerator, medium temperature regenerator, low temperature regenerator, condenser, evaporator, absorber, high temperature heat exchanger, medium temperature heat exchanger, low temperature heat exchanger, solution circulation pump, solution spray pump, refrigerant pump with solution piping and Connect with refrigerant piping to form a solution / refrigerant circulation circuit,
The high-temperature regenerator includes a lower header into which a dilute solution flows, an upper header from which a mixture of concentrated solution and refrigerant vapor flows out, and a plurality of heat transfer tubes connecting the lower header and the upper header. A once-through high temperature regeneration system comprising a combustion device for circulating a combustion gas outside a plurality of heat transfer tubes, and a gas-liquid separator for separating a concentrated solution and refrigerant vapor flowing out of the upper header Composed of
In the triple-effect absorption chiller / heater, the gas-liquid separator is a refrigerant vapor that flows out from the upper part and a concentrated solution flows out from the lower part.
A float box for forming a liquid level of the concentrated solution flowing out from the gas-liquid separator, a float valve for adjusting a dilute solution amount to the high temperature regenerator according to a liquid level of the concentrated solution in the float box, and the upper part A liquid level detector for communicating the U-seal pipe for communicating the header and the gas phase part of the float box, the upper header and the lower header, and detecting the liquid level of the high-temperature regenerator; A triple-effect absorption chiller / heater characterized by comprising a communication pipe provided.
請求項1または2において、
前記液面検出器は前記連通管内に形成される希溶液の液面を検出するための高位検知器と低位検知器とを高さの異なる位置に有する
ことを特徴とする三重効用吸収冷温水機。
In claim 1 or 2,
The triple level absorption chiller / heater characterized in that the liquid level detector has a high level detector and a low level detector for detecting the liquid level of a dilute solution formed in the communication pipe at different heights. .
請求項3において、
起動時に前記高位検知器が希溶液を検出すると、前記燃焼装置の燃焼を開始し、予め設定された設定時間中は燃焼量の下限値で燃焼を行うように制御するとともに、燃焼開始後に前記低位検知器が液面を検出すると、前記燃焼装置での燃焼を停止するように制御する制御装置を備えた
ことを特徴とする三重効用吸収式冷温水機。
In claim 3,
When the high level detector detects a dilute solution at the time of start-up, the combustion device starts combustion, and controls to perform combustion at the lower limit value of the combustion amount during a preset set time, and after the start of combustion, the low level detector A triple effect absorption chiller / heater comprising a control device that controls to stop combustion in the combustion device when the detector detects a liquid level.
請求項1または2において、
前記液面検出器は前記連通管内に溜まる希溶液の液面を検出するための高位検知器と中位検知器と低位検知器とを高さの異なる位置に設け、
起動時に前記高位検知器が希溶液を検出すると、前記燃焼装置の燃焼を開始し、その後に前記液面検出器内の液面が低下して中位検知器で液面が検知されるまで前記燃焼装置を燃焼量の下限値で燃焼するように制御するとともに、燃焼開始後に前記低位検知器が液面を検出すると、前記燃焼装置での燃焼を停止するように制御する制御装置を備えた
ことを特徴とする三重効用吸収式冷温水機。
In claim 1 or 2,
The liquid level detector is provided with a high level detector, a middle level detector, and a low level detector for detecting the liquid level of the dilute solution accumulated in the communication pipe at different heights,
When the high level detector detects a dilute solution at the time of start-up, combustion of the combustion device starts, and then the liquid level in the liquid level detector is lowered until the liquid level is detected by the middle level detector. A control device is provided for controlling the combustion device to burn at the lower limit value of the combustion amount, and for controlling the combustion device to stop combustion when the low level detector detects the liquid level after the start of combustion. A triple effect absorption chiller / heater.
請求項3〜5の何れかにおいて、
蒸発器内を流れる冷水の出口温度を温度センサで検出し、温度センサで検出した温度と予め設定される第一及び第二の設定温度と比較して高温再生器の燃焼装置の燃焼量を調整する制御装置を備え、
前記制御装置は、部分負荷時に冷水の出口温度が第一の設定温度に達すると前記燃焼装置を停止し、その後、検出される冷水の出口温度が第二の設定温度より高くなる状態と液面検出器の高位検知器で溶液が検出されている状態との両方が満たされると、前記燃焼装置を再度点火し燃焼を開始するように制御する
ことを特徴とする三重効用吸収冷温水機。
In any one of Claims 3-5,
The outlet temperature of the cold water flowing in the evaporator is detected by a temperature sensor, and the combustion amount of the combustion device of the high-temperature regenerator is adjusted by comparing the temperature detected by the temperature sensor with the first and second preset temperatures set in advance. Control device
The control device stops the combustion device when the outlet temperature of the cold water reaches the first set temperature at the time of partial load, and then the state where the outlet temperature of the detected cold water becomes higher than the second set temperature and the liquid level A triple effect absorption chiller / heater characterized by controlling the combustion device to ignite again and start combustion when both the state where the solution is detected by the high level detector of the detector are satisfied.
請求項3〜6の何れかにおいて、
前記高位検知器は前記伝熱管の上端近傍の高さに設けた
ことを特徴とする三重効用吸収冷温水機。
In any one of Claims 3-6,
The high effect detector is provided at a height near the upper end of the heat transfer tube.
請求項1〜7の何れかにおいて、
前記フロート弁は、前記吸収器下部に溜められる溶液が前記蒸発器へのオーバーフローを防止するための堰より高い位置に配置されたものである
ことを特徴とする三重効用吸収冷温水機。
In any one of Claims 1-7,
The triple-effect absorption chiller / heater is characterized in that the float valve is disposed at a position higher than a weir for preventing an overflow of the solution stored in the lower part of the absorber to the evaporator.
請求項1〜8の何れかにおいて、
前記吸収器から前記高温再生器、前記中温再生器、前記低温再生器に希溶液を送る前記溶液循環ポンプを駆動する駆動電源の周波数を制御する制御装置を備え、
前記制御装置は前記高温再生器の圧力もしくは温度の上昇にともない前記溶液循環ポンプを駆動する前記駆動電源の周波数を増加し、前記高温再生器の圧力もしくは温度の低下にともない前記溶液循環ポンプを駆動する前記駆動電源の周波数を減少させるように制御する
ことを特徴とする三重効用吸収冷温水機。
In any one of Claims 1-8,
A control device for controlling the frequency of a drive power source that drives the solution circulation pump that sends a dilute solution from the absorber to the high temperature regenerator, the intermediate temperature regenerator, and the low temperature regenerator;
The control device increases the frequency of the drive power source that drives the solution circulation pump as the pressure or temperature of the high temperature regenerator increases, and drives the solution circulation pump as the pressure or temperature of the high temperature regenerator decreases. A triple-effect absorption chiller / heater that is controlled to reduce the frequency of the drive power supply.
JP2004192741A 2004-06-30 2004-06-30 Triple-effect absorption chiller / heater Active JP4183188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192741A JP4183188B2 (en) 2004-06-30 2004-06-30 Triple-effect absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192741A JP4183188B2 (en) 2004-06-30 2004-06-30 Triple-effect absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2006017323A true JP2006017323A (en) 2006-01-19
JP4183188B2 JP4183188B2 (en) 2008-11-19

Family

ID=35791777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192741A Active JP4183188B2 (en) 2004-06-30 2004-06-30 Triple-effect absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP4183188B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064422A (en) * 2006-09-11 2008-03-21 Ebara Refrigeration Equipment & Systems Co Ltd High temperature regenerator and absorption refrigerating machine
CN102778071A (en) * 2011-05-13 2012-11-14 日立空调·家用电器株式会社 Sunlight head utilized steam absorption chiller and sunlight heat utilization system
JP2017048935A (en) * 2015-08-31 2017-03-09 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator
KR101859546B1 (en) 2017-09-21 2018-05-21 삼중테크 주식회사 Controlling apparatus and method of triple effect absorption chiller and heater.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064422A (en) * 2006-09-11 2008-03-21 Ebara Refrigeration Equipment & Systems Co Ltd High temperature regenerator and absorption refrigerating machine
CN102778071A (en) * 2011-05-13 2012-11-14 日立空调·家用电器株式会社 Sunlight head utilized steam absorption chiller and sunlight heat utilization system
CN102778071B (en) * 2011-05-13 2014-10-15 日立空调·家用电器株式会社 Sunlight head utilized steam absorption chiller and sunlight heat utilization system
JP2017048935A (en) * 2015-08-31 2017-03-09 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator
KR101859546B1 (en) 2017-09-21 2018-05-21 삼중테크 주식회사 Controlling apparatus and method of triple effect absorption chiller and heater.

Also Published As

Publication number Publication date
JP4183188B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP2008064422A (en) High temperature regenerator and absorption refrigerating machine
JP6434730B2 (en) Absorption heat source machine
RU2224189C2 (en) Cooling absorption plant
JP4183188B2 (en) Triple-effect absorption chiller / heater
JP6486159B2 (en) Absorption refrigerator and control method thereof
JP6081844B2 (en) Absorption heat source equipment
JP3602505B2 (en) Triple effect absorption chiller / heater with liquid level control function
JP2007263411A (en) Absorption refrigerator
JP2007232271A (en) Triple effect absorption refrigerating machine
JP2009299936A (en) Absorption refrigerating machine
JP2006112686A (en) Two stage temperature rising type absorption heat pump
JP2007071475A (en) Triple-effect absorption refrigerating machine
JP4519744B2 (en) High temperature regenerator and absorption refrigerator
JP2003329329A (en) Triple effect absorption type refrigerating machine
JP5536855B2 (en) Absorption refrigerator
JP5037987B2 (en) High temperature regenerator and absorption refrigerator
JP4249588B2 (en) Absorption chiller / heater
JP4091852B2 (en) Triple effect absorption chiller / heater with waste heat regenerator
JPH0379630B2 (en)
JP2010276244A (en) Absorption type water chiller/heater
JPH11118283A (en) Controller for ammonia absorption freezer
JP5148264B2 (en) High temperature regenerator and absorption refrigerator
JP3547695B2 (en) Absorption type cold / hot water apparatus and its control method
JP4283616B2 (en) Triple effect absorption chiller / heater with exhaust heat recovery unit
JP5499139B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250