JP2005188813A - Thermo-siphon type cooling device - Google Patents

Thermo-siphon type cooling device Download PDF

Info

Publication number
JP2005188813A
JP2005188813A JP2003429538A JP2003429538A JP2005188813A JP 2005188813 A JP2005188813 A JP 2005188813A JP 2003429538 A JP2003429538 A JP 2003429538A JP 2003429538 A JP2003429538 A JP 2003429538A JP 2005188813 A JP2005188813 A JP 2005188813A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling device
buffer tank
thermo
thermosiphon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003429538A
Other languages
Japanese (ja)
Inventor
Yuuji Fujimoto
裕地 藤本
Yukio Yasukawa
保川  幸雄
Kenichi Hayashi
倹一 林
Kentetsu Yasujima
賢哲 安嶋
Ryuichi Takada
隆一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003429538A priority Critical patent/JP2005188813A/en
Publication of JP2005188813A publication Critical patent/JP2005188813A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermo-siphon type cooling device capable of inhibiting the lowering of cooling efficiency caused by the fluctuation of thermal load of a cooled part, and exercising superior effect on pressure-resistance and safety of a thermo-siphon piping system, with respect to a cooling device constituted by combining a thermo-siphon with a refrigeration machine. <P>SOLUTION: In this thermo-siphon type cooling device wherein a loop type thermo-siphon 3 is placed between a cool-temperature part 1b of the refrigeration machine 1 and the cooled part 2, and the cold heat obtained by the cool-temperature part is transported to the cooled part to cool the same, a refrigerant bypass circuit 6 including a buffer tank 5 is mounted at a refrigerant liquid pipe conduit 3c side of the thermo-siphon as a control means for adjusting the circulation of refrigerant of the thermo-siphon in accordance with the increase and decrease of the thermal load, the refrigerant liquid is released to the refrigerant circulating circuit from the buffer tank to increase the circulation of refrigerant when the increase of thermal load of the cooled part is detected on the basis of temperature information detected by temperature sensors 9a-9d, on the contrary, the refrigerant liquid is recovered to the buffer tank from the refrigerant circulating circuit to decrease the circulation of refrigerant when the thermal load is decreased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば自動販売機に搭載して商品収納庫に収納した商品を保冷する冷却装置として好適なサーモサイフォン式冷却装置に関する。   The present invention relates to a thermosiphon cooling device suitable as a cooling device that cools a product that is mounted on a vending machine and stored in a product storage, for example.

頭記のサーモサイフォン式冷却装置として、スターリング冷凍機の冷温部(コールドヘッド)と被冷却部(冷蔵庫)との間に重力還流式のループ型サーモサイフォンを布設し、前記冷温部で得た冷熱を被冷却部に熱輸送して庫内を冷却するようにした構成のものが知られている(例えば、特許文献1参照)。   As the thermosyphon cooling device described above, a gravitational reflux loop thermosyphon is installed between the cooling / heating part (cold head) and the cooled part (refrigerator) of the Stirling refrigerator, and the cooling heat obtained in the cooling / heating part is provided. The thing of the structure which carried out heat transport to the to-be-cooled part and cooled the inside of a store | warehouse | chamber is known (for example, refer patent document 1).

また、冷凍機の冷温部と被冷却部との間に布設した前記のループ型のサーモサイフォンに関して、その冷媒循環回路を、冷凍機の冷温部と伝熱的に結合した凝縮部と、被冷却部に配した蒸発部と、前記凝縮部と蒸発部との間を連通して配管した往路側の冷媒液管路,および復路側の冷媒ガス管路とから構成したものが、本発明と同一出願人より特願2003−73218号として先に提案されている(先行出願1)。   Further, regarding the loop-type thermosiphon laid between the cold temperature part of the refrigerator and the cooled part, the refrigerant circulation circuit is connected to the cold part of the refrigerator in a heat transfer manner, and the cooled part. It is the same as that of the present invention, and is composed of an evaporating section arranged in the section, a forward-side refrigerant liquid pipe that is connected between the condensing section and the evaporating section, and a return-side refrigerant gas pipe. The applicant previously proposed as Japanese Patent Application No. 2003-73218 (prior application 1).

次に、前記の先行出願1で提案したサーモサイフォン式冷却装置の構成,動作を図4で説明する。図において、1はスターリング冷凍機、1aは冷凍機の放熱部、1bは冷温部(コールドヘッド)、2は被冷却部(例えば、自動販売機の商品収納庫)、3はスターリング冷凍機1と被冷却部2との間に布設したループ型のサーモサイフォン、4は被冷却部2の庫内に配した庫内ファンである。   Next, the configuration and operation of the thermosiphon cooling device proposed in the prior application 1 will be described with reference to FIG. In the figure, 1 is a Stirling refrigerator, 1a is a heat radiating part of the refrigerator, 1b is a cold / warm part (cold head), 2 is a part to be cooled (for example, a product storage of a vending machine), and 3 is a Stirling refrigerator 1 A loop-type thermosiphon 4 laid between the cooled portion 2 and the inside of the cooled portion 2 is a fan inside the cabinet.

ここで、サーモサイフォン3は、スターリング冷凍機1の冷温部1bに配した凝縮部3aと、被冷却部2の庫内に配した蒸発部(蛇行状の冷媒管に放熱フィンを組み合わせたフィン・チューブ形熱交換器)3bと、凝縮部3aと蒸発部3bとの間を連通して配管した往路側の冷媒液管路3cと、復路側の冷媒ガス管路3dとで冷媒循環回路を構成し、この冷媒循環回路の系内には作動流体の冷媒として例えば炭酸ガスが適当量封入されている。なお、冷媒循環回路の凝縮部3aと蒸発部3bとの間で相変化する冷媒を重力の位置エネルギー差を利用して循環させるために、凝縮部3aと蒸発部3bとの間に高低落差Hを設定するとともに、往路側の冷媒液管路3cは復路側の冷媒ガス管路3dよりも下側に配管している。また、冷媒循環管路の凝縮部3a,冷媒液管路3bおよび冷媒ガス管路3cを断熱材で被覆して熱損失を極力抑えるようにしている。   Here, the thermosiphon 3 includes a condensing unit 3a disposed in the cooling / warming unit 1b of the Stirling refrigerator 1, and an evaporation unit disposed in the chamber of the cooled unit 2 (a fin- A refrigerant circulation circuit is configured by a tube-type heat exchanger) 3b, a forward-side refrigerant liquid pipe 3c that is connected between the condensing unit 3a and the evaporation unit 3b, and a return-side refrigerant gas pipe 3d. An appropriate amount of carbon dioxide, for example, is sealed as a working fluid refrigerant in the refrigerant circuit. In addition, in order to circulate the refrigerant | coolant which changes a phase between the condensation part 3a and the evaporation part 3b of a refrigerant | coolant circulation circuit using the positional energy difference of gravity, the height drop H between the condensation part 3a and the evaporation part 3b is carried out. Is set, and the refrigerant liquid pipeline 3c on the forward path side is piped below the refrigerant gas pipeline 3d on the return path side. Further, the condenser 3a, the refrigerant liquid pipe 3b, and the refrigerant gas pipe 3c of the refrigerant circulation pipe are covered with a heat insulating material to suppress heat loss as much as possible.

上記したサーモサイフォンの動作原理は周知の通りであり、冷凍機1の運転に伴い冷温部1bに発生した冷熱との熱交換により、サーモサイフォン3に封入した冷媒は凝縮部3aにて凝縮,液化した後、重力により下方に流下し、冷媒液管路3cを経由して蒸発部3bに移動する。蒸発部3bに移動した液冷媒は被冷却部2の庫内空気との熱交換により沸騰蒸発して液体から気体に相変化し、気体となった冷媒ガスは蒸発部3bのチューブ内を上方に移動し、蒸発器3bの出口から冷媒ガス管路3dを経て凝縮部3aに戻り、ここで冷凍機1の冷温部1bに放熱して再び凝縮するような冷却サイクルを繰り返す。この冷却サイクルにより被冷却部2の庫内が低温に冷却される。
特開2001−33139号公報
The operating principle of the thermosyphon described above is well known, and the refrigerant sealed in the thermosiphon 3 is condensed and liquefied in the condenser 3a by heat exchange with the cold generated in the cold / hot part 1b as the refrigerator 1 is operated. After that, it flows downward by gravity and moves to the evaporator 3b via the refrigerant liquid conduit 3c. The liquid refrigerant that has moved to the evaporating section 3b is boiled and evaporated by heat exchange with the air in the chamber of the cooled section 2 to change phase from liquid to gas, and the refrigerant gas that has become gas moves upward in the tube of the evaporating section 3b. It moves and returns from the outlet of the evaporator 3b to the condensing part 3a through the refrigerant gas line 3d, and repeats a cooling cycle in which heat is dissipated to the cold / hot part 1b of the refrigerator 1 and condensed again. By this cooling cycle, the inside of the cooled portion 2 is cooled to a low temperature.
JP 2001-33139 A

ところで、前記のように冷媒循環回路にあらかじめ定量の冷媒を封入して運転する従来のサーモサイフォンでは、被冷却部の熱負荷が増減変化した場合に冷却効率が低下するといった問題がある。   By the way, in the conventional thermosiphon operated by previously charging a predetermined amount of refrigerant in the refrigerant circuit as described above, there is a problem that the cooling efficiency is lowered when the heat load of the cooled portion is changed.

すなわち、自動販売機の商品収納庫を例として被冷却部の熱負荷変動の推移を見ると、常温の商品を庫内に補充したローディング直後の状態では被冷却部の熱負荷は大きく、ここから庫内冷却が進んで商品の品温が低温(例えば10℃前後)となった定常の保冷状態になれば熱負荷が減少する。   That is, looking at the change in the thermal load fluctuation of the cooled part taking the product storage of the vending machine as an example, the thermal load of the cooled part is large in the state immediately after loading the room temperature product in the warehouse, and from here If the inside cooling proceeds and the product temperature reaches a low temperature (for example, around 10 ° C.), the heat load decreases.

この場合に、サーモサイフォンの冷媒を定常保冷状態の熱負荷に合わせた定量の冷媒を封入した状態で被冷却部の熱負荷が増加すると、蒸発部における冷媒の沸騰蒸発量が増すために蒸発部内の冷媒液面が低下し、逆に凝縮部では蒸発部から移動してきた多量の冷媒ガスが凝縮,液化してその液面が上昇するために両者間の液面差が大きくなる。しかも、熱負荷が大きい運転状態になると、蒸発部では出口よりも手前側で冷媒の沸騰蒸発が完了してドライアウト熱流束となるために、沸騰蒸発の熱伝達に関与する有効熱交換面積が減少して伝熱効率が低下する。また、凝縮部では液面レベルが上昇しているために、その分だけ凝縮部に戻った冷媒ガスと冷凍機の冷温部との熱交換面積が減少する。このことから冷凍機,サーモサイフォンを含めた冷却装置のトータル的な冷却効率が低下する。   In this case, if the heat load of the cooled part increases with a fixed amount of the refrigerant in the thermosyphon matched to the heat load in the steady-state cold state, the boiling evaporation amount of the refrigerant in the evaporation part increases, On the contrary, a large amount of refrigerant gas that has moved from the evaporation section is condensed and liquefied in the condensing section, and the liquid level rises, so that the liquid level difference between the two increases. In addition, when the operation state with a large heat load is reached, the evaporating unit completes the boiling evaporation of the refrigerant on the near side of the outlet and becomes a dryout heat flux, so that the effective heat exchange area involved in the heat transfer of the boiling evaporation is increased. It decreases and heat transfer efficiency falls. Further, since the liquid level is increased in the condensing part, the heat exchange area between the refrigerant gas that has returned to the condensing part and the cold / hot part of the refrigerator is reduced accordingly. For this reason, the total cooling efficiency of the cooling device including the refrigerator and the thermosiphon is lowered.

また、サーモサイフォンの冷媒として、地球環境(オゾン層)保護の面から自然冷媒である炭酸ガスを採用した場合に、炭酸ガスの冷凍サイクルは他の冷媒に比べて圧力レベル(凝縮圧力)が非常に高いことから、サーモサイフォンの配管系,凝縮部,蒸発部の耐圧構造に対する安全性が問題となる。したがって、冷媒に炭酸ガスを採用するに当たっては、サーモサイフォンの配管系,凝縮,蒸発部の耐圧設計レベルを低く抑えるためにも、冷却サイクルに直接関与する冷媒液量はできるだけ少ないことが望ましい。   In addition, when carbon dioxide, which is a natural refrigerant, is used as a thermosyphon refrigerant in terms of protecting the global environment (ozone layer), the pressure level (condensation pressure) of the carbon dioxide refrigeration cycle is much higher than that of other refrigerants. Therefore, the safety of the thermosiphon piping system, the condensing part, and the evaporation part with respect to the pressure-resistant structure becomes a problem. Therefore, when carbon dioxide gas is used as the refrigerant, it is desirable that the amount of refrigerant liquid directly involved in the cooling cycle be as small as possible in order to keep the pressure resistant design level of the thermosiphon piping system, condensing and evaporation section low.

本発明は上記の点に鑑みなされたものであり、その目的は、冷凍機にサーモサイフォンを組み合わせた方式の冷却装置を対象に、被冷却部の熱負荷変動による冷却効率の低下を抑え、併せて冷媒に炭酸ガスを採用したサーモサイフォン配管系の耐圧,安全性の面で優れた効果を発揮するサーモサイフォン式冷却装置を提供することにある。   The present invention has been made in view of the above points, and its purpose is to suppress a decrease in cooling efficiency due to fluctuations in the thermal load of a portion to be cooled, and to a cooling device that combines a thermosiphon with a refrigerator. An object of the present invention is to provide a thermosiphon cooling device that exhibits excellent effects in terms of pressure resistance and safety of a thermosyphon piping system that employs carbon dioxide as a refrigerant.

上記目的を達成するために、本発明によれば、冷凍機の冷温部と被冷却部との間にループ型のサーモサイフォンを布設し、前記冷温部で得た冷熱を被冷却部に熱輸送して冷却するサーモサイフォン式冷却装置であり、サーモサイフォンの冷媒循環回路が冷凍機の冷温部に配した凝縮部および被冷却部に配した蒸発部と、前記凝縮部と蒸発部との間を連通して配管した往路側の冷媒液管路,および復路側の冷媒ガス管路とからなり、該冷媒循環回路の系内に冷媒を封入したものにおいて、
前記サーモサイフォンの冷媒循環量を被冷却部の熱負荷増減に応じて調整する制御手段として、前記冷媒循環回路の冷媒液管路側に冷媒液のバッファータンクを含むバイパス回路を設け、被冷却部および冷媒循環回路の各部から検出した温度情報を基に、被冷却部の熱負荷が増大した際にバッファータンクから冷媒循環回路に冷媒液を放出し冷媒循環量を増量し、逆に熱負荷が低減した際には冷媒循環回路からバッファータンクに冷媒液を回収して冷媒循環量を減量するようにする(請求項1)。
In order to achieve the above object, according to the present invention, a loop-type thermosiphon is laid between a cold temperature part of a refrigerator and a cooled part, and the cold heat obtained in the cold temperature part is transported to the cooled part. A thermosiphon type cooling device that cools the refrigerant, and the refrigerant circulation circuit of the thermosyphon is disposed between the condensing unit disposed in the cold temperature part of the refrigerator and the evaporating unit disposed in the cooled part, and between the condensing unit and the evaporating unit It consists of a refrigerant liquid line on the forward path and a refrigerant gas line on the return path that are connected and piped, and the refrigerant is enclosed in the system of the refrigerant circulation circuit.
As a control means for adjusting the refrigerant circulation amount of the thermosyphon according to the thermal load increase / decrease of the cooled part, a bypass circuit including a buffer tank for the refrigerant liquid is provided on the refrigerant liquid pipeline side of the refrigerant circulating circuit, Based on the temperature information detected from each part of the refrigerant circulation circuit, when the heat load of the cooled part increases, the refrigerant liquid is discharged from the buffer tank to the refrigerant circulation circuit to increase the refrigerant circulation amount, and conversely the heat load is reduced. In this case, the refrigerant liquid is recovered from the refrigerant circulation circuit to the buffer tank to reduce the refrigerant circulation amount (Claim 1).

また、前記のバッファータンクについて、冷媒液の放出,回収を円滑に行うようにするために、次記のような態様で構成するものとする。
(1)バッファータンクを冷媒循環回路の冷媒液管路より低位置に配置するとともに、その入口,出口側に開閉弁を設け、該開閉弁を開閉制御により冷媒液管路とバッファータンクとの間で液冷媒の回収,放出を行うようにする(請求項2)。
(2)バッファータンクに加熱ヒータ付設しておき、バッファータンクから冷媒循環回路に液冷媒を放出する際には、ヒータ加熱によりタンク内の冷媒圧力を上げて液冷媒を放出するようにする(請求項3)。
(3)バッファータンクに接続した出口側のバイパス管路を、入口側のバイパス管路よりも高い位置から引き出し、冷媒循環回路からバッファータンクに液冷媒を回収する際に、タンク内に溜まっている冷媒ガスを出口側バイパス管路を通じて放出し、入口側バイパス管路を通じて液冷媒の回収を行うようにする(請求項4)。
(4)バッファータンクに配管した入口,出口側のバイパス管路にそれぞれ逆止弁を接続し、冷媒回収,放出時に不要な冷媒の逆流を防ぐようにする(請求項5)。
The buffer tank is configured in the following manner in order to smoothly discharge and collect the refrigerant liquid.
(1) The buffer tank is arranged at a position lower than the refrigerant liquid line of the refrigerant circulation circuit, and an opening / closing valve is provided on the inlet and outlet sides of the buffer tank, and the opening / closing valve is controlled to open and close between the refrigerant liquid line and the buffer tank. The liquid refrigerant is collected and released by (Claim 2).
(2) A heater is provided in the buffer tank, and when the liquid refrigerant is discharged from the buffer tank to the refrigerant circulation circuit, the liquid refrigerant is released by increasing the refrigerant pressure in the tank by heating the heater (claim) Item 3).
(3) When the outlet side bypass pipe connected to the buffer tank is pulled out from a position higher than the inlet side bypass pipe and the liquid refrigerant is collected from the refrigerant circulation circuit to the buffer tank, it is accumulated in the tank. The refrigerant gas is discharged through the outlet side bypass pipe, and the liquid refrigerant is recovered through the inlet side bypass pipe (claim 4).
(4) A check valve is connected to each of the inlet and outlet bypass pipes piped to the buffer tank to prevent unnecessary reverse flow of the refrigerant during refrigerant recovery and discharge.

ループ型サーモサイフォンの冷媒循環回路にバッファータンクを含むバイパス回路を設け、被冷却部の熱負荷変動に応じて冷媒液の放出,回収を行うようにした本発明の構成によれば、冷却装置の保冷運転状態でサーモサイフォンの凝縮部と蒸発部との間で循環する冷媒量を、被冷却部の熱負荷に対応して適正量に調整することができ、これにより冷却効率の向上,冷凍機の消費電力節減化が図れる。   According to the configuration of the present invention in which a bypass circuit including a buffer tank is provided in the refrigerant circulation circuit of the loop-type thermosyphon, and the refrigerant liquid is discharged and collected in accordance with the thermal load fluctuation of the cooled part. The amount of refrigerant that circulates between the condenser and evaporator of the thermosyphon in the cold operation state can be adjusted to an appropriate amount corresponding to the heat load of the part to be cooled, thereby improving the cooling efficiency and the refrigerator Power consumption can be reduced.

また、熱負荷の増減変動に応じて余剰の冷媒液を冷媒循環回路からバッファータンクに回収させておくことで、冷媒循環回路の冷媒圧力が過度に高まるのを抑えることができ、これによりサーモサイフォンの配管系,凝縮,蒸発部の耐圧設計レベルを低めて高い安全性,信頼性の確保、および製作コストの低減化が図れる。   In addition, excessive refrigerant liquid is recovered from the refrigerant circulation circuit to the buffer tank in accordance with fluctuations in the heat load, so that the refrigerant pressure in the refrigerant circulation circuit can be prevented from excessively increasing, which makes the thermosiphon The pressure resistance design level of the piping system, condensing and evaporating parts can be lowered, ensuring high safety and reliability, and reducing manufacturing costs.

以下、本発明の実施の形態を図1〜図3に示す実施例に基づいて説明する。なお、実施例の図中で図4に対応する部材には同じ符号を付してその説明は省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIG. 4, and the description is abbreviate | omitted.

図1(a)に示すサーモサイフォン式冷却装置は、図4で述べた従来構成と同様にスターリング冷凍機1の冷温部1bと被冷却部2(例えば自動販売機の商品収納庫)との間に炭酸ガスを冷媒はするループ型サーモサイフォン3を布設した構成になるが、図示実施例では、スターリング冷凍機1の冷温部1bと被冷却部2の冷媒循環回路について、その往路側の冷媒液管路3cに冷媒液を貯留するバッファータンク5を含む冷媒バイパス回路6が新たに装備されている。   The thermosiphon cooling device shown in FIG. 1 (a) is between the cool / warm portion 1b of the Stirling refrigerator 1 and the cooled portion 2 (for example, the vending machine storage) as in the conventional configuration described in FIG. In the embodiment shown in the drawing, the refrigerant liquid on the forward path side of the refrigerant circulation circuit of the cooling / warming part 1b and the cooled part 2 of the Stirling refrigerator 1 is provided. A refrigerant bypass circuit 6 including a buffer tank 5 that stores refrigerant liquid is newly provided in the pipe line 3c.

ここで、バッファータンク5はヒータ(電熱ヒータ)5aを付属し、冷媒液管路3cよりも低い位置に配置している。また、バッファータンク5に接続して前後に引き出した入口,出口側管路6a,6bをそれぞれサーモサイフォン3に対しその冷媒液管路3bの上流,下流側地点に分岐接続し、さらに入口,出口側の管路6a,6bにはそれぞれ開閉弁7a,7bおよび逆止弁8a,8bを接続して冷媒バイパス回路6を構成している。   Here, the buffer tank 5 is provided with a heater (electric heater) 5a, and is disposed at a position lower than the refrigerant liquid line 3c. In addition, the inlet and outlet side pipes 6a and 6b connected to the buffer tank 5 and drawn back and forth are branched and connected to the thermosiphon 3 at points upstream and downstream of the refrigerant liquid pipe 3b, respectively. The refrigerant bypass circuit 6 is configured by connecting on-off valves 7a and 7b and check valves 8a and 8b to the side pipe lines 6a and 6b, respectively.

また、被冷却部2の庫内、蒸発器3bの入口,出口端、および凝縮部3aの入口端には温度センサ9a〜9dを配し、各温度センサで検知した温度情報を図1(b)に示した制御装置10に取り込み、この温度情報から後記(図3のフローチャート参照)のようにサーモサイフォン3の冷媒循環回路に循環している冷媒量の過不足を判定した上で、その判定を基に前記開閉弁7a,7bおよびバッファータンク5のヒータ5aを通電制御して冷媒液の放出,回収を行うようにしている。   Further, temperature sensors 9a to 9d are arranged in the chamber of the cooled portion 2, the inlet and outlet ends of the evaporator 3b, and the inlet end of the condensing unit 3a, and the temperature information detected by each temperature sensor is shown in FIG. ), And the temperature information is used to determine whether the amount of refrigerant circulating in the refrigerant circulation circuit of the thermosiphon 3 is excessive or insufficient as described later (see the flowchart in FIG. 3). On the basis of this, the on-off valves 7a and 7b and the heater 5a of the buffer tank 5 are energized to release and collect the refrigerant liquid.

次に、被冷却部2の熱負荷増減に対応した前記冷媒バイパス回路6の制御動作を図2(a)〜(c)および図3に示す制御動作のフローチャートに基づいて説明する。まず、図2(a)は熱負荷が安定している定常の保冷状態(自動販売機の商品収納庫に収納した商品が所定の品温に保冷されている状態)でのサーモサイフォン3における冷媒の通流状態を表している。すなわち、図4で述べたようにスターリング冷凍機1の冷温部1bとの熱交換により凝縮部3aで凝縮,液化したサーモサイフォン3の冷媒は、重力作用により冷媒液管路3cを経て蒸発部3b(フィン付きチューブ形熱交換器)に移動し、ここで被冷却部2の熱負荷と熱交換して沸騰蒸発しながら蒸発部内を上方に移動し、蒸発部3bの出口付近にて蒸発を完了した後に、往路側の冷媒ガス管路3dを通じて凝縮部3aに還流する冷却サイクルを繰り返す。この熱負荷安定の運転状態では、蒸発部3bの入口側温度と出口側温度が略同じ温度となるので、図3のフローチャートで表すように冷媒バイパス回路6の開閉弁7a,7bはともに閉じたままで、バッファータンク5のヒータ5aも非通電である。
一方、前記の運転状態から、熱負荷が増加(自動販売機の商品収納庫に商品を補給した直後の状態)すると、被冷却部2の庫内温度に追随して蒸発部3bの温度が上昇するので、冷媒である炭酸ガスの比エンタルピーは増大して密度が減少する。その結果、熱負荷が小さい図2(a)の運転状態と比べて、蒸発部3bに移動して来た冷媒液は蒸発部3bの出口に到達する以前に沸騰蒸発が完了してドライアウトとなるので、蒸発部3bの出口側温度は入口側の温度よりも上昇し、また冷媒が乾き蒸気の状態で還流する凝縮部3aの入口側温度は蒸発部3bの出口側温度よりもさらに高くなる。
この熱負荷増加の運転状態になると、図3のフローチャートに従い、制御装置10から指令でバッファータンク5のヒータ5aを通電し、そのヒータ加熱によりバッファータンク5の内部圧力を増大させる。また、制御装置10からの指令でバイパス回路6の出口側管路6bに接続した開閉弁7bを開く。これにより、バッファータンク5に貯留されていた冷媒液11がタンクの内圧を受けて放出され、図3(b)で示すように出口側管路6bを通じてサーモサイフォン3の冷媒液管路3bに導入補給される。したがって、サーモサイフォン3の冷却サイクルに直接関与する冷媒量が増加するようになり、その結果として、蒸発部3bにおける冷媒の沸騰蒸発による熱伝達が出口まで行われようになって冷却効率が向上する。
次に、図3(b)で述べた高熱負荷の運転状態から庫内の冷却が進んで被冷却部2の熱負荷が減少し、その庫内温度が所定の保冷温度Tまで低下するようになると、蒸発部3bに移動した冷媒液は過冷却液状態のまま蒸発部内を上昇し、蒸発部の出口端に到達しても沸騰蒸発が完了に至らずに凝縮部3aに還流する。このために、蒸発部3bでは冷媒の沸騰熱伝達による熱負荷との熱交換性能が十分に発揮できずに冷却効率が低下する。また、サーモサイフォン3の冷媒循環量も減少して凝縮部3aと蒸発部3bとの間の冷媒液面差が小さくなり、かつ蒸発部3bの出口側温度と入口側温度とが略同程度になる。
このような運転状態になると、図3のフローチャートに従い、制御装置10では被冷却部2の庫内温度の検出値から熱負荷の大小を判断した上で、蒸発部3bの出口側温度と凝縮部3aの入口側温度が略同じであることを条件に、冷媒バイパス回路6に接続した入口側,出口側の開閉弁7a,7bを開く。これにより、サーモサイフォン3の冷媒液管路3cの圧力とバッファータンク5の内部圧力とがバランスするようになり、凝縮部3aから冷媒液管路3cに流下移動して来た冷媒液の一部がバイパス回路6の入口側管路6aを通じてバッファータンク5に流入してそのままタンク内に貯留れさる。その結果、冷媒液管路3cを通じて蒸発部3bに移動する冷媒液量が減少し、これに合わせて蒸発部では入口から出口までの略全域で冷媒の沸騰熱伝達が行われるようになるとともに、凝縮部3bでの凝縮熱伝達面積も増大するので冷却装置としてのトータル的な冷却効率が向上する。
なお、この場合にバッファータンク5に接続したバイパス回路6の出口側管路6bは入口側管路6aよりも高い位置に開口しているので、バッファータンク内の液面上に滞留していた冷媒ガスは出口側管路6bを通じてサーモサイフォン3の冷媒循環回路に戻る。また、バイパス回路6の入口側管路6a,出口側管路6bには開閉弁7a,7bと直列に逆止弁8a,8bが介挿接続されているので、サーモサイフォン3の冷媒液管路3cとの間で冷媒が逆流するおそれはない。
そして、蒸発部3bの入口側温度と出口側温度とが同程度になれば、バイパス回路6の開閉弁7a,7bを閉じる。これにより、サーモサイフォン3は図3(a)の運転状態に戻るようになる。
また、当該サーモサイフォン式冷却装置を適用する自動販売機の商品収納庫では、商品を補充した直後は熱負荷が増加するが、自動販売機の稼動時間全体からみればその時間の閉める割合は小さく、稼動時間の大半は庫内に収納した商品の品温が所定温度まで低下した低負荷での定常保冷運転となる。したがって、前述のように熱負荷の増減に対応してサーモサイフォンの冷媒液量を調整し、定常の保冷運転状態では余剰の冷媒液をサーモサイフォンの冷媒循環回路からバッファータンクに回収することにより、冷媒に運転圧力の高い炭酸ガスを用いた場合でも、定常運転時における冷媒循環回路の圧力を比較的低く抑えることができ、これによりサーモサイフォンの配管系,熱交換部に要求される耐圧レベルを下げて安全性,信頼性が向上するほか、冷却装置のコスト低減化も図れる。
なお、図示実施例では冷却装置の冷凍機としてスターリング冷凍機を用いているが、これに限定されるものではなく、冷凍機として蒸気圧縮式冷凍機,あるいはペルチエ素子を用いた電子式冷凍機などを採用することも可能である。また、当該冷却装置を適用する用途としては、自動販売機の商品収納庫のほかに、例えば大容量の電子機器に使用されるCPUの冷却、さらには空気調和機への適用も可能である。
Next, the control operation of the refrigerant bypass circuit 6 corresponding to the heat load increase / decrease of the cooled part 2 will be described based on the control operation flowcharts shown in FIGS. 2 (a) to 2 (c) and FIG. First, FIG. 2A shows a refrigerant in the thermosiphon 3 in a steady cold state where the heat load is stable (a product stored in the product storage of the vending machine is kept at a predetermined product temperature). Represents the current flow. That is, as described in FIG. 4, the refrigerant of the thermosiphon 3 condensed and liquefied in the condenser 3a by heat exchange with the cold / hot part 1b of the Stirling refrigerator 1 passes through the refrigerant liquid line 3c by gravity and evaporates 3b. Move to (Fined tube heat exchanger), heat exchange with the heat load of the cooled part 2 and move upward in the evaporation part while boiling and evaporating, completing evaporation near the outlet of the evaporation part 3b After that, the cooling cycle of returning to the condensing unit 3a through the refrigerant gas pipe 3d on the forward path side is repeated. In this heat load stable operation state, the inlet side temperature and the outlet side temperature of the evaporation section 3b are substantially the same temperature, so that the on-off valves 7a and 7b of the refrigerant bypass circuit 6 are both closed as shown in the flowchart of FIG. Until then, the heater 5a of the buffer tank 5 is also de-energized.
On the other hand, when the thermal load increases from the above operating state (the state immediately after the product is stored in the product storage of the vending machine), the temperature of the evaporation unit 3b rises following the internal temperature of the cooled unit 2. Therefore, the specific enthalpy of the carbon dioxide gas that is the refrigerant increases and the density decreases. As a result, as compared with the operation state of FIG. 2 (a) where the heat load is small, the refrigerant liquid that has moved to the evaporation unit 3b has completed its boiling evaporation before reaching the outlet of the evaporation unit 3b, and is dry out. Therefore, the outlet side temperature of the evaporation unit 3b rises higher than the inlet side temperature, and the inlet side temperature of the condensing unit 3a where the refrigerant recirculates in a dry vapor state is higher than the outlet side temperature of the evaporation unit 3b. .
When this heat load increase operation state is entered, the heater 5a of the buffer tank 5 is energized by a command from the control device 10 according to the flowchart of FIG. 3, and the internal pressure of the buffer tank 5 is increased by heating the heater. Moreover, the on-off valve 7b connected to the outlet side pipeline 6b of the bypass circuit 6 is opened by a command from the control device 10. As a result, the refrigerant liquid 11 stored in the buffer tank 5 is discharged by receiving the internal pressure of the tank, and is introduced into the refrigerant liquid pipe 3b of the thermosiphon 3 through the outlet side pipe 6b as shown in FIG. 3 (b). To be replenished. Accordingly, the amount of refrigerant directly involved in the cooling cycle of the thermosyphon 3 increases, and as a result, heat transfer by boiling evaporation of the refrigerant in the evaporating section 3b is performed to the outlet, thereby improving the cooling efficiency. .
Next, the internal cooling proceeds from the operation state of the high heat load described in FIG. 3B so that the heat load of the cooled portion 2 decreases, and the internal temperature decreases to a predetermined cool temperature T. Then, the refrigerant liquid that has moved to the evaporating unit 3b rises in the evaporating unit while being in a supercooled liquid state, and even if it reaches the outlet end of the evaporating unit, boiling evaporation does not complete and returns to the condensing unit 3a. For this reason, in the evaporation part 3b, heat exchange performance with the heat load by the boiling heat transfer of a refrigerant | coolant cannot fully be exhibited, but cooling efficiency falls. Further, the refrigerant circulation amount of the thermosiphon 3 is also reduced, the refrigerant liquid level difference between the condensing unit 3a and the evaporating unit 3b is reduced, and the outlet side temperature and the inlet side temperature of the evaporating unit 3b are approximately the same. Become.
In such an operating state, according to the flowchart of FIG. 3, the control device 10 determines the magnitude of the thermal load from the detected value of the internal temperature of the cooled part 2, and then determines the outlet side temperature of the evaporation unit 3 b and the condensing unit. On the condition that the inlet side temperature of 3a is substantially the same, the on-off valves 7a and 7b on the inlet side and outlet side connected to the refrigerant bypass circuit 6 are opened. Thereby, the pressure of the refrigerant liquid line 3c of the thermosiphon 3 and the internal pressure of the buffer tank 5 are balanced, and part of the refrigerant liquid that has flowed down from the condenser 3a to the refrigerant liquid line 3c. Flows into the buffer tank 5 through the inlet line 6a of the bypass circuit 6 and is stored in the tank as it is. As a result, the amount of refrigerant liquid moving to the evaporation unit 3b through the refrigerant liquid line 3c is reduced, and in accordance with this, in the evaporation unit, the boiling heat transfer of the refrigerant is performed in substantially the entire region from the inlet to the outlet, Since the condensation heat transfer area in the condensing part 3b also increases, the total cooling efficiency as a cooling device improves.
In this case, the outlet side pipe 6b of the bypass circuit 6 connected to the buffer tank 5 is opened at a position higher than the inlet side pipe 6a, so that the refrigerant staying on the liquid surface in the buffer tank. The gas returns to the refrigerant circulation circuit of the thermosiphon 3 through the outlet side pipe 6b. Further, since the check valves 8a and 8b are inserted and connected in series with the on-off valves 7a and 7b on the inlet side pipe 6a and the outlet side pipe 6b of the bypass circuit 6, the refrigerant liquid pipe of the thermosyphon 3 There is no possibility that the refrigerant flows back to and from 3c.
And if the inlet side temperature and outlet side temperature of the evaporation part 3b become comparable, the on-off valves 7a and 7b of the bypass circuit 6 will be closed. Thereby, the thermosiphon 3 returns to the driving | running state of Fig.3 (a).
In addition, in the vending machine product storage to which the thermosiphon cooling device is applied, the heat load increases immediately after the product is replenished, but the rate of closing the time is small when viewed from the overall operating time of the vending machine. The majority of the operation time is a steady cold operation at a low load in which the product temperature of the product stored in the warehouse is lowered to a predetermined temperature. Therefore, as described above, the amount of refrigerant liquid in the thermosiphon is adjusted in response to the increase or decrease in the thermal load, and in the normal cold operation state, surplus refrigerant liquid is recovered from the thermosiphon refrigerant circulation circuit to the buffer tank, Even when carbon dioxide gas with high operating pressure is used as the refrigerant, the pressure in the refrigerant circuit during steady operation can be kept relatively low, thereby reducing the pressure level required for the thermosiphon piping system and heat exchange section. In addition to improving safety and reliability, the cost of the cooling device can be reduced.
In the illustrated embodiment, a Stirling refrigerator is used as the refrigerator of the cooling device. However, the present invention is not limited to this, and a vapor compression refrigerator or an electronic refrigerator using a Peltier element is used as the refrigerator. It is also possible to adopt. In addition to the product storage of the vending machine, the cooling device can be used for cooling a CPU used in, for example, a large-capacity electronic device, and further to an air conditioner.


本発明の実施例によるサーモサイフォン式冷却装置の構成図であり、(a)は冷媒循環回路図、(b)は(a)における冷媒バイパス回路に対する制御系統を表す図 図1の動作説明図で、(a),(b),(c)はそれぞれ定常熱負荷時,熱負荷増大時,および熱負荷低減時における冷媒の通流状態を表す図 図2(a)〜(c)に対応する制御動作のフローチャートを表す図 従来におけるサーモサイフォン式冷却装置の冷媒循環回路図
.
It is a block diagram of the thermosiphon type cooling device by the Example of this invention, (a) is a refrigerant circuit diagram, (b) is a figure showing the control system with respect to the refrigerant bypass circuit in (a). In the operation explanatory diagram of FIG. 1, (a), (b), and (c) are diagrams showing refrigerant flow states at the time of steady heat load, when heat load is increased, and when heat load is reduced, respectively. The figure showing the flowchart of the control action corresponding to Drawing 2 (a)-(c) Refrigerant circulation circuit diagram of conventional thermosiphon cooling device

符号の説明Explanation of symbols

1 スターリング冷凍機(冷凍機)
1b 冷温部
2 被冷却部
3 サーモサイフォン
3a 凝縮部
3b 蒸発部
3c 冷媒液管路
3d 冷媒ガス管路
5 バッファータンク
6 冷媒バイパス回路
6a 入口側管路
6b 出口側管路
7a,7b 開閉弁
8a,8b 逆止弁
9a〜9d 温度センサ
10 制御装置
11 冷媒液
1 Stirling refrigerator (refrigerator)
DESCRIPTION OF SYMBOLS 1b Cold / warm part 2 Cooled part 3 Thermosyphon 3a Condensing part 3b Evaporating part 3c Refrigerant liquid line 3d Refrigerant gas line 5 Buffer tank 6 Refrigerant bypass circuit 6a Inlet side line 6b Outlet side line 7a, 7b On-off valve 8a, 8b Check valves 9a to 9d Temperature sensor 10 Controller 11 Refrigerant liquid

Claims (6)

冷凍機の冷温部と被冷却部との間にループ型のサーモサイフォンを布設し、前記冷温部で得た冷熱を被冷却部に熱輸送して冷却するサーモサイフォン式冷却装置であり、サーモサイフォンの冷媒循環回路が冷凍機の冷温部に配した凝縮部および被冷却部に配した蒸発部と、前記凝縮部と蒸発部との間を連通して配管した往路側の冷媒液管路,および復路側の冷媒ガス管路とからなり、該冷媒循環回路の系内に冷媒を封入したものにおいて、
前記サーモサイフォンの冷媒循環量を被冷却部の熱負荷増減に応じて調整する制御手段として、前記冷媒循環回路の冷媒液管路側に冷媒液のバッファータンクを含むバイパス回路を設け、被冷却部および冷媒循環回路の各部から検出した温度情報を基に、被冷却部の熱負荷が増大した際にバッファータンクから冷媒循環回路に冷媒液を放出し冷媒循環量を増量し、逆に熱負荷が低減した際には冷媒循環回路からバッファータンクに冷媒液を回収して冷媒循環量を減量するようにしたことを特徴とするサーモサイフォン式冷却装置。
A thermosiphon-type cooling device in which a loop-type thermosyphon is installed between a cold temperature part and a cooled part of a refrigerator, and the cold heat obtained in the cold temperature part is transported to the cooled part for cooling. The refrigerant circulation circuit of the condenser is disposed in the cooler / warm part of the refrigerator, the evaporator disposed in the cooled part, the refrigerant liquid conduit on the forward path, which is connected and connected between the condenser and the evaporator, and It consists of a refrigerant gas line on the return side, and in which the refrigerant is sealed in the system of the refrigerant circuit,
As a control means for adjusting the refrigerant circulation amount of the thermosyphon according to the thermal load increase / decrease of the cooled part, a bypass circuit including a buffer tank for the refrigerant liquid is provided on the refrigerant liquid pipeline side of the refrigerant circulating circuit, Based on the temperature information detected from each part of the refrigerant circulation circuit, when the heat load of the cooled part increases, the refrigerant liquid is discharged from the buffer tank to the refrigerant circulation circuit to increase the refrigerant circulation amount, and conversely the heat load is reduced. In this case, the thermosiphon cooling device is characterized in that the refrigerant liquid is collected from the refrigerant circulation circuit into the buffer tank to reduce the refrigerant circulation amount.
請求項1記載の冷却装置において、バッファータンクを冷媒循環回路の冷媒液管路より低位置に配置し、かつその入口,出口側に開閉弁を設けて冷媒液管路に配管接続したことを特徴とするサーモサイフォン式冷却装置。 2. The cooling device according to claim 1, wherein the buffer tank is disposed at a position lower than the refrigerant liquid pipe line of the refrigerant circulation circuit, and an open / close valve is provided on the inlet and outlet sides of the buffer tank and connected to the refrigerant liquid pipe. Thermosiphon cooling device. 請求項2記載の冷却装置において、バッファータンクに加熱ヒータ付設したことを特徴とするサーモサイフォン式冷却装置。 3. The thermosiphon cooling device according to claim 2, wherein a heater is attached to the buffer tank. 請求項2記載の冷却装置において、バッファータンクに接続した出口側のバイパス管路を入口側のバイパス管路よりも高位置から引き出したことを特徴とするサーモサイフォン式冷却装置。 3. The thermosiphon cooling device according to claim 2, wherein the outlet side bypass pipe connected to the buffer tank is drawn from a position higher than the inlet side bypass pipe. 請求項4記載の冷却装置において、入口,出口側のバイパス管路にそれぞれ逆止弁を接続したことを特徴とするサーモサイフォン式冷却装置。 5. The thermosiphon cooling device according to claim 4, wherein a check valve is connected to each of the inlet and outlet bypass pipes. 請求項1記載の冷却装置において、サーモサイフォンに封入した冷媒が炭酸ガスであることを特徴とするサーモサイフォン式冷却装置。 2. The cooling device according to claim 1, wherein the refrigerant sealed in the thermosyphon is carbon dioxide.
JP2003429538A 2003-12-25 2003-12-25 Thermo-siphon type cooling device Withdrawn JP2005188813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429538A JP2005188813A (en) 2003-12-25 2003-12-25 Thermo-siphon type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429538A JP2005188813A (en) 2003-12-25 2003-12-25 Thermo-siphon type cooling device

Publications (1)

Publication Number Publication Date
JP2005188813A true JP2005188813A (en) 2005-07-14

Family

ID=34788165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429538A Withdrawn JP2005188813A (en) 2003-12-25 2003-12-25 Thermo-siphon type cooling device

Country Status (1)

Country Link
JP (1) JP2005188813A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121401A (en) * 2015-03-31 2015-07-02 ケミカルグラウト株式会社 Heat exchange system
CN107860157A (en) * 2017-12-07 2018-03-30 福建雪人股份有限公司 A kind of condenser
US10123457B2 (en) 2015-02-09 2018-11-06 Fujitsu Limited Cooling apparatus and electronic device
WO2018225476A1 (en) * 2017-06-08 2018-12-13 Phcホールディングス株式会社 Refrigeration device
WO2019008920A1 (en) * 2017-07-05 2019-01-10 Phcホールディングス株式会社 Refrigerating device
WO2019208726A1 (en) * 2018-04-27 2019-10-31 株式会社デンソー Cooling device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123457B2 (en) 2015-02-09 2018-11-06 Fujitsu Limited Cooling apparatus and electronic device
JP2015121401A (en) * 2015-03-31 2015-07-02 ケミカルグラウト株式会社 Heat exchange system
WO2018225476A1 (en) * 2017-06-08 2018-12-13 Phcホールディングス株式会社 Refrigeration device
WO2019008920A1 (en) * 2017-07-05 2019-01-10 Phcホールディングス株式会社 Refrigerating device
JPWO2019008920A1 (en) * 2017-07-05 2020-01-09 Phcホールディングス株式会社 Refrigeration equipment
CN107860157A (en) * 2017-12-07 2018-03-30 福建雪人股份有限公司 A kind of condenser
CN107860157B (en) * 2017-12-07 2023-05-12 福建雪人股份有限公司 Condenser
WO2019208726A1 (en) * 2018-04-27 2019-10-31 株式会社デンソー Cooling device
JP2019190798A (en) * 2018-04-27 2019-10-31 株式会社デンソー Cooling device
JP7035774B2 (en) 2018-04-27 2022-03-15 株式会社デンソー Cooling system

Similar Documents

Publication Publication Date Title
CN101208564B (en) Hotwater supply device
JP4318567B2 (en) Cooling system
JP3801006B2 (en) Refrigerant circuit
US20170184314A1 (en) Heat pump heating system
JP4782462B2 (en) Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device
CN104704302B (en) Heat pump device
JP6111157B2 (en) Gas vaporizer with cold energy recovery function and cold energy recovery device
US20150292775A1 (en) Refrigeration system with phase change material
CN118031483A (en) Reverse cycle defrost phase change material based enhancement in vapor compression refrigeration systems
JP6828821B2 (en) Phase change cooling device and phase change cooling method
JP4885481B2 (en) Cooling device operation method
JP2007263401A (en) Heat storage device
US20140338389A1 (en) Vapor compression system with thermal energy storage
WO2010143373A1 (en) Heat pump system
JP3928251B2 (en) Waste heat recovery system
JP4388596B2 (en) Thermal storage system and thermal storage method
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP5636871B2 (en) Refrigeration equipment
JP5528903B2 (en) Absorption type air conditioning and hot water supply system
JP2005188813A (en) Thermo-siphon type cooling device
JP2007093203A (en) Exhaust heat recovery system
JP2009281644A (en) Heating system
JP2005300057A (en) Heat pump hot water supply system
JP2010169283A (en) Heat exchange system
JP3896705B2 (en) Refrigeration cycle and refrigeration cycle control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080626