JP2007240040A - Refrigerating system and its control method - Google Patents

Refrigerating system and its control method Download PDF

Info

Publication number
JP2007240040A
JP2007240040A JP2006060718A JP2006060718A JP2007240040A JP 2007240040 A JP2007240040 A JP 2007240040A JP 2006060718 A JP2006060718 A JP 2006060718A JP 2006060718 A JP2006060718 A JP 2006060718A JP 2007240040 A JP2007240040 A JP 2007240040A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigerant circuit
air conditioning
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060718A
Other languages
Japanese (ja)
Other versions
JP5033337B2 (en
Inventor
Hiroshi Hatsutougo
裕志 八藤後
Taro Ogawa
太郎 小川
Daisuke Kondo
大輔 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006060718A priority Critical patent/JP5033337B2/en
Publication of JP2007240040A publication Critical patent/JP2007240040A/en
Application granted granted Critical
Publication of JP5033337B2 publication Critical patent/JP5033337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating system and its control method capable of preventing frost formation on a heat source-side heat exchanger, improving heating performance and keeping high coefficient of performance. <P>SOLUTION: A refrigerant at high pressure side of a refrigerant circuit 6 for cooling storage equipment is allowed to flow to a cascade heat exchanger 18, and then flow to evaporators 31A, 34A without passing through a condenser 14, and a refrigerant at a low pressure side of a refrigerant circuit 4 for air conditioning is allowed to flow to the cascade heat exchanger 18 without flowing to a heat source-side heat exchanger 25, when an outside air temperature T becomes lower than a low outside air temperature operation mode starting temperature T0 at which frost is formed on the heat source-side heat exchanger 25 in a heating operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、店舗等において室内空調と冷却貯蔵設備の冷却とを行う冷凍システム及びその制御方法に関する。   The present invention relates to a refrigeration system that controls indoor air conditioning and cooling storage equipment in a store or the like, and a control method thereof.

従来よりコンビニエンスストア等の店舗の店内は、空気調和機によって冷暖房空調されている。また、店内には商品を陳列販売する冷蔵或いは冷凍用のオープンショーケースや扉付きのショーケース(冷却貯蔵設備)が設置されており、これらは冷凍機によって庫内冷却が行われている。この種のものには、空調用冷媒回路や冷却貯蔵設備用冷媒回路を1つのシステムとして構成したものが考案されている(例えば、特許文献1)。
特開2004−360999号公報
Conventionally, stores such as convenience stores have been air-conditioned and air-conditioned by air conditioners. In addition, an open showcase for refrigeration or refrigeration for displaying and selling products and a showcase with a door (cooling storage facility) are installed in the store, and these are cooled by a refrigerator. In this type, a system in which a refrigerant circuit for air conditioning and a refrigerant circuit for cooling storage equipment are configured as one system has been devised (for example, Patent Document 1).
JP 2004-360999 A

ところで、室内空気を熱源としたヒートポンプ空調では室外温度が低下すると、空調用室外熱交換器(熱源側熱交換器)に霜が発生して除霜運転を繰り返す場合が生じ、暖房能力の低下や成績係数(COP)の低下を招いてしまう等の問題があった。   By the way, in the heat pump air conditioning that uses indoor air as a heat source, when the outdoor temperature decreases, frost is generated in the outdoor heat exchanger (heat source side heat exchanger) for air conditioning, and the defrosting operation may be repeated. There have been problems such as lowering the coefficient of performance (COP).

本発明は、上述した事情に鑑みてなされたものであり、熱源側熱交換器の着霜を防止し、かつ、暖房能力の向上や高い成績係数を維持できる冷凍システム及びその制御方法を提供することにある。   This invention is made | formed in view of the situation mentioned above, provides the refrigeration system which can prevent the frost formation of a heat source side heat exchanger, and can maintain the improvement of heating capability or a high coefficient of performance, and its control method. There is.

上述した課題を解決するため、本発明は、圧縮機、熱源側熱交換器及び利用側熱交換器を備える空調用冷媒回路と、冷却用圧縮機、凝縮器及び蒸発器を備える冷却貯蔵設備用冷媒回路と、前記空調用冷媒回路の低圧側の冷媒と前記前記冷凍系統部の高圧側の冷媒とを熱交換させるカスケード熱交換器と、運転を制御する運転制御部とを備える冷凍システムにおいて、前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回ると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介さずに前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流さずに前記カスケード熱交換器に流すことを特徴とする。
この発明によれば、空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回ると、冷却貯蔵設備用冷媒回路の高圧側の冷媒をカスケード熱交換器に流した後、凝縮器を介さずに蒸発器に流すと共に、空調用冷媒回路の低圧側の冷媒を熱源側熱交換器に流さずにカスケード熱交換器に流すので、熱源側熱交換器の着霜を防止し、かつ、暖房能力の向上や高い成績係数を維持することができる。
In order to solve the above-described problems, the present invention provides an air conditioning refrigerant circuit including a compressor, a heat source side heat exchanger, and a use side heat exchanger, and a cooling storage facility including a cooling compressor, a condenser, and an evaporator. In a refrigeration system comprising: a refrigerant circuit; a cascade heat exchanger that exchanges heat between the low-pressure side refrigerant of the air-conditioning refrigerant circuit and the high-pressure side refrigerant of the refrigeration system unit; and an operation control unit that controls operation. In the heating operation of the air conditioning refrigerant circuit, when the outside air temperature falls below a predetermined start temperature, the operation control unit causes the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage facility to flow through the cascade heat exchanger. In addition, the refrigerant flows through the evaporator without passing through the condenser, and the refrigerant on the low-pressure side of the air conditioning refrigerant circuit flows through the cascade heat exchanger without flowing through the heat source side heat exchanger.
According to the present invention, during the heating operation of the air conditioning refrigerant circuit, if the outside air temperature falls below a predetermined start temperature, the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage facility is passed through the cascade heat exchanger, and then the condenser The refrigerant on the low-pressure side of the air conditioning refrigerant circuit flows to the cascade heat exchanger without flowing to the heat source side heat exchanger, preventing frost formation on the heat source side heat exchanger, and , Heating capacity improvement and high coefficient of performance can be maintained.

上記構成において、前記空調用冷媒回路は、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流す経路に配置される第1膨張弁と、前記経路から分岐して前記冷媒を前記カスケード熱交換器に流す経路に配置される第2膨張弁とを有し、前記運転制御部は、前記空調用冷媒回路の暖房運転時に外気温度が予め定めた開始温度を下回ると、前記第2膨張弁を開けると共に前記第1膨張弁を閉じることが好ましい。   In the above configuration, the air-conditioning refrigerant circuit includes a first expansion valve disposed in a path through which the low-pressure side refrigerant of the air-conditioning refrigerant circuit flows to the heat source side heat exchanger; A second expansion valve arranged in a path flowing through the cascade heat exchanger, and the operation control unit, when an outside air temperature falls below a predetermined start temperature during the heating operation of the air conditioning refrigerant circuit, It is preferable to open the second expansion valve and close the first expansion valve.

上記構成において、前記運転制御部は、前記第2膨張弁を開けると共に前記第1膨張弁を閉じた後、前記冷却貯蔵設備用冷媒回路の冷媒の温度に基づいて前記第1膨張弁及び第2膨張弁の開度を調整することが好ましい。
また、上記構成において、前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回った後に予め定めた解除温度を超えると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介して前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流すことが好ましい。
In the above configuration, the operation control unit opens the second expansion valve and closes the first expansion valve, and then based on the temperature of the refrigerant in the refrigerant circuit for the cooling storage facility, It is preferable to adjust the opening degree of the expansion valve.
Further, in the above configuration, when the air-conditioning refrigerant circuit is in a heating operation, the operation control unit, when the outside air temperature exceeds a predetermined release temperature after falling below a predetermined start temperature, the refrigerant circuit for the cooling storage facility Flowing the high-pressure side refrigerant to the cascade heat exchanger, and then flowing the low-pressure side refrigerant of the air conditioning refrigerant circuit to the heat source side heat exchanger. preferable.

また、上記構成において、前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回った後に前記冷却貯蔵設備用冷媒回路の高圧側の冷媒の圧力が予め定めた許容圧力を超えると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介して前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流すことが好ましい。   Further, in the above configuration, the operation control unit is configured such that, during the heating operation of the air conditioning refrigerant circuit, the pressure of the refrigerant on the high-pressure side of the refrigerant circuit for the cooling storage facility is set in advance after the outside air temperature falls below a predetermined start temperature. When the predetermined allowable pressure is exceeded, the refrigerant on the high-pressure side of the refrigerant circuit for the cooling storage facility is flowed to the cascade heat exchanger, and then to the evaporator via the condenser. It is preferable to flow the low-pressure side refrigerant through the heat source side heat exchanger.

また、上記構成において、前記冷却貯蔵設備用冷媒回路は、前記カスケード熱交換器から流れた前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を、前記凝縮器を介さずに前記蒸発器に流すか、前記凝縮器を介して前記蒸発器に流すかを切替可能な四方弁を有することが好ましい。   In the above configuration, the cooling storage facility refrigerant circuit may flow the refrigerant on the high-pressure side of the cooling storage facility refrigerant circuit flowing from the cascade heat exchanger to the evaporator without passing through the condenser. It is preferable to have a four-way valve that can switch whether to flow to the evaporator via the condenser.

また、本発明は、圧縮機、熱源側熱交換器及び利用側熱交換器を備える空調用冷媒回路と、冷却用圧縮機、凝縮器及び蒸発器を備える冷却貯蔵設備用冷媒回路と、前記空調用冷媒回路の低圧側の冷媒と前記前記冷凍系統部の高圧側の冷媒とを熱交換させるカスケード熱交換器と、運転を制御する運転制御部とを備える冷凍システムの制御方法において、前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回ると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介さずに前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流さずに前記カスケード熱交換器に流すことを特徴とする。
この発明によれば、空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回ると、冷却貯蔵設備用冷媒回路の高圧側の冷媒をカスケード熱交換器に流した後、凝縮器を介さずに蒸発器に流すと共に、空調用冷媒回路の低圧側の冷媒を熱源側熱交換器に流さずにカスケード熱交換器に流すので、熱源側熱交換器の着霜を防止し、かつ、暖房能力の向上や高い成績係数を維持することができる。
The present invention also provides a refrigerant circuit for air conditioning comprising a compressor, a heat source side heat exchanger and a utilization side heat exchanger, a refrigerant circuit for cooling storage equipment comprising a cooling compressor, a condenser and an evaporator, and the air conditioning. In the control method of a refrigeration system, comprising the cascade heat exchanger for exchanging heat between the low-pressure side refrigerant of the refrigerant circuit for the refrigerant and the high-pressure side refrigerant of the refrigeration system unit, and an operation control unit for controlling the operation, the operation control When the outside air temperature falls below a predetermined start temperature during the heating operation of the air conditioning refrigerant circuit, the unit causes the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage facility to flow to the cascade heat exchanger, and then condenses the condensation. The refrigerant is caused to flow through the evaporator without passing through a heater, and the refrigerant on the low-pressure side of the air conditioning refrigerant circuit is allowed to flow through the cascade heat exchanger without flowing through the heat source side heat exchanger.
According to the present invention, when the outside air temperature falls below a predetermined start temperature during the heating operation of the air conditioning refrigerant circuit, the condenser on the high pressure side of the refrigerant circuit for the cooling storage facility is passed through the cascade heat exchanger, and then the condenser The refrigerant on the low-pressure side of the air conditioning refrigerant circuit flows to the cascade heat exchanger without flowing to the heat source side heat exchanger, preventing frost formation on the heat source side heat exchanger, and , Heating capacity improvement and high coefficient of performance can be maintained.

本発明は、空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回ると、冷却貯蔵設備用冷媒回路の高圧側の冷媒をカスケード熱交換器に流した後、凝縮器を介さずに蒸発器に流すと共に、空調用冷媒回路の低圧側の冷媒を熱源側熱交換器に流さずにカスケード熱交換器に流すので、熱源側熱交換器の着霜を防止し、かつ、暖房能力の向上や高い成績係数を維持することができる。   In the heating operation of the air conditioning refrigerant circuit, when the outside air temperature falls below a predetermined start temperature, the refrigerant on the high-pressure side of the refrigerant circuit for the cooling storage facility is passed through the cascade heat exchanger and then passed through the condenser. The refrigerant on the low-pressure side of the air conditioning refrigerant circuit flows to the cascade heat exchanger without flowing to the heat source side heat exchanger, preventing frost formation on the heat source side heat exchanger and heating. Improve ability and maintain high coefficient of performance.

以下、図面を参照して本発明の実施形態を詳述する。図1は本発明の実施形態に係る冷凍システム1の冷媒回路を含むシステム構成を示す図である。この冷凍システム1は、例えばコンビニエンスストアに設置された空調室内機30による空調と、この室内2に設置されている冷却貯蔵設備としての冷蔵ケース31や冷凍ケース34の庫内冷却とを行うものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a system configuration including a refrigerant circuit of a refrigeration system 1 according to an embodiment of the present invention. The refrigeration system 1 performs, for example, air conditioning by an air conditioning indoor unit 30 installed in a convenience store, and cooling of the refrigeration case 31 and the refrigeration case 34 as cooling storage facilities installed in the room 2. is there.

これらの冷蔵ケース31や冷凍ケース34は、前面や上面が開口するオープンショーケースや、ガラス扉によって開閉自在なクローズショーケース等であり、例えば、冷蔵ケース31の庫内は約3℃から約+10℃の冷蔵温度に冷却され、飲料や食料品等が陳列されると共に、冷凍ケース34の庫内は約−20℃から約−10℃の冷凍温度に冷却され、冷凍食品や冷菓等が陳列されるものである。   The refrigerated case 31 and the refrigerated case 34 are an open showcase whose front and upper surfaces are open, a closed showcase that can be opened and closed by a glass door, and the like. For example, the inside of the refrigerator case 31 is from about 3 ° C. to about +10. It is cooled to a refrigerated temperature of ℃, and beverages, foods, etc. are displayed, and the inside of the freezing case 34 is cooled to a refrigeration temperature of about -20 ℃ to about -10 ℃, and frozen foods and frozen desserts are displayed. Is.

この冷凍システム1は、空調用冷媒回路4を有する空気調和機5と、冷蔵ケース31や冷凍ケース34の庫内を冷却する冷却貯蔵設備用冷媒回路6を有する冷却装置7とを備えている。空気調和機5は、室内2の天井等に設置された室内機と、室外に設置された室外ユニット3とを備え、これらの間に渡って上記空調用冷媒回路4が構成されている。   The refrigeration system 1 includes an air conditioner 5 having an air conditioning refrigerant circuit 4 and a cooling device 7 having a cooling storage facility refrigerant circuit 6 that cools the inside of the refrigerator case 31 and the refrigeration case 34. The air conditioner 5 includes an indoor unit installed on the ceiling or the like of the room 2 and an outdoor unit 3 installed outside the room, and the air conditioning refrigerant circuit 4 is configured between these units.

この空調用冷媒回路4は、室外ユニット3のケース内に設置されたアキュムレータ20と、二台の圧縮機21A及び21Bと、逆止弁22A及び22Bと、オイルセパレータ23と、四方弁24と、熱源側熱交換器25と、膨張弁(電動膨張弁から成る減圧手段)26、27及び28と、カスケード熱交換器18と、逆止弁29と、室内2に設置された利用側熱交換器30A等から構成されている。なお、圧縮機21Aはインバータによる周波数制御運転が可能な圧縮機であり、圧縮機21Bは定速運転を行う圧縮機である。   The air conditioning refrigerant circuit 4 includes an accumulator 20 installed in a case of the outdoor unit 3, two compressors 21A and 21B, check valves 22A and 22B, an oil separator 23, a four-way valve 24, Heat source side heat exchanger 25, expansion valves (pressure reducing means comprising electric expansion valves) 26, 27 and 28, cascade heat exchanger 18, check valve 29, and use side heat exchanger installed in room 2 30A or the like. The compressor 21A is a compressor capable of frequency control operation by an inverter, and the compressor 21B is a compressor that performs constant speed operation.

圧縮機21A及び21Bは相互に並列接続されており、各圧縮機21A及び21Bの吐出側はそれぞれ逆止弁22A及び22Bを介して合流され、オイルセパレータ23の入口に接続されている。なお、逆止弁22A及び22Bはオイルセパレータ23方向が順方向とされている。オイルセパレータ23の出口は四方弁24の一方の入口に接続され、一方の出口は熱源側熱交換器25の入口に接続されている。この熱源側熱交換器25は多数の並列配管から構成される流路抵抗の比較的小さい入口側25Aと、これらが少数の並列配管若しくは単数の配管に集約される出口側25Bとで構成されている。そして、この熱源側熱交換器25の出口側25Bは膨張弁(第1膨張弁)26を介して膨張弁28の入口に接続され、この膨張弁28の出口は利用側熱交換器30Aの入口に接続されている。   The compressors 21A and 21B are connected in parallel to each other, and the discharge sides of the compressors 21A and 21B are joined via check valves 22A and 22B, respectively, and connected to the inlet of the oil separator 23. The check valves 22A and 22B have the oil separator 23 in the forward direction. The outlet of the oil separator 23 is connected to one inlet of the four-way valve 24, and one outlet is connected to the inlet of the heat source side heat exchanger 25. The heat source side heat exchanger 25 is composed of an inlet side 25A having a relatively small flow resistance composed of a large number of parallel pipes and an outlet side 25B in which these are aggregated into a small number of parallel pipes or a single pipe. Yes. The outlet side 25B of the heat source side heat exchanger 25 is connected to the inlet of the expansion valve 28 via an expansion valve (first expansion valve) 26, and the outlet of the expansion valve 28 is the inlet of the use side heat exchanger 30A. It is connected to the.

利用側熱交換器30Aの出口は室外ユニット3内の四方弁24の他方の入口に接続され、四方弁24の他方の出口は逆止弁29を介してアキュムレータ20の入口に接続されている。そして、このアキュムレータ20の出口は圧縮機21A及び21Bの吸込側に接続されている。なお、逆止弁29はアキュムレータ20方向が順方向とされている。   The outlet of the use side heat exchanger 30A is connected to the other inlet of the four-way valve 24 in the outdoor unit 3, and the other outlet of the four-way valve 24 is connected to the inlet of the accumulator 20 via a check valve 29. The outlet of the accumulator 20 is connected to the suction sides of the compressors 21A and 21B. The check valve 29 has a forward direction in the accumulator 20 direction.

また、膨張弁26と膨張弁28の間の配管は膨張弁(第2膨張弁)27の入口に接続され、この膨張弁27の出口はカスケード熱交換器18の空調側管路18Aの入口に接続されている。このカスケード熱交換器18の空調側通路18Aの出口はアキュムレータ20を介して圧縮機21A及び21Bの吸込側に接続されている。   The piping between the expansion valve 26 and the expansion valve 28 is connected to the inlet of an expansion valve (second expansion valve) 27, and the outlet of the expansion valve 27 is connected to the inlet of the air conditioning side pipe 18 </ b> A of the cascade heat exchanger 18. It is connected. The outlet of the air conditioning side passage 18A of the cascade heat exchanger 18 is connected to the suction sides of the compressors 21A and 21B via the accumulator 20.

一方、冷却装置7は室外ユニット3と室内に設置された冷蔵ケース31及び冷凍ケース34との間に渡って冷却貯蔵設備用冷媒回路6が配管構成されている。この冷却貯蔵設備用冷媒回路6は、室外ユニット3のケース内に設置された冷蔵用の圧縮機11と、凝縮器14と、三つの四方弁13、17及び51と、オイルセパレータ12と、レシーバタンク16と、逆止弁19と、冷蔵ケース31の庫内を冷却する冷蔵用蒸発器31Aと、冷凍ケース34の庫内を冷却する冷凍用蒸発器34Aと、膨張弁32及び35と、電磁弁33及び36と、逆止弁40と、冷凍増幅用の圧縮機41と、オイルセパレータ42等から構成されている。   On the other hand, in the cooling device 7, a refrigerant circuit 6 for cooling storage equipment is piped between the outdoor unit 3 and a refrigeration case 31 and a refrigeration case 34 installed indoors. The refrigerant circuit 6 for cooling storage equipment includes a compressor 11 for refrigeration installed in a case of the outdoor unit 3, a condenser 14, three four-way valves 13, 17 and 51, an oil separator 12, and a receiver. Tank 16, check valve 19, refrigeration evaporator 31 </ b> A that cools the inside of refrigeration case 31, refrigeration evaporator 34 </ b> A that cools the inside of refrigeration case 34, expansion valves 32 and 35, electromagnetic It consists of valves 33 and 36, a check valve 40, a compressor 41 for refrigeration amplification, an oil separator 42, and the like.

圧縮機11の吐出側は、オイルセパレータ12を介して四方弁13の一方の入口に接続され、この四方弁13の一方の出口は四方弁51の一方の入口に接続される。そして、この四方弁51の一方の出口は凝縮器14の入口に接続されている。この凝縮器14は多数の並列配管から構成される流路抵抗の比較的小さい入口側14Aと、これらが少数の並列配管若しくは単数の配管に集約される出口側14Bとで構成されている。そして、この凝縮器14の出口側14Bは四方弁51の他方の入口にと接続され、この四方弁51の他方の出口はレシーバタンク16の入口に接続されている。また、凝縮器14の出口側14Bは、上述した四方弁51を介する経路とは別に逆止弁19を介してレシーバタンク16に連通している。なお、逆止弁19はレシーバタンク16方向を順方向としている。   The discharge side of the compressor 11 is connected to one inlet of the four-way valve 13 via the oil separator 12, and one outlet of the four-way valve 13 is connected to one inlet of the four-way valve 51. One outlet of the four-way valve 51 is connected to the inlet of the condenser 14. The condenser 14 is composed of an inlet side 14A having a relatively small flow path resistance composed of a large number of parallel pipes and an outlet side 14B in which these are aggregated into a small number of parallel pipes or a single pipe. The outlet side 14 </ b> B of the condenser 14 is connected to the other inlet of the four-way valve 51, and the other outlet of the four-way valve 51 is connected to the inlet of the receiver tank 16. Further, the outlet side 14 </ b> B of the condenser 14 communicates with the receiver tank 16 via the check valve 19 separately from the path via the four-way valve 51 described above. The check valve 19 has the receiver tank 16 in the forward direction.

そして、四方弁17の一方の出口はカスケード熱交換器18のケース側管路18Bの入口に接続されている。なお、カスケード熱交換器18は、内部に構成された空調側管路18Aとケース側管路18Bを対向に通過する冷媒を相互に熱交換させるものであり、これによって空調用冷媒回路4の低圧側と冷却貯蔵設備用冷媒回路6の高圧側とは熱的に結合されている。   One outlet of the four-way valve 17 is connected to the inlet of the case side pipe line 18B of the cascade heat exchanger 18. The cascade heat exchanger 18 exchanges heat between the refrigerants passing through the air conditioning side pipe 18 </ b> A and the case side pipe 18 </ b> B that are arranged inside, and thereby the low pressure of the air conditioning refrigerant circuit 4. The side and the high pressure side of the cooling storage facility refrigerant circuit 6 are thermally coupled.

カスケード熱交換器18のケース側管路18Bの出口は、四方弁13の他方の入口に接続されている。この四方弁13の他方の出口は四方弁17の他方の入口に接続され、この四方弁17の他方の出口は室外ユニット3から出て室内2に入り分岐する。   The outlet of the case side pipe 18 </ b> B of the cascade heat exchanger 18 is connected to the other inlet of the four-way valve 13. The other outlet of the four-way valve 13 is connected to the other inlet of the four-way valve 17, and the other outlet of the four-way valve 17 exits from the outdoor unit 3 and branches into the room 2.

分岐した一方の配管は電磁弁33、膨張弁32を介して冷蔵用蒸発器31Aの入口に接続されている。分岐した他方の配管は電磁弁36、膨張弁35を介して冷凍用蒸発器34Aの入口に接続されている。   One of the branched pipes is connected to the inlet of the refrigeration evaporator 31A via an electromagnetic valve 33 and an expansion valve 32. The other branched pipe is connected to the inlet of the refrigeration evaporator 34A via the electromagnetic valve 36 and the expansion valve 35.

冷凍用蒸発器34Aの出口は逆止弁40を介して圧縮機41の吸込側に接続されている。なお、逆止弁40は、圧縮機41方向が順方向とされている。この圧縮機41は圧縮機11よりも出力の小さい圧縮機であり、その吐出側はオイルセパレータ42を介して圧縮機11の吸込側に接続されている。すなわち、圧縮機41と圧縮機11は冷媒回路上直列に接続されている。また、冷蔵用蒸発器31Aの出口は圧縮機41の吐出側のオイルセパレータ42の出口側に接続されている。   The outlet of the refrigeration evaporator 34 </ b> A is connected to the suction side of the compressor 41 via a check valve 40. In the check valve 40, the direction of the compressor 41 is the forward direction. This compressor 41 is a compressor having a smaller output than the compressor 11, and its discharge side is connected to the suction side of the compressor 11 via an oil separator 42. That is, the compressor 41 and the compressor 11 are connected in series on the refrigerant circuit. The outlet of the refrigeration evaporator 31 </ b> A is connected to the outlet side of the oil separator 42 on the discharge side of the compressor 41.

以上の構成の下、この冷凍システム1の動作を説明する。なお、圧縮機11と圧縮機21Aとはインバータにより周波数制御がなされ、圧縮機21Bと圧縮機41とは定速運転されるものとする。また、冷凍システム1全体の動作は汎用マイクロコンピュータから構成されたコントローラ100により制御される。なお、利用側熱交換器30Aの近傍には送風機30Bが設置され、冷蔵用蒸発器31Aの近傍には送風機31Bが設置され、冷凍用蒸発器34Aの近傍には送風機34Bが設置され、熱源側熱交換器25及び凝縮器14の近傍にも送風機50A及び50Bが設置され、これら熱交換器に送風が可能となっている。   The operation of the refrigeration system 1 will be described with the above configuration. The compressor 11 and the compressor 21A are frequency controlled by an inverter, and the compressor 21B and the compressor 41 are operated at a constant speed. The operation of the entire refrigeration system 1 is controlled by a controller 100 composed of a general-purpose microcomputer. A blower 30B is installed in the vicinity of the use side heat exchanger 30A, a blower 31B is installed in the vicinity of the refrigeration evaporator 31A, and a blower 34B is installed in the vicinity of the refrigeration evaporator 34A. Blowers 50A and 50B are also installed in the vicinity of the heat exchanger 25 and the condenser 14, and air can be blown to these heat exchangers.

次に空気調和機5が暖房運転を行う場合を説明する。暖房運転を行う際は、コントローラ100が外気温度センサ60により外気温度Tを取得し、この外気温度Tが、熱源側熱交換器25に着霜が生じる温度範囲か否か、より具体的には、予め定めた低外気運転モード開始温度(開始温度、本例では−10度)T0以下か否かを判定し、外気温度Tが低外気運転モード開始温度T0を超える場合には、室外ユニット3において図2に示される冷媒回路を構成する。   Next, the case where the air conditioner 5 performs the heating operation will be described. When performing the heating operation, the controller 100 acquires the outside air temperature T by the outside air temperature sensor 60, and more specifically, whether or not the outside air temperature T is in a temperature range where frost formation occurs in the heat source side heat exchanger 25, more specifically. Then, it is determined whether or not the low outdoor air operation mode start temperature (start temperature, in this example, −10 degrees) T0 or less, and if the outdoor air temperature T exceeds the low outdoor air operation mode start temperature T0, the outdoor unit 3 The refrigerant circuit shown in FIG.

図2に示すように、空気調和機5を構成する空調用冷媒回路4において、コントローラ100は、四方弁24によりオイルセパレータ23の出口と利用側熱交換器30Aの入口を連通させ、熱源側熱交換器25の入口側25Aと逆止弁29の入口を連通させ、また、膨張弁28を全開にする。そして、圧縮機21A及び21Bを運転すると共に、圧縮機21Aの運転周波数を制御することに暖房能力を調整する。   As shown in FIG. 2, in the air conditioning refrigerant circuit 4 constituting the air conditioner 5, the controller 100 causes the outlet of the oil separator 23 and the inlet of the use side heat exchanger 30 </ b> A to communicate with each other by a four-way valve 24. The inlet side 25A of the exchanger 25 and the inlet of the check valve 29 are communicated, and the expansion valve 28 is fully opened. And while heating compressor 21A and 21B, heating capacity is adjusted to control the operating frequency of compressor 21A.

圧縮機21A及び21Bより吐出された高温高圧のガス冷媒は、オイルセパレータ23、四方弁24を介して利用側熱交換器30Aに入る。この利用側熱交換器30Aには送風機30Bにより室内2の空気が通風され、冷媒はここで放熱し室内空気を加熱することで凝縮液化する。   The high-temperature and high-pressure gas refrigerant discharged from the compressors 21A and 21B enters the use side heat exchanger 30A via the oil separator 23 and the four-way valve 24. The air in the room 2 is passed through the use side heat exchanger 30A by the blower 30B, and the refrigerant radiates heat here and heats the room air to condense and liquefy.

利用側熱交換器30Aで液化した冷媒は利用側熱交換器30Aから流出して膨張弁28を通過して分岐し、一方の冷媒が膨張弁27において減圧された後、カスケード熱交換器18の空調側管路18Aに流入し、蒸発することで吸熱した後、アキュムレータ20を経て圧縮機21A及び21Bに吸引され、他方の冷媒が膨張弁26において減圧された後、熱源側熱交換器25に流入し、蒸発することで吸熱した後、アキュムレータ20を経て圧縮機21A及び21Bに吸引される。   The refrigerant liquefied in the use side heat exchanger 30A flows out of the use side heat exchanger 30A, branches through the expansion valve 28, and after one refrigerant is decompressed in the expansion valve 27, the refrigerant of the cascade heat exchanger 18 is changed. After flowing into the air conditioning side pipe 18A and evaporating and absorbing heat, it is sucked into the compressors 21A and 21B through the accumulator 20, and the other refrigerant is decompressed in the expansion valve 26, and then is supplied to the heat source side heat exchanger 25. After flowing in and evaporating to absorb heat, it is sucked into the compressors 21A and 21B through the accumulator 20.

コントローラ100は、カスケード熱交換器18の空調側管路18Aの出入り口の冷媒温度或いはカスケード熱交換器18の温度に基づいて適正な過熱度となるように上記膨張弁26及び27の弁開度を調整する。また、利用側熱交換器30Aの温度やそこに通風される空気の温度に基づき、送風機30Bの制御を行う。   The controller 100 adjusts the valve openings of the expansion valves 26 and 27 so that the degree of superheat is appropriate based on the refrigerant temperature at the inlet / outlet of the air conditioning side pipe 18A of the cascade heat exchanger 18 or the temperature of the cascade heat exchanger 18. adjust. Further, the blower 30B is controlled based on the temperature of the use side heat exchanger 30A and the temperature of the air ventilated there.

また、コントローラ100は、冷却装置7の冷却貯蔵設備用冷媒回路6の四方弁13により、オイルセパレータ12の出口と四方弁17の一方の入口を連通させ、カスケード熱交換器18のケース側管路18Bの出口と四方弁51の一方の入口を連通させる。また、四方弁17により四方弁13の一方の出口とカスケード熱交換器18のケース側管路18Bの入口を連通させ、レシーバタンク16の出口と電磁弁33及び36を連通させる。さらに、四方弁51により四方弁13の一方の出口と凝縮器14の入口側14Aを連通させ、凝縮器14の出口側14Bとレシーバタンク16の入口を連通させる。   Further, the controller 100 causes the outlet of the oil separator 12 and one inlet of the four-way valve 17 to communicate with each other by the four-way valve 13 of the refrigerant circuit 6 for the cooling storage facility of the cooling device 7, and the case-side pipe line of the cascade heat exchanger 18. The outlet of 18B communicates with one inlet of the four-way valve 51. Further, the four-way valve 17 makes one outlet of the four-way valve 13 communicate with the inlet of the case side pipe 18B of the cascade heat exchanger 18, and the outlet of the receiver tank 16 and the electromagnetic valves 33 and 36 communicate with each other. Further, the four-way valve 51 allows one outlet of the four-way valve 13 and the inlet side 14A of the condenser 14 to communicate with each other, and the outlet side 14B of the condenser 14 and the inlet of the receiver tank 16 to communicate with each other.

これにより、圧縮機11から吐出された高温高圧のガス冷媒は、四方弁13、17を介してカスケード熱交換器18のケース側管路18Bに入る。したがって、圧縮機11から吐出された高温高圧のガス冷媒は凝縮器14で放熱する前に直接カスケード熱交換器18のケース側管路18Bに供給される。このケース側管路18Bに流入した冷却貯蔵設備用冷媒回路6の高圧側の冷媒は、カスケード熱交換器18で放熱し、空調側管路18Aで蒸発する空調用冷媒回路4の低圧側の冷媒によって冷却される。これによって、空調用冷媒回路4の冷媒は冷却貯蔵設備用冷媒回路6の排熱を利用することができ、暖房能力を向上することができる。   Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 enters the case-side pipe line 18B of the cascade heat exchanger 18 via the four-way valves 13 and 17. Therefore, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 is directly supplied to the case side pipe 18 </ b> B of the cascade heat exchanger 18 before radiating heat with the condenser 14. The refrigerant on the high pressure side of the refrigerant circuit 6 for the cooling storage facility that has flowed into the case side pipe 18B dissipates heat in the cascade heat exchanger 18 and evaporates in the air conditioning side pipe 18A. Cooled by. As a result, the refrigerant of the air conditioning refrigerant circuit 4 can use the exhaust heat of the refrigerant circuit 6 for the cooling storage facility, and the heating capacity can be improved.

このカスケード熱交換器18のケース側管路18Bを通過した冷媒は四方弁13及び51を通過して凝縮器14の入口側14Aに入り、そこで放熱して凝縮液化し、四方弁51を介してレシーバタンク16に入り、そこで気液分離され、分離された液冷媒はレシーバタンク16から流出し、四方弁17を介して室内2に流入した後に分岐し、電磁弁33及び36の入口へ流れる。   The refrigerant that has passed through the case side pipe 18 </ b> B of the cascade heat exchanger 18 passes through the four-way valves 13 and 51 and enters the inlet side 14 </ b> A of the condenser 14, where it dissipates heat and condenses and liquefies, and passes through the four-way valve 51. The gas refrigerant enters the receiver tank 16 and is separated into gas and liquid. The separated liquid refrigerant flows out of the receiver tank 16, flows into the room 2 through the four-way valve 17, branches, and flows to the inlets of the electromagnetic valves 33 and 36.

この運転により、カスケード熱交換器18で冷却貯蔵設備用冷媒回路6の高圧側冷媒の廃熱を回収して空調用冷媒回路4の利用側熱交換器30Aに搬送することができ、暖房能力の改善を図ることができるようになり、総じて、室内空調と冷蔵ケース31及び冷凍ケース34の庫内冷却を行う空調冷凍装置1の効率改善を図り、省エネ化を図ることが可能となる。
特に、冷却貯蔵設備用冷媒回路6の高圧側冷媒を凝縮器14よりも先にカスケード熱交換器18に流すので、冷却貯蔵設備用冷媒回路6の高圧側冷媒からの廃熱を効率よく回収し、空調用冷媒回路4の利用側熱交換器30Aにおける暖房能力をより向上させることができる。
By this operation, the waste heat of the high-pressure side refrigerant in the refrigerant circuit 6 for the cooling storage facility can be recovered by the cascade heat exchanger 18 and can be conveyed to the use side heat exchanger 30A of the refrigerant circuit 4 for air conditioning. As a result, it is possible to improve the efficiency of the air-conditioning / refrigeration apparatus 1 that cools the indoor air-conditioning and the refrigerator case 31 and the freezing case 34 as a whole, and energy saving can be achieved.
In particular, since the high-pressure side refrigerant of the refrigerant circuit 6 for the cooling storage facility flows through the cascade heat exchanger 18 before the condenser 14, the waste heat from the high-pressure side refrigerant of the refrigerant circuit 6 for the cooling storage facility can be efficiently recovered. The heating capacity in the use side heat exchanger 30A of the refrigerant circuit 4 for air conditioning can be further improved.

なお、空気調和機5の負荷が軽くなった場合、コントローラ100は、膨張弁27の弁開度を絞って冷媒流量を低減させる。この場合、カスケード熱交換器18における冷却貯蔵設備用冷媒回路6の冷媒の放熱量が過剰となるが、本発明では冷却貯蔵設備用冷媒回路6の高圧側冷媒をカスケード熱交換器18に流した後に凝縮器14に流すようにしているので、凝縮器14において過剰な熱量を放出でき、安定した廃熱回収運転を実現することができる。   In addition, when the load of the air conditioner 5 becomes light, the controller 100 reduces the refrigerant flow rate by reducing the valve opening degree of the expansion valve 27. In this case, the amount of heat released from the refrigerant in the refrigerant circuit 6 for the cooling storage facility in the cascade heat exchanger 18 becomes excessive. In the present invention, the high-pressure side refrigerant in the refrigerant circuit 6 for the cooling storage facility is passed through the cascade heat exchanger 18. Since it is made to flow through the condenser 14 later, an excessive amount of heat can be released in the condenser 14 and a stable waste heat recovery operation can be realized.

また、冷却貯蔵設備用冷媒回路6の冷凍用蒸発器34Aから出た冷媒の圧力は、その蒸発温度が低くなることから冷蔵用蒸発器31Aから出た冷媒よりも低くなるが、冷蔵用蒸発器31Aから出た冷媒と合流させる以前に圧縮機41により圧縮することで昇圧されるので、圧縮機11の吸込側圧力を調整することにより、冷蔵ケース31と冷凍ケース34の庫内冷却を各々適切に行うことができる。   Further, the pressure of the refrigerant discharged from the refrigeration evaporator 34A of the refrigerant circuit 6 for the cooling storage facility is lower than the refrigerant discharged from the refrigeration evaporator 31A because its evaporation temperature is lower, but the refrigeration evaporator Since the pressure is increased by compressing by the compressor 41 before joining the refrigerant discharged from 31A, by adjusting the suction side pressure of the compressor 11, the inside cooling of the refrigeration case 31 and the freezing case 34 is appropriately performed. Can be done.

これに対し、冷房運転の場合は、図1に示すように、コントローラ100は、空調用冷媒回路4の四方弁24を切り換えてオイルセパレータ23の出口と熱源側熱交換器25の入口側25Aを連通させ、利用側熱交換器30Aの出口と逆止弁29の入口を連通させ、膨張弁26を全開にすることにより熱源側熱交換器25が凝縮器に、利用側熱交換器30Aが蒸発器として機能して冷房運転状態となり、室内を冷房する。
なお、冷却貯蔵設備用冷媒回路6については、冷媒が凝縮器14からカスケード熱交換器18を経て冷蔵ケース31と冷凍ケース34を流れる。この運転により、凝縮器14で凝縮した後にカスケード熱交換器18で過冷却を増やし、冷蔵側冷却能力をアップすることができる。このため、室内空調と冷蔵ケース31及び冷凍ケース34の庫内冷却を行う空調冷凍装置1の効率改善を図り、省エネ化を図ることが可能となる。
On the other hand, in the cooling operation, as shown in FIG. 1, the controller 100 switches the four-way valve 24 of the air conditioning refrigerant circuit 4 so that the outlet of the oil separator 23 and the inlet side 25A of the heat source side heat exchanger 25 are switched. By connecting, the outlet of the use side heat exchanger 30A and the inlet of the check valve 29 are made to communicate, and the expansion valve 26 is fully opened, whereby the heat source side heat exchanger 25 becomes a condenser and the use side heat exchanger 30A evaporates. Functions as an air conditioner and enters a cooling operation state to cool the room.
In the cooling storage facility refrigerant circuit 6, the refrigerant flows from the condenser 14 through the cascade heat exchanger 18 through the refrigeration case 31 and the refrigeration case 34. By this operation, after condensing by the condenser 14, the supercooling can be increased by the cascade heat exchanger 18, and the refrigeration side cooling capacity can be increased. For this reason, it is possible to improve the efficiency of the air-conditioning / refrigeration apparatus 1 that performs indoor air conditioning and cooling of the refrigerator case 31 and the freezing case 34 to save energy.

ところで、室外温度が著しく低下した場合には、空調用冷媒回路4において熱源側熱交換器25で十分な熱を汲み上げることができなくなる場合が生じる他、熱源側熱交換器25に霜が発生してしまい、暖房能力が低下するおそれが生じる。
そこで、本構成では、コントローラ100が、暖房運転の場合に外気温度Tが低下して十分な熱を汲み上げられない温度(低外気運転モード開始温度T0)以下になると、低外気運転モードに移行し、図2から図3へと四方弁51を切り換えると共に、膨張弁27を開け、膨張弁26を閉じるように構成されている。
By the way, when the outdoor temperature is remarkably lowered, there may occur a case where sufficient heat cannot be pumped by the heat source side heat exchanger 25 in the air conditioning refrigerant circuit 4, and frost is generated in the heat source side heat exchanger 25. As a result, the heating capacity may be reduced.
Therefore, in the present configuration, when the controller 100 falls below the temperature at which the outside air temperature T is lowered and cannot draw sufficient heat during the heating operation (low outside air operation mode start temperature T0), the controller 100 shifts to the low outside air operation mode. The four-way valve 51 is switched from FIG. 2 to FIG. 3, the expansion valve 27 is opened, and the expansion valve 26 is closed.

すなわち、コントローラ100は、四方弁13の一方の出口とレシーバタンク16の入口を連通させ、凝縮器14の入口側14Aと出口側14Bを連通させる。このため、カスケード熱交換器18のケース側管路18Bの出口から流出した冷媒を凝縮器14に流入させることなく、レシーバタンク16を介して冷蔵ケース31の冷蔵用蒸発器31A及び冷凍ケース34の冷凍用蒸発器34Aへと流れる。すなわち、冷却貯蔵設備用冷媒回路6の高圧側の冷媒をカスケード熱交換器18に流した後、凝縮器14を介さずに蒸発器31A、34Aに流している。
この場合、凝縮器14が冷却貯蔵設備用冷媒回路6から独立し、冷媒が凝縮器14内に貯留されてしまうため、冷却貯蔵設備用冷媒回路6を循環する冷媒の不足を招いたり、凝縮器14の内圧が上昇するおそれがある。そのため、本構成では、上述した四方弁51を介する経路とは別に逆止弁19を介して凝縮器14とレシーバタンク16を連通させることにより、凝縮器14から冷却貯蔵設備用冷媒回路6へ冷媒が移動できるようにしている。
That is, the controller 100 causes one outlet of the four-way valve 13 and the inlet of the receiver tank 16 to communicate with each other, and causes the inlet side 14 </ b> A and the outlet side 14 </ b> B of the condenser 14 to communicate with each other. For this reason, the refrigerant flowing out from the outlet of the case side pipe line 18B of the cascade heat exchanger 18 does not flow into the condenser 14, and the refrigeration evaporator 31A and the refrigeration case 34 of the refrigeration case 31 are passed through the receiver tank 16. It flows to the freezing evaporator 34A. In other words, after the refrigerant on the high pressure side of the refrigerant circuit 6 for the cooling storage facility flows through the cascade heat exchanger 18, it flows through the evaporators 31 </ b> A and 34 </ b> A without passing through the condenser 14.
In this case, the condenser 14 is independent of the refrigerant circuit 6 for the cooling storage facility, and the refrigerant is stored in the condenser 14, so that the refrigerant circulating in the refrigerant circuit 6 for the cooling storage facility is insufficient or the condenser 14 may increase. Therefore, in the present configuration, the refrigerant is connected from the condenser 14 to the refrigerant circuit 6 for the cooling storage facility by communicating the condenser 14 and the receiver tank 16 through the check valve 19 separately from the path through the four-way valve 51 described above. Has been able to move.

また、コントローラ100は、空調用冷媒回路4において、膨張弁27を開けると共に膨張弁26を閉じているので、利用側熱交換器30Aから流出して膨張弁28を通過した冷媒を、熱源側熱交換器25に流入させることなく、膨張弁27を通過させてカスケード熱交換器18の空調側管路18Aに流入させ、ここで蒸発させることで吸熱させた後、アキュムレータ20を経て圧縮機21A及び21Bに吸引させる。すなわち、空調用冷媒回路4の低圧側の冷媒を、熱源側熱交換器25に流さずにカスケード熱交換器18に流している。   In addition, since the controller 100 opens the expansion valve 27 and closes the expansion valve 26 in the air conditioning refrigerant circuit 4, the controller 100 converts the refrigerant that has flowed out of the use side heat exchanger 30A and passed through the expansion valve 28 into heat source side heat. Without flowing into the exchanger 25, it passes through the expansion valve 27 and flows into the air conditioning side pipe 18A of the cascade heat exchanger 18, where it is evaporated to absorb heat, and after passing through the accumulator 20, the compressor 21A and 21B is aspirated. That is, the refrigerant on the low pressure side of the air conditioning refrigerant circuit 4 is allowed to flow to the cascade heat exchanger 18 without flowing to the heat source side heat exchanger 25.

このような構成をとることにより、冷却貯蔵設備用冷媒回路6では、圧縮機11から吐出した高温高圧の冷媒がカスケード熱交換器18において、空調用冷媒回路4の冷媒に熱を供給した凝縮器14にて放熱することなくレシーバタンク16を介して電磁弁33及び36に向かう。したがって、冷媒が凝縮器14で過剰に放熱してしまうことを防止することができ、この冷媒の排熱を回収して空調用冷媒回路4の利用側熱交換器30Aに搬送することにより、空気調和機5の暖房能力の改善を図ることができるようになる。   By adopting such a configuration, in the refrigerant circuit 6 for the cooling storage facility, the high-temperature and high-pressure refrigerant discharged from the compressor 11 supplies heat to the refrigerant in the air-conditioning refrigerant circuit 4 in the cascade heat exchanger 18. 14 is directed to the electromagnetic valves 33 and 36 via the receiver tank 16 without radiating heat. Therefore, it is possible to prevent the refrigerant from dissipating excessive heat in the condenser 14, and by collecting the exhaust heat of the refrigerant and transporting it to the use side heat exchanger 30 </ b> A of the air conditioning refrigerant circuit 4, The heating capacity of the conditioner 5 can be improved.

しかも、空調用冷媒回路4では、冷媒が熱源側熱交換器25を流れずにカスケード熱交換器18だけを流れて利用側熱交換器30Aに流れるので、熱源側熱交換器25に霜が発生するのを回避することができる。これにより、従来のように暖房運転時に室外温度が低くなると熱源側熱交換器25に霜が発生して除霜運転を繰り返してしまうといった事態を回避することができ、暖房能力の低下や成績係数(COP)の低下を回避することが可能になる。
この場合、コントローラ100は、膨張弁27を開けると共に膨張弁26を閉じた後、冷却貯蔵設備用冷媒回路6の冷媒の温度(例えば、カスケード熱交換器18のケース側管路18Bの出口、或いは、入口等の温度)に基づいて、適正な過熱度となるように膨張弁27の開度を制御し、どうしても適正な過熱度とならない場合、膨張弁26も開けて過熱度を調整する。なお、膨張弁28は暖房時、常に全開とされる。
Moreover, in the air conditioning refrigerant circuit 4, the refrigerant does not flow through the heat source side heat exchanger 25 but flows only through the cascade heat exchanger 18 and flows into the use side heat exchanger 30 </ b> A, so that frost is generated in the heat source side heat exchanger 25. Can be avoided. Thereby, when outdoor temperature becomes low at the time of heating operation like the past, it can avoid the situation where frost generate | occur | produces in the heat source side heat exchanger 25, and it repeats defrost operation, the fall of heating capability or a coefficient of performance It is possible to avoid a decrease in (COP).
In this case, the controller 100 opens the expansion valve 27 and closes the expansion valve 26, and then the temperature of the refrigerant in the refrigerant circuit 6 for the cooling storage facility (for example, the outlet of the case side pipe 18 </ b> B of the cascade heat exchanger 18, or Based on the temperature of the inlet, etc., the opening degree of the expansion valve 27 is controlled so as to achieve an appropriate degree of superheat, and if the degree of superheat is not appropriate, the expansion valve 26 is also opened to adjust the degree of superheat. The expansion valve 28 is always fully opened during heating.

ここで、上述のように、上記着霜を防止可能な暖房運転の開始条件は外気温度Tが上記低外気運転モード開始温度(−10度)T0を下回ったことであるが、解除条件は、外気温度Tが予め定めた設定温度(着霜が生じない温度(解除温度)、例えば0度)を超えた場合、或いは、冷却貯蔵設備用冷媒回路6の高圧側冷媒の圧力が予め定めた許容上限圧(例えば2.3MPa)を超えた場合である。そして、許容上限圧を超えた場合は、上記高圧側冷媒の圧力が予め定めた復帰圧(許容上限圧より低い値、例えば、1.0MPa)を下回った際に、上記低外気運転モードによる暖房運転に復帰させるようにしている。   Here, as described above, the heating operation start condition capable of preventing the frost formation is that the outside air temperature T is lower than the low outside air operation mode start temperature (−10 degrees) T0. When the outside air temperature T exceeds a predetermined set temperature (temperature at which frost formation does not occur (release temperature), for example, 0 degrees), or the pressure of the high-pressure side refrigerant in the refrigerant circuit 6 for the cooling storage facility This is a case where the upper limit pressure (for example, 2.3 MPa) is exceeded. When the allowable upper limit pressure is exceeded, the heating in the low outside air operation mode is performed when the pressure of the high-pressure refrigerant falls below a predetermined return pressure (a value lower than the allowable upper limit pressure, for example, 1.0 MPa). It tries to return to driving.

以上説明したように、本実施形態によれば、暖房運転時に外気温度Tが熱源側熱交換器25に着霜が生じる温度T0以下になると、冷却貯蔵設備用冷媒回路6の高圧側の冷媒をカスケード熱交換器18に流した後、凝縮器14を介さずに蒸発器31A、34Aに流すと共に、空調用冷媒回路4の低圧側の冷媒を、熱源側熱交換器25に流さずにカスケード熱交換器18に流すので、熱源側熱交換器25の着霜を防止し、かつ、暖房能力の向上や高い成績係数を維持することができる。   As described above, according to the present embodiment, when the outside air temperature T becomes equal to or lower than the temperature T0 at which frost formation occurs in the heat source side heat exchanger 25 during the heating operation, the refrigerant on the high pressure side of the refrigerant circuit 6 for the cooling storage facility is changed. After flowing through the cascade heat exchanger 18, the refrigerant flows through the evaporators 31 </ b> A and 34 </ b> A without passing through the condenser 14, and the low-pressure side refrigerant of the air conditioning refrigerant circuit 4 flows through the heat source side heat exchanger 25 without cascade heat. Since it flows to the exchanger 18, frosting of the heat source side heat exchanger 25 can be prevented, and heating capacity can be improved and a high coefficient of performance can be maintained.

以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変更実施が可能である。例えば、コンビニエンスストアに設置する冷凍システムを例に挙げて説明したが、これに限らず、室内空調と冷却貯蔵設備の冷却とを行う種々の冷凍システムに広く適用することができる。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change implementation is possible. For example, the refrigeration system installed in a convenience store has been described as an example. However, the present invention is not limited thereto, and can be widely applied to various refrigeration systems that perform indoor air conditioning and cooling of a cooling storage facility.

本実施形態に係る冷凍システムの構成を示す図である。It is a figure which shows the structure of the refrigeration system which concerns on this embodiment. 冷凍システムの暖房運転を説明する図である。It is a figure explaining the heating operation of a refrigeration system. 冷凍システムの低外気運転モードによる暖房運転を説明する図である。It is a figure explaining the heating operation by the low outside air operation mode of a refrigerating system.

符号の説明Explanation of symbols

1 冷凍システム
4 空調用冷媒回路
5 空気調和機
6 冷却貯蔵設備用冷媒回路
7 冷却装置
11、21A、21B、41 圧縮機
13、17、24、51 四方弁
14 凝縮器
18 カスケード熱交換器
25 熱源側熱交換器
30A 利用側熱交換器
31 冷蔵ケース
34 冷凍ケース
T0 低外気運転モード開始温度(開始温度)

DESCRIPTION OF SYMBOLS 1 Refrigeration system 4 Air conditioning refrigerant circuit 5 Air conditioner 6 Refrigerating circuit for cooling storage equipment 7 Cooling device 11, 21A, 21B, 41 Compressor 13, 17, 24, 51 Four-way valve 14 Condenser 18 Cascade heat exchanger 25 Heat source Side heat exchanger 30A Usage side heat exchanger 31 Refrigerated case 34 Refrigeration case T0 Low outside air operation mode start temperature (start temperature)

Claims (7)

圧縮機、熱源側熱交換器及び利用側熱交換器を備える空調用冷媒回路と、冷却用圧縮機、凝縮器及び蒸発器を備える冷却貯蔵設備用冷媒回路と、前記空調用冷媒回路の低圧側の冷媒と前記前記冷凍系統部の高圧側の冷媒とを熱交換させるカスケード熱交換器と、運転を制御する運転制御部とを備える冷凍システムにおいて、
前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回ると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介さずに前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流さずに前記カスケード熱交換器に流すことを特徴とする冷凍システム。
A refrigerant circuit for air conditioning comprising a compressor, a heat source side heat exchanger and a use side heat exchanger, a refrigerant circuit for cooling storage equipment comprising a cooling compressor, a condenser and an evaporator, and a low pressure side of the air conditioning refrigerant circuit In a refrigeration system comprising a cascade heat exchanger that exchanges heat between the refrigerant of the refrigerant and the refrigerant on the high-pressure side of the refrigeration system unit, and an operation control unit that controls operation,
In the heating operation of the air conditioning refrigerant circuit, when the outside air temperature falls below a predetermined start temperature, the operation control unit causes the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage facility to flow through the cascade heat exchanger. The refrigerant system is configured to flow through the evaporator without passing through the condenser, and to flow the refrigerant on the low-pressure side of the air conditioning refrigerant circuit through the cascade heat exchanger without flowing through the heat source side heat exchanger. .
前記空調用冷媒回路は、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流す経路に配置される第1膨張弁と、前記経路から分岐して前記冷媒を前記カスケード熱交換器に流す経路に配置される第2膨張弁とを有し、
前記運転制御部は、前記空調用冷媒回路の暖房運転時に外気温度が予め定めた開始温度を下回ると、前記第2膨張弁を開けると共に前記第1膨張弁を閉じることを特徴とする請求項1に記載の冷凍システム。
The air conditioning refrigerant circuit includes a first expansion valve arranged in a path for flowing a low-pressure side refrigerant of the air conditioning refrigerant circuit to the heat source side heat exchanger, and the cascade heat exchange branching from the path A second expansion valve disposed in a path flowing through the vessel,
2. The operation control unit opens the second expansion valve and closes the first expansion valve when an outside air temperature falls below a predetermined start temperature during the heating operation of the air conditioning refrigerant circuit. The refrigeration system described in.
前記運転制御部は、前記第2膨張弁を開けると共に前記第1膨張弁を閉じた後、前記冷却貯蔵設備用冷媒回路の冷媒の温度に基づいて前記第1膨張弁及び第2膨張弁の開度を調整することを特徴とする請求項2に記載の冷凍システム。   The operation control unit opens the second expansion valve and closes the first expansion valve, and then opens the first expansion valve and the second expansion valve based on the temperature of the refrigerant in the refrigerant circuit for the cooling storage facility. The refrigeration system according to claim 2, wherein the degree is adjusted. 前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回った後に予め定めた解除温度を超えると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介して前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流すことを特徴とする請求項1乃至3のいずれかに記載の冷凍システム。   In the heating operation of the air conditioning refrigerant circuit, when the outside air temperature exceeds a predetermined release temperature after the outdoor temperature falls below a predetermined start temperature, the operation control unit removes the high-pressure side refrigerant of the refrigerant circuit for the cooling storage facility. 2. After flowing through the cascade heat exchanger, the refrigerant flows through the condenser to the evaporator, and the low-pressure side refrigerant of the air conditioning refrigerant circuit flows through the heat source side heat exchanger. The refrigeration system in any one of thru | or 3. 前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回った後に前記冷却貯蔵設備用冷媒回路の高圧側の冷媒の圧力が予め定めた許容圧力を超えると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介して前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流すことを特徴とする請求項1乃至4のいずれかに記載の冷凍システム。   In the heating operation of the air conditioning refrigerant circuit, the operation control unit is configured so that the pressure of the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage facility exceeds a predetermined allowable pressure after the outside air temperature falls below a predetermined start temperature. And after flowing the refrigerant on the high-pressure side of the refrigerant circuit for the cooling storage facility to the cascade heat exchanger, the refrigerant on the low-pressure side of the air-conditioning refrigerant circuit is allowed to flow to the evaporator via the condenser. The refrigeration system according to any one of claims 1 to 4, wherein the refrigeration system is passed through a heat source side heat exchanger. 前記冷却貯蔵設備用冷媒回路は、前記カスケード熱交換器から流れた前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を、前記凝縮器を介さずに前記蒸発器に流すか、前記凝縮器を介して前記蒸発器に流すかを切替可能な四方弁を有することを特徴とする請求項1乃至5のいずれかに記載の冷凍システム。   The refrigerant circuit for the cooling storage facility flows the refrigerant on the high-pressure side of the refrigerant circuit for the cooling storage facility that has flowed from the cascade heat exchanger to the evaporator without passing through the condenser, or through the condenser. A refrigeration system according to any one of claims 1 to 5, further comprising a four-way valve capable of switching whether to flow to the evaporator. 圧縮機、熱源側熱交換器及び利用側熱交換器を備える空調用冷媒回路と、冷却用圧縮機、凝縮器及び蒸発器を備える冷却貯蔵設備用冷媒回路と、前記空調用冷媒回路の低圧側の冷媒と前記前記冷凍系統部の高圧側の冷媒とを熱交換させるカスケード熱交換器と、運転を制御する運転制御部とを備える冷凍システムの制御方法において、
前記運転制御部は、前記空調用冷媒回路の暖房運転時に、外気温度が予め定めた開始温度を下回ると、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を前記カスケード熱交換器に流した後、前記凝縮器を介さずに前記蒸発器に流すと共に、前記空調用冷媒回路の低圧側の冷媒を前記熱源側熱交換器に流さずに前記カスケード熱交換器に流すことを特徴とする冷凍システムの制御方法。
A refrigerant circuit for air conditioning comprising a compressor, a heat source side heat exchanger and a use side heat exchanger, a refrigerant circuit for cooling storage equipment comprising a cooling compressor, a condenser and an evaporator, and a low pressure side of the air conditioning refrigerant circuit In a control method of a refrigeration system comprising a cascade heat exchanger for exchanging heat between the refrigerant of the refrigerant and the high-pressure side refrigerant of the refrigeration system unit, and an operation control unit for controlling operation,
In the heating operation of the air conditioning refrigerant circuit, when the outside air temperature falls below a predetermined start temperature, the operation control unit causes the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage facility to flow through the cascade heat exchanger. The refrigerant system is configured to flow through the evaporator without passing through the condenser, and to flow the refrigerant on the low-pressure side of the air conditioning refrigerant circuit through the cascade heat exchanger without flowing through the heat source side heat exchanger. Control method.
JP2006060718A 2006-03-07 2006-03-07 Refrigeration system and control method thereof Expired - Fee Related JP5033337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060718A JP5033337B2 (en) 2006-03-07 2006-03-07 Refrigeration system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060718A JP5033337B2 (en) 2006-03-07 2006-03-07 Refrigeration system and control method thereof

Publications (2)

Publication Number Publication Date
JP2007240040A true JP2007240040A (en) 2007-09-20
JP5033337B2 JP5033337B2 (en) 2012-09-26

Family

ID=38585750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060718A Expired - Fee Related JP5033337B2 (en) 2006-03-07 2006-03-07 Refrigeration system and control method thereof

Country Status (1)

Country Link
JP (1) JP5033337B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115379A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant refrigerating device and heating/cooling system comprising the same
US8393173B2 (en) 2009-11-20 2013-03-12 Lg Electronics Inc. Combined refrigerating/freezing and air conditioning system
US9297558B2 (en) 2009-11-20 2016-03-29 Lg Electronics Inc. Refrigerating system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180226A (en) * 1983-03-30 1984-10-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner combined with hot water supply unit
JPS6149967A (en) * 1984-08-14 1986-03-12 日産自動車株式会社 Air conditioner for car
JPH01314868A (en) * 1988-06-15 1989-12-20 Hitachi Ltd Heat pump type heater-cooler
JP2002089936A (en) * 2000-09-20 2002-03-27 Aisin Seiki Co Ltd Engine drive type heat pump
JP2003068315A (en) * 2001-08-29 2003-03-07 Toshiba Corp Solid polymer fuel cell system
JP2004061023A (en) * 2002-07-30 2004-02-26 Kumushu Chin Heat pump device
JP2004170001A (en) * 2002-11-20 2004-06-17 Sanyo Electric Co Ltd Refrigerating system
JP2004360999A (en) * 2003-06-04 2004-12-24 Sanyo Electric Co Ltd Refrigerating system
JP2005241195A (en) * 2004-02-27 2005-09-08 Sanyo Electric Co Ltd Air conditioning refrigerator
JP2006057869A (en) * 2004-08-17 2006-03-02 Daikin Ind Ltd Refrigerating device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180226A (en) * 1983-03-30 1984-10-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner combined with hot water supply unit
JPS6149967A (en) * 1984-08-14 1986-03-12 日産自動車株式会社 Air conditioner for car
JPH01314868A (en) * 1988-06-15 1989-12-20 Hitachi Ltd Heat pump type heater-cooler
JP2002089936A (en) * 2000-09-20 2002-03-27 Aisin Seiki Co Ltd Engine drive type heat pump
JP2003068315A (en) * 2001-08-29 2003-03-07 Toshiba Corp Solid polymer fuel cell system
JP2004061023A (en) * 2002-07-30 2004-02-26 Kumushu Chin Heat pump device
JP2004170001A (en) * 2002-11-20 2004-06-17 Sanyo Electric Co Ltd Refrigerating system
JP2004360999A (en) * 2003-06-04 2004-12-24 Sanyo Electric Co Ltd Refrigerating system
JP2005241195A (en) * 2004-02-27 2005-09-08 Sanyo Electric Co Ltd Air conditioning refrigerator
JP2006057869A (en) * 2004-08-17 2006-03-02 Daikin Ind Ltd Refrigerating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115379A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant refrigerating device and heating/cooling system comprising the same
US8393173B2 (en) 2009-11-20 2013-03-12 Lg Electronics Inc. Combined refrigerating/freezing and air conditioning system
US9297558B2 (en) 2009-11-20 2016-03-29 Lg Electronics Inc. Refrigerating system

Also Published As

Publication number Publication date
JP5033337B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP6033297B2 (en) Air conditioner
WO2006013834A1 (en) Freezing apparatus
KR101890473B1 (en) A system for combining refrigerator and air conditioner, and control method thereof
JP2004170001A (en) Refrigerating system
JP2007232265A (en) Refrigeration unit
JP4123257B2 (en) Refrigeration equipment
JP5033337B2 (en) Refrigeration system and control method thereof
JP2007100987A (en) Refrigerating system
JP2018080899A (en) Refrigeration unit
JP2017161159A (en) Outdoor uni of air conditioner
JP4660334B2 (en) Refrigeration system
JP4614642B2 (en) Refrigeration system
JP4169638B2 (en) Refrigeration system
KR102087677B1 (en) A combined refrigerating and air conditioning system
JP4104519B2 (en) Refrigeration system
JP4108003B2 (en) Refrigeration system
JP2009115336A (en) Refrigeration system
JP2004271123A (en) Temperature control device for heat exchanger
JP3858918B2 (en) Refrigeration equipment
JP4454324B2 (en) Booster unit
JP4244900B2 (en) Refrigeration equipment
JP2005049064A (en) Air-conditioning refrigeration unit
JP4169667B2 (en) Refrigeration system
JP4123255B2 (en) Refrigeration equipment
JP4424162B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees