JP3723244B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3723244B2
JP3723244B2 JP31963694A JP31963694A JP3723244B2 JP 3723244 B2 JP3723244 B2 JP 3723244B2 JP 31963694 A JP31963694 A JP 31963694A JP 31963694 A JP31963694 A JP 31963694A JP 3723244 B2 JP3723244 B2 JP 3723244B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pipe
compressor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31963694A
Other languages
Japanese (ja)
Other versions
JPH08178450A (en
Inventor
広征 小田木
威 倉持
奈津子 今城
基夫 佐野
利彰 吉川
浩招 牧野
英行 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31963694A priority Critical patent/JP3723244B2/en
Publication of JPH08178450A publication Critical patent/JPH08178450A/en
Application granted granted Critical
Publication of JP3723244B2 publication Critical patent/JP3723244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、圧縮機吐出口から、四方切換弁、室外側熱交換器、減圧器、室内側熱交換器、四方切換弁、及びアキュムレータをへて圧縮機吸入口にいたる冷媒回路を備えた空気調和機に関するものである。
【0002】
【従来の技術】
図11は例えば実公昭55−28993号公報等に示された従来の多室形空気調和機の冷媒回路図で、図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(4)は液側分岐管、(5a)(5b)(5c)は電子膨張弁、(6a)(6b)(6c)は室内側熱交換器、(7)はガス側分岐管、(8)はアキュムレータである。
【0003】
次にこの冷媒回路の冷房時における冷媒の流れを説明する。圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通り室外側熱交換器(3)で室外空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、液側分岐管(4)で各室内機毎に分岐され、それぞれの電子膨張弁(5a)(5b)(5c)で減圧され完全な気液二相になり、各室内機の室内側熱交換器(6a)(6b)(6c)に入る。各室内側熱交換器(6a)(6b)(6c)で室内空気と熱交換され熱を吸収して蒸発し、低温低圧の過熱ガスまたは気液二相になりガス側分岐管(7)で合流し、四方切換弁(2)を通りアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、吸入口(1b)から圧縮機(1)に吸入される。以下このサイクルが繰り返される。
【0004】
暖房運転時においては、圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通りガス側分岐管(7)で各室内機毎に分岐され、各室内機の室内側熱交換器(6a)(6b)(6c)に入る。各室内側熱交換器(6a)(6b)(6c)で室内空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、それぞれの電子膨張弁(5a)(5b)(5c)で減圧され完全な気液二相になり液側分岐管(4)で合流し室外側熱交換器(3)に入る。室外側熱交換器(3)で室外空気と熱交換され熱を吸収することにより、蒸発して低温低圧の過熱ガスまたは気液二相になり四方切換弁(2)を通りアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、吸入口(1b)から圧縮機(1)に吸入される。以下このサイクルが繰り返される。
【0005】
【発明が解決しようとする課題】
上記のような構成の冷媒回路においては、通常、電子膨張弁(5a)(5b)(5c)等の膨張弁には液冷媒のみが流入するのが好ましいが、例えば、冷房運転時において、室外側熱交換器(3)内で配管の流路抵抗等による圧力損失が大きかったり、室外側熱交換器(3)の大きさに制約があって充分な熱交換性能が得られない場合や、運転状態が変わって冷凍サイクルが安定するまでは室外側熱交換器(3)内で適正に過冷却がとれず電子膨張弁(5a)(5b)(5c)に流入する冷媒が気液二相となることがある。そのため、電子膨張弁(5a)(5b)(5c)での開度調節による室内側熱交換器(6a)(6b)(6c)への冷媒分配が悪く、冷凍サイクルとしても不安定で各室内機の冷凍能力も安定しなくなるとともに、電子膨張弁(5a)(5b)(5c)を通過する冷媒が気液二相のときに不快な冷媒流動音が発生するなどの問題点があった。
【0006】
また、暖房運転時に圧縮機運転中に室外側熱交換器(3)でガス化し、圧縮機(1)が停止中にガス状態から液体になる冷媒が多いため、暖房運転再開始時に室外側熱交換器(3)から四方切換弁(2)をへてアキュムレータ(8)を通過するときに、液冷媒が完全に分離しきれず、圧縮機(1)に液冷媒を多く含んだ冷媒が吸入され液圧縮が行われるため、圧縮機(1)の負荷が高くなり寿命が短くなるという問題点もあった。
【0007】
この発明は上述のような問題点を解消するためになされたもので、冷房運転時に液側分岐管から膨張弁に完全な液冷媒が流入し、複数の室内側熱交換器への冷媒分配が安定し、膨張弁を冷媒が通過する時に冷媒流動音が発生することのない空気調和機を得ることを目的とする。
【0008】
また、暖房運転再開始時に圧縮機に液冷媒が吸入されることが全くなく、圧縮機の高寿命化が計れる空気調和機を得ることを目的とする。
【0009】
また、この発明に係わる空気調和機は、圧縮機吐出口から、四方切換弁、室外側熱交換器、液側分岐管、複数の膨張弁、複数の室内側熱交換器、ガス側分岐管、四方切換弁、及びアキュムレータをへて圧縮機吸入口にいたる冷媒回路を備えた多室形空気調和機において、
上記室外側熱交換器、液側分岐管間の冷媒配管と、上記アキュムレータ、圧縮機吸入口間の冷媒配管との間に、これら両冷媒配管内の冷媒の熱交換を行う冷媒熱交換器を設けるとともに
上記室外側熱交換器、液側分岐管間の冷媒配管の冷媒熱交換器より液側分岐管側と、上記アキュムレータ、冷媒熱交換器間の冷媒配管間との間に、高圧側から低圧側に飽和ガスを戻すための絞り付きバイパス回路を設けたものである
【0010】
また、この発明に係わる空気調和機は、冷媒熱交換器を、室外側熱交換器、液側分岐管間の冷媒を流す外管と、四方切換弁、アキュムレータ間、或はアキュムレータ、圧縮機吸入口間の冷媒を流す内管との二重管構造としたものである
【0011】
また、この発明に係わる空気調和機は、冷媒熱交換器の外管内と内管内の冷媒の流れ方向を反対としたものである
【0014】
【作用】
この発明においては、冷房時に室外側熱交換器で凝縮された高温高圧冷媒と、四方切換弁からアキュムレータにいたる、或はアキュムレータから圧縮機吸入口にいたる低温低圧冷媒が熱交換されて、高圧側の冷媒が冷却され完全な液冷媒として液側分岐管をへて膨張弁に流入するので、複数の室内側熱交換器への冷媒分配が安定するとともに、膨張弁で発生する冷媒音が低減する。そして、低圧側の冷媒が加熱されて過熱ガスとなるので、圧縮機に液冷媒が吸入されることが全くなくなる。
【0015】
また、冷媒熱交換器で高圧側低圧側両冷媒の熱交換による低圧側冷媒の過熱度の大きくなり過ぎが、絞り付きバイパス回路で高圧側から低圧側に飽和ガスを戻すことにより防止される。
さらに、冷媒熱交換器でより過冷却された冷媒の一部の飽和ガスが、絞り付きバイパス回路で低圧側に戻されるので、バイパスされる冷媒量をより少なくできる。
【0016】
また、冷媒熱交換器を高圧側高温冷媒を流す外管と、低圧側低温冷媒を流す内管の二重管構造としたので、高圧側高温冷媒は内管の低温冷媒と外管周囲の空気との両方と熱交換され、高圧側冷媒はより過冷却される。
さらにまた、外管内と内管内の冷媒の流れ方向を反対としたので、熱交換量がより増大する。
【0017】
また、暖房運転開始時に、圧縮機吐出口から圧縮機吸入口へのバイパス回路の電磁弁或は電子膨張弁を開くことにより、圧縮機から吐出した加熱ガスが圧縮機に吸入され、室外側熱交換器等で液化されアキュムレータで分離されずに圧縮機に吸入される液冷媒がガス化し、圧縮機の負荷が軽減される。
【0018】
【実施例】
実施例1.
以下、この発明の実施例1を図について説明する。図1はこの実施例1の冷媒回路図で、図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(4)は液側分岐管、(5a)(5b)(5c)は電子膨張弁、(6a)(6b)(6c)は室内側熱交換器、(7)はガス側分岐管、(8)はアキュムレータで、以上は図11で示す従来例と同様のものである。(9)は室外側熱交換器(3)と液側分岐管(4)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(11)はこれら両冷媒配管(9)(10)内の冷媒の熱交換を行う冷媒熱交換器、(12)は冷媒配管(9)の冷媒熱交換器(11)の液側分岐管(4)側と、冷媒配管(10)との間に設けられた毛細管の絞り付きバイパス回路である。
【0019】
次にこの実施例の冷媒回路の冷房時における冷媒の流れを説明する。圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通り室外側熱交換器(3)で室外空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、冷媒熱交換器(11)により冷媒配管(10)中の低温低圧のガス冷媒と熱交換して冷却されて完全に液化して、液側分岐管(4)で各室内機毎に分岐され、それぞれの電子膨張弁(5a)(5b)(5c)で減圧され完全な気液二相になり、各室内機の室内側熱交換器(6a)(6b)(6c)に入る。
【0020】
各室内側熱交換器(6a)(6b)(6c)で気液二相冷媒は、室内空気と熱交換され熱を吸収して蒸発し、低温低圧の過熱ガスまたは気液二相になりガス側分岐管(7)で合流し、四方切換弁(2)を通り冷媒熱交換器(11)により冷媒配管(9)中の高圧液冷媒と熱交換して加熱されさらにガス化されアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、吸入口(1b)から圧縮機(1)に吸入される。以下このサイクルが繰り返される。
【0021】
また、室外側熱交換器(3)から冷媒配管(9)、冷媒熱交換器(11)をへた液冷媒の一部が絞り付きバイパス回路(12)で飽和ガスとなり冷媒配管(10)にバイパスされ、冷媒配管(10)中の低圧ガス冷媒の過熱度が、冷媒熱交換器(11)による熱交換で過度に上昇するのが抑えられ、適正な過熱ガスがアキュムレータ(8)をへて圧縮機(1)に吸入される。
【0022】
暖房運転時においては、圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通りガス側分岐管(7)で各室内機毎に分岐され、各室内機の室内側熱交換器(6a)(6b)(6c)に入る。各室内側熱交換器(6a)(6b)(6c)で室内空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、それぞれの電子膨張弁(5a)(5b)(5c)で減圧され完全な気液二相になり液側分岐管(4)で合流し冷媒熱交換器(11)、冷媒配管(9)を通り室外側熱交換器(3)に入る。室外側熱交換器(3)で室外空気と熱交換され熱を吸収することにより、蒸発して低温低圧の過熱ガスまたは気液二相になり四方切換弁(2)を通り冷媒配管(10)、冷媒熱交換器(11)を通りアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、吸入口(1b)から圧縮機(1)に吸入される。
【0023】
この時、冷媒熱交換器(11)により冷媒配管(9)中の低温低圧の冷媒と、冷媒配管(10)中の低温低圧の冷媒との間で熱交換が行なわれるが、両冷媒間の温度差は少なくあまり有効な熱交換は行なわれず、特に暖房時に冷媒熱交換器(11)をバイパスする逆止弁等を設ける必要もない。また、絞り付きバイパス回路(12)の両端には圧力差がないので暖房時には有効に動作しない。しかし、冷媒熱交換器(11)及び絞り付きバイパス回路(12)は暖房時には必要ないから、冷媒配管(9)の冷媒熱交換器(11)設置部に逆止弁を設けて暖房時にこれらをバイパスしてもよい。
【0024】
以上のようにこの実施例では、冷房時に冷媒熱交換器(11)により電子膨張弁(5a)(5b)(5c)に流入する冷媒が、室内側熱交換器(6a)(6b)(6c)を出た低温低圧の冷媒と熱交換されて冷却され、完全に液体化されるので、複数の室内側熱交換器(6a)(6b)(6c)への冷媒分配が安定するとともに、電子膨張弁(5a)(5b)(5c)で発生する冷媒音が低減する。しかも、その熱交換による低圧ガス冷媒の過熱度の過度の上昇が絞り付きバイパス回路(12)による飽和ガスのバイパスにより防止される。
【0025】
実施例2.
実施例1では冷媒熱交換器(11)を室外側熱交換器(3)、液側分岐管(4)間の冷媒配管(9)と、四方切換弁(2)、アキュムレータ(8)間の冷媒配管(10)との間に設けたが、上記冷媒配管(9)と、アキュムレータ(8)、圧縮機吸入口(1b)間の冷媒配管(13)との間に設けてもよい。図2はこの場合の実施例2の冷媒回路図である。
【0026】
図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(4)は液側分岐管、(5a)(5b)(5c)は電子膨張弁、(6a)(6b)(6c)は室内側熱交換器、(7)はガス側分岐管、(8)はアキュムレータ、(9)は室外側熱交換器(3)と液側分岐管(4)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(13)はアキュムレータ(8)と圧縮機吸入口(1b)間の冷媒配管、(11)は冷媒配管(9)(13)内の冷媒の熱交換を行う冷媒熱交換器、(12)は冷媒配管(9)の冷媒熱交換器(11)の液側分岐管(4)側と、冷媒配管(13)との間に設けられた毛細管等の絞り付きバイパス回路である。
【0027】
次にこの実施例の冷媒回路の冷房時における冷媒の流れを説明する。圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通り室外側熱交換器(3)で室外空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、冷媒熱交換器(11)により冷媒配管(13)中の低温低圧のガス冷媒と熱交換して冷却されて完全に液化して、液側分岐管(4)で各室内機毎に分岐され、それぞれの電子膨張弁(5a)(5b)(5c)で減圧され完全な気液二相になり、各室内機の室内側熱交換器(6a)(6b)(6c)に入る。
【0028】
各室内側熱交換器(6a)(6b)(6c)で気液二相冷媒は、室内空気と熱交換され熱を吸収して蒸発し、低温低圧の過熱ガスまたは気液二相になりガス側分岐管(7)で合流し、四方切換弁(2)を通りアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、アキュムレータ(8)で液冷媒が完全に分離されなくても、冷媒熱交換器(11)により冷媒配管(9)中の高圧液冷媒と熱交換して加熱され、完全にガス化され吸入口(1b)から圧縮機(1)に吸入される。以下このサイクルが繰り返される。
【0029】
また、室外側熱交換器(3)から冷媒配管(9)、冷媒熱交換器(11)をへた液冷媒の一部が絞り付きバイパス回路(12)で飽和ガスとなり冷媒配管(10)にバイパスされ、冷媒配管(10)中の低圧ガス冷媒の過熱度が、冷媒熱交換器(11)による熱交換で過度に上昇するのが抑えられ、適正な過熱ガスが圧縮機(1)に吸入される。
【0030】
以上のようにこの実施例でも、冷房時に冷媒熱交換器(11)により電子膨張弁(5a)(5b)(5c)に流入する冷媒が、室内側熱交換器(6a)(6b)(6c)を出た低温低圧の冷媒と熱交換されて冷却され、完全に液体化されるので、複数の室内側熱交換器(6a)(6b)(6c)への冷媒分配が安定するとともに、電子膨張弁(5a)(5b)(5c)で発生する冷媒音が低減する。しかも、その熱交換による低圧ガス冷媒の過熱度の過度の上昇が絞り付きバイパス回路(12)による飽和ガスのバイパスにより防止される。さらに、アキュムレータ(8)で液冷媒が完全に分離されなくても冷媒熱交換器(11)による熱交換で完全にガス化されて圧縮機(1)に吸入される。
【0031】
なお、上記各実施例では絞り付きバイパス回路(12)に毛細管を使用したものを示したが、機械式膨張弁、電子膨張弁を使うことにより同等の制御を行うことが出来る。
【0032】
図3、図4は上記実施例1に使用される冷媒熱交換器(11)の一例を示し、図3は斜視図、図4は縦断面図である。図において、(11)は冷媒熱交換器で、室外側熱交換器(3)、液側分岐管(4)間の冷媒配管(9)に連通する外管(11a)と、四方切換弁(2)、アキュムレータ(8)間の冷媒配管(10)に連通する内管(11b)との二重管構造となっておる。そして、外管(11a)中の冷媒の流れ方向と内管(11b)中の冷媒の流れ方向は相反する方向となされている。
【0033】
そのため、構造が簡単で安価に製作でき、内管(11b)全体が高温高圧冷媒で被われるため伝熱面積が大きく取れ効率的な熱交換が行なわれ、外管(11a)中の高温高圧の冷媒は、内管(11b)中の低温冷媒と外管(11a)周囲の空気との両者間で熱交換されるので、高圧冷媒がより過冷却される。また、熱交換される冷媒の流れが反対なので、最も効率的な対向流熱交換が行なわれる。
なお、この構造の冷媒熱交換器(11)は実施例2に使用されても同等の効果が得られることはもちろんである。
【0034】
参考例1
図5はこの発明の参考例1を示す冷媒回路図である。図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(4)は液側分岐管、(5a)(5b)(5c)は電子膨張弁、(6a)(6b)(6c)は室内側熱交換器、(7)はガス側分岐管、(8)はアキュムレータ、(9)は室外側熱交換器(3)と液側分岐管(4)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(11)は冷媒熱交換器、(13a)はアキュムレータ(8)と冷媒熱交換器(11)間の冷媒配管、(13b)は冷媒熱交換器(11)と圧縮機吸入口(1b)間の冷媒配管、(14)は圧縮機吐出口(1a)と四方切換弁(2)間の冷媒配管で、以上は実施例2と略同様である。(15)は冷媒配管(14)と冷媒配管(13a)との間のバイパス回路、(16)はバイパス回路(15)中に設けられた電磁弁である。
【0035】
次にこの実施例の冷媒回路の冷房時における冷媒の流れを説明する。冷房時には電磁弁(16)は閉じられておるので、冷房時における動作は実施例2と略同様である。即ち、圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通り室外側熱交換器(3)で室外空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、冷媒熱交換器(11)により冷媒配管(13)中の低温低圧のガス冷媒と熱交換して冷却されて完全に液化して、液側分岐管(4)で各室内機毎に分岐され、それぞれの電子膨張弁(5a)(5b)(5c)で減圧され完全な気液二相になり、各室内機の室内側熱交換器(6a)(6b)(6c)に入る。
【0036】
各室内側熱交換器(6a)(6b)(6c)で気液二相冷媒は、室内空気と熱交換され熱を吸収して蒸発し、低温低圧の過熱ガスまたは気液二相になりガス側分岐管(7)で合流し、四方切換弁(2)を通りアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、アキュムレータ(8)で液冷媒が完全に分離されなくても、冷媒熱交換器(11)により冷媒配管(9)中の高圧液冷媒と熱交換して加熱され、完全にガス化され吸入口(1b)から圧縮機(1)に吸入される。以下このサイクルが繰り返される。
【0037】
暖房運転開始時に電磁弁(16)が所定時間開かれる。それによって圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒の一部がバイパス回路(15)を通り吸入口(1b)から圧縮機(1)に吸入される。それで、圧縮機(1)の運転休止中に圧縮機(1)内で液化された冷媒や、室外側熱交換器(3)等で液化され、アキュムレータ(8)で充分に分離されずに圧縮機(1)に吸入された液冷媒は、バイパス回路(15)からの高温のガス冷媒によってガス化され、暖房運転開始時の圧縮機(1)の負荷が著しく軽減される。この運転が所定時間続けられ圧縮機(1)に吸入される冷媒がすべてガス冷媒となると電磁弁(16)は閉じられ、正常な暖房運転に入る。
【0038】
即ち、圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通りガス側分岐管(7)で各室内機毎に分岐され、各室内機の室内側熱交換器(6a)(6b)(6c)に入る。各室内側熱交換器(6a)(6b)(6c)で室内空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、それぞれの電子膨張弁(5a)(5b)(5c)で減圧され完全な気液二相になり液側分岐管(4)で合流し冷媒熱交換器(11)、冷媒配管(9)を通り室外側熱交換器(3)に入る。室外側熱交換器(3)で室外空気と熱交換され熱を吸収することにより、蒸発して低温低圧の過熱ガスまたは気液二相になり四方切換弁(2)、冷媒配管(10)を通りアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、冷媒熱交換器(11)を通り吸入口(1b)から圧縮機(1)に吸入される。
【0039】
参考例2
参考例1ではバイパス回路(15)を冷媒配管(14)と冷媒配管(13a)との間に設けたが、冷媒配管(14)と冷媒配管(13a)との間に設けてもよい。図6はこの場合の参考例2の冷媒回路図である。図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(4)は液側分岐管、(5a)(5b)(5c)は電子膨張弁、(6a)(6b)(6c)は室内側熱交換器、(7)はガス側分岐管、(8)はアキュムレータ、(9)は室外側熱交換器(3)と液側分岐管(4)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(11)は冷媒熱交換器、(13a)はアキュムレータ(8)と冷媒熱交換器(11)間の冷媒配管、(13b)は冷媒熱交換器(11)と圧縮機吸入口(1b)間の冷媒配管、(14)は圧縮機吐出口(1a)と四方切換弁(2)間の冷媒配管、(15)は冷媒配管(14)と冷媒配管(13b)との間のバイパス回路、(16)はバイパス回路(15)中に設けられた電磁弁である。
この実施例の動作は参考例1と略同様なので説明は省略する。
【0040】
参考例3
参考例1では複数の電子膨張弁(5a)(5b)(5c)、複数の室内側熱交換器(6a)(6b)(6c)、液側分岐管(4)及びガス側分岐管(7)を備えた多室形空気調和機について説明したが、室内側熱交換器が1個の冷媒回路を使用した空気調和機であってもバイパス回路(15)を設けたための効果は同様である。図7はこの場合の参考例3の冷媒回路図である。
【0041】
図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(5)は電子膨張弁、(6)は室内側熱交換器、(8)はアキュムレータ、(9)は室外側熱交換器(3)と電子膨張弁(5)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(13)はアキュムレータ(8)と圧縮機吸入口(1b)間の冷媒配管、(14)は圧縮機吐出口(1a)と四方切換弁(2)間の冷媒配管、(15)はバイパス回路、(16)は電磁弁である。
【0042】
次にこの実施例の冷媒回路の冷房時における冷媒の流れを説明する。冷房時には電磁弁(16)は閉じられている。圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通り室外側熱交換器(3)で室外空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、電子膨張弁(5)で減圧され完全な気液二相になり室内側熱交換器(6)に入る。
【0043】
暖房運転開始時に電磁弁(16)が所定時間開かれる。それによって圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒の一部がバイパス回路(15)を通り吸入口(1b)から圧縮機(1)に吸入される。それで、圧縮機(1)の運転休止中に圧縮機(1)内で液化された冷媒や、室外側熱交換器(3)等で液化され、アキュムレータ(8)で充分に分離されずに圧縮機(1)に吸入された液冷媒は、バイパス回路(15)からの高温のガス冷媒によってガス化され、暖房運転開始時の圧縮機(1)の負荷が著しく軽減される。この運転が所定時間続けられ圧縮機(1)に吸入される冷媒がすべてガス冷媒となると電磁弁(16)は閉じられ、正常な暖房運転に入る。
【0044】
即ち、圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒は、四方切換弁(2)を通り室内側熱交換器(6)に入る。室内側熱交換器(6)で室内空気と熱交換され熱を放出することにより、凝縮し常温高圧の気液二相または液冷媒となり、電子膨張弁(5)で減圧され完全な気液二相になり液側分岐管(4)で合流し冷媒熱交換器(11)、冷媒配管(9)を通り室外側熱交換器(3)に入る。室外側熱交換器(3)で室外空気と熱交換され熱を吸収することにより、蒸発して低温低圧の過熱ガスまたは気液二相になり四方切換弁(2)、冷媒配管(10)を通りアキュムレータ(8)に入る。アキュムレータ(8)で液冷媒が分離され、冷媒配管(13)を通り吸入口(1b)から圧縮機(1)に吸入される。
【0045】
参考例3では複数の電子膨張弁(5a)(5b)(5c)による冷媒分配を考慮する必要がないので冷媒熱交換器(11)は設けられていないが、電子膨張弁(5)の冷媒音を低減させるために、冷媒熱交換器(11)を冷媒配管(9)(10)間、或は冷媒配管(9)(13)間に設けるようにしてもよい。
また、参考例1〜3ではバイパス回路(15)を電磁弁(16)によって開閉させていたが、電子膨張弁を用いこれをゆっくり開閉させることによってバイパス回路(15)の開閉による騒音を低減させることができる。参考例4〜6はこの場合の実施例である。
【0046】
参考例4
図8は参考例4を示す冷媒回路図である。図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(4)は液側分岐管、(5a)(5b)(5c)は電子膨張弁、(6a)(6b)(6c)は室内側熱交換器、(7)はガス側分岐管、(8)はアキュムレータ、(9)は室外側熱交換器(3)と液側分岐管(4)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(11)は冷媒熱交換器、(13a)はアキュムレータ(8)と冷媒熱交換器(11)間の冷媒配管、(13b)は冷媒熱交換器(11)と圧縮機吸入口(1b)間の冷媒配管、(14)は圧縮機吐出口(1a)と四方切換弁(2)間の冷媒配管、(15)は冷媒配管(14)と冷媒配管(13a)との間のバイパス回路、(17)はバイパス回路(15)中に設けられた電子膨張弁である。
【0047】
この実施例の冷房時及び通常の暖房時の動作は参考例3と同様なので説明は省略し、暖房開始時の動作を説明する。
暖房運転開始時に電子膨張弁(17)が制御されゆっくり開かれる。それによって圧縮機(1)で圧縮され吐出口(1a)から吐出された高温高圧のガス冷媒の一部がバイパス回路(15)を通り吸入口(1b)から圧縮機(1)に騒音を発することなくゆっくり吸入される。それで、圧縮機(1)の運転休止中に圧縮機(1)内で液化された冷媒や、室外側熱交換器(3)等で液化され、アキュムレータ(8)で充分に分離されずに圧縮機(1)に吸入された液冷媒は、バイパス回路(15)からの高温のガス冷媒によってガス化され、暖房運転開始時の圧縮機(1)の負荷が著しく軽減される。この運転が所定時間続けられ圧縮機(1)に吸入される冷媒がすべてガス冷媒となると電子膨張弁(17)はゆっくり閉じられ、正常な暖房運転に入る。
【0048】
参考例5
図9は参考例5を示す冷媒回路図である。図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(4)は液側分岐管、(5a)(5b)(5c)は電子膨張弁、(6a)(6b)(6c)は室内側熱交換器、(7)はガス側分岐管、(8)はアキュムレータ、(9)は室外側熱交換器(3)と液側分岐管(4)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(11)は冷媒熱交換器、(13a)はアキュムレータ(8)と冷媒熱交換器(11)間の冷媒配管、(13b)は冷媒熱交換器(11)と圧縮機吸入口(1b)間の冷媒配管、(14)は圧縮機吐出口(1a)と四方切換弁(2)間の冷媒配管、(15)は冷媒配管(14)と冷媒配管(13b)との間のバイパス回路、(17)はバイパス回路(15)中に設けられた電子膨張弁である。
この実施例の動作は参考例4と略同様なので説明は省略する。
【0049】
参考例6
図10は参考例6を示す冷媒回路図である。図において、(1)は圧縮機、(1a)はそれの吐出口、(1b)は吸入口、(2)は四方切換弁、(3)は室外側熱交換器、(5)は電子膨張弁、(6)は室内側熱交換器、(8)はアキュムレータ、(9)は室外側熱交換器(3)と電子膨張弁(5)間の冷媒配管、(10)は四方切換弁(2)とアキュムレータ(8)間の冷媒配管、(13)はアキュムレータ(8)と圧縮機吸入口(1b)間の冷媒配管、(14)は圧縮機吐出口(1a)と四方切換弁(2)間の冷媒配管、(15)はバイパス回路、(17)はバイパス回路(15)中に設けられた電子膨張弁である。
この実施例の電子膨張弁(17)についての動作は参考例4と同様であり、他の部分の動作は参考例3と同様なので説明を省略する。
【0050】
【発明の効果】
この発明においては、冷房時に室外側熱交換器で凝縮された高温高圧冷媒と、四方切換弁からアキュムレータにいたる、或はアキュムレータから圧縮機吸入口にいたる低温低圧冷媒が熱交換されて、高圧側の冷媒が冷却され完全な液冷媒として液側分岐管をへて膨張弁に流入するので、複数の室内側熱交換器への冷媒分配が安定し、膨張弁で発生する冷媒音が低減するとともに、低圧側の冷媒が加熱されて過熱ガスとなり圧縮機に吸入されるので、液圧縮が防止できるという効果を有するものである。
【0051】
また、冷媒熱交換器で高圧側低圧側両冷媒の熱交換による低圧側冷媒の過熱度の大きくなり過ぎが、絞り付きバイパス回路で高圧側から低圧側に飽和ガスを戻すことにより防止され、常に圧縮機に適正な過熱ガスを吸引できるという効果を有するものである。
【0052】
さらに、冷媒熱交換器でより過冷却された冷媒の一部の飽和ガスが、絞り付きバイパス回路で低圧側に戻されるので、バイパスされる冷媒量をより少なくできるという効果を有するものである。
【0053】
また、冷媒熱交換器を高圧側高温冷媒を流す外管と、低圧側低温冷媒を流す内管の二重管構造としたので、高圧側高温冷媒は内管の低温冷媒と外管周囲の空気との両方と熱交換され、高圧側冷媒はより過冷却されるという効果を有するものである。
【0054】
さらにまた、外管内と内管内の冷媒の流れ方向を反対としたので、熱交換量がより増大するという効果を有するものである。
【0055】
また、圧縮機吐出口と圧縮機吸入口との間に、電磁弁により開閉されるバイパス回路を設けたので、暖房運転開始時に、この電磁弁を開くことにより、圧縮機から吐出した加熱ガスが圧縮機に吸入され、室外側熱交換器等で液化されアキュムレータで分離されずに圧縮機に吸入される液冷媒がガス化し、圧縮機の負荷が軽減され、圧縮機の寿命が延びるという効果を有するものである。
【0056】
また、上記バイパス回路を暖房運転開始時に電子膨張弁により開閉させるようにしたので、圧縮機の負荷が軽減され、圧縮機の寿命が延びるとともに、電子膨張弁をゆっくり開閉することにより、弁開閉時の騒音値が低減するという効果を有するものである。
【図面の簡単な説明】
【図1】 実施例1の冷媒回路図。
【図2】 実施例2の冷媒回路図。
【図3】 実施例1に使用される冷媒熱交換器の斜視図。
【図4】 実施例1に使用される冷媒熱交換器の縦断面図。
【図5】 参考例1の冷媒回路図。
【図6】 参考例2の冷媒回路図。
【図7】 参考例3の冷媒回路図。
【図8】 参考例4の冷媒回路図。
【図9】 参考例5の冷媒回路図。
【図10】 参考例6の冷媒回路図。
【図11】 従来の多室形空気調和機の冷媒回路図。
【符号の説明】
1 圧縮機、 1a 吐出口、 1b 吸入口、 2 四方切換弁、 3 室外側熱交換器、 4 液側分岐管、 5,5a,5b,5c 電子膨張弁、 6,6a,6b,6c 室内側熱交換器、 7 ガス側分岐管、 8 アキュムレータ、 9,10,13,14 冷媒配管、 11 冷媒熱交換器、 12 絞り付きバイパス回路、 15 バイパス回路、 16 電磁弁 17 電子膨張弁。
[0001]
[Industrial application fields]
The present invention provides an air equipped with a refrigerant circuit from a compressor discharge port to a compressor intake port through a four-way switching valve, an outdoor heat exchanger, a decompressor, an indoor heat exchanger, a four-way switching valve, and an accumulator. It is about a harmony machine.
[0002]
[Prior art]
FIG. 11 is a refrigerant circuit diagram of a conventional multi-chamber air conditioner disclosed in, for example, Japanese Utility Model Publication No. 55-28993, in which (1) is a compressor, (1a) is a discharge port thereof, ( 1b) is an inlet, (2) is a four-way selector valve, (3) is an outdoor heat exchanger, (4) is a liquid side branch pipe, (5a) (5b) (5c) are electronic expansion valves, (6a) (6b) and (6c) are indoor side heat exchangers, (7) is a gas side branch pipe, and (8) is an accumulator.
[0003]
Next, the flow of the refrigerant during cooling of the refrigerant circuit will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way switching valve (2) and exchanges heat with outdoor air in the outdoor heat exchanger (3) to release heat. As a result, it is condensed into a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, branched for each indoor unit by the liquid side branch pipe (4), and depressurized by the respective electronic expansion valves (5a) (5b) (5c). Then, it becomes a complete gas-liquid two-phase and enters the indoor side heat exchanger (6a) (6b) (6c) of each indoor unit. Each indoor heat exchanger (6a) (6b) (6c) exchanges heat with the indoor air, absorbs the heat, evaporates, and becomes a low-temperature, low-pressure superheated gas or gas-liquid two-phase (7) Merge and pass through the four-way selector valve (2) into the accumulator (8). The liquid refrigerant is separated by the accumulator (8) and sucked into the compressor (1) from the suction port (1b). This cycle is repeated thereafter.
[0004]
During the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way selector valve (2) and passes through the gas side branch pipe (7) for each indoor unit. Into the indoor heat exchanger (6a) (6b) (6c) of each indoor unit. Each indoor-side heat exchanger (6a) (6b) (6c) exchanges heat with the indoor air and releases heat, condensing into a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, and each electronic expansion valve (5a ) (5b) (5c), the pressure is reduced to a complete gas-liquid two-phase phase, and the liquid side branch pipe (4) joins to enter the outdoor heat exchanger (3). The outdoor heat exchanger (3) exchanges heat with the outdoor air and absorbs the heat, evaporates into a low-temperature and low-pressure superheated gas or gas-liquid two-phase, passes through the four-way selector valve (2), and enters the accumulator (8). enter. The liquid refrigerant is separated by the accumulator (8) and sucked into the compressor (1) from the suction port (1b). This cycle is repeated thereafter.
[0005]
[Problems to be solved by the invention]
In the refrigerant circuit configured as described above, it is usually preferable that only the liquid refrigerant flows into the expansion valves such as the electronic expansion valves (5a), (5b), and (5c). If there is a large pressure loss due to pipe flow resistance in the outer heat exchanger (3), or if the outdoor heat exchanger (3) is limited in size and sufficient heat exchange performance cannot be obtained, Until the operation state changes and the refrigeration cycle stabilizes, the refrigerant that flows into the electronic expansion valves (5a), (5b), and (5c) cannot be properly cooled in the outdoor heat exchanger (3). It may become. For this reason, refrigerant distribution to the indoor heat exchangers (6a), (6b), and (6c) is poor by adjusting the opening of the electronic expansion valves (5a), (5b), and (5c). The refrigeration capacity of the machine becomes unstable, and uncomfortable refrigerant flow noise occurs when the refrigerant passing through the electronic expansion valves (5a), (5b), and (5c) is in a gas-liquid two phase.
[0006]
In addition, during the heating operation, the outdoor heat exchanger (3) gasifies during the compressor operation, and there are many refrigerants that become liquid from the gas state while the compressor (1) is stopped. When passing through the accumulator (8) from the exchanger (3) through the four-way selector valve (2), the liquid refrigerant cannot be completely separated, and the compressor (1) is inhaled with a lot of liquid refrigerant. Since liquid compression is performed, there is a problem that the load on the compressor (1) is increased and the life is shortened.
[0007]
The present invention has been made to solve the above-described problems. During cooling operation, complete liquid refrigerant flows into the expansion valve from the liquid side branch pipe, and refrigerant distribution to a plurality of indoor heat exchangers is performed. An object of the present invention is to obtain an air conditioner that is stable and does not generate refrigerant flow noise when refrigerant passes through an expansion valve.
[0008]
It is another object of the present invention to provide an air conditioner in which liquid refrigerant is not sucked into the compressor at the time of restarting the heating operation and the life of the compressor can be increased.
[0009]
  The air conditioner according to the present invention includes a compressor discharge port, a four-way switching valve, an outdoor heat exchanger, a liquid side branch pipe, a plurality of expansion valves, a plurality of indoor side heat exchangers, a gas side branch pipe, In a multi-chamber type air conditioner equipped with a four-way switching valve, and a refrigerant circuit leading to the compressor inlet through the accumulator,
A refrigerant heat exchanger that exchanges heat between the refrigerant in the refrigerant pipes between the outdoor heat exchanger and the refrigerant pipe between the liquid side branch pipes and the refrigerant pipe between the accumulator and the compressor suction port. As well as,
  The high pressure side to the low pressure side between the liquid side branch pipe side from the refrigerant heat exchanger of the refrigerant pipe between the outdoor heat exchanger and the liquid side branch pipe and between the refrigerant pipes between the accumulator and the refrigerant heat exchanger. Is provided with a bypass circuit with a throttle to return the saturated gas to.
[0010]
  The air conditioner according to the present invention includes a refrigerant heat exchanger, an outdoor heat exchanger, an outer pipe through which refrigerant flows between the liquid side branch pipes, a four-way switching valve, between accumulators, or an accumulator and a compressor intake. It has a double-pipe structure with an inner pipe that flows refrigerant between the mouths..
[0011]
  In the air conditioner according to the present invention, the refrigerant flow directions in the outer pipe and the inner pipe of the refrigerant heat exchanger are reversed..
[0014]
[Action]
In this invention, the high-temperature and high-pressure refrigerant condensed in the outdoor heat exchanger during cooling and the low-temperature and low-pressure refrigerant from the four-way switching valve to the accumulator or from the accumulator to the compressor inlet are heat-exchanged, The refrigerant is cooled and flows into the expansion valve through the liquid side branch pipe as a complete liquid refrigerant, so that the refrigerant distribution to the plurality of indoor heat exchangers is stabilized and the refrigerant noise generated in the expansion valve is reduced. . And since the refrigerant | coolant of a low voltage | pressure side is heated and becomes superheated gas, a liquid refrigerant is never suck | inhaled by a compressor at all.
[0015]
In addition, the superheat degree of the low-pressure side refrigerant due to the heat exchange between both the high-pressure side and low-pressure side refrigerant in the refrigerant heat exchanger is prevented by returning the saturated gas from the high-pressure side to the low-pressure side in the bypass circuit with a throttle.
Furthermore, since some saturated gas of the refrigerant further cooled by the refrigerant heat exchanger is returned to the low pressure side by the bypass circuit with throttle, the amount of refrigerant bypassed can be further reduced.
[0016]
In addition, since the refrigerant heat exchanger has a double-pipe structure of an outer pipe through which the high-pressure side high-temperature refrigerant flows and an inner pipe through which the low-pressure side low-temperature refrigerant flows, the high-pressure side high-temperature refrigerant is the low-temperature refrigerant in the inner pipe and the air around the outer pipe. As a result, the high-pressure side refrigerant is further subcooled.
Furthermore, since the refrigerant flow directions in the outer pipe and the inner pipe are reversed, the amount of heat exchange is further increased.
[0017]
In addition, when heating operation is started, by opening an electromagnetic valve or an electronic expansion valve of the bypass circuit from the compressor discharge port to the compressor suction port, the heated gas discharged from the compressor is sucked into the compressor, and the outdoor heat The liquid refrigerant that is liquefied by the exchanger and sucked into the compressor without being separated by the accumulator is gasified, and the load on the compressor is reduced.
[0018]
【Example】
Example 1.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of the first embodiment, where (1) is a compressor, (1a) is a discharge port thereof, (1b) is a suction port, (2) is a four-way selector valve, (3) Is an outdoor heat exchanger, (4) is a liquid side branch pipe, (5a) (5b) (5c) are electronic expansion valves, (6a) (6b) (6c) are indoor heat exchangers, (7) is The gas side branch pipe (8) is an accumulator, and the above is the same as the conventional example shown in FIG. (9) is the refrigerant pipe between the outdoor heat exchanger (3) and the liquid side branch pipe (4), (10) is the refrigerant pipe between the four-way selector valve (2) and the accumulator (8), and (11) is these Refrigerant heat exchanger that performs heat exchange of refrigerant in both refrigerant pipes (9) and (10), (12) is a liquid side branch pipe (4) side of the refrigerant heat exchanger (11) of the refrigerant pipe (9), It is a bypass circuit with a capillary throttle provided between the refrigerant pipe (10).
[0019]
Next, the refrigerant flow during cooling of the refrigerant circuit of this embodiment will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way switching valve (2) and exchanges heat with outdoor air in the outdoor heat exchanger (3) to release heat. As a result, it condenses into a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, and is cooled and completely liquefied by heat exchange with the low-temperature and low-pressure gas refrigerant in the refrigerant pipe (10) by the refrigerant heat exchanger (11). Are branched for each indoor unit by the liquid side branch pipe (4), depressurized by the respective electronic expansion valves (5a), (5b) and (5c) to become a complete gas-liquid two-phase, the indoor side of each indoor unit The heat exchanger (6a) (6b) (6c) is entered.
[0020]
In each indoor heat exchanger (6a) (6b) (6c), the gas-liquid two-phase refrigerant exchanges heat with the indoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure superheated gas or gas-liquid two-phase gas. It merges in the side branch pipe (7), passes through the four-way switching valve (2), and is exchanged with the high-pressure liquid refrigerant in the refrigerant pipe (9) by the refrigerant heat exchanger (11), heated, further gasified and accumulator (8 )to go into. The liquid refrigerant is separated by the accumulator (8) and sucked into the compressor (1) from the suction port (1b). This cycle is repeated thereafter.
[0021]
In addition, a part of the liquid refrigerant from the outdoor heat exchanger (3) to the refrigerant pipe (9) and the refrigerant heat exchanger (11) becomes saturated gas in the bypass circuit (12) with a throttle and enters the refrigerant pipe (10). Bypassing, the degree of superheat of the low-pressure gas refrigerant in the refrigerant pipe (10) is prevented from excessively rising due to heat exchange by the refrigerant heat exchanger (11), and the appropriate superheated gas passes through the accumulator (8). It is sucked into the compressor (1).
[0022]
During the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way selector valve (2) and passes through the gas side branch pipe (7) for each indoor unit. Into the indoor heat exchanger (6a) (6b) (6c) of each indoor unit. Each indoor-side heat exchanger (6a) (6b) (6c) exchanges heat with the indoor air and releases heat, condensing into a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, and each electronic expansion valve (5a ) (5b) (5c) is reduced to a complete gas-liquid two-phase and merges in the liquid side branch pipe (4), passes through the refrigerant heat exchanger (11) and refrigerant pipe (9), and the outdoor heat exchanger (3 )to go into. Heat is exchanged with outdoor air in the outdoor heat exchanger (3) to absorb heat and evaporate into a low-temperature and low-pressure superheated gas or gas-liquid two-phase, passing through the four-way selector valve (2) and the refrigerant piping (10) Then, the refrigerant passes through the refrigerant heat exchanger (11) and enters the accumulator (8). The liquid refrigerant is separated by the accumulator (8) and sucked into the compressor (1) from the suction port (1b).
[0023]
At this time, the refrigerant heat exchanger (11) performs heat exchange between the low-temperature and low-pressure refrigerant in the refrigerant pipe (9) and the low-temperature and low-pressure refrigerant in the refrigerant pipe (10). There is little difference in temperature and very effective heat exchange is not performed, and there is no need to provide a check valve or the like that bypasses the refrigerant heat exchanger (11) particularly during heating. In addition, since there is no pressure difference between both ends of the bypass circuit (12) with restriction, it does not operate effectively during heating. However, since the refrigerant heat exchanger (11) and the bypass bypass circuit (12) are not required during heating, a check valve is provided in the refrigerant heat exchanger (11) installation part of the refrigerant pipe (9) to remove them during heating. It may be bypassed.
[0024]
As described above, in this embodiment, the refrigerant flowing into the electronic expansion valves (5a), (5b), and (5c) by the refrigerant heat exchanger (11) during cooling is converted into the indoor heat exchangers (6a), (6b), (6c). The refrigerant is cooled and completely liquefied by the low-temperature and low-pressure refrigerant that has exited the refrigerant), so that the refrigerant distribution to the plurality of indoor heat exchangers (6a), (6b), and (6c) is stabilized, and Refrigerant noise generated in the expansion valves (5a) (5b) (5c) is reduced. Moreover, an excessive increase in the degree of superheat of the low-pressure gas refrigerant due to the heat exchange is prevented by bypassing the saturated gas by the bypass circuit with throttle (12).
[0025]
Example 2
In Example 1, the refrigerant heat exchanger (11) is connected between the outdoor heat exchanger (3), the refrigerant pipe (9) between the liquid side branch pipe (4), the four-way switching valve (2), and the accumulator (8). Although provided between the refrigerant pipe (10), it may be provided between the refrigerant pipe (9) and the refrigerant pipe (13) between the accumulator (8) and the compressor inlet (1b). FIG. 2 is a refrigerant circuit diagram of Example 2 in this case.
[0026]
In the figure, (1) is a compressor, (1a) is its discharge port, (1b) is a suction port, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (4) is a liquid side Branch pipe, (5a) (5b) (5c) is an electronic expansion valve, (6a) (6b) (6c) is an indoor heat exchanger, (7) is a gas branch pipe, (8) is an accumulator, (9 ) Is the refrigerant pipe between the outdoor heat exchanger (3) and the liquid side branch pipe (4), (10) is the refrigerant pipe between the four-way selector valve (2) and the accumulator (8), and (13) is the accumulator (8 ) And the compressor inlet (1b), (11) is a refrigerant heat exchanger for exchanging heat in the refrigerant pipes (9) and (13), and (12) is a refrigerant in the refrigerant pipe (9). A bypass circuit with a restriction such as a capillary tube provided between the liquid side branch pipe (4) side of the heat exchanger (11) and the refrigerant pipe (13).
[0027]
Next, the refrigerant flow during cooling of the refrigerant circuit of this embodiment will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way switching valve (2) and exchanges heat with outdoor air in the outdoor heat exchanger (3) to release heat. As a result, it condenses into a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, and is cooled by the heat exchange with the low-temperature and low-pressure gas refrigerant in the refrigerant pipe (13) by the refrigerant heat exchanger (11) to be completely liquefied. Are branched for each indoor unit by the liquid side branch pipe (4), depressurized by the respective electronic expansion valves (5a), (5b) and (5c) to become a complete gas-liquid two-phase, the indoor side of each indoor unit The heat exchanger (6a) (6b) (6c) is entered.
[0028]
In each indoor heat exchanger (6a) (6b) (6c), the gas-liquid two-phase refrigerant exchanges heat with the indoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure superheated gas or gas-liquid two-phase gas. Merges at the side branch pipe (7), passes through the four-way switching valve (2), and enters the accumulator (8). Even if the liquid refrigerant is separated by the accumulator (8) and the liquid refrigerant is not completely separated by the accumulator (8), the refrigerant heat exchanger (11) exchanges heat with the high-pressure liquid refrigerant in the refrigerant pipe (9). It is heated, completely gasified, and sucked into the compressor (1) through the suction port (1b). This cycle is repeated thereafter.
[0029]
In addition, a part of the liquid refrigerant from the outdoor heat exchanger (3) to the refrigerant pipe (9) and the refrigerant heat exchanger (11) becomes saturated gas in the bypass circuit (12) with a throttle and enters the refrigerant pipe (10). Bypassing, the degree of superheat of the low-pressure gas refrigerant in the refrigerant pipe (10) is prevented from excessively rising due to heat exchange by the refrigerant heat exchanger (11), and appropriate superheated gas is sucked into the compressor (1). Is done.
[0030]
As described above, also in this embodiment, the refrigerant flowing into the electronic expansion valves (5a), (5b), and (5c) by the refrigerant heat exchanger (11) during cooling is converted into the indoor side heat exchangers (6a), (6b), (6c). The refrigerant is cooled and completely liquefied by the low-temperature and low-pressure refrigerant that has exited the refrigerant), so that the refrigerant distribution to the plurality of indoor heat exchangers (6a), (6b), and (6c) is stabilized, and Refrigerant noise generated in the expansion valves (5a) (5b) (5c) is reduced. Moreover, an excessive increase in the degree of superheat of the low-pressure gas refrigerant due to the heat exchange is prevented by bypassing the saturated gas by the bypass circuit with throttle (12). Further, even if the liquid refrigerant is not completely separated by the accumulator (8), it is completely gasified by heat exchange by the refrigerant heat exchanger (11) and sucked into the compressor (1).
[0031]
In each of the above embodiments, a capillary tube is used for the bypass bypass circuit (12). However, equivalent control can be performed by using a mechanical expansion valve or an electronic expansion valve.
[0032]
3 and 4 show an example of the refrigerant heat exchanger (11) used in the first embodiment, FIG. 3 is a perspective view, and FIG. 4 is a longitudinal sectional view. In the figure, (11) is a refrigerant heat exchanger, an outdoor heat exchanger (3), an outer pipe (11a) communicating with the refrigerant pipe (9) between the liquid side branch pipe (4), and a four-way switching valve ( 2) It has a double pipe structure with an inner pipe (11b) communicating with the refrigerant pipe (10) between the accumulators (8). The refrigerant flow direction in the outer pipe (11a) and the refrigerant flow direction in the inner pipe (11b) are opposite to each other.
[0033]
Therefore, the structure is simple and can be manufactured at low cost, and the entire inner pipe (11b) is covered with a high-temperature and high-pressure refrigerant, so that a large heat transfer area is taken and efficient heat exchange is performed, and the high-temperature and high-pressure in the outer pipe (11a) is achieved. Since the refrigerant exchanges heat between the low-temperature refrigerant in the inner pipe (11b) and the air around the outer pipe (11a), the high-pressure refrigerant is further subcooled. Further, since the flow of the refrigerant to be heat exchanged is opposite, the most efficient counter flow heat exchange is performed.
Of course, the refrigerant heat exchanger (11) having this structure can obtain the same effect even when used in the second embodiment.
[0034]
Reference example 1.
  FIG. 5 shows the present invention.Reference example 1FIG. In the figure, (1) is a compressor, (1a) is its discharge port, (1b) is a suction port, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (4) is a liquid side Branch pipe, (5a) (5b) (5c) is an electronic expansion valve, (6a) (6b) (6c) is an indoor heat exchanger, (7) is a gas branch pipe, (8) is an accumulator, (9 ) Is the refrigerant pipe between the outdoor heat exchanger (3) and the liquid side branch pipe (4), (10) is the refrigerant pipe between the four-way selector valve (2) and the accumulator (8), and (11) is the refrigerant heat exchange. (13a) is a refrigerant pipe between the accumulator (8) and the refrigerant heat exchanger (11), (13b) is a refrigerant pipe between the refrigerant heat exchanger (11) and the compressor inlet (1b), (14) Is a refrigerant pipe between the compressor discharge port (1a) and the four-way selector valve (2), and the above is substantially the same as in the second embodiment. (15) is a bypass circuit between the refrigerant pipe (14) and the refrigerant pipe (13a), and (16) is an electromagnetic valve provided in the bypass circuit (15).
[0035]
Next, the refrigerant flow during cooling of the refrigerant circuit of this embodiment will be described. Since the solenoid valve (16) is closed during cooling, the operation during cooling is substantially the same as in the second embodiment. That is, the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way switching valve (2) and is heat-exchanged with outdoor air by the outdoor heat exchanger (3). Is condensed into a gas-liquid two-phase or liquid refrigerant at room temperature and pressure, and is cooled by the heat exchange with the low-temperature and low-pressure gas refrigerant in the refrigerant pipe (13) by the refrigerant heat exchanger (11). It is liquefied and branched for each indoor unit by the liquid side branch pipe (4), decompressed by the respective electronic expansion valves (5a), (5b), and (5c) to become a complete gas-liquid two-phase, It enters the indoor heat exchanger (6a) (6b) (6c).
[0036]
In each indoor heat exchanger (6a) (6b) (6c), the gas-liquid two-phase refrigerant exchanges heat with the indoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure superheated gas or gas-liquid two-phase gas. Merges at the side branch pipe (7), passes through the four-way switching valve (2), and enters the accumulator (8). Even if the liquid refrigerant is separated by the accumulator (8) and the liquid refrigerant is not completely separated by the accumulator (8), the refrigerant heat exchanger (11) exchanges heat with the high-pressure liquid refrigerant in the refrigerant pipe (9). It is heated, completely gasified, and sucked into the compressor (1) through the suction port (1b). This cycle is repeated thereafter.
[0037]
The electromagnetic valve (16) is opened for a predetermined time at the start of heating operation. Thereby, a part of the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the bypass circuit (15) and is sucked into the compressor (1) from the suction port (1b). . Therefore, the refrigerant liquefied in the compressor (1) or the outdoor heat exchanger (3) while the compressor (1) is not operating is liquefied by the accumulator (8) without being sufficiently separated. The liquid refrigerant sucked into the machine (1) is gasified by the high-temperature gas refrigerant from the bypass circuit (15), and the load on the compressor (1) at the start of the heating operation is significantly reduced. When this operation is continued for a predetermined time and all the refrigerant sucked into the compressor (1) becomes a gas refrigerant, the electromagnetic valve (16) is closed and a normal heating operation is started.
[0038]
That is, the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way switching valve (2) and is branched for each indoor unit by the gas side branch pipe (7). It enters the indoor heat exchanger (6a) (6b) (6c) of each indoor unit. Each indoor-side heat exchanger (6a) (6b) (6c) exchanges heat with the indoor air and releases heat, condensing into a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, and each electronic expansion valve (5a ) (5b) (5c) is reduced to a complete gas-liquid two-phase and merges in the liquid side branch pipe (4), passes through the refrigerant heat exchanger (11) and refrigerant pipe (9), and the outdoor heat exchanger (3 )to go into. By exchanging heat with outdoor air in the outdoor heat exchanger (3) and absorbing heat, it evaporates into a low-temperature and low-pressure superheated gas or gas-liquid two-phase, and the four-way switching valve (2) and refrigerant pipe (10) are connected. Enter the street accumulator (8). The liquid refrigerant is separated by the accumulator (8), passes through the refrigerant heat exchanger (11), and is sucked into the compressor (1) from the suction port (1b).
[0039]
Reference example 2.
  Reference example 1The bypass circuit (15) is provided between the refrigerant pipe (14) and the refrigerant pipe (13a), but may be provided between the refrigerant pipe (14) and the refrigerant pipe (13a). Figure 6 showsReference example 2FIG. In the figure, (1) is a compressor, (1a) is its discharge port, (1b) is a suction port, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (4) is a liquid side Branch pipe, (5a) (5b) (5c) is an electronic expansion valve, (6a) (6b) (6c) is an indoor heat exchanger, (7) is a gas branch pipe, (8) is an accumulator, (9 ) Is the refrigerant pipe between the outdoor heat exchanger (3) and the liquid side branch pipe (4), (10) is the refrigerant pipe between the four-way selector valve (2) and the accumulator (8), and (11) is the refrigerant heat exchange. (13a) is a refrigerant pipe between the accumulator (8) and the refrigerant heat exchanger (11), (13b) is a refrigerant pipe between the refrigerant heat exchanger (11) and the compressor inlet (1b), (14) Is a refrigerant pipe between the compressor discharge port (1a) and the four-way selector valve (2), (15) is a bypass circuit between the refrigerant pipe (14) and the refrigerant pipe (13b), and (16) is a bypass circuit (15 ) Solenoid valve provided inside.
  The operation of this embodiment isReference example 1The description is omitted because it is substantially the same as.
[0040]
Reference example 3.
  Reference example 1In, it has a plurality of electronic expansion valves (5a) (5b) (5c), a plurality of indoor heat exchangers (6a) (6b) (6c), a liquid side branch pipe (4) and a gas side branch pipe (7) The multi-room air conditioner has been described, but the effect of providing the bypass circuit (15) is the same even if the indoor heat exchanger is an air conditioner using one refrigerant circuit. Figure 7 showsReference example 3FIG.
[0041]
In the figure, (1) is a compressor, (1a) is its discharge port, (1b) is a suction port, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (5) is an electronic expansion Valve, (6) indoor heat exchanger, (8) accumulator, (9) refrigerant piping between outdoor heat exchanger (3) and electronic expansion valve (5), (10) four-way switching valve ( 2) and refrigerant pipe between accumulator (8), (13) refrigerant pipe between accumulator (8) and compressor inlet (1b), (14) compressor outlet (1a) and four-way switching valve (2 ) Refrigerant piping, (15) is a bypass circuit, and (16) is a solenoid valve.
[0042]
Next, the refrigerant flow during cooling of the refrigerant circuit of this embodiment will be described. The electromagnetic valve (16) is closed during cooling. The high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way switching valve (2) and exchanges heat with outdoor air in the outdoor heat exchanger (3) to release heat. As a result, it condenses into a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, and is depressurized by the electronic expansion valve (5) to become a complete gas-liquid two-phase and enters the indoor heat exchanger (6).
[0043]
The electromagnetic valve (16) is opened for a predetermined time at the start of heating operation. Thereby, a part of the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the bypass circuit (15) and is sucked into the compressor (1) from the suction port (1b). . Therefore, the refrigerant liquefied in the compressor (1) or the outdoor heat exchanger (3) while the compressor (1) is not operating is liquefied by the accumulator (8) without being sufficiently separated. The liquid refrigerant sucked into the machine (1) is gasified by the high-temperature gas refrigerant from the bypass circuit (15), and the load on the compressor (1) at the start of the heating operation is significantly reduced. When this operation is continued for a predetermined time and all the refrigerant sucked into the compressor (1) becomes a gas refrigerant, the electromagnetic valve (16) is closed and a normal heating operation is started.
[0044]
That is, the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the four-way switching valve (2) and enters the indoor heat exchanger (6). By exchanging heat with indoor air in the indoor heat exchanger (6) and releasing heat, it condenses to become a gas-liquid two-phase or liquid refrigerant at room temperature and high pressure, and is decompressed by the electronic expansion valve (5) to complete gas-liquid two-phase. It becomes a phase, merges at the liquid side branch pipe (4), passes through the refrigerant heat exchanger (11) and the refrigerant pipe (9), and enters the outdoor heat exchanger (3). By exchanging heat with outdoor air in the outdoor heat exchanger (3) and absorbing heat, it evaporates into a low-temperature and low-pressure superheated gas or gas-liquid two-phase, and the four-way switching valve (2) and refrigerant pipe (10) are connected. Enter the street accumulator (8). The liquid refrigerant is separated by the accumulator (8), passes through the refrigerant pipe (13), and is sucked into the compressor (1) from the suction port (1b).
[0045]
  Reference example 3The refrigerant heat exchanger (11) is not provided because there is no need to consider refrigerant distribution by multiple electronic expansion valves (5a) (5b) (5c), but the refrigerant noise of the electronic expansion valve (5) is reduced. Therefore, the refrigerant heat exchanger (11) may be provided between the refrigerant pipes (9) and (10) or between the refrigerant pipes (9) and (13).
  Also,Reference Examples 1-3In FIG. 1, the bypass circuit (15) is opened and closed by the electromagnetic valve (16). However, noise caused by opening and closing of the bypass circuit (15) can be reduced by slowly opening and closing the electronic expansion valve.Reference Examples 4-6Is an example of this case.
[0046]
Reference example 4.
  Figure 8Reference example 4FIG. In the figure, (1) is a compressor, (1a) is its discharge port, (1b) is a suction port, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (4) is a liquid side Branch pipe, (5a) (5b) (5c) is an electronic expansion valve, (6a) (6b) (6c) is an indoor heat exchanger, (7) is a gas branch pipe, (8) is an accumulator, (9 ) Is the refrigerant pipe between the outdoor heat exchanger (3) and the liquid side branch pipe (4), (10) is the refrigerant pipe between the four-way selector valve (2) and the accumulator (8), and (11) is the refrigerant heat exchange. (13a) is a refrigerant pipe between the accumulator (8) and the refrigerant heat exchanger (11), (13b) is a refrigerant pipe between the refrigerant heat exchanger (11) and the compressor inlet (1b), (14) Is a refrigerant pipe between the compressor discharge port (1a) and the four-way selector valve (2), (15) is a bypass circuit between the refrigerant pipe (14) and the refrigerant pipe (13a), and (17) is a bypass circuit (15 ) Is an electronic expansion valve provided inside.
[0047]
  The operation during cooling and normal heating in this embodiment is as follows.Reference example 3Since this is the same as the above, the description is omitted, and the operation at the start of heating will be described.
  At the start of heating operation, the electronic expansion valve (17) is controlled and slowly opened. As a result, part of the high-temperature and high-pressure gas refrigerant compressed by the compressor (1) and discharged from the discharge port (1a) passes through the bypass circuit (15) and generates noise from the suction port (1b) to the compressor (1). Inhaled slowly without Therefore, the refrigerant liquefied in the compressor (1) or the outdoor heat exchanger (3), etc. during the shutdown of the compressor (1) is liquefied and compressed without being sufficiently separated by the accumulator (8). The liquid refrigerant sucked into the machine (1) is gasified by the high-temperature gas refrigerant from the bypass circuit (15), and the load on the compressor (1) at the start of the heating operation is significantly reduced. When this operation is continued for a predetermined time and all the refrigerant sucked into the compressor (1) becomes a gas refrigerant, the electronic expansion valve (17) is slowly closed and a normal heating operation is started.
[0048]
Reference Example 5.
  Figure 9Reference Example 5FIG. In the figure, (1) is a compressor, (1a) is its discharge port, (1b) is a suction port, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (4) is a liquid side Branch pipe, (5a) (5b) (5c) is an electronic expansion valve, (6a) (6b) (6c) is an indoor heat exchanger, (7) is a gas branch pipe, (8) is an accumulator, (9 ) Is the refrigerant pipe between the outdoor heat exchanger (3) and the liquid side branch pipe (4), (10) is the refrigerant pipe between the four-way selector valve (2) and the accumulator (8), and (11) is the refrigerant heat exchange. (13a) is a refrigerant pipe between the accumulator (8) and the refrigerant heat exchanger (11), (13b) is a refrigerant pipe between the refrigerant heat exchanger (11) and the compressor inlet (1b), (14) Is a refrigerant pipe between the compressor discharge port (1a) and the four-way selector valve (2), (15) is a bypass circuit between the refrigerant pipe (14) and the refrigerant pipe (13b), and (17) is a bypass circuit (15 ) Is an electronic expansion valve provided inside.
  The operation of this embodiment isReference example 4The description is omitted because it is substantially the same as.
[0049]
Reference Example 6.
  FIG.Reference Example 6FIG. In the figure, (1) is a compressor, (1a) is its discharge port, (1b) is a suction port, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (5) is an electronic expansion Valve, (6) indoor heat exchanger, (8) accumulator, (9) refrigerant piping between outdoor heat exchanger (3) and electronic expansion valve (5), (10) four-way switching valve ( 2) and refrigerant pipe between accumulator (8), (13) refrigerant pipe between accumulator (8) and compressor inlet (1b), (14) compressor outlet (1a) and four-way switching valve (2 ) Refrigerant piping, (15) is a bypass circuit, and (17) is an electronic expansion valve provided in the bypass circuit (15).
  The operation of the electronic expansion valve (17) of this embodiment isReference example 4And the other parts areReference example 3The explanation is omitted because it is the same as.
[0050]
【The invention's effect】
In this invention, the high-temperature and high-pressure refrigerant condensed in the outdoor heat exchanger during cooling and the low-temperature and low-pressure refrigerant from the four-way switching valve to the accumulator or from the accumulator to the compressor inlet are heat-exchanged, Since the refrigerant is cooled and flows into the expansion valve through the liquid side branch pipe as a complete liquid refrigerant, the refrigerant distribution to the plurality of indoor heat exchangers is stabilized, and the refrigerant sound generated in the expansion valve is reduced. Since the low-pressure side refrigerant is heated to become superheated gas and sucked into the compressor, liquid compression can be prevented.
[0051]
In addition, the superheat degree of the low-pressure side refrigerant due to the heat exchange of both refrigerants on the high-pressure side and low-pressure side in the refrigerant heat exchanger is prevented by returning saturated gas from the high-pressure side to the low-pressure side in the bypass circuit with restriction, and always The compressor has an effect of sucking an appropriate superheated gas into the compressor.
[0052]
Furthermore, since a part of the saturated gas of the refrigerant further cooled by the refrigerant heat exchanger is returned to the low pressure side by the bypass circuit with the throttle, the amount of refrigerant to be bypassed can be reduced.
[0053]
In addition, since the refrigerant heat exchanger has a double-pipe structure of an outer pipe through which the high-pressure side high-temperature refrigerant flows and an inner pipe through which the low-pressure side low-temperature refrigerant flows, the high-pressure side high-temperature refrigerant includes As a result, the high-pressure side refrigerant is further subcooled.
[0054]
Furthermore, since the refrigerant flow directions in the outer tube and the inner tube are reversed, the heat exchange amount is further increased.
[0055]
In addition, since a bypass circuit that is opened and closed by a solenoid valve is provided between the compressor discharge port and the compressor suction port, the heating gas discharged from the compressor is opened by opening this solenoid valve when heating operation starts. Liquid refrigerant that is sucked into the compressor, liquefied by the outdoor heat exchanger, etc., and sucked into the compressor without being separated by the accumulator is gasified, reducing the load on the compressor and extending the life of the compressor. It is what you have.
[0056]
In addition, since the bypass circuit is opened and closed by the electronic expansion valve at the start of heating operation, the load on the compressor is reduced, the life of the compressor is extended, and the electronic expansion valve is opened and closed slowly to open and close the valve. The noise value is reduced.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of Example 1. FIG.
2 is a refrigerant circuit diagram of Example 2. FIG.
3 is a perspective view of a refrigerant heat exchanger used in Embodiment 1. FIG.
4 is a longitudinal sectional view of a refrigerant heat exchanger used in Example 1. FIG.
5 is a refrigerant circuit diagram of Reference Example 1. FIG.
6 is a refrigerant circuit diagram of Reference Example 2. FIG.
7 is a refrigerant circuit diagram of Reference Example 3. FIG.
FIG. 8 is a refrigerant circuit diagram of Reference Example 4.
9 is a refrigerant circuit diagram of Reference Example 5. FIG.
10 is a refrigerant circuit diagram of Reference Example 6. FIG.
FIG. 11 is a refrigerant circuit diagram of a conventional multi-room air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 1a Discharge port, 1b Inlet port, 2 Four-way switching valve, 3 Outdoor heat exchanger, 4 Liquid side branch pipe, 5, 5a, 5b, 5c Electronic expansion valve, 6, 6a, 6b, 6c Indoor side Heat exchanger, 7 gas side branch pipe, 8 accumulator, 9, 10, 13, 14 refrigerant piping, 11 refrigerant heat exchanger, 12 bypass circuit with throttle, 15 bypass circuit, 16 solenoid valve, 17 electronic expansion valve.

Claims (3)

圧縮機吐出口から、四方切換弁、室外側熱交換器、液側分岐管、複数の膨張弁、複数の室内側熱交換器、ガス側分岐管、四方切換弁、及びアキュムレータをへて圧縮機吸入口にいたる冷媒回路を備えた多室形空気調和機において、
上記室外側熱交換器、液側分岐管間の冷媒配管と上記アキュムレータ、圧縮機吸入口間の冷媒配管との間に、これら両冷媒配管内の冷媒の熱交換を行う冷媒熱交換器を設けるとともに
上記室外側熱交換器、液側分岐管間の冷媒配管の冷媒熱交換器より液側分岐管側と、上記アキュムレータ、冷媒熱交換器間の冷媒配管間との間に、高圧側から低圧側に飽和ガスを戻すための絞り付きバイパス回路を設けたことを特徴とする空気調和機。
Compressor from compressor outlet to four-way switching valve, outdoor heat exchanger, liquid side branch pipe, multiple expansion valves, multiple indoor heat exchangers, gas side branch pipe, four-way switching valve, and accumulator In a multi-chamber air conditioner equipped with a refrigerant circuit leading to the inlet,
The outdoor heat exchanger, a refrigerant pipe between the liquid side branch pipes, the accumulator, between a refrigerant pipe between the compressor inlet, a refrigerant heat exchanger for exchanging heat of the coolant of both the refrigerant in the pipe provided Rutotomoni,
The high pressure side to the low pressure side between the liquid side branch pipe side from the refrigerant heat exchanger of the refrigerant pipe between the outdoor heat exchanger and the liquid side branch pipe and between the refrigerant pipes between the accumulator and the refrigerant heat exchanger. An air conditioner provided with a bypass circuit with a throttle for returning saturated gas to the interior .
冷媒熱交換器を、室外側熱交換器、液側分岐管間の冷媒を流す外管と、四方切換弁、アキュムレータ間、或はアキュムレータ、圧縮機吸入口間の冷媒を流す内管との二重管構造としたことを特徴とする請求項1記載の空気調和機 The refrigerant heat exchanger is composed of an outdoor heat exchanger, an outer pipe for flowing refrigerant between the liquid side branch pipes, and an inner pipe for flowing refrigerant between the four-way switching valve and the accumulator or between the accumulator and the compressor suction port. The air conditioner according to claim 1, wherein the air conditioner has a double pipe structure . 冷媒熱交換器の外管内と内管内の冷媒の流れ方向を反対としたことを特徴とする請求項2記載の空気調和機 The air conditioner according to claim 2, wherein the flow direction of the refrigerant in the outer pipe and the inner pipe of the refrigerant heat exchanger is reversed .
JP31963694A 1994-12-22 1994-12-22 Air conditioner Expired - Fee Related JP3723244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31963694A JP3723244B2 (en) 1994-12-22 1994-12-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31963694A JP3723244B2 (en) 1994-12-22 1994-12-22 Air conditioner

Publications (2)

Publication Number Publication Date
JPH08178450A JPH08178450A (en) 1996-07-12
JP3723244B2 true JP3723244B2 (en) 2005-12-07

Family

ID=18112512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31963694A Expired - Fee Related JP3723244B2 (en) 1994-12-22 1994-12-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP3723244B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432580B (en) 2006-04-26 2010-12-08 东芝开利株式会社 Air conditioner
CN102331040B (en) * 2011-08-05 2013-08-07 海尔集团公司 Freon-free direct-current frequency conversion air conditioner and control method
JP5991989B2 (en) 2011-11-29 2016-09-14 三菱電機株式会社 Refrigeration air conditioner
JP6623076B2 (en) * 2016-02-18 2019-12-18 東芝キヤリア株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPH08178450A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
CN111237928B (en) Double-temperature double-flash air conditioner refrigerating system
CN109386985B (en) Two-pipe jet enthalpy-increasing outdoor unit and multi-split system
JP3723244B2 (en) Air conditioner
JP6735896B2 (en) Refrigeration cycle equipment
JP4747439B2 (en) Multi-room air conditioner
JPH10176869A (en) Refrigeration cycle device
CN110207417B (en) Air conditioning system
CA3081380C (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
JP2998740B2 (en) Air conditioner
JP3991654B2 (en) Air conditioner
JPH078999Y2 (en) Air source heat pump
JP2646709B2 (en) Air conditioner
JP2817816B2 (en) Multi-room air conditioner
JP2004347269A (en) Refrigeration device
CN215637633U (en) Outdoor machine of air conditioner
CN219103371U (en) Air conditioning system
CN216953600U (en) Self-defrosting type air injection enthalpy-increasing heat pump device
JPH03170758A (en) Air conditioner
JPH04257660A (en) Two stage compression refrigerating cycle device
JP3451505B2 (en) Refrigerant circuit
JP2005042980A (en) Heat accumulating type air conditioner
JPH11304265A (en) Air conditioner
JPH04257661A (en) Two stage compression refrigerating cycle device
JPH0113968Y2 (en)
KR100510849B1 (en) Condensation Structure of Refrigeration System

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees