JPH0875290A - Heat pump type air conditioner - Google Patents
Heat pump type air conditionerInfo
- Publication number
- JPH0875290A JPH0875290A JP21235494A JP21235494A JPH0875290A JP H0875290 A JPH0875290 A JP H0875290A JP 21235494 A JP21235494 A JP 21235494A JP 21235494 A JP21235494 A JP 21235494A JP H0875290 A JPH0875290 A JP H0875290A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- refrigerant
- heat exchanger
- heat
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は非共沸混合冷媒を用いた
ヒートポンプ式空調装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner using a non-azeotropic mixed refrigerant.
【0002】[0002]
【従来の技術】オゾン層保護のためにCFC類に加え、
HCFC類の規制が強化されている。HCFC22は、
現在、空調冷凍装置の冷媒として広く用いられている。
HCFC22の代替候補として、オゾン層を破壊しないHFC
類のうち、HFC32,HFC125,HFC134a等を混
合した非共沸混合冷媒が考えられる。現在、従来機であ
るHCFC22用機器に非共沸混合冷媒を用いた場合の
評価試験が行われている。評価試験結果は、社団法人日
本冷凍協会発行,冷凍第69巻第795号,平成6年1
月号の第100頁から第111頁に記載されている。2. Description of the Related Art In addition to CFCs for protecting the ozone layer,
Regulations on HCFCs are being tightened. HCFC22 is
At present, it is widely used as a refrigerant for air conditioning refrigeration equipment.
HFCs that do not destroy the ozone layer as alternatives to HCFC22
Among these, a non-azeotropic mixed refrigerant in which HFC32, HFC125, HFC134a, etc. are mixed is considered. Currently, an evaluation test is being performed when a non-azeotropic mixed refrigerant is used in a conventional HCFC22 device. Evaluation test results are published by The Japan Refrigeration Association, Refrigeration Vol. 69, No. 795, 1994.
It is described on pages 100 to 111 of the monthly issue.
【0003】[0003]
【発明が解決しようとする課題】従来機であるHCFC
22用のヒートポンプ式空調装置に、代替候補である非
共沸混合冷媒を用いた場合、暖房運転時及び冷房運転時
に能力及び成績係数(COP)がHCFC22より低下
するという問題がある。非共沸混合冷媒は蒸発及び凝縮
過程で温度変化を生じるという特徴があり、これが熱交
換器の性能低下となりCOP低下の一要因になっている
と考えられる。[Problems to be Solved by the Invention] HCFC which is a conventional machine
When a non-azeotropic mixed refrigerant which is a substitute candidate is used for the heat pump type air conditioner for 22, the capacity and the coefficient of performance (COP) are lower than those of the HCFC22 during the heating operation and the cooling operation. The non-azeotropic mixed refrigerant has a characteristic of causing a temperature change in the evaporation and condensation processes, and it is considered that this is a factor of reducing the performance of the heat exchanger and reducing the COP.
【0004】本発明の目的は、非共沸混合冷媒を用いた
ヒートポンプ式空調装置で、暖房運転時及び冷房運転時
ともに、能力,COPを向上させることにある。An object of the present invention is to improve the capacity and COP of a heat pump type air conditioner using a non-azeotropic mixed refrigerant both during heating operation and during cooling operation.
【0005】[0005]
【課題を解決するための手段】第一の発明は圧縮機,四
方弁,室内外接続ガス配管,室内熱交換器,室内外接続
液配管,減圧器,室外熱交換器を接続し、非共沸混合冷
媒を封入してなるヒートポンプ式空調装置で、室内外接
続液配管と減圧器との間の冷媒と、圧縮機に吸入される
冷媒を熱交換する補助熱交換器を設ける。[Means for Solving the Problems] The first aspect of the invention is to connect a compressor, a four-way valve, an indoor / outdoor connecting gas pipe, an indoor heat exchanger, an indoor / outdoor connecting liquid pipe, a pressure reducer, and an outdoor heat exchanger. In a heat pump type air conditioner in which a boiling mixed refrigerant is enclosed, an auxiliary heat exchanger for exchanging heat between the refrigerant between the indoor / outdoor connecting liquid pipe and the pressure reducer and the refrigerant sucked into the compressor is provided.
【0006】第二の発明は圧縮機,四方弁,室内熱交換
器,減圧器,室外熱交換器を接続し、非共沸混合冷媒を
封入したヒートポンプ式空調装置で、減圧器として第一
の減圧器と第二の減圧器を設け、第一の減圧器と第二の
減圧器との間の冷媒と、圧縮機に吸入される冷媒を熱交
換する補助熱交換器を設ける。The second invention is a heat pump type air conditioner in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer and an outdoor heat exchanger are connected and a non-azeotropic mixed refrigerant is enclosed. A pressure reducer and a second pressure reducer are provided, and an auxiliary heat exchanger for exchanging heat between the refrigerant between the first pressure reducer and the second pressure reducer and the refrigerant sucked into the compressor is provided.
【0007】第三の発明は圧縮機,四方弁,室内熱交換
器,受液器,減圧器,室外熱交換器を接続し、非共沸混
合冷媒を封入したヒートポンプ式空調装置で、膨張弁流
入側に設けられた受液器内の冷媒と、圧縮機に吸入され
る冷媒を熱交換する構成とする。A third invention is a heat pump type air conditioner in which a compressor, a four-way valve, an indoor heat exchanger, a liquid receiver, a decompressor and an outdoor heat exchanger are connected to each other and a non-azeotropic mixed refrigerant is enclosed in the expansion valve. The refrigerant in the liquid receiver provided on the inflow side and the refrigerant sucked into the compressor are heat-exchanged.
【0008】[0008]
【作用】上記構成により、蒸発器としてはたらく熱交換
器の入口乾き度を暖房運転時,冷房運転時とも従来に比
べ小さくでき、同一入口温度とした場合、非共沸混合冷
媒の特性から、蒸発圧力を高くできる。したがって、蒸
発圧力上昇により、圧縮機吸入ガス冷媒の比容積が減少
し、暖房能力及び冷房能力を増加させることができる。
また、蒸発圧力上昇により、単位質量当たりの圧縮仕事
が減少し、モリエル線図上でのCOPが向上するととも
に、圧縮比減少により圧縮機の全断熱効率が向上する。
そのため、暖房運転時及び冷房運転時の空調装置のCO
Pを向上させることができる。With the above construction, the inlet dryness of the heat exchanger functioning as an evaporator can be made smaller than before in both heating operation and cooling operation. The pressure can be increased. Therefore, due to the increase in the evaporation pressure, the specific volume of the compressor suction gas refrigerant decreases, and the heating capacity and the cooling capacity can be increased.
Further, the increase of the evaporation pressure reduces the compression work per unit mass, which improves the COP on the Mollier diagram, and the reduction of the compression ratio improves the total adiabatic efficiency of the compressor.
Therefore, the CO of the air conditioner during heating operation and cooling operation
P can be improved.
【0009】[0009]
【実施例】以下、本発明の実施例を図面を用いて説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
【0010】図1は本発明の第一の実施例のヒートポン
プ式空調装置の構成図である。図4,図5はそれぞれ本
発明のヒートポンプ式空調装置の暖房運転時,冷房運転
時の動作状態をモリエル線図上に示したものである。FIG. 1 is a block diagram of a heat pump type air conditioner according to a first embodiment of the present invention. 4 and 5 show the operating states of the heat pump type air conditioner of the present invention during the heating operation and the cooling operation, respectively, on the Mollier diagram.
【0011】図1で、1は冷媒を圧縮する圧縮機、2は
冷暖切りかえのための四方弁、3aは配管継手、3は室
内外接続ガス配管、3bは配管継手、4は室内熱交換
器、5は室内熱交換器用送風機、6bは配管継手、6は
室内外接続液配管、6aは配管継手、7は減圧器として
の電動膨張弁、8は室外熱交換器、9は室外熱交換器用
送風機、10は補助熱交換器で配管継手6aと電動膨張
弁7の間の液冷媒配管11と、四方弁2と圧縮機1の間
の低圧配管12を熱交換可能に設けられている。A,B
はそれぞれ室外ユニット,室内ユニットを示す。冷媒と
して、非共沸混合冷媒が封入されており、暖房運転時は
実線矢印方向へ、冷房運転時は破線矢印方向へ流れる。In FIG. 1, 1 is a compressor for compressing a refrigerant, 2 is a four-way valve for switching between hot and cold switching, 3a is a pipe joint, 3 is an indoor / outdoor connecting gas pipe, 3b is a pipe joint, 4 is an indoor heat exchanger. 5 is a blower for an indoor heat exchanger, 6b is a pipe joint, 6 is an indoor / outdoor connecting liquid pipe, 6a is a pipe joint, 7 is an electric expansion valve as a pressure reducer, 8 is an outdoor heat exchanger, and 9 is an outdoor heat exchanger. The blower 10 is an auxiliary heat exchanger, and is provided with a liquid refrigerant pipe 11 between the pipe joint 6a and the electric expansion valve 7 and a low pressure pipe 12 between the four-way valve 2 and the compressor 1 so that heat can be exchanged. A, B
Indicates an outdoor unit and an indoor unit, respectively. A non-azeotropic mixed refrigerant is enclosed as a refrigerant, and flows in a solid arrow direction during heating operation and flows in a broken arrow direction during cooling operation.
【0012】補助熱交換器10の具体的な構造を図2に
示す。低圧配管12を内管とし、液冷媒配管11を外管
とする二重管式となっており、外管の外周は断熱材13
で覆われている。伝熱促進のため内管の管内表面及び管
外表面にはらせん状の溝が設けられている。また、図3
に示すように、伝熱促進のため内面にらせん状の溝を施
した液冷媒配管11と低圧配管12を近接させ接合し、
断熱材13で覆い、熱交換させてもよい。伝熱管の伝熱
促進のため、冷媒の攪拌効果により伝熱特性を向上させ
るらせん状の溝を設け、同様の効果がある突起物あるい
は伝熱面積拡大のためのフィンを設けてもよい。A specific structure of the auxiliary heat exchanger 10 is shown in FIG. The low-pressure pipe 12 is an inner pipe, and the liquid refrigerant pipe 11 is an outer pipe, which is a double pipe type, and the outer periphery of the outer pipe is a heat insulating material 13.
Covered with. Helical grooves are provided on the inner surface and the outer surface of the inner tube to promote heat transfer. Also, FIG.
As shown in, the liquid refrigerant pipe 11 and the low-pressure pipe 12 each having a spiral groove on the inner surface for advancing heat transfer are brought close to each other and joined,
It may be covered with the heat insulating material 13 to allow heat exchange. In order to accelerate the heat transfer of the heat transfer tube, a spiral groove for improving the heat transfer characteristics by the stirring effect of the refrigerant may be provided, and protrusions having the same effect or fins for expanding the heat transfer area may be provided.
【0013】このように構成したヒートポンプ式空調装
置の動作状態を暖房運転時と冷房運転時に分けて説明す
る。まず、暖房運転時の動作状態を図1,図4を用いて
説明する。圧力P1,エンタルピh1のガス冷媒は圧縮
機1により圧縮され、圧力P2,エンタルピh2とな
り、図1の実線矢印で示すように四方弁2,配管継手3
a,室内外接続ガス配管3,配管継手3bを経て室内熱
交換器4に入り、室内熱交換器用送風機5により送られ
てくる空気へ放熱し凝縮して圧力P2,エンタルピh3
の液冷媒となる。この高温の液冷媒は配管継手6b,室
内外接続液配管6,配管継手6aを経て、液冷媒配管1
1に入り、補助熱交換器10で低圧配管12内の低温の
液ガス二相冷媒と熱交換し冷却され、エンタルピh4と
なる。次に、この液冷媒は電動膨張弁7によりP1に減
圧され液ガス二相冷媒となり、室外熱交換器8に入り、
室外熱交換器用送風機9により送られてくる空気から吸
熱し蒸発してエンタルピh5となる。室外熱交換器8を
出た低温の液ガス二相冷媒は四方弁2を経て、低圧配管
12に入り、補助熱交換器10で液冷媒配管11内の高
温の液冷媒と熱交換し加熱されエンタルピh1となり圧
縮機1に戻る。なお、本実施例では、各位置での冷媒の
状態を具体的に液冷媒,液ガス二相冷媒,ガス冷媒と説
明しているが、運転状態により冷媒の状態は変化する。The operation state of the heat pump type air conditioner thus configured will be described separately for the heating operation and the cooling operation. First, the operating state during the heating operation will be described with reference to FIGS. The gas refrigerant having the pressure P1 and the enthalpy h1 is compressed by the compressor 1 to become the pressure P2 and the enthalpy h2, and the four-way valve 2 and the pipe joint 3 are provided as indicated by the solid arrow in FIG.
a, the indoor / outdoor connection gas pipe 3, the pipe joint 3b, the indoor heat exchanger 4, and the heat sent to the air sent by the indoor heat exchanger blower 5 is condensed and condensed into the pressure P2, the enthalpy h3.
It becomes the liquid refrigerant of. This high-temperature liquid refrigerant passes through the pipe joint 6b, the indoor / outdoor connecting liquid pipe 6, and the pipe joint 6a, and then the liquid refrigerant pipe 1
1, the auxiliary heat exchanger 10 exchanges heat with the low-temperature liquid gas two-phase refrigerant in the low-pressure pipe 12 and is cooled to become enthalpy h4. Next, this liquid refrigerant is decompressed to P1 by the electric expansion valve 7 to become a liquid gas two-phase refrigerant, and enters the outdoor heat exchanger 8,
The air sent from the outdoor heat exchanger blower 9 absorbs heat from the air and evaporates to become enthalpy h5. The low-temperature liquid-gas two-phase refrigerant that has exited the outdoor heat exchanger 8 enters the low-pressure pipe 12 via the four-way valve 2 and is heated in the auxiliary heat exchanger 10 by exchanging heat with the high-temperature liquid refrigerant in the liquid-refrigerant pipe 11. It becomes enthalpy h1 and returns to compressor 1. In this embodiment, the state of the refrigerant at each position is specifically described as a liquid refrigerant, a liquid gas two-phase refrigerant, and a gas refrigerant, but the state of the refrigerant changes depending on the operating state.
【0014】図4に破線で示した従来例と比較すると、
本発明は暖房運転時、蒸発器としてはたらく室外熱交換
器8の入口冷媒乾き度を小さくでき、同一入口温度とし
た場合、蒸発圧力を高くできる。したがって、蒸発圧力
上昇により、圧縮機吸入ガス冷媒の比容積が減少し、暖
房能力を増加させることができる。また、蒸発圧力上昇
により、単位質量当たりの圧縮仕事が減少し、モリエル
線図上でのCOPが向上し、圧縮比減少により圧縮機の
全断熱効率が向上する。そのため、暖房運転時の空調装
置のCOPを向上させることができる。As compared with the conventional example shown by the broken line in FIG.
In the present invention, during the heating operation, the dryness of the refrigerant at the inlet of the outdoor heat exchanger 8 serving as an evaporator can be reduced, and the evaporation pressure can be increased when the same inlet temperature is used. Therefore, due to the increase in the evaporation pressure, the specific volume of the compressor suction gas refrigerant decreases, and the heating capacity can be increased. Further, the increase of the evaporation pressure reduces the compression work per unit mass, the COP on the Mollier diagram is improved, and the reduction of the compression ratio improves the total adiabatic efficiency of the compressor. Therefore, the COP of the air conditioner during the heating operation can be improved.
【0015】次に、ヒートポンプ式空調装置の冷房運転
時の動作を図1,図5を用いて説明する。圧力P1,エ
ンタルピh1のガス冷媒は圧縮機1により圧縮され、圧
力P2,エンタルピh2となり、図1の破線矢印で示す
ように四方弁2を経て室外熱交換器8に入り、室外熱交
換器用送風機9により送られてくる空気へ放熱し凝縮し
て圧力P2,エンタルピh3の液冷媒となる。この液冷
媒は電動膨張弁7によりP3に減圧され中温度の液ガス
二相冷媒となり、液冷媒配管11に入り、補助熱交換器
10で低圧配管12内の低温の液ガス二相冷媒と熱交換
し冷却され、エンタルピh4となる。この液ガス二相冷
媒は、室内外接続液配管6で圧力損失によりP1とな
り、室内側熱交換器4に入り、室内熱交換器用送風機5
により送られてくる空気から吸熱し蒸発してエンタルピ
h5となる。室内熱交換器4を出た低温の液ガス二相冷
媒は室内外接続ガス配管3,四方弁2を経て、低圧配管
12に入り、補助熱交換器10で配管11内の中温度の
液ガス二相冷媒と熱交換し加熱されエンタルピh1とな
り圧縮機1に戻る。Next, the operation of the heat pump type air conditioner during the cooling operation will be described with reference to FIGS. The gas refrigerant having the pressure P1 and the enthalpy h1 is compressed by the compressor 1 to become the pressure P2 and the enthalpy h2, and enters the outdoor heat exchanger 8 through the four-way valve 2 as shown by the broken line arrow in FIG. Heat is radiated to the air sent by 9 and condensed to become a liquid refrigerant having a pressure P2 and an enthalpy h3. This liquid refrigerant is decompressed to P3 by the electric expansion valve 7 to become a medium-temperature liquid gas two-phase refrigerant, enters the liquid refrigerant pipe 11, and the auxiliary heat exchanger 10 heats the low-temperature liquid gas two-phase refrigerant in the low-pressure pipe 12. It is exchanged and cooled to become enthalpy h4. This liquid gas two-phase refrigerant becomes P1 due to pressure loss in the indoor / outdoor connecting liquid pipe 6, enters the indoor heat exchanger 4, and blows indoor heat exchanger blower 5
Heat is absorbed from the air sent by and evaporated to become enthalpy h5. The low-temperature liquid-gas two-phase refrigerant that has exited the indoor heat exchanger 4 enters the low-pressure pipe 12 through the indoor / outdoor connecting gas pipe 3 and the four-way valve 2, and the auxiliary heat exchanger 10 causes the medium-temperature liquid gas in the pipe 11 to flow. It is heat-exchanged with the two-phase refrigerant and heated to become enthalpy h1 and returns to compressor 1.
【0016】図5に破線で示した従来例と比較すると、
暖房運転時に比べ効果は小さいが、冷房運転時に蒸発器
としてはたらく室内熱交換器4の入口乾き度を小さくで
き、同一入口温度とした場合、蒸発圧力を高くできる。
したがって、暖房運転時と同様に、蒸発圧力上昇によ
り、圧縮機吸入ガス冷媒の比容積が減少し、冷房能力を
増加させることができる。また、蒸発圧力上昇により、
単位質量当たりの圧縮仕事が減少し、モリエル線図上で
のCOPが向上するとともに、圧縮比減少による圧縮機
の全断熱効率が向上する。そのため、冷房運転時の空調
装置のCOPを向上させることができる。As compared with the conventional example shown by the broken line in FIG.
Although the effect is smaller than that during the heating operation, the dryness of the inlet of the indoor heat exchanger 4 that functions as an evaporator during the cooling operation can be reduced, and when the same inlet temperature is used, the evaporation pressure can be increased.
Therefore, as in the heating operation, the specific volume of the compressor suction gas refrigerant decreases due to the increase in the evaporation pressure, and the cooling capacity can be increased. Also, due to the increase in evaporation pressure,
The compression work per unit mass is reduced, the COP on the Mollier diagram is improved, and the total adiabatic efficiency of the compressor is improved due to the reduction of the compression ratio. Therefore, the COP of the air conditioner during the cooling operation can be improved.
【0017】以上より第一の実施例では、非共沸混合冷
媒を用いたヒートポンプ式空調装置で、暖房運転時及び
冷房運転時ともに、能力,COPを向上させることがで
きる。As described above, in the first embodiment, the heat pump type air conditioner using the non-azeotropic mixed refrigerant can improve the capacity and COP both during the heating operation and the cooling operation.
【0018】本発明の第二の実施例のヒートポンプ式空
調装置の構成図を図6に、その動作状態を示したモリエ
ル線図を図7に示す。図6は図1の電動膨張弁7を第一
の減圧器とし、第二の減圧器としてのキャピラリチュー
ブ20を付加したものである。図7のモリエル線図は暖
房運転時及び冷房運転時での動作状態をともに示す。FIG. 6 is a block diagram of the heat pump type air conditioner of the second embodiment of the present invention, and FIG. 7 is a Mollier diagram showing its operating state. In FIG. 6, the electric expansion valve 7 of FIG. 1 is used as a first pressure reducer, and a capillary tube 20 as a second pressure reducer is added. The Mollier diagram of FIG. 7 shows both operating states during the heating operation and the cooling operation.
【0019】暖房運転時、室内熱交換器4を出た圧力P
2,エンタルピh3の液冷媒は室内外接続液配管6を経
て、キャピラリチューブ20によりP3に減圧され中温
度の液ガス二相冷媒となり、配管11に入り、補助熱交
換器10で低圧配管12内の低温の液ガス二相冷媒と熱
交換し冷却され、エンタルピh4となる。この圧力P
3,エンタルピh4の液冷媒は電動膨張弁7によりP1
に減圧され液ガス二相冷媒となる。また、室外熱交換器
8を出た圧力P1,エンタルピh5の低温の液ガス二相
冷媒は四方弁2を経て、低圧配管12に入り、補助熱交
換器10で配管11内の中温度の液ガス二相冷媒と熱交
換し加熱されエンタルピh1となる。During heating operation, the pressure P leaving the indoor heat exchanger 4
2. The enthalpy h3 liquid refrigerant passes through the indoor / outdoor connection liquid pipe 6, is depressurized to P3 by the capillary tube 20 and becomes a medium temperature liquid gas two-phase refrigerant, enters the pipe 11, and is in the low pressure pipe 12 in the auxiliary heat exchanger 10. Is cooled by exchanging heat with the low-temperature liquid-gas two-phase refrigerant of enthalpy h4. This pressure P
3, the liquid refrigerant of enthalpy h4 is P1 by the electric expansion valve 7.
It is decompressed to become a liquid gas two-phase refrigerant. Further, the low-temperature liquid gas two-phase refrigerant having the pressure P1 and the enthalpy h5 exiting the outdoor heat exchanger 8 enters the low-pressure pipe 12 through the four-way valve 2 and enters the auxiliary heat exchanger 10 at the medium temperature liquid in the pipe 11. Heat is exchanged with the gas two-phase refrigerant to be heated to become enthalpy h1.
【0020】一方、冷房運転時、室外熱交換器8を出た
圧力P2,エンタルピh3の液冷媒は電動膨張弁7によ
りP3に減圧され中温度の液ガス二相冷媒となり、配管
11に入り、補助熱交換器10で低圧配管12内の低温
の液ガス二相冷媒と熱交換し冷却され、エンタルピh4
となる。この圧力P3,エンタルピh4の液冷媒はキャ
ピラリチューブ20,室内外接続液配管6によりP1に
減圧され液ガス二相冷媒となる。また、室内熱交換器4
を出た圧力P1,エンタルピh5の低温の液ガス二相冷
媒は室内外接続ガス配管3,四方弁2を経て、低圧配管
12に入り、補助熱交換器10で配管11内の中温度の
液ガス二相冷媒と熱交換し加熱されエンタルピh1とな
る。On the other hand, during the cooling operation, the liquid refrigerant having pressure P2 and enthalpy h3 that has exited the outdoor heat exchanger 8 is decompressed to P3 by the electric expansion valve 7 to become a medium temperature liquid gas two-phase refrigerant, and enters the pipe 11. The auxiliary heat exchanger 10 exchanges heat with the low-temperature liquid-gas two-phase refrigerant in the low-pressure pipe 12 to cool the enthalpy h4.
Becomes The liquid refrigerant having the pressure P3 and the enthalpy h4 is depressurized to P1 by the capillary tube 20 and the indoor / outdoor connection liquid pipe 6, and becomes a liquid gas two-phase refrigerant. In addition, the indoor heat exchanger 4
The low-temperature liquid-gas two-phase refrigerant having the pressure P1 and the enthalpy h5 exiting the inside enters the low-pressure pipe 12 through the indoor / outdoor connection gas pipe 3 and the four-way valve 2, and the medium temperature liquid in the pipe 11 in the auxiliary heat exchanger 10. Heat is exchanged with the gas two-phase refrigerant to be heated to become enthalpy h1.
【0021】以上の第二の実施例では、蒸発器としては
たらく熱交換器の入口乾き度を暖房運転時と冷房運転時
ともに、同程度に小さくでき、蒸発圧力を高くできる。
したがって、第一の実施例で説明した効果により、暖房
運転時,冷房運転時ともに同程度の能力及びCOPの向
上を図ることができる。なお、本実施例では、第二の減
圧器としてのキャピラリチューブ20を室内外接続液配
管6と第一の減圧器としての電動膨張弁7との間に配置
したが、室内熱交換器4と室内外接続液配管6との間に
配置しても同様の効果が得られる。また、本実施例で
は、室外ユニットA,室内ユニットBからなるセパレー
ト形ヒートポンプ式空調装置について説明したが、室内
外一体ユニット形についても適用できる。In the second embodiment described above, the dryness of the inlet of the heat exchanger functioning as an evaporator can be reduced to the same extent in both heating operation and cooling operation, and the evaporation pressure can be increased.
Therefore, due to the effects described in the first embodiment, it is possible to improve the capacity and COP to the same extent both during the heating operation and during the cooling operation. In the present embodiment, the capillary tube 20 as the second pressure reducer is arranged between the indoor / outdoor connecting liquid pipe 6 and the electric expansion valve 7 as the first pressure reducer. Even if it is arranged between the indoor / outdoor connecting liquid pipe 6, the same effect can be obtained. Further, in this embodiment, the separate type heat pump type air conditioner including the outdoor unit A and the indoor unit B has been described, but it is also applicable to the indoor / outdoor integrated unit type.
【0022】本発明の第三の実施例のヒートポンプ式空
調装置の系統図を図8に示す。図8は図6のキャピラリ
チューブ20の代わりに電動膨張弁21を用いたもので
ある。本実施例では7を第一の電動膨張弁、21を第二
の電動膨張弁と呼ぶこととする。第一の電動膨張弁7及
び第二の電動膨張弁21は、開度全開で弁路の抵抗がほ
とんどないとする。暖房運転時では、第二の電動膨張弁
21の開度を全開とし、第一の電動膨張弁7を絞ること
により冷凍サイクルの減圧を行わせ、冷房運転時では、
第一の電動膨張弁7の開度を全開とし、第二の電動膨張
弁21を絞ることにより冷凍サイクルの減圧を行わせ
る。このように構成することにより、暖房運転時,冷房
運転時とも、動作状態を、図4に示したモリエル線図で
表わすことができる。したがって、暖房運転時,冷房運
転時とも、蒸発器としてはたらく熱交換器の入口乾き度
を十分に小さくでき、蒸発圧力を高くできる。これによ
り、能力及びCOPを暖房運転時,冷房運転時とも大幅
に向上させることができる。A system diagram of the heat pump type air conditioner of the third embodiment of the present invention is shown in FIG. FIG. 8 uses an electric expansion valve 21 instead of the capillary tube 20 of FIG. In this embodiment, 7 is called a first electric expansion valve and 21 is called a second electric expansion valve. It is assumed that the first electric expansion valve 7 and the second electric expansion valve 21 have almost no valve path resistance when the opening is fully opened. During the heating operation, the opening degree of the second electric expansion valve 21 is fully opened, and the first electric expansion valve 7 is throttled to reduce the pressure of the refrigeration cycle. During the cooling operation,
The opening degree of the first electric expansion valve 7 is fully opened, and the second electric expansion valve 21 is throttled to decompress the refrigeration cycle. With such a configuration, the operating state can be represented by the Mollier diagram shown in FIG. 4 both during the heating operation and during the cooling operation. Therefore, in both the heating operation and the cooling operation, the inlet dryness of the heat exchanger that functions as an evaporator can be made sufficiently small and the evaporation pressure can be made high. As a result, the capacity and COP can be significantly improved both during the heating operation and the cooling operation.
【0023】本発明の第四の実施例のヒートポンプ式空
調装置の系統図を図9に示す。30は逆止弁、31は運
転中の余剰冷媒を滞留させる受液器である。4個の逆止
弁30は暖房運転時,冷房運転時いずれでも、受液器3
1がつねに膨張弁7流入側にくるように配置されてい
る。また、受液器31は低圧配管12と熱交換可能に設
けられている。以上の構成により、受液器31内の非共
沸混合冷媒は乾き度の小さい液ガス二相状態にあるた
め、受液器31に滞留する液冷媒の組成と受液器31に
流入する冷媒の組成との差は小さく、液冷媒の滞留によ
る循環組成の封入組成からの変化を小さく抑えることが
できる。また、受液器31内の高温の滞留液冷媒は、低
圧配管12内の低温の液ガス二相冷媒と熱交換を行うた
め、受液器31出口のエンタルピを小さくでき、したが
って、蒸発器としてはたらく熱交換器の入口乾き度が小
さくなり、蒸発圧力を高くできる。よって、能力及びC
OPを暖房運転時,冷房運転時とも大幅に向上させるこ
とができる。本実施例の動作状態は、暖房運転時,冷房
運転時とも図4のモリエル線図で表わすことができる。A system diagram of the heat pump type air conditioner of the fourth embodiment of the present invention is shown in FIG. Reference numeral 30 is a check valve, and 31 is a liquid receiver for accumulating excess refrigerant during operation. The four check valves 30 are used for the liquid receiver 3 during both heating operation and cooling operation.
1 is always arranged on the inflow side of the expansion valve 7. The liquid receiver 31 is provided so as to be able to exchange heat with the low-pressure pipe 12. With the above configuration, since the non-azeotropic mixed refrigerant in the liquid receiver 31 is in a liquid gas two-phase state with a small dryness, the composition of the liquid refrigerant staying in the liquid receiver 31 and the refrigerant flowing into the liquid receiver 31. The difference from the composition is small, and the change of the circulating composition from the enclosed composition due to the retention of the liquid refrigerant can be suppressed to be small. Further, since the high-temperature accumulated liquid refrigerant in the receiver 31 exchanges heat with the low-temperature liquid-gas two-phase refrigerant in the low-pressure pipe 12, the enthalpy at the outlet of the receiver 31 can be reduced, and therefore, as an evaporator. The dryness at the inlet of the working heat exchanger is reduced, and the evaporation pressure can be increased. Therefore, capacity and C
OP can be significantly improved during heating operation and during cooling operation. The operating state of this embodiment can be represented by the Mollier diagram of FIG. 4 both during the heating operation and during the cooling operation.
【0024】[0024]
【発明の効果】本発明により、蒸発器としてはたらく熱
交換器の入口乾き度を暖房運転時,冷房運転時とも従来
に比べ小さくでき、同一入口温度とした場合、非共沸混
合冷媒の特性から、蒸発圧力を高くできる。したがっ
て、蒸発圧力上昇により、圧縮機吸入ガス冷媒の比容積
が減少し、暖房能力及び冷房能力を増加させることがで
きる。また、蒸発圧力上昇により、単位質量当たりの圧
縮仕事が減少し、モリエル線図上でのCOPが向上する
とともに、圧縮比減少により圧縮機の全断熱効率が向上
する。そのため、暖房運転時及び冷房運転時の空調装置
のCOPを向上させることができる。According to the present invention, the dryness of the inlet of the heat exchanger functioning as an evaporator can be made smaller than that of the conventional one during heating operation and cooling operation. The evaporation pressure can be increased. Therefore, due to the increase in the evaporation pressure, the specific volume of the compressor suction gas refrigerant decreases, and the heating capacity and the cooling capacity can be increased. Further, the increase of the evaporation pressure reduces the compression work per unit mass, which improves the COP on the Mollier diagram, and the reduction of the compression ratio improves the total adiabatic efficiency of the compressor. Therefore, the COP of the air conditioner during the heating operation and the cooling operation can be improved.
【図1】本発明の第一の実施例のヒートポンプ式空調装
置の系統図。FIG. 1 is a system diagram of a heat pump type air conditioner according to a first embodiment of the present invention.
【図2】本発明の第一の実施例の補助熱交換器の説明
図。FIG. 2 is an explanatory diagram of an auxiliary heat exchanger according to the first embodiment of the present invention.
【図3】本発明の第一の実施例の補助熱交換器の他の説
明図。FIG. 3 is another explanatory view of the auxiliary heat exchanger according to the first embodiment of the present invention.
【図4】本発明の第一の実施例の暖房運転時のモリエル
線図。FIG. 4 is a Mollier diagram during heating operation according to the first embodiment of the present invention.
【図5】本発明の第一の実施例の冷房運転時のモリエル
線図。FIG. 5 is a Mollier diagram during cooling operation according to the first embodiment of the present invention.
【図6】本発明の第二の実施例のヒートポンプ式空調装
置の系統図。FIG. 6 is a system diagram of a heat pump type air conditioner according to a second embodiment of the present invention.
【図7】本発明の第二の実施例のモリエル線図。FIG. 7 is a Mollier diagram of the second embodiment of the present invention.
【図8】本発明の第三の実施例のヒートポンプ式空調装
置の系統図。FIG. 8 is a system diagram of a heat pump type air conditioner according to a third embodiment of the present invention.
【図9】本発明の第四の実施例のヒートポンプ式空調装
置の系統図。FIG. 9 is a system diagram of a heat pump type air conditioner according to a fourth embodiment of the present invention.
1…圧縮機、2…四方弁、3…ガス配管、4…室内熱交
換器、6…液配管、7,21…電動膨張弁、8…室外熱
交換器、10…補助熱交換器、30…逆止弁、31…受
液器。DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Gas piping, 4 ... Indoor heat exchanger, 6 ... Liquid piping, 7,21 ... Electric expansion valve, 8 ... Outdoor heat exchanger, 10 ... Auxiliary heat exchanger, 30 ... check valve, 31 ... receiver.
Claims (1)
内熱交換器,室内外接続液配管,減圧器,室外熱交換器
を接続し、非共沸混合冷媒を封入したヒートポンプ式空
調装置において、前記室内外接続液配管と前記減圧器と
の間の冷媒と、前記圧縮機に吸入される冷媒を熱交換す
る補助熱交換器を設けることを特徴とするヒートポンプ
式空調装置。1. A heat pump type air conditioner in which a compressor, a four-way valve, an indoor / outdoor connecting gas pipe, an indoor heat exchanger, an indoor / outdoor connecting liquid pipe, a pressure reducer and an outdoor heat exchanger are connected and a non-azeotropic mixed refrigerant is sealed. The heat pump type air conditioner, wherein the apparatus is provided with an auxiliary heat exchanger for exchanging heat between the refrigerant between the indoor / outdoor connection liquid pipe and the pressure reducer and the refrigerant sucked into the compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21235494A JPH0875290A (en) | 1994-09-06 | 1994-09-06 | Heat pump type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21235494A JPH0875290A (en) | 1994-09-06 | 1994-09-06 | Heat pump type air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0875290A true JPH0875290A (en) | 1996-03-19 |
Family
ID=16621160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21235494A Pending JPH0875290A (en) | 1994-09-06 | 1994-09-06 | Heat pump type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0875290A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998006983A1 (en) * | 1996-08-14 | 1998-02-19 | Daikin Industries, Ltd. | Air conditioner |
WO1999015841A1 (en) * | 1997-09-19 | 1999-04-01 | Hitachi, Ltd. | Air conditioner, heat exchanging pipe therefor, and outdoor unit |
KR19990064944A (en) * | 1999-05-25 | 1999-08-05 | 방효륭 | Heat Transfer Energy Transfer High Pressure Gas Refrigerant Fluid Power Utilization Device |
JP2001355924A (en) * | 2001-06-25 | 2001-12-26 | Daikin Ind Ltd | Air conditioner |
WO2002025186A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Heating apparatus with low compression load |
WO2002025187A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Air-conditioning apparatus with low compression load |
WO2002025185A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Low compression load type air-conditioning system |
JP2002195677A (en) * | 2000-10-20 | 2002-07-10 | Denso Corp | Heat pump cycle |
JP2006522310A (en) * | 2003-03-31 | 2006-09-28 | ミョン−ブン ハン | Energy efficiency improvement device for refrigeration cycle |
KR100644325B1 (en) * | 2006-05-03 | 2006-11-10 | 주식회사 포윈드 | Cooling and heating system |
WO2009044771A1 (en) * | 2007-10-03 | 2009-04-09 | Sanden Corporation | Refrigeration circuit |
JP2011501092A (en) * | 2007-10-09 | 2011-01-06 | アドバンスト・サーマル・サイエンシーズ・コーポレイション | Thermal control system and method |
JP2013113499A (en) * | 2011-11-29 | 2013-06-10 | Hitachi Appliances Inc | Air conditioner |
CN103759476A (en) * | 2013-12-24 | 2014-04-30 | 博耐尔汽车电气系统有限公司 | Automobile air controller heat exchange pipeline |
WO2015063837A1 (en) * | 2013-10-28 | 2015-05-07 | 三菱電機株式会社 | Refrigeration cycle device |
WO2015063838A1 (en) * | 2013-10-28 | 2015-05-07 | 三菱電機株式会社 | Refrigeration cycle device |
CN104654683A (en) * | 2015-02-14 | 2015-05-27 | 浙江同星制冷有限公司 | Energy-saving air conditioning mechanism |
WO2020174685A1 (en) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | Refrigeration cycle device |
JP2021096057A (en) * | 2019-12-19 | 2021-06-24 | 三菱重工サーマルシステムズ株式会社 | Outdoor unit and air conditioner including the same |
WO2023095260A1 (en) | 2021-11-25 | 2023-06-01 | 三菱電機株式会社 | Air conditioner |
WO2024079852A1 (en) * | 2022-10-13 | 2024-04-18 | 三菱電機株式会社 | Refrigeration cycle device |
-
1994
- 1994-09-06 JP JP21235494A patent/JPH0875290A/en active Pending
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998006983A1 (en) * | 1996-08-14 | 1998-02-19 | Daikin Industries, Ltd. | Air conditioner |
JPH1054616A (en) * | 1996-08-14 | 1998-02-24 | Daikin Ind Ltd | Air conditioner |
AU727320B2 (en) * | 1996-08-14 | 2000-12-07 | Daikin Industries, Ltd. | Air conditioner |
US6164086A (en) * | 1996-08-14 | 2000-12-26 | Daikin Industries, Ltd. | Air conditioner |
WO1999015841A1 (en) * | 1997-09-19 | 1999-04-01 | Hitachi, Ltd. | Air conditioner, heat exchanging pipe therefor, and outdoor unit |
KR19990064944A (en) * | 1999-05-25 | 1999-08-05 | 방효륭 | Heat Transfer Energy Transfer High Pressure Gas Refrigerant Fluid Power Utilization Device |
WO2002025187A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Air-conditioning apparatus with low compression load |
WO2002025186A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Heating apparatus with low compression load |
WO2002025185A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Low compression load type air-conditioning system |
JP2002195677A (en) * | 2000-10-20 | 2002-07-10 | Denso Corp | Heat pump cycle |
JP2001355924A (en) * | 2001-06-25 | 2001-12-26 | Daikin Ind Ltd | Air conditioner |
JP2006522310A (en) * | 2003-03-31 | 2006-09-28 | ミョン−ブン ハン | Energy efficiency improvement device for refrigeration cycle |
KR100644325B1 (en) * | 2006-05-03 | 2006-11-10 | 주식회사 포윈드 | Cooling and heating system |
WO2009044771A1 (en) * | 2007-10-03 | 2009-04-09 | Sanden Corporation | Refrigeration circuit |
JP2009085568A (en) * | 2007-10-03 | 2009-04-23 | Sanden Corp | Refrigeration circuit |
JP2011501092A (en) * | 2007-10-09 | 2011-01-06 | アドバンスト・サーマル・サイエンシーズ・コーポレイション | Thermal control system and method |
JP2013113499A (en) * | 2011-11-29 | 2013-06-10 | Hitachi Appliances Inc | Air conditioner |
JPWO2015063838A1 (en) * | 2013-10-28 | 2017-03-09 | 三菱電機株式会社 | Refrigeration cycle equipment |
WO2015063837A1 (en) * | 2013-10-28 | 2015-05-07 | 三菱電機株式会社 | Refrigeration cycle device |
WO2015063838A1 (en) * | 2013-10-28 | 2015-05-07 | 三菱電機株式会社 | Refrigeration cycle device |
GB2535051B (en) * | 2013-10-28 | 2020-03-11 | Mitsubishi Electric Corp | Refrigeration cycle apparatus |
GB2534510B (en) * | 2013-10-28 | 2020-03-11 | Mitsubishi Electric Corp | Refrigeration cycle apparatus |
CN105683681A (en) * | 2013-10-28 | 2016-06-15 | 三菱电机株式会社 | Refrigeration cycle device |
GB2534510A (en) * | 2013-10-28 | 2016-07-27 | Mitsubishi Electric Corp | Refrigeration cycle device |
GB2535051A (en) * | 2013-10-28 | 2016-08-10 | Mitsubishi Electric Corp | Refrigeration cycle device |
JPWO2015063837A1 (en) * | 2013-10-28 | 2017-03-09 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN103759476B (en) * | 2013-12-24 | 2016-04-27 | 博耐尔汽车电气系统有限公司 | A kind of automobile air controller heat exchange pipeline |
CN103759476A (en) * | 2013-12-24 | 2014-04-30 | 博耐尔汽车电气系统有限公司 | Automobile air controller heat exchange pipeline |
CN104654683A (en) * | 2015-02-14 | 2015-05-27 | 浙江同星制冷有限公司 | Energy-saving air conditioning mechanism |
WO2020174685A1 (en) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2020174685A1 (en) * | 2019-02-28 | 2021-09-13 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP2021096057A (en) * | 2019-12-19 | 2021-06-24 | 三菱重工サーマルシステムズ株式会社 | Outdoor unit and air conditioner including the same |
WO2023095260A1 (en) | 2021-11-25 | 2023-06-01 | 三菱電機株式会社 | Air conditioner |
WO2024079852A1 (en) * | 2022-10-13 | 2024-04-18 | 三菱電機株式会社 | Refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0875290A (en) | Heat pump type air conditioner | |
WO2011105270A1 (en) | Refrigeration cycle device | |
JP5409715B2 (en) | Air conditioner | |
WO1998006983A1 (en) | Air conditioner | |
JP2005083741A (en) | Air conditioner having heat exchanger and refrigerant switching means | |
JP2002106995A (en) | Air conditioner | |
JP2001082818A (en) | Heat pump system and installation method therefor | |
JP3599770B2 (en) | Heat transfer device | |
JP4442237B2 (en) | Air conditioner | |
WO2010098005A1 (en) | Binary heat pump and refrigerator | |
WO2020174618A1 (en) | Air-conditioning device | |
JP2552555B2 (en) | How to operate the heat pump | |
JP2003050061A (en) | Air conditioner | |
Bullard et al. | Transcritical CO2 mobile heat pump and A/C system experimental and model results | |
JP2004061023A (en) | Heat pump device | |
JP2006138612A (en) | Heat pump system | |
KR100963433B1 (en) | A heat pump system | |
JPH08178445A (en) | Heat pump type air conditioner | |
JPH10148412A (en) | Refrigerating system | |
JPH1194385A (en) | Heat pump type air conditioner | |
WO2021166126A1 (en) | Air-conditioning device | |
JPH04268165A (en) | Double-stage compression and freezing cycle device | |
KR100329269B1 (en) | Device and method for defrosting for inverter cooling and heating system | |
JP2002228273A (en) | Air conditioner | |
JP3084918B2 (en) | Heat pump water heater |