JP2004061023A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2004061023A
JP2004061023A JP2002221811A JP2002221811A JP2004061023A JP 2004061023 A JP2004061023 A JP 2004061023A JP 2002221811 A JP2002221811 A JP 2002221811A JP 2002221811 A JP2002221811 A JP 2002221811A JP 2004061023 A JP2004061023 A JP 2004061023A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
refrigerant liquid
valve
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002221811A
Other languages
Japanese (ja)
Other versions
JP3650088B2 (en
Inventor
Kumushu Chin
陳 ▲クム▼ 洙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002221811A priority Critical patent/JP3650088B2/en
Publication of JP2004061023A publication Critical patent/JP2004061023A/en
Application granted granted Critical
Publication of JP3650088B2 publication Critical patent/JP3650088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device capable of securing the reliability of a compressor and maintaining a uniform performance factor. <P>SOLUTION: A refrigerant liquid tank 9 is installed and bypassed between an indoor heat exchanger 4 and an outdoor heat exchanger 7. Refrigerant vapor vaporized by a capillary tube 13 built in the refrigerant liquid tank 9 is joined with an outlet conductor of the heat exchanger, the refrigerant liquid cooled by the refrigerant liquid tank 9 is expanded, and then it is joined with a suction conductor 8e and sucked in the compressor 2. By this, a compression ratio of the compressor 2 can be adjusted to a set value during operation in a set pressure or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプ装置に関し、より詳細にはヒートポンプの圧縮比調節装置に関する。
【0002】
【従来の技術】
ヒートポンプ装置は、逆カルノーサイクルで作動する。前記サイクルの基本冷凍回路1は、図1から参照されるように、圧縮機2、四方弁3、室内熱交換器4、冷却用膨張弁5、加熱用膨張弁6、室外熱交換器7及び前記四方弁3を導管8a、8b、8c、8dで順次連結し、前記四方弁3と圧縮機2を吸入導管8eで連結してなるものである。
【0003】
前記ヒートポンプ装置では、加熱運転の際には、四方弁3を冷媒が実線矢印方向に流れるように操作すると、圧縮機2で圧縮された高温・高圧の冷媒蒸気は、凝縮器として作用する室内熱交換器4で凝縮し、その凝縮熱を空気や水などの流体と熱交換して室内暖房、温水生成、乾燥機能などを行い、前記室内熱交換機4で凝縮した高温・高圧の冷媒液は、加熱用膨張弁6で膨張した後、蒸発器として作用する室外熱交換器7で熱源の流体から蒸発熱を吸収して低温・低圧の冷媒蒸気になり、その後吸入導管8eを経由して圧縮機2に吸入されて前記サイクルを繰り返す。
【0004】
そして、冷却運転の際には、四方弁3を冷媒が破線矢印方向に流れるように操作すると、圧縮機2で圧縮された高温・高圧の冷媒蒸気は、凝縮器として作用する室外熱交換器7で凝縮し、前記室外熱交換器7で凝縮した高温・高圧の冷媒液は、冷却用膨張弁5で膨張した後、蒸発器として作用する室内熱交換器4でその周囲から蒸発熱を吸収して冷却機能を行い、低温・低圧の冷媒蒸気になった後、圧縮機2に吸入されて前記サイクルを繰り返す。
【0005】
一方、前記ヒートポンプ装置は、加熱運転の際には、凝縮器として作用する室内熱交換器4で冷媒の放出熱量が多いほど成積係数が大きくなり、冷却運転の際には、蒸発器として作用する室内熱交換器4で冷媒の吸収熱量が多いほど成積係数が大きくなる。従って、加熱運転の際には、成積係数を大きくするために、凝縮器として作用する室内熱交換器4で冷媒の放出熱量を増大すると、圧縮機における冷媒蒸気の吐出し温度が高くなり、且つ外気温が低下すると、外気温の低下に比例して蒸発器として作用する室外熱交換器7の吸熱量が少なくなり、圧縮機2の圧縮比が大きくなる。そして、冷却運転の際には、外気温が高い場合、凝縮器として作用する室外熱交換器7における冷媒蒸気の凝縮が完全でなければ、凝縮温度と蒸発温度との差が大きくなることにより、圧縮機の圧縮比が大きくなる。
【0006】
上述したように、圧縮機の圧縮比が大きくなると、圧縮後冷媒蒸気の温度が高くなって圧縮機の過熱及び潤滑油の劣化が生じて圧縮機の信頼性が低下するだけでなく、体積効率及び圧縮効率が低下するなどの現象が発生し、成積係数が小さくなるから、これを防止するために、通常、圧縮機に高圧保護スイッチを付設するか、或いはインバータ式圧縮機を採用して圧縮機の回転数を低く抑えて圧縮比を調節している。
【0007】
【発明が解決しようとする課題】
ところが、前記圧縮比調節方式は、外気温が5℃以上の場合には、圧縮比の調節が良好であり、成積係数も大きく低下しないが、外気温が5℃以下の加熱運転の場合には、室外熱交換器7の近接位置に設置される除霜手段を作動させても、室外熱交換器7への着霜を完全に防止することは不可能であり、特に酷寒期には着霜量が多くなるため、室外熱交換器7における冷媒液の蒸発効率が低下し、激しければ運転不能現象をもたらすという問題点があった。
【0008】
本発明は、かかる問題点を解決して、圧縮機の信頼性を確保するとともに、成積係数を均一に維持することが可能なヒートポンプ装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、圧縮機、四方弁、室内熱交換器、冷却用膨張弁、加熱用膨張弁、室外熱交換器及び前記四方弁を導管8a、8b、8c、8dで順次連結し、前記四方弁と圧縮機を吸入導管で連結した基本冷凍回路において、前記導管8cに設置した冷却用膨張弁と加熱用膨張弁との間及び吸入導管にバイパス導管を連結し、前記バイパス導管に設置した冷媒液タンクと、前記バイパス導管の冷媒液タンクの入口側と出口側にそれぞれ設置した圧力調節弁及びソレノイド弁と、前記導管8bと導管8dとの間に第2バイパス導管を連結し、前記第2バイパス導管と前記バイパス導管の圧力調節弁の出口側から分枝された分枝管との間に連結され前記冷媒液タンクに内蔵された多数の毛細管とを含んでなるものである。
【0010】
【発明の実施の形態】
図1は本発明の実施例の構成図である。図中、1は基本冷凍回路を示す。前記基本冷凍回路1は、圧縮機2、四方弁3、室内熱交換器4、冷却用膨張弁5、加熱用膨張弁6、室外熱交換器7及び前記四方弁3を導管8a、8b、8c、8dで順次連結し、前記四方弁3と圧縮機2を吸入導管8eで連結して、室内熱交換器4を、加熱運転時には凝縮器、冷却運転時には蒸発器として作用するようにし、室外熱交換器7を、加熱運転時には蒸発器、冷却運転時には凝縮器として作用するようにしたものである。
【0011】
また、前記室内熱交換器4及び室外熱交換器7の熱交換流体は、水または空気を選択的に使用するか或いは水及び空気を共に使用する。
【0012】
9は冷媒液タンクを示す。前記冷媒液タンク9は、前記導管8cの冷却用膨張弁5と加熱用膨張弁6との間及び吸入導管8eにバイパス導管10を連結してその中間に設置したものであり、前記バイパス導管10の冷媒液タンク9の出口側は毛細管10aとした。
【0013】
11、12は圧力調節弁、ソレノイド弁をそれぞれ示す。前記圧力調節弁11とソレノイド弁12は前記バイパス導管10の冷媒液タンク9の入口側と出口側にそれぞれ設置した。
【0014】
13は毛細管を示す。前記毛細管13は、前記冷媒液タンク9に内蔵し、その入口は前記バイパス導管10の圧力調節弁11の出口側から分枝された分枝管14に、出口は前記導管8bと導管8dとの間に設けられた第2バイパス導管16に連結してなるものであり、前記分枝管14には膨張弁15をさらに設置した。
【0015】
そして、前記バイパス導管10の圧力調節弁11の入口側には圧力(温度)センサ17を設置し、その出力信号によって前記圧力調節弁11及びソレノイド弁12のいずれかを選択的に開閉し、バイパス導管10に加えられる圧力が設定圧力(例えば、冷媒としてR−22を使用し、加熱運転時18〜21kg/cm)以上の場合には、圧力調節弁11は開放しソレノイド弁12は閉鎖し、設定圧力以下の場合には、前記と逆に開閉する。
【0016】
未説明符号18、19、20、21はチェックバルブである。
上述した本発明では、加熱運転の際には、四方弁3を冷媒が実線矢印方向に流れるように操作すると、圧縮機2で圧縮された高温・高圧の冷媒蒸気は、凝縮器として作用する室内熱交換器4で凝縮し、その凝縮熱を流体と熱交換して室内暖房、温水生成、乾燥機能などを行い、前記室内熱交換器4で凝縮した高温・高圧の冷媒液は、加熱用膨張弁6で膨張した後、蒸発器として作用する室外熱交換器7で流体から蒸発熱を吸収して蒸発し、低温・低圧の冷媒蒸気になり、その後吸入導管8eを経由して圧縮機2に吸入されて前記サイクルを繰返し、冷却運転の際には、四方弁3を冷媒が破線矢印方向に流れるように操作すると、圧縮機2で圧縮された高温・高圧の冷媒蒸気は、凝縮器として作用する室外熱交換器7で外気または凝縮水によって凝縮し、室外熱交換器7で凝縮した高温・高圧の冷媒液は、冷却用膨張弁5で膨張した後、蒸発器として作用する室内熱交換器4でその周囲の流体から蒸発熱を吸収して冷却機能を行い、低温・低圧の冷媒蒸気になった後吸入導管8eを経由して圧縮機2に吸入されて前記サイクルを繰り返すが、これは従来のものと同一である。
【0017】
このようなサイクルによって加熱または冷却運転を行う時、蒸発器として作用する室外熱交換器7の吸熱量が少ないか、或いは凝縮器として作用する室外熱交換器7における冷媒蒸気の凝縮が完全でないなどの理由により、圧縮機2の圧縮比が大きくなると、導管8cを流れる冷媒液の圧力が高くなるが、その圧力が設定圧力以上の場合には、バイパス導管10の圧力調節弁11の入口側に設置した圧力センサ17がその圧力を検出して圧力調節弁11及びソレノイド弁12に出力信号を送信し、前記出力信号を受信した圧力調節弁11は開放され且つ開放されていたソレノイド弁12は閉鎖される。
【0018】
このように圧力調節弁11が開放されると、導管8cを流れる冷媒液の一部はバイパス導管10を経由して冷媒液タンク9に流入し、他の一部は分枝管14を経由して毛細管13で減圧・膨張しながら前記冷媒液タンク9の流入冷媒液と熱交換することにより、毛細管13を経由する冷媒液は冷媒蒸気になり、冷媒液タンク9に流入した冷媒液は冷却される。
【0019】
このように毛細管13を経由しながら生成された冷媒蒸気は、加熱運転の際には、第2バイパス導管16及びチェックバルブ20(チェックバルブ21は圧縮機2で圧縮された高温・高圧の冷媒蒸気の圧力によって閉鎖される)を介して室外熱交換器7で蒸発した冷媒蒸気と共に導管8dを経由して圧縮機2に吸入され、冷却運転の際には、第2バイパス導管16及びチェックバルブ21を介して室内熱交換器4で蒸発した冷媒蒸気と共に導管8bを経由して圧縮機2に吸入され、圧縮機2の圧縮比を低下させる。
【0020】
一方、このように圧縮機2の圧縮比が低下し、導管8cを流れる冷媒の圧力が設定圧力以下に復帰すると、圧力センサ17の出力信号が停止することにより、圧力調節弁11は閉鎖されソレノイド弁12は開放されて、冷媒液タンク9内で冷却された冷媒液はバイパス導管10の毛細管10aによって膨張した後、吸入導管8eを経由する冷媒蒸気と混合されて圧縮機2に吸入される。
【0021】
そして、このように圧縮機2の圧縮比を低下させるとき、毛細管13だけで冷媒液を減圧・膨張させたが、毛細管13だけでは減圧・膨張が充分でない場合には分枝管14の膨張弁15をさらに調節してその過熱度を調節すると、冷媒液の蒸発を良好にすることができる。
【0022】
【発明の効果】
以上述べたように、本発明の請求項1によれば、室内熱交換器と室外熱交換器との間に冷媒液タンクをバイパスさせて設置し、前記冷媒液タンクに毛細管を内蔵して、毛細管で蒸発した冷媒蒸気は蒸発器として作用する熱交換器の出口導管に合流させ、冷媒液タンクで冷却された冷媒液は膨張させた後、吸入導管に合流させて圧縮機に吸入されるようにして、設定圧力以上の運転時に圧縮機の圧縮比を設定値に調節できるようにしたため、圧縮機の信頼性を確保することができ、季節に拘らず適正冷媒量を維持することができ、特に酷寒期の加熱運転時にも圧縮機の効率が良好であって成積係数を均一に維持することができる。
【0023】
本発明の請求項2及び請求項3によれば、前記請求項1の効果に加え、冷媒液の追加膨張を行うことにより、その蒸発を一層良好にすることができる。
【図面の簡単な説明】
【図1】本発明の実施例の構成図である。
【符号の説明】
1 基本冷凍回路、2 圧縮機、3 四方弁、4 室内熱交換器、7 室外熱交換器、9 冷媒液タンク、10 バイパス導管、11 圧力調節弁、12 ソレノイド弁、13 毛細管、14 分枝管、16 第2バイパス導管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump device, and more particularly, to a heat pump compression ratio adjusting device.
[0002]
[Prior art]
The heat pump device operates in a reverse Carnot cycle. As shown in FIG. 1, the basic refrigeration circuit 1 of the cycle includes a compressor 2, a four-way valve 3, an indoor heat exchanger 4, a cooling expansion valve 5, a heating expansion valve 6, an outdoor heat exchanger 7, and The four-way valve 3 is sequentially connected by conduits 8a, 8b, 8c, and 8d, and the four-way valve 3 and the compressor 2 are connected by a suction conduit 8e.
[0003]
In the heat pump device, during the heating operation, when the four-way valve 3 is operated so that the refrigerant flows in the direction indicated by the solid line arrow, the high-temperature and high-pressure refrigerant vapor compressed by the compressor 2 generates indoor heat acting as a condenser. The condensed heat is exchanged with the exchanger 4, the condensed heat is exchanged with a fluid such as air or water to perform indoor heating, hot water generation, drying function, and the like. After being expanded by the heating expansion valve 6, the outdoor heat exchanger 7 acting as an evaporator absorbs the heat of evaporation from the heat source fluid to become low-temperature, low-pressure refrigerant vapor, and then passes through the suction conduit 8e to the compressor. 2 and the cycle is repeated.
[0004]
In the cooling operation, when the four-way valve 3 is operated so that the refrigerant flows in the direction of the dashed arrow, the high-temperature and high-pressure refrigerant vapor compressed by the compressor 2 causes the outdoor heat exchanger 7 to function as a condenser. The high-temperature and high-pressure refrigerant liquid condensed in the outdoor heat exchanger 7 expands in the expansion valve 5 for cooling, and then absorbs the heat of evaporation from the surroundings in the indoor heat exchanger 4 acting as an evaporator. After performing a cooling function, the refrigerant becomes low-temperature and low-pressure refrigerant vapor, and is sucked into the compressor 2 to repeat the cycle.
[0005]
On the other hand, in the heat pump apparatus, the larger the amount of heat released by the refrigerant in the indoor heat exchanger 4 acting as a condenser during the heating operation, the larger the deposition coefficient becomes, and during the cooling operation, the heat pump apparatus acts as an evaporator. The larger the amount of heat absorbed by the refrigerant in the indoor heat exchanger 4 to be performed, the larger the deposition coefficient. Therefore, in the heating operation, when the amount of heat released from the refrigerant is increased in the indoor heat exchanger 4 acting as a condenser in order to increase the product coefficient, the discharge temperature of the refrigerant vapor in the compressor increases, When the outside air temperature decreases, the amount of heat absorbed by the outdoor heat exchanger 7 acting as an evaporator decreases in proportion to the decrease in the outside air temperature, and the compression ratio of the compressor 2 increases. In the cooling operation, when the outside air temperature is high, if the condensation of the refrigerant vapor in the outdoor heat exchanger 7 acting as a condenser is not complete, the difference between the condensation temperature and the evaporation temperature increases, The compression ratio of the compressor increases.
[0006]
As described above, when the compression ratio of the compressor increases, the temperature of the refrigerant vapor after compression increases, causing overheating of the compressor and deterioration of the lubricating oil, thereby not only reducing the reliability of the compressor but also improving the volumetric efficiency. Phenomena such as a decrease in compression efficiency occur, and the product coefficient decreases. To prevent this, usually a compressor is provided with a high-pressure protection switch or an inverter-type compressor is used. The compression ratio is adjusted by keeping the compressor speed low.
[0007]
[Problems to be solved by the invention]
However, in the compression ratio adjusting method, when the outside air temperature is 5 ° C. or more, the compression ratio is well adjusted, and the product volume coefficient does not greatly decrease. However, it is impossible to completely prevent frost formation on the outdoor heat exchanger 7 even if the defrosting means installed near the outdoor heat exchanger 7 is operated. Since the amount of frost increases, there is a problem in that the evaporation efficiency of the refrigerant liquid in the outdoor heat exchanger 7 is reduced, and if it is severe, the operation cannot be performed.
[0008]
An object of the present invention is to solve the above problems and to provide a heat pump device capable of ensuring the reliability of a compressor and maintaining a uniform product coefficient.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a compressor, a four-way valve, an indoor heat exchanger, a cooling expansion valve, a heating expansion valve, an outdoor heat exchanger, and connecting the four-way valve to conduits 8a, 8b, 8c, 8d. In the basic refrigeration circuit in which the four-way valve and the compressor are connected by a suction pipe, a bypass pipe is connected between the cooling expansion valve and the heating expansion valve installed in the pipe 8c and the suction pipe, A refrigerant liquid tank installed in the bypass conduit, a pressure control valve and a solenoid valve respectively installed on the inlet side and the outlet side of the refrigerant liquid tank in the bypass conduit, and a second bypass conduit between the conduit 8b and the conduit 8d And a number of capillaries connected between the second bypass conduit and a branch pipe branched from the outlet side of the pressure regulating valve of the bypass conduit and incorporated in the refrigerant liquid tank. Things.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram of an embodiment of the present invention. In the figure, reference numeral 1 denotes a basic refrigeration circuit. The basic refrigeration circuit 1 includes a compressor 2, a four-way valve 3, an indoor heat exchanger 4, a cooling expansion valve 5, a heating expansion valve 6, an outdoor heat exchanger 7, and the four-way valve 3 connected to conduits 8a, 8b, 8c. , 8d, and the four-way valve 3 and the compressor 2 are connected by a suction conduit 8e so that the indoor heat exchanger 4 functions as a condenser during the heating operation and as an evaporator during the cooling operation. The exchanger 7 functions as an evaporator during the heating operation and as a condenser during the cooling operation.
[0011]
As the heat exchange fluid of the indoor heat exchanger 4 and the outdoor heat exchanger 7, water or air is selectively used, or water and air are used together.
[0012]
Reference numeral 9 denotes a refrigerant liquid tank. The refrigerant liquid tank 9 is provided between the cooling expansion valve 5 and the heating expansion valve 6 of the conduit 8c and a bypass conduit 10 connected to the suction conduit 8e and installed in the middle thereof. The outlet side of the refrigerant liquid tank 9 was a capillary tube 10a.
[0013]
Reference numerals 11 and 12 denote a pressure control valve and a solenoid valve, respectively. The pressure control valve 11 and the solenoid valve 12 were installed on the inlet side and the outlet side of the refrigerant liquid tank 9 of the bypass conduit 10, respectively.
[0014]
Reference numeral 13 denotes a capillary tube. The capillary tube 13 is built in the refrigerant liquid tank 9, the inlet of the capillary tube 13 is branched from the outlet side of the pressure control valve 11 of the bypass conduit 10, and the outlet is connected to the conduit 8 b and the conduit 8 d. The branch pipe 14 is further provided with an expansion valve 15 connected to a second bypass conduit 16 provided therebetween.
[0015]
A pressure (temperature) sensor 17 is installed at the inlet side of the pressure control valve 11 of the bypass conduit 10, and one of the pressure control valve 11 and the solenoid valve 12 is selectively opened and closed by an output signal of the pressure sensor. When the pressure applied to the conduit 10 is equal to or higher than a set pressure (for example, R-22 is used as a refrigerant and the heating operation is 18 to 21 kg / cm 2 ), the pressure control valve 11 is opened and the solenoid valve 12 is closed. When the pressure is equal to or lower than the set pressure, it opens and closes in a manner opposite to the above.
[0016]
Unexplained reference numerals 18, 19, 20, 21 are check valves.
In the above-described present invention, when the four-way valve 3 is operated so that the refrigerant flows in the direction of the solid line arrow during the heating operation, the high-temperature and high-pressure refrigerant vapor compressed by the compressor 2 is applied to the indoor chamber that functions as a condenser. The refrigerant is condensed in the heat exchanger 4, and the condensed heat is exchanged with the fluid to perform indoor heating, hot water generation, drying function, etc., and the high-temperature and high-pressure refrigerant liquid condensed in the indoor heat exchanger 4 is expanded for heating. After expansion by the valve 6, the outdoor heat exchanger 7 acting as an evaporator absorbs heat of evaporation from the fluid and evaporates to become low-temperature and low-pressure refrigerant vapor, which is then transmitted to the compressor 2 via the suction conduit 8e. When the refrigerant is sucked and the above cycle is repeated and the four-way valve 3 is operated so that the refrigerant flows in the direction of the dashed arrow in the cooling operation, the high-temperature and high-pressure refrigerant vapor compressed by the compressor 2 acts as a condenser. In the outdoor heat exchanger 7 The high-temperature and high-pressure refrigerant liquid condensed and condensed in the outdoor heat exchanger 7 expands in the cooling expansion valve 5 and then absorbs evaporation heat from the surrounding fluid in the indoor heat exchanger 4 acting as an evaporator. After performing a cooling function to convert the refrigerant into low-temperature and low-pressure refrigerant vapor, the refrigerant is sucked into the compressor 2 via the suction conduit 8e and the above cycle is repeated. This is the same as the conventional one.
[0017]
When the heating or cooling operation is performed by such a cycle, the amount of heat absorbed by the outdoor heat exchanger 7 acting as an evaporator is small, or the refrigerant vapor is not completely condensed in the outdoor heat exchanger 7 acting as a condenser. For the reason, when the compression ratio of the compressor 2 increases, the pressure of the refrigerant liquid flowing through the conduit 8c increases. However, when the pressure is equal to or higher than the set pressure, the refrigerant liquid is supplied to the inlet side of the pressure regulating valve 11 of the bypass conduit 10. The installed pressure sensor 17 detects the pressure and transmits an output signal to the pressure control valve 11 and the solenoid valve 12, and the pressure control valve 11 receiving the output signal is opened and the opened solenoid valve 12 is closed. Is done.
[0018]
When the pressure control valve 11 is opened in this manner, a part of the refrigerant liquid flowing through the conduit 8c flows into the refrigerant liquid tank 9 via the bypass conduit 10, and another part passes through the branch pipe 14. By performing heat exchange with the refrigerant liquid flowing into the refrigerant liquid tank 9 while reducing and expanding the pressure in the capillary tube 13, the refrigerant liquid passing through the capillary tube 13 becomes refrigerant vapor, and the refrigerant liquid flowing into the refrigerant liquid tank 9 is cooled. You.
[0019]
During the heating operation, the refrigerant vapor generated while passing through the capillary 13 is used as the second bypass conduit 16 and the check valve 20 (the check valve 21 is a high-temperature high-pressure refrigerant vapor compressed by the compressor 2). The refrigerant is vaporized in the outdoor heat exchanger 7 via the conduit 8d and is sucked into the compressor 2 through the conduit 8d. In the cooling operation, the second bypass conduit 16 and the check valve 21 are closed. Is sucked into the compressor 2 via the conduit 8b together with the refrigerant vapor evaporated in the indoor heat exchanger 4 via the heat exchanger 4, thereby reducing the compression ratio of the compressor 2.
[0020]
On the other hand, when the compression ratio of the compressor 2 is reduced as described above and the pressure of the refrigerant flowing through the conduit 8c returns to or below the set pressure, the output signal of the pressure sensor 17 is stopped, so that the pressure control valve 11 is closed and the solenoid is closed. The valve 12 is opened, and the refrigerant liquid cooled in the refrigerant liquid tank 9 is expanded by the capillary tube 10a of the bypass conduit 10 and then mixed with refrigerant vapor passing through the suction conduit 8e to be sucked into the compressor 2.
[0021]
When the compression ratio of the compressor 2 is reduced as described above, the refrigerant liquid is decompressed / expanded only by the capillary 13. However, when the decompression / expansion is not sufficient by the capillary 13 alone, the expansion valve of the branch pipe 14 is used. If the degree of superheat is further adjusted by adjusting No. 15, the evaporation of the refrigerant liquid can be improved.
[0022]
【The invention's effect】
As described above, according to claim 1 of the present invention, a refrigerant liquid tank is installed between an indoor heat exchanger and an outdoor heat exchanger so as to be bypassed, and a capillary tube is built in the refrigerant liquid tank. The refrigerant vapor evaporated in the capillary tube is merged with the outlet conduit of the heat exchanger acting as an evaporator, and the refrigerant liquid cooled in the refrigerant liquid tank is expanded and then merged into the suction conduit so as to be sucked into the compressor. In addition, since the compression ratio of the compressor can be adjusted to the set value at the time of operation at or above the set pressure, the reliability of the compressor can be secured, and the appropriate refrigerant amount can be maintained regardless of the season, In particular, the efficiency of the compressor is good even during the heating operation in the extremely cold season, and the formation coefficient can be kept uniform.
[0023]
According to the second and third aspects of the present invention, in addition to the effect of the first aspect, by performing the additional expansion of the refrigerant liquid, the evaporation thereof can be further improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention.
[Explanation of symbols]
1 Basic refrigeration circuit, 2 compressor, 3 4-way valve, 4 indoor heat exchanger, 7 outdoor heat exchanger, 9 refrigerant liquid tank, 10 bypass conduit, 11 pressure control valve, 12 solenoid valve, 13 capillary tube, 14 branch tube , 16 second bypass conduit.

Claims (3)

圧縮機、四方弁、室内熱交換器、冷却用膨張弁、加熱用膨張弁、室外熱交換器及び前記四方弁を導管(8a)(8b)(8c)(8d)で順次連結し、前記四方弁と圧縮機を吸入導管で連結した基本冷凍回路において、前記導管(8c)に設置した冷却用膨張弁と加熱用膨張弁との間及び吸入導管にバイパス導管を連結し、前記バイパス導管に設置した冷媒液タンクと、前記バイパス導管の冷媒液タンクの入口側と出口側にそれぞれ設置した圧力調節弁及びソレノイド弁と、前記導管(8b)と導管(8d)との間に第2バイパス導管を連結し、前記第2バイパス導管と前記バイパス導管の圧力調節弁の出口側から分枝された分枝管との間に連結され前記冷媒液タンクに内蔵された多数の毛細管とを含んでなるヒートポンプ装置。A compressor, a four-way valve, an indoor heat exchanger, a cooling expansion valve, a heating expansion valve, an outdoor heat exchanger, and the four-way valve are sequentially connected by conduits (8a), (8b), (8c), and (8d). In a basic refrigeration circuit in which a valve and a compressor are connected by a suction pipe, a bypass pipe is connected between the cooling expansion valve and the heating expansion valve installed in the pipe (8c) and the suction pipe, and installed in the bypass pipe. And a second bypass conduit between the conduit (8b) and the conduit (8d), and a pressure regulating valve and a solenoid valve respectively installed on the inlet side and the outlet side of the refrigerant liquid tank of the bypass conduit. A heat pump comprising a plurality of capillaries connected between the second bypass conduit and a branch pipe branched from the outlet side of the pressure regulating valve of the bypass conduit, the capillary tubes being built in the refrigerant liquid tank; apparatus. 分枝管に膨張弁を設置した請求項1記載のヒートポンプ装置。The heat pump device according to claim 1, wherein an expansion valve is provided in the branch pipe. バイパス導管の冷媒液タンクの出口側を毛細管とする請求項1記載のヒートポンプ装置。The heat pump device according to claim 1, wherein the outlet side of the refrigerant liquid tank of the bypass conduit is a capillary tube.
JP2002221811A 2002-07-30 2002-07-30 Heat pump equipment Expired - Fee Related JP3650088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221811A JP3650088B2 (en) 2002-07-30 2002-07-30 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221811A JP3650088B2 (en) 2002-07-30 2002-07-30 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2004061023A true JP2004061023A (en) 2004-02-26
JP3650088B2 JP3650088B2 (en) 2005-05-18

Family

ID=31942023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221811A Expired - Fee Related JP3650088B2 (en) 2002-07-30 2002-07-30 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP3650088B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240040A (en) * 2006-03-07 2007-09-20 Sanyo Electric Co Ltd Refrigerating system and its control method
WO2008093718A1 (en) * 2007-01-31 2008-08-07 Daikin Industries, Ltd. Heat source unit and refrigeration device
JP2009156496A (en) * 2007-12-26 2009-07-16 Sanyo Electric Co Ltd Air conditioner
JP2012207823A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
JP2012207826A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
JPWO2016139783A1 (en) * 2015-03-04 2017-09-14 三菱電機株式会社 Refrigeration cycle equipment
CN109798690A (en) * 2019-03-01 2019-05-24 广东纽恩泰新能源科技发展有限公司 A kind of heat pump system
CN114738523A (en) * 2022-04-02 2022-07-12 哈电集团哈尔滨电站阀门有限公司 Adjustable safety valve and pressure adjusting method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240040A (en) * 2006-03-07 2007-09-20 Sanyo Electric Co Ltd Refrigerating system and its control method
WO2008093718A1 (en) * 2007-01-31 2008-08-07 Daikin Industries, Ltd. Heat source unit and refrigeration device
AU2008210830B2 (en) * 2007-01-31 2011-04-28 Daikin Industries, Ltd. Heat source unit and refrigeration system
US8297073B2 (en) 2007-01-31 2012-10-30 Daikin Industries, Ltd. Heat source unit and refrigeration system
JP2009156496A (en) * 2007-12-26 2009-07-16 Sanyo Electric Co Ltd Air conditioner
EP2075518A3 (en) * 2007-12-26 2013-03-20 Sanyo Electric Co., Ltd. Air conditioner
JP2012207823A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
JP2012207826A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
JPWO2016139783A1 (en) * 2015-03-04 2017-09-14 三菱電機株式会社 Refrigeration cycle equipment
CN109798690A (en) * 2019-03-01 2019-05-24 广东纽恩泰新能源科技发展有限公司 A kind of heat pump system
CN114738523A (en) * 2022-04-02 2022-07-12 哈电集团哈尔滨电站阀门有限公司 Adjustable safety valve and pressure adjusting method thereof

Also Published As

Publication number Publication date
JP3650088B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
CN211739592U (en) Air conditioning system capable of continuously heating
CA2420968C (en) Method and arrangement for defrosting a vapor compression system
US7104084B2 (en) Heat pump and structure of extraction heat exchanger thereof
JP4982713B2 (en) Energy efficiency improvement device for refrigeration cycle
KR100389271B1 (en) Heat pump apparatus
JP3650088B2 (en) Heat pump equipment
JP3465574B2 (en) Refrigeration air conditioner and equipment selection method
JP2001355941A (en) Heat pump system
KR200274119Y1 (en) Heat pump system
JP7375167B2 (en) heat pump
JP2003121025A (en) Heating-cooling combination appliance
JP2808899B2 (en) Two-stage compression refrigeration cycle device
KR20100030203A (en) Heat pump system
JPH10253171A (en) Air conditioner
JP2003254632A (en) Air conditioner
JPH04257660A (en) Two stage compression refrigerating cycle device
KR100499071B1 (en) Heat pump system
KR100367175B1 (en) Heat pump system
KR100329269B1 (en) Device and method for defrosting for inverter cooling and heating system
JPH07180927A (en) Multi-chamber type cooling and heating device
JP2004218855A (en) Vapor compression type refrigerating machine
JPH04292749A (en) Two-stage compression refrigeration cycle device
CN110849021A (en) Continuous heating defrosting-free air conditioner
KR20050093645A (en) Heating cycle of a heat pump-type heating and cooling device
JP2001221527A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees