JP4108003B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP4108003B2
JP4108003B2 JP2003159499A JP2003159499A JP4108003B2 JP 4108003 B2 JP4108003 B2 JP 4108003B2 JP 2003159499 A JP2003159499 A JP 2003159499A JP 2003159499 A JP2003159499 A JP 2003159499A JP 4108003 B2 JP4108003 B2 JP 4108003B2
Authority
JP
Japan
Prior art keywords
valve
expansion valve
refrigeration
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003159499A
Other languages
Japanese (ja)
Other versions
JP2004361000A (en
Inventor
一彦 三原
聡 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003159499A priority Critical patent/JP4108003B2/en
Publication of JP2004361000A publication Critical patent/JP2004361000A/en
Application granted granted Critical
Publication of JP4108003B2 publication Critical patent/JP4108003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば店舗等において冷却貯蔵設備の庫内冷却を行うための冷凍システムに関するものである。
【0002】
【従来の技術】
従来よりコンビニエンスストア等の店舗の店内(室内)は、空気調和機によって冷暖房空調されている。また、店内には商品を陳列販売する冷蔵或いは冷凍用のオープンショーケースや扉付きのショーケース(冷却貯蔵設備)が設置されており、これらは冷凍機によって庫内冷却が行われている(特許文献1参照)。
【0003】
【特許文献1】
特開2002−174470号公報
【0004】
【発明が解決しようとする課題】
ところで、上記の如きショーケースなどの庫内を冷却する蒸発器は、圧縮機や凝縮器(これらは冷凍機に設置される)、膨張弁(減圧装置)と共に冷媒回路を構成する。また、圧縮機は運転周波数を制御するなどにより容量制御可能とされると共に、膨張弁は弁開度が調整可能な電動膨張弁にて構成され、蒸発器における冷媒の過熱度が一定となるように制御される。
【0005】
従って、庫内の冷却が十分な場合には、膨張弁は弁開度を絞るようになるため、冷媒回路の低圧側圧力は低下していく。この低圧側圧力が平均して低い状況となると、圧縮機のCOPが低下し運転効率が悪化する。そのため、従来では冷媒回路の低圧側圧力に所定の設定値を設け、この設定値の上下に設定した上限値と下限値のうちの下限値まで低圧側圧力が低下した場合、圧縮機の運転周波数を下げて容量を低下させ、膨張弁の弁開度を拡大させる方向に制御していた。
【0006】
そして、低圧側圧力が上限値まで上昇したら圧縮機の運転周波数(容量)を上げるものであるが、従来ではこの低圧側圧力の設定値が一定であったため、頻繁に運転周波数(容量)が切り換えられる状況では、低圧側圧力が平均して低くなり、運転効率が低下してしまう問題があった。
【0007】
本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒回路の低圧側圧力の低下による効率の悪化を効果的に解消できる冷凍システムを提供するものである。
【0008】
【課題を解決するための手段】
本発明は、容量制御可能な圧縮機と、凝縮器と、弁開度を調整可能な膨張弁と、蒸発器とを備えて冷媒回路が構成された冷凍システムにおいて、圧縮機と膨張弁を制御する制御装置を備え、この制御装置は、蒸発器における冷媒の過熱度が一定となるよう膨張弁の弁開度を調整すると共に、冷媒回路の低圧側圧力に基づき、所定の設定値にて圧縮機の容量を低下させ、且つ、膨張弁の弁開度に基づき、当該弁開度が拡張される方向に設定値を変更するものである。
【0009】
請求項2の発明の冷凍システムは、上記において制御装置は、膨張弁の弁開度が全開に近くなるように設定値を上昇させることを特徴とする。
【0010】
本発明によれば、容量制御可能な圧縮機と、凝縮器と、弁開度を調整可能な膨張弁と、蒸発器とを備えて冷媒回路が構成された冷凍システムにおいて、圧縮機と膨張弁を制御する制御装置を備え、この制御装置は、蒸発器における冷媒の過熱度が一定となるよう膨張弁の弁開度を調整すると共に、冷媒回路の低圧側圧力に基づき、所定の設定値にて圧縮機の容量を低下させ、且つ、膨張弁の弁開度に基づき、当該弁開度が拡張される方向に設定値を変更するようにしたので、例えば、請求項2の如く膨張弁の弁開度が全開に近くなるように設定値を上昇させることにより、冷媒回路の低圧側圧力が低下して行く過程の早い段階で圧縮機の容量を低下させ、膨張弁の弁開度を拡大する方向に制御することが可能となる。
【0011】
これにより、冷媒回路の低圧側圧力の平均して低下してしまう不都合を解消し、圧縮機のCOPを改善して冷凍システムの運転効率を向上させることができるようになる。
【0012】
請求項3の発明は、上記において蒸発器及びそれに対応する膨張弁が複数存在する場合に、制御装置は、最も弁開度が大きい膨張弁を選択して当該弁開度に基づき設定値を変更すると共に、特定の膨張弁が他の膨張弁よりも多く選択されている場合、当該膨張弁及び/又はそれに対応する蒸発器を使用者に告知するための記録をメモリに書き込んで残すものである。
【0013】
請求項3の発明によれば、上記に加えて蒸発器及びそれに対応する膨張弁が複数存在する場合に、制御装置は、最も弁開度が大きい膨張弁を選択して当該弁開度に基づき設定値を変更するので、複数の蒸発器のうち最も冷却が必要とされているものの冷却能力を確保することができるようになる。また、特定の膨張弁が他の膨張弁よりも多く選択されている場合、当該膨張弁及び/又はそれに対応する蒸発器を使用者に告知するための記録をメモリに書き込んで残すようにしたので、冷却状態の悪いものの改善に寄与することができるようになる。
【0014】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態を詳述する。図1は本発明を適用した実施例の冷凍システム1の冷媒回路を含むシステム構成を説明する図である。実施例の冷凍システム1は、例えばコンビニエンスストアの室内2(店内)の空調と、そこに設置されている冷却貯蔵設備としての複数台の冷蔵ケース3、3や冷凍ケース4の庫内冷却を実現するものである。
【0015】
尚、冷蔵ケース3は実施例では第1〜第6までの冷蔵ケース3が6台設置されているが、図面では第1と第2の冷蔵ケース3、3の2台のみ示す。また、これら冷蔵ケース3、3、冷凍ケース4は前面や上面が開口するオープンショーケースの他、透明ガラス扉にて開口が開閉自在に閉塞されたショーケースであり、各冷蔵ケース3、3の庫内は冷蔵温度(+3℃〜+10℃)に冷却され、飲料やサンドイッチなどの冷蔵食品が陳列されると共に、冷凍ケース4の庫内は冷凍温度(−10℃〜ー20℃)に冷却され、冷凍食品やアイスクリームなどの冷菓が陳列されるものである。
【0016】
この図において、6は空調用冷媒回路7を備える空気調和機(空調系統)であり、8は前記冷蔵ケース3、3や冷凍ケース4の庫内を冷却するための冷却貯蔵設備用冷媒回路9を備えた冷却装置(冷却貯蔵設備系統)である。空気調和機6は、室内2の天井などに設置された室内機11、11と、店外に設置された室外ユニット12とから構成され、これらの間に渡って空調用冷媒回路7が配管構成されている。
【0017】
この空調用冷媒回路7は、室外ユニット12の外装ケース内に設置された二台の圧縮機(ロータリコンプレッサ)13A(インバータによる周波数制御運転)、13B(定速運転)と、逆止弁5A、5Bと、オイルセパレータ10と、四方弁14と、熱源側熱交換器16と、膨張弁(弁開度を調整可能な電動膨張弁から成る減圧手段)17、18、19と、カスケード熱交換器21と、逆止弁22、アキュムレータ23等と、室内機11側に設置された利用側熱交換器27、27から系統構成されている(空調系統)。
【0018】
26は温度や圧力に基づいて空気調和機6の室外ユニット12側の機器を制御するための室外機コントローラ(空調系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータにて構成される)であり、室外ユニット12に設けられている。また、24は熱源側熱交換器16に外気を通風するための送風機であり、室外ユニット12内の熱源側熱交換器16に対応する位置に設けられている。28は温度や圧力に基づいて空気調和機6の室内機11側の機器を制御するための室内機コントローラ(空調系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、室内機11にそれぞれ設けられている(一方は図示せず)。また、15、15は利用側熱交換器27、27に室内2(店内)空気を通風するための送風機であり、室内機11内の利用側熱交換器27、27にそれぞれ対応する位置に設けられている。
【0019】
圧縮機13A及び13Bは相互に並列接続されており、各圧縮機13A、13Bの吐出側は逆止弁5A、5Bをそれぞれ介して合流され、四方弁14の一方の入口に接続されている(各逆止弁5A、5Bは四方弁14方向が順方向とされている)。また、四方弁14の一方の出口は熱源側熱交換器16の入口に接続されている。この熱源側熱交換器16は多数の並列配管から成る流路抵抗の比較的小さい入口側16Aとこれらが少数の並列配管若しくは単数の配管に集約される出口側16Bとで構成されている。そして、この熱源側熱交換器16の出口側16Bの出口は膨張弁17を介して膨張弁18の入口に接続され、膨張弁18の出口は室内機11に渡って分流し、各利用側熱交換器27、27の入口に接続されている。
【0020】
各利用側熱交換器27、27の出口は合流した後、室外ユニット12に渡り、四方弁14の他方の入口に接続され、四方弁14の他方の出口は逆止弁22を介してアキュムレータ23に接続されている。そして、このアキュムレータ23の出口が圧縮機13A、13Bの吸込側に接続されている。尚、逆止弁22はアキュムレータ23側が順方向とされている。
【0021】
また、膨張弁17と18の間の配管は膨張弁19の入口に接続され、膨張弁19の出口はカスケード熱交換器21の空調側通路21Aの入口に接続されている。このカスケード熱交換器21の空調側通路21Aの出口はアキュムレータ23を介して圧縮機13A、13Bの吸込側に接続されている。
【0022】
一方、冷却装置8は前記室外ユニット12と室内2(店内)に設置された冷蔵ケース3、3及び冷凍ケース4との間に渡って冷却貯蔵設備用冷媒回路9が配管構成されている。この冷却貯蔵設備用冷媒回路9は、室外ユニット12の外装ケース内に設置された第1の圧縮機(スクロールコンプレッサ)37と、凝縮器(熱交換器)38と、二つの四方弁39、41(この二つの四方弁により流路制御手段が構成される)と、逆止弁42と、オイルセパレータ31と、レシーバータンク36等と、冷蔵ケース3、3に設置されて冷蔵ケース3、3の庫内をそれぞれ冷却する冷蔵用蒸発器43、43、膨張弁(弁開度を調整可能な電動膨張弁)44、44、電磁弁46、46、47、逆止弁48(冷却貯蔵設備系統の一部を構成する冷蔵系統)と、冷凍ケース4に設置されて冷凍ケース4の庫内を冷却する冷凍用蒸発器49、膨張弁(弁開度を調整可能な電動膨張弁)51、電磁弁52、53、第2の圧縮機(ロータリコンプレッサ)54、逆止弁30、及び、オイルセパレータ45(冷却貯蔵設備系統の一部を構成する冷凍系統)等から構成されている。
【0023】
32は温度や圧力に基づいて冷却装置8の室外ユニット12側の機器を制御する冷凍機コントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、室外ユニット12に設けられている。また、35は凝縮器38に外気を通風するための送風機であり、室外ユニット12の凝縮器38に対応する位置に設けられている。また、50は温度や圧力に基づいて冷蔵ケース3、3側の機器を制御する冷蔵ケースコントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、冷蔵ケース3、3にそれぞれ設けられている(一方は図示せず)。尚、この冷蔵ケースコントローラ50と前記冷凍機コントローラ32により本発明における制御装置が構成される。更に、55は温度や圧力に基づいて冷凍ケース4側の機器を制御する冷凍ケースコントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、冷凍ケース4に設けられている。
【0024】
また、20、20は冷蔵用蒸発器43、43に各冷蔵ケース3、3の庫内冷気を通風するための送風機であり、冷蔵ケース3、3内の各冷蔵用蒸発器43、43にそれぞれ対応する位置に設けられている。25は冷凍用蒸発器49に冷凍ケース4の庫内冷気を通風するための送風機であり、冷凍ケース4内の冷凍用蒸発器49に対応する位置に設けられている。
【0025】
圧縮機37の吐出側はオイルセパレータ31を介して四方弁39の一方の入口に接続され、この四方弁39の一方の出口が凝縮器38の入口に接続されている。この凝縮器38は多数の並列配管から成る流路抵抗の比較的小さい入口側38Aとこれらが少数の並列配管若しくは単数の配管に集約される出口側38Bとで構成されている。そして、この凝縮器38の出口側38Bの出口はレシーバータンク36の入口に接続され、このレシーバータンク36の出口が四方弁41の一方の入口に接続されている。
【0026】
そして、四方弁41の一方の出口はカスケード熱交換器21のケース側通路21Bの入口に接続されている。尚、カスケード熱交換器21は、内部に構成された空調側通路21Aとケース側通路21Bをそれぞれ通過する冷媒を相互に熱交換させるものであり、これによって空調用冷媒回路7の低圧側と冷却貯蔵設備用冷媒回路9の高圧側とは熱的に結合される。
【0027】
カスケード熱交換器21のケース側通路21Bの出口は、四方弁39の他方の入口に接続されており、この四方弁39の他方の出口は四方弁41の他方の入口に接続されている。そして、この四方弁41の他方の出口は室外ユニット12から出て室内2(店内)に入り分岐する。分岐した一方の配管は更に分岐し、その分岐した一方は電磁弁47、46を順次介して膨張弁44の入口に接続され、膨張弁44の出口は第1の冷蔵ケース3の冷蔵用蒸発器43の入口に接続されている。他方は電磁弁46を介して膨張弁44の入口に接続され、膨張弁44の出口は第2の冷蔵ケース3の冷蔵用蒸発器43の入口に接続されている。
【0028】
室内2(店内)に入って分岐した他方の配管は、電磁弁52を介して膨張弁51の入口に接続され、膨張弁51の出口は冷凍用蒸発器49の入口に接続されている。尚、電磁弁53は電磁弁52と膨張弁51の直列回路に並列に接続されている。
【0029】
冷凍用蒸発器49の出口は、逆止弁30を介して圧縮機54の吸込側に接続されている(逆止弁30は圧縮機54側が順方向)。この圧縮機54は圧縮機37よりも出力の小さい圧縮機であり、その吐出側はオイルセパレータ45を介して圧縮機37の吸込側に接続されている。即ち、圧縮機37と圧縮機54は冷媒回路上直列に接続される。尚、冷蔵用蒸発器43、43の出口は合流した後、圧縮機54の吐出側のオイルセパレータ45の出口側に接続されている。また、逆止弁48は圧縮機54の逆止弁30手前と電磁弁46、47間に接続され、電磁弁46、47方向が順方向とされている。更に、逆止弁42は圧縮機37の吸込側とオイルセパレータ31を出た配管の間に接続され、オイルセパレータ31方向が順方向とされている。そして、冷媒回路7、9内には例えばR−410、R−404A等の冷媒が所定量封入される。
【0030】
以上の構成で本発明の冷凍システム1の動作を説明する。尚、前記圧縮機37と13Aはインバータによりその運転周波数が制御され(容量制御)、圧縮機13Bと圧縮機54は定速で運転されるものとする。また、冷凍システム1全体の動作は汎用マイクロコンピュータから構成された主コントローラ(主制御手段)56により制御される。
【0031】
ここで、主コントローラ56は前記室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55とデータ通信可能に接続されており、各コントローラから現在の運転状態に関するデータを受信して収集する。そして、受信データに基づき、後述するその時点での最適な運転パターンを決定し、この最適運転パターンに関するデータ及び各機器の運転データを室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信する。室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55は主コントローラ56から受信した最適運転パターンに関するデータ及び各機器の運転データに基づいて後述する制御動作を実行する。
【0032】
(1)最適運転パターン1:空気調和機の冷房運転(図1)
先ず、夏場等に主コントローラ56が空気調和機6の冷房運転が最適であると判断した場合、最適運転パターン1に関するデータが室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信される。
【0033】
受信データに基づき、室外機コントローラ26は四方弁14の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させる。また、膨張弁17を全開とする。そして、圧縮機13A、13Bを運転する。尚、室外機コントローラ26は圧縮機13Aの運転周波数を調整して能力制御するものとする。
【0034】
圧縮機13A、13Bが運転されると、圧縮機13A、13Bの吐出側から吐出された高温高圧のガス冷媒は、四方弁14を経て熱源側熱交換器16の入口側16Aに入る。この熱源側熱交換器16には送風機24により外気が通風されており、冷媒はここで放熱し、凝縮液化する。即ち、この場合熱源側熱交換器16は凝縮器として機能する。この液冷媒は熱源側熱交換器16の入口側16Aから出口側16Bを経て当該出口側16Bから出る。そして、膨張弁17を通過した後、分岐する。分岐した一方は膨張弁18に至り、そこで絞られて低圧とされた後(減圧)、各利用側熱交換器27、27に分岐して流入し、そこで蒸発する。
【0035】
この利用側熱交換器27、27には送風機15、15により室内2(店内)の空気が通風されており、冷媒の蒸発による吸熱作用で室内2の空気は冷却される。これにより、室内2(店内)の冷房が行われる。利用側熱交換器27、27を出た低温のガス冷媒は合流した後、四方弁14の他方の入口から他方の出口へと通過し、逆止弁22、アキュムレータ23を順次経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。室内機コントローラ28は利用側熱交換器27、27の温度やそこに吸い込まれる空気温度に基づき、室内2(店内)の温度を設定温度とするよう利用側熱交換器27、27に通風する送風機15、15を制御する。室内機コントローラ28からの情報は主コントローラ56に送信されており、室外機コントローラ26はこの情報に基づいて圧縮機13A、13Bの運転を制御する。
【0036】
膨張弁17を通過して分岐した冷媒の他方は膨張弁19に至り、そこで絞られて低圧とされた後(減圧)、カスケード熱交換器21の空調側通路21Aに流入し、そこで蒸発する。係る空調用冷媒回路7の冷媒の蒸発による吸熱作用でカスケード熱交換器21は冷却され、低温となる。カスケード熱交換器21を出た低温のガス冷媒はアキュムレータ23を経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。
【0037】
室外機コントローラ26は利用側熱交換器27、27の出入口の冷媒温度、或いは、利用側熱交換器27、27の温度と、カスケード熱交換器21の出入口の冷媒温度、或いは、カスケード熱交換器21の温度に基づいて適正な過熱度となるように膨張弁18及び19の弁開度を調整する。
【0038】
一方、冷凍機コントローラ32は冷却装置8の冷却貯蔵設備用冷媒回路9の四方弁39の前記一方の入口を一方の出口に連通させ、他方の入口を他方の出口に連通させる。また、四方弁41の前記一方の入口を一方の出口に連通させ、他方の入口を他方の出口に連通させる。そして、圧縮機37及び圧縮機54を運転する。圧縮機37から吐出された高温高圧のガス冷媒は、オイルセパレータ31にてオイルを分離された後、四方弁39を経て凝縮器38の入口側38Aに入る。この凝縮器38にも送風機35により外気が通風されており、凝縮器38に流入した冷媒はそこで放熱し、凝縮していく。
【0039】
この凝縮器38の入口側38Aを通過した冷媒は出口側38Bに至り、そこから出ていく。凝縮器38から出た冷媒はレシーバータンク36の入口側から当該レシーバータンク36内に入り、そこに一旦貯留されて気/液が分離される。分離された液冷媒はレシーバータンク36の出口から出て四方弁41を通過した後、カスケード熱交換器21のケース側通路21Bに入る。このケース側通路21Bに入った冷却貯蔵設備用冷媒回路9の冷媒は、前述の如き空調用冷媒回路7の冷媒の蒸発によって低温となっているカスケード熱交換器21によって冷却され、更に過冷却状態が増す。
【0040】
このカスケード熱交換器21にて過冷却された冷媒は四方弁39、四方弁41を順次通過した後に分岐し、一方は更に分岐して一方は電磁弁47、46を順次通過して膨張弁44に至り、そこで絞られた後(減圧)、第1の冷蔵ケース3の冷蔵用蒸発器43に流入し、そこで蒸発する。また、分岐した他方は電磁弁46を通過して膨張弁44に至り、そこで絞られた後(減圧)、第2の冷蔵ケース3の冷蔵用蒸発器43に流入し、そこで蒸発する。各冷蔵用蒸発器43、43には送風機20、20により冷蔵ケース3、3の庫内空気がそれぞれ通風・循環されており、冷媒の蒸発による吸熱作用で各庫内空気は冷却される。これにより、冷蔵ケース3、3の庫内冷却が行われる。冷蔵用蒸発器43、43を出た低温のガス冷媒は合流した後、圧縮機54のオイルセパレータ45の出口側に至る。
【0041】
カスケード熱交換器21を出て分岐した冷媒の他方は電磁弁52を通過して膨張弁51に至り、そこで絞られた後(減圧)、冷凍用蒸発器49に流入し、そこで蒸発する。この冷凍用蒸発器49にも送風機25により冷凍ケース4の庫内空気が通風・循環されており、冷媒の蒸発による吸熱作用で庫内空気は冷却される。これにより、冷凍ケース4の庫内冷却が行われる。
【0042】
冷凍用蒸発器49を出た低温のガス冷媒は逆止弁30を経て圧縮機54に至り、そこで、圧縮されて冷蔵用蒸発器43、43の出口側の圧力(冷蔵系統の低圧側圧力)まで昇圧された後、圧縮機54から吐出され、オイルセパレータ45でオイルを分離された後、冷蔵用蒸発器43、43からの冷媒と合流する。この合流した冷媒は圧縮機37の吸込側に吸い込まれる循環を繰り返す。
【0043】
このように、カスケード熱交換器21の空調側通路21Aを流れる空調用冷媒回路7の低圧側冷媒によって冷却貯蔵設備用冷媒回路9の高圧側冷媒を過冷却することができるので、冷蔵ケース3、3や冷凍ケース4の蒸発器43、43、49における冷却能力と冷却貯蔵設備用冷媒回路9の運転効率が改善される。また、空気調和機6の空調用冷媒回路7の利用側熱交換器27での冷媒の過冷却により能力が向上し、その結果空調用冷媒回路7のCOPの向上も図ることができる。尚、この場合、冷却貯蔵設備用冷媒回路9の高圧側の冷媒は、凝縮器38を介してカスケード熱交換器21のケース側通路21Bに流すので、空調用冷媒回路7の過熱度も適正範囲に維持できる。
【0044】
また、冷却貯蔵設備用冷媒回路9の冷凍用蒸発器49から出た冷媒の圧力は、その蒸発温度が低くなることから冷蔵用蒸発器43、43を出た冷媒より低くなるが、冷蔵用蒸発器43、43から出た冷媒と合流させる以前に圧縮機54により圧縮されて昇圧されるので、冷蔵ケース3、3と冷凍ケース4の庫内を各蒸発器43、43、49によりそれぞれ円滑に冷却しながら、冷却貯蔵設備用冷媒回路9の圧縮機37に吸い込まれる冷媒の圧力を調整して支障無く運転を行うことができるようになる。
【0045】
(2)低圧側圧力の設定値の変更制御
ここで、冷蔵ケースコントローラ50は冷蔵ケース3、3の庫内温度若しくは冷蔵用蒸発器43、43を経た吐出冷気温度或いは冷蔵用蒸発器43、43への吸込冷気温度と、冷蔵ケースコントローラ50は冷蔵用蒸発器43の出口側の冷媒温度、或いは、冷蔵用蒸発器43の温度とに基づいて各膨張弁44、44の弁開度をそれぞれ調整する。これにより、各冷蔵ケース3、3の庫内を前述した冷蔵温度に冷却維持しながら、各冷蔵用蒸発器43、43における冷媒の過熱度を適正な値(過熱度一定)とする。
【0046】
即ち、冷蔵ケース3の庫内温度が高く冷却が必要な場合には、冷蔵ケースコントローラ50は当該冷蔵ケース3の冷蔵用蒸発器43に対応する膨張弁44の弁開度を拡大して冷蔵用蒸発器43に冷媒をより多く流す。また、庫内温度が低く冷却をあまり必要としない場合には弁開度を絞り、冷蔵用蒸発器43への冷媒の流入量を削減する。これにより、各冷蔵ケース3、3の庫内温度をそれぞれ設定値に制御すると共に、冷蔵用蒸発器43における冷媒の過熱度を一定に保ち、そして、冷却が不要な場合には最終的に膨張弁44を閉じる。
【0047】
また、冷凍ケースコントローラ55は冷凍ケース4の庫内温度若しくは冷凍用蒸発器49を経た吐出冷気温度或いは冷凍用蒸発器49への吸込冷気温度と、冷凍ケースコントローラ55は冷凍用蒸発器49の出口側の冷媒温度、或いは、冷凍用蒸発器49の温度とに基づいて膨張弁51の弁開度を調整する。これにより、冷凍ケース4の庫内を前述した冷凍温度に冷却維持しながら、適正な過熱度(過熱度一定)とする。尚、膨張弁51の制御は上述の膨張弁43と同様である。
【0048】
冷凍機コントローラ32は、冷却貯蔵設備用冷媒回路9の低圧側圧力LPに基づいて圧縮機37の運転周波数(容量)を制御する。この場合、冷凍機コントローラ32には所定の低圧側圧力の設定値LPSがデフォルトで設定され、更にこの設定値LPSの上下に上限値LPSHと下限値LPSLが設定されている。そして、冷却貯蔵設備用冷媒回路9の低圧側圧力LPが上記下限値LPSLまで低下した場合には圧縮機37の運転周波数CHzを低周波数LHzに低下させる。
【0049】
このように冷却貯蔵設備用冷媒回路9の低圧側圧力LPが下限値LPSLまで低下した場合に、圧縮機37の運転周波数CHzを低下させることで、冷蔵ケース3の冷蔵用蒸発器43への冷媒流入量も減少するため、冷却能力も低下する。これにより、冷蔵ケースコントローラ50は膨張弁44の弁開度を拡張させる方向に制御するので、冷却貯蔵設備用冷媒回路9の低圧側圧力LPの低下は防止される。従って、低圧側圧力LPの低下による圧縮機37のCOPの低下が防止されることになる。
【0050】
そして、全ての膨張弁44、44、51が全閉となって低圧側圧力LPが極めて低い値に低下すると圧縮機37を停止する。その後、何れかの膨張弁44、44、51が開き、低圧側圧力LPが上昇すれば、冷凍機コントローラ32は圧縮機37を起動すると共に、低圧側圧力LPが上記上限値LPSHまで上昇すると、圧縮機37の運転周波数CHzを高周波数HHzに上昇させて運転する。
【0051】
前述の如く冷却貯蔵設備用冷媒回路9の低圧側圧力LPの低下に伴って圧縮機37の運転周波数を低下させることで、低圧側圧力LPの低下を防止することができるものであるが、特に各冷蔵ケース3の庫内負荷が軽い場合に、設定値LPSが一定のときは頻繁に圧縮機37の運転周波数CHzの切り替えが行われ、低圧側圧力LPが平均的に低くなると共に、オーバーシュートが発生するため、運転周波数CHzが高く運転されて、運転・停止を繰り返すようになる不都合が発生する。
【0052】
そこで、本発明では冷凍機コントローラ32は冷蔵ケースコントローラ50から各冷蔵ケース3・・・の膨張弁44・・・の弁開度に関する情報を受信し、当該弁開度に基づいて上記設定値LPSを変更する。以下に係る低圧側圧力LPの設定値LPSの変更制御について説明する。
【0053】
今、前述した第1乃至第6の冷蔵ケース3・・・の膨張弁44・・・の一定時間当たりの平均の弁開度が、規定弁開度に対して下記のような割合であったものとする。
第1の冷蔵ケース3の膨張弁44の弁開度・・・・・60%
第2の冷蔵ケース3の膨張弁44の弁開度・・・・・40%
第3の冷蔵ケース3の膨張弁44の弁開度・・・・・70%
第4の冷蔵ケース3の膨張弁44の弁開度・・・・・40%
第5の冷蔵ケース3の膨張弁44の弁開度・・・・・60%
第6の冷蔵ケース3の膨張弁44の弁開度・・・・・40%
ここで、上記%は各膨張弁の全開に対する割合では無く、各冷蔵ケース3(冷蔵用冷却器43)の能力に見合った弁開度(これを規定弁開度とする)を100とした場合、この規定弁開度に対する割合を意味している。
【0054】
上記の例では第3の冷蔵ケース3の膨張弁44の弁開度が最も大きく、従って、第3の冷蔵ケース3の庫内が最も冷却を必要としていることになる。係る場合に、冷凍機コントローラ32は当該第3の冷蔵ケース3の膨張弁44(最も弁開度が大きい膨張弁)を選択する。そして、設定値LPSを上昇させる。この設定値LPSの上昇により、圧縮機37の運転周波数CHzはより早く低周波数LHzに切り換えられるようになるので、前述の如く各膨張弁44・・の弁開度は拡張されていく。
【0055】
そして、冷凍機コントローラ32は前記第3の冷蔵ケース3の膨張弁44の前記規定弁開度が90%(この場合は、全開に対して90%。従って、前述した規定弁開度に対する割合70%は、全開に対しては63%と云うことになる。)であるものとすると、当該第3の冷蔵ケース3の膨張弁44の弁開度が係る規定弁開度(90%)に近付くように前記設定値LPSを上昇させていく。この設定値LPSの変更制御は、所定サンプリング時間おきにステップ的に上昇させていくと良い。
【0056】
このように、膨張弁44の弁開度に基づいて設定値LPSを変更すると共に、第3の冷蔵ケース3の膨張弁44の弁開度の割合が90%より小さい場合に設定値LPSを上昇させることにより、冷却貯蔵設備用冷媒回路9の低圧側圧力LPが低下して行く過程の早い段階で圧縮機37の運転周波数CHz(容量)を低下させ、膨張弁44の弁開度を拡大する方向に制御するので、冷却貯蔵設備用冷媒回路9の低圧側圧力LPが平均して低下してしまう不都合を解消し、圧縮機37のCOPを改善して冷凍システム1の運転効率を向上させることができるようになる。
【0057】
特に、冷凍機コントローラ32は最も弁開度が大きい第3の冷蔵ケース3の膨張弁44を選択して当該弁開度に基づき設定値LPSを変更するので、複数の冷蔵用蒸発器43・・のうち最も冷却が必要とされている冷蔵ケース3の冷却能力を確保することができるようになる。
【0058】
尚、当該膨張弁44の弁開度の割合が例えば95%まで上昇したら、90%に低下するまで冷凍機コントローラ32は圧縮機37の設定値LPSを低下させる。また、冷凍機コントローラ32は、上記設定値LPSの変更制御に当たって、特定の冷蔵ケース3の膨張弁43の弁開度の割合(上記の場合には第3の冷蔵ケース3)が頻繁に選択され、当該選択が顕著となった場合には、当該第3の冷蔵ケース3、又は、当該冷蔵用蒸発器43又は膨張弁44に関する記録をメモリに書き込んで残す。これにより、例えば当該第3の冷蔵ケース3が店舗における最も冷え難い場所(例えば、日射が強く当たる場所など)に設置されて冷却状態が悪くなっていることを使用者に告知し、改善させることが可能となる。ここで、上記膨張弁44の弁開度の割合の選択が顕著と判断される基準は、冷凍システム1の機能、能力、使われ方等によって異なってくるが、一例としては、特定の膨張弁の弁開度の割合が、他のものの二倍以上の頻度で選択されたものとする場合や、その判断のときに最も多く弁開度の割合が選択された膨張弁とする場合等が考えられる。
【0059】
(3)最適運転パターン2:空気調和機の暖房運転(図2)
次に、冬場等の空気調和機6の暖房運転について図2を用いて説明する。主コントローラ56が空気調和機6の暖房運転が最適であると判断した場合、最適運転パターン2に関するデータが室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信される。
【0060】
受信データに基づき、室外機コントローラ26は四方弁14の一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換える。また、膨張弁17は全閉、膨張弁18は全開とされる。そして、圧縮機13A、13Bを運転する。圧縮機13A、13Bが運転されると、圧縮機13A、13Bの吐出側から吐出された高温高圧のガス冷媒は、オイルセパレータ10から四方弁14を経て利用側熱交換器27、27に入る。この利用側熱交換器27、27には前述の如く送風機15、15により室内2(店内)の空気が通風されており、冷媒はここで放熱し、室内2の空気を加熱する一方自らは凝縮液化する。これにより、室内2(店内)の暖房が行われる。
【0061】
利用側熱交換器27、27で液化した冷媒は利用側熱交換器27、27から出て膨張弁18を通り、膨張弁19に至り、そこで絞られて低圧とされた後(減圧)、カスケード熱交換器21の空調側通路21Aに流入し、そこで蒸発して吸熱した後、アキュムレータ23を経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。
【0062】
室外機コントローラ26は、カスケード熱交換器21の出入口の冷媒温度、或いは、カスケード熱交換器21の温度に基づいて適正な過熱度となるように膨張弁19の弁開度を調整する。また、室内機コントローラ28は利用側熱交換器27の温度やそこに吸い込まれる空気温度に基づき、室内2(店内)の温度を設定温度とするよう利用側熱交換器27、27に通風する送風機15、15を制御する。また、前述同様に室外機コントローラ26により圧縮機13A、13Bの運転が制御される。
【0063】
一方、冷凍機コントローラ32は冷却装置8の冷却貯蔵設備用冷媒回路9の四方弁39の前記一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換えると共に、四方弁41の前記一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換える。尚、他の電磁弁等は前述した冷房運転時と同様である。即ち、電磁弁46、46、47、52を開き、圧縮機37及び54を運転する。
【0064】
これにより、圧縮機37から吐出された高温高圧のガス冷媒は、四方弁39、41を順次通過して先ずカスケード熱交換器21のケース側通路21Bに入る。即ち、圧縮機37から吐出された高温高圧のガス冷媒は凝縮器38に行く前に、直接カスケード熱交換器21のケース側通路21Bに供給される。このケース側通路21Bに入った冷却貯蔵設備用冷媒回路9の冷媒は、カスケード熱交換器21において放熱するので、前述の如く空調側通路21Aで蒸発する空調用冷媒回路7の冷媒によって冷却され、熱量を受け渡す。これにより、空調用冷媒回路7の冷媒は冷却貯蔵設備用冷媒回路9の冷媒の廃熱を汲み上げることになる。
【0065】
このカスケード熱交換器21のケース側通路21Bを通過した冷媒は、次に四方弁39を経て凝縮器38の入口側38Aに入る。この凝縮器38にも送風機35により外気が通風されており、凝縮器38に流入した冷媒はそこで放熱し、凝縮していく。
【0066】
この凝縮器38の入口側38Aを通過した冷媒は出口側38Bに至り、そこから出ていく。凝縮器38から出た冷媒はレシーバータンク36の入口側から当該レシーバータンク36内に入り、そこに一旦貯留されて気/液が分離される。分離された液冷媒はレシーバータンク36の出口から出て四方弁41を通過した後に分岐し、前述同様に電磁弁46、47、52に向かうことになる。
【0067】
このような運転により、空気調和機6の空調用冷媒回路7の暖房運転時には、カスケード熱交換器21で冷却貯蔵設備用冷媒回路9の高圧側冷媒の廃熱を回収して空調用冷媒回路7の利用側熱交換器27、27に搬送することができるようになる。これにより、空気調和機6の暖房能力の改善を図ることができるようになり、総じて、室内空調と冷蔵ケース3、3、冷凍ケース4の庫内冷却を行う冷凍システム1の効率改善を図り、省エネ化を図ることが可能となる。
【0068】
特にこの場合、冷却貯蔵設備用冷媒回路9の高圧側の冷媒を、凝縮器38より先にカスケード熱交換器21に流すので、冷却貯蔵設備用冷媒回路9の高圧側冷媒からの廃熱回収を効率的に行い、空調用冷媒回路7の利用側熱交換器27、27における暖房能力をより一層向上させることができるようになる。
【0069】
ここで、店内2が比較的暖かいなど空気調和機6が軽負荷となると、室外機コントローラ26は膨張弁19の弁開度を絞って冷媒流量を低減させていくようになるので、カスケード熱交換器21における冷却貯蔵設備用冷媒回路9の冷媒の放熱量が過剰となってくるが、本発明では冷却貯蔵設備用冷媒回路9の高圧側の冷媒をカスケード熱交換器21に流した後、凝縮器38に流すようにしているので、空調用冷媒回路7の暖房運転時において冷却貯蔵設備用冷媒回路9のカスケード熱交換器21における冷媒の放熱量が過剰となった場合には、凝縮器38にて当該過剰な熱量が放出される。これにより、安定した廃熱回収運転を実現することができるようになる。
【0070】
また、上述した如く四方弁39及び41を用いて流路を切り換え、空調用冷媒回路7の冷房運転時と暖房運転時において、冷却貯蔵設備用冷媒回路9の凝縮器38及びその出口に接続されたレシーバータンク36に流れる冷媒の流通方向を同一としている。これにより、冷房運転時と暖房運転時とで凝縮器38やレシーバータンク36内の冷媒の流れが反対となる場合に比して冷却貯蔵設備用冷媒回路9内を流れる冷媒の圧力損失の発生を防止若しくは抑制することができるようになり、効率的な運転が可能となる。特に、二個の四方弁39、41にて流路を切り換えているので冷却貯蔵設備用冷媒回路9の構成を簡素化することができるようになる。
【0071】
(4)最適運転パターン3:空気調和機の暖房運転時の冷却装置のカスケード熱交換器における放熱を殆ど必要としない時の制御(図3)
ここで、上述の如き空気調和機6の暖房運転時に、室内(店内)空気の負荷が一層小さくなり、暖房能力が過大となると、室外機コントローラ26は室内温度の情報に基づいて圧縮機13Bの運転周波数を低下させ、暖房能力を低下させていく。一方、このような制御を行い、且つ、上述のように凝縮器38にて過剰な熱量が放出されたとしても、冷却装置8の冷却貯蔵設備用冷媒回路9のカスケード熱交換器21における放熱が殆ど必要とされない状況となると、図2の回路のままでは空気調和機6の暖房能力が過剰となる。
【0072】
係る場合には、冷凍機コントローラ32は図2から図3の状態に各四方弁39、41を切り換える。即ち、この場合冷凍機コントローラ32は四方弁39の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させるように切り換える。また、四方弁41の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させるように切り換える。
【0073】
これにより、圧縮機37から吐出された高温高圧の冷媒は、図1の場合と同様に凝縮器38を通過して放熱してからカスケード熱交換器21に流れるようになるので、空調用冷媒回路7の冷媒がカスケード熱交換器21にて過剰に加熱される不都合を回避することができるようになる。
【0074】
尚、実施例ではコンビニエンスストアにおいて室内の空調と冷却貯蔵設備の冷却を行う冷凍システムにて本発明を説明したが、それに限らず、冷却貯蔵設備の冷却のみを行うものでも本発明は有効である。更に、実施例では圧縮機の容量制御をインバータによる運転周波数の制御によって実現したが、それに限らず、種々の容量制御を適用可能である。また、実施例では膨張弁を電動膨張弁としたが、それに限らず、コントローラにより弁開度を調整可能なものであれば、ガス圧や水圧などを用いたものでもよい。
【0075】
【発明の効果】
以上詳述した如く本発明によれば、容量制御可能な圧縮機と、凝縮器と、弁開度を調整可能な膨張弁と、蒸発器とを備えて冷媒回路が構成された冷凍システムにおいて、圧縮機と膨張弁を制御する制御装置を備え、この制御装置は、蒸発器における冷媒の過熱度が一定となるよう膨張弁の弁開度を調整すると共に、冷媒回路の低圧側圧力に基づき、所定の設定値にて圧縮機の容量を低下させ、且つ、膨張弁の弁開度に基づき、当該弁開度が拡張される方向に設定値を変更するようにしたので、例えば、請求項2の如く膨張弁の弁開度が全開に近くなるように設定値を上昇させることにより、冷媒回路の低圧側圧力が低下して行く過程の早い段階で圧縮機の容量を低下させ、膨張弁の弁開度を拡大する方向に制御することが可能となる。
【0076】
これにより、冷媒回路の低圧側圧力の平均して低下してしまう不都合を解消し、圧縮機のCOPを改善して冷凍システムの運転効率を向上させることができるようになる。
【0077】
請求項3の発明によれば、上記に加えて蒸発器及びそれに対応する膨張弁が複数存在する場合に、制御装置は、最も弁開度が大きい膨張弁を選択して当該弁開度に基づき設定値を変更するので、複数の蒸発器のうち最も冷却が必要とされているものの冷却能力を確保することができるようになる。また、特定の膨張弁が他の膨張弁よりも多く選択されている場合、当該膨張弁及び/又はそれに対応する蒸発器を使用者に告知するための記録をメモリに書き込んで残すようにしたので、冷却状態の悪いものの改善に寄与することができるようになる。
【図面の簡単な説明】
【図1】 本発明を適用した実施例の冷凍システムの冷媒回路を含むシステム構成を説明する図である(空気調和機の冷房運転時)。
【図2】 本発明を適用した実施例の冷凍システムの空気調和機の暖房運転を説明する図である。
【図3】 本発明を適用した実施例の冷凍システムの空気調和機の暖房運転時の冷却装置のカスケード熱交換器における放熱を殆ど必要としない場合の運転を説明する図である。
【符号の説明】
1 冷凍システム
3 冷蔵ケース
4 冷凍ケース
6 空気調和機
7 空調用冷媒回路
8 冷却装置
9 冷却貯蔵設備用冷媒回路
13A、13B、37、54 圧縮機
14 四方弁
16 熱源側熱交換器
21 カスケード熱交換器
28 利用側熱交換器
32 冷凍機コントローラ
38 凝縮器
39、41 四方弁(流路制御手段)
43 冷蔵用蒸発器
44、51 膨張弁
49 冷凍用蒸発器
50 冷蔵ケースコントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration system for cooling a cooling storage facility in a store or the like, for example.
[0002]
[Prior art]
Conventionally, the inside (indoor) of a store such as a convenience store is air-conditioned and air-conditioned by an air conditioner. In addition, there are refrigerated or refrigerated open showcases and showcases with doors (cooling storage facilities) that display and sell products, and these are cooled by the refrigerator (patents). Reference 1).
[0003]
[Patent Document 1]
JP 2002-174470 A
[0004]
[Problems to be solved by the invention]
By the way, the evaporator for cooling the interior of the showcase or the like as described above constitutes a refrigerant circuit together with a compressor, a condenser (these are installed in the refrigerator), and an expansion valve (a pressure reducing device). Further, the capacity of the compressor can be controlled by controlling the operating frequency, and the expansion valve is constituted by an electric expansion valve whose valve opening can be adjusted so that the degree of superheat of the refrigerant in the evaporator becomes constant. Controlled.
[0005]
Accordingly, when the interior is sufficiently cooled, the expansion valve throttles the valve opening, so that the low pressure side pressure of the refrigerant circuit decreases. When this low pressure side pressure becomes low on average, the COP of the compressor is lowered and the operation efficiency is deteriorated. Therefore, conventionally, when a predetermined set value is provided for the low-pressure side pressure of the refrigerant circuit, and the low-pressure side pressure falls to the lower limit value between the upper limit value and the lower limit value set above and below this set value, the operating frequency of the compressor The volume is reduced by lowering the valve and the valve opening degree of the expansion valve is controlled to increase.
[0006]
When the low-pressure side pressure rises to the upper limit, the operating frequency (capacity) of the compressor is increased. Conventionally, since the set value of the low-pressure side pressure was constant, the operating frequency (capacity) is frequently switched. In such a situation, there is a problem that the low-pressure side pressure becomes low on average and the operation efficiency is lowered.
[0007]
The present invention has been made to solve the conventional technical problems, and provides a refrigeration system that can effectively eliminate deterioration in efficiency due to a decrease in the low-pressure side pressure of a refrigerant circuit.
[0008]
[Means for Solving the Problems]
The present invention controls a compressor and an expansion valve in a refrigeration system including a compressor capable of controlling capacity, a condenser, an expansion valve capable of adjusting a valve opening degree, and an evaporator, and having a refrigerant circuit. The control device adjusts the opening degree of the expansion valve so that the degree of superheat of the refrigerant in the evaporator becomes constant, and compresses at a predetermined set value based on the low-pressure side pressure of the refrigerant circuit. Reduce the capacity of the machine, and based on the valve opening of the expansion valve, In the direction that the valve opening is expanded The setting value is changed.
[0009]
The refrigeration system of the invention of claim 2 is characterized in that, in the above, the control device raises the set value so that the valve opening degree of the expansion valve is almost fully open.
[0010]
According to the present invention, a compressor and an expansion valve in a refrigeration system including a compressor with capacity control, a condenser, an expansion valve capable of adjusting a valve opening degree, and an evaporator and having a refrigerant circuit configured. The control device adjusts the valve opening of the expansion valve so that the degree of superheat of the refrigerant in the evaporator becomes constant, and at the predetermined set value based on the low-pressure side pressure of the refrigerant circuit. Reduce the capacity of the compressor and based on the opening of the expansion valve, In the direction that the valve opening is expanded Since the set value is changed, for example, a process in which the low pressure side pressure of the refrigerant circuit is lowered by increasing the set value so that the valve opening degree of the expansion valve is almost fully opened as in claim 2. It is possible to reduce the compressor capacity at an early stage and to control the expansion valve in the opening direction.
[0011]
As a result, the disadvantage that the low-pressure side pressure of the refrigerant circuit decreases on average can be solved, and the COP of the compressor can be improved to improve the operating efficiency of the refrigeration system.
[0012]
According to a third aspect of the present invention, when there are a plurality of evaporators and expansion valves corresponding thereto, the control device selects an expansion valve having the largest valve opening and changes a set value based on the valve opening. As well as When a specific expansion valve is selected more than other expansion valves, a record for notifying the user of the expansion valve and / or the corresponding evaporator is written in the memory. Is.
[0013]
According to the invention of claim 3, in addition to the above, when there are a plurality of evaporators and corresponding expansion valves, the control device selects an expansion valve having the largest valve opening and based on the valve opening. Since the set value is changed, the cooling capacity of the plurality of evaporators that require the most cooling can be secured. Also, When a specific expansion valve is selected more than other expansion valves, a record for notifying the user of the expansion valve and / or the corresponding evaporator is written in the memory. Since it did in this way, it can contribute to the improvement of a thing with a bad cooling state.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a system configuration including a refrigerant circuit of a refrigeration system 1 according to an embodiment to which the present invention is applied. The refrigeration system 1 according to the embodiment realizes, for example, air conditioning in a room 2 (inside a store) of a convenience store, and cooling of a plurality of refrigeration cases 3 and 3 and a refrigeration case 4 as a cooling storage facility installed therein. To do.
[0015]
In the embodiment, the first to sixth refrigeration cases 3 are installed in the refrigeration case 3, but only two of the first and second refrigeration cases 3 and 3 are shown in the drawing. The refrigeration cases 3 and 3 and the refrigeration case 4 are open showcases whose front and upper surfaces are open, as well as showcases whose openings are freely closed by transparent glass doors. The inside of the refrigerator is cooled to a refrigeration temperature (+ 3 ° C. to + 10 ° C.), and chilled foods such as beverages and sandwiches are displayed. Frozen foods and frozen desserts such as ice cream are displayed.
[0016]
In this figure, 6 is an air conditioner (air conditioning system) provided with an air conditioning refrigerant circuit 7, and 8 is a refrigerant circuit 9 for cooling storage equipment for cooling the inside of the refrigerator cases 3, 3 and the freezing case 4. Is a cooling device (cooling storage equipment system). The air conditioner 6 includes indoor units 11 and 11 installed on the ceiling of the room 2 and an outdoor unit 12 installed outside the store, and an air-conditioning refrigerant circuit 7 is arranged between them. Has been.
[0017]
The air conditioning refrigerant circuit 7 includes two compressors (rotary compressors) 13A (frequency control operation by an inverter) and 13B (constant speed operation) installed in an exterior case of the outdoor unit 12, a check valve 5A, 5B, oil separator 10, four-way valve 14, heat source side heat exchanger 16, expansion valve (pressure reducing means comprising an electric expansion valve with adjustable valve opening) 17, 18, 19, and cascade heat exchanger 21, a check valve 22, an accumulator 23, and the like, and use side heat exchangers 27 and 27 installed on the indoor unit 11 side (air conditioning system).
[0018]
Reference numeral 26 denotes an outdoor unit controller (a controller that constitutes an air-conditioning system control means, which is constituted by a general-purpose microcomputer) for controlling equipment on the outdoor unit 12 side of the air conditioner 6 based on temperature and pressure. Yes, provided in the outdoor unit 12. Reference numeral 24 denotes a blower for ventilating the outside air to the heat source side heat exchanger 16 and is provided at a position corresponding to the heat source side heat exchanger 16 in the outdoor unit 12. Reference numeral 28 denotes an indoor unit controller (a controller that constitutes an air-conditioning system control means, which is constituted by a general-purpose microcomputer) for controlling equipment on the indoor unit 11 side of the air conditioner 6 based on temperature and pressure. Are provided in the indoor unit 11 (one is not shown). Reference numerals 15 and 15 denote blowers for ventilating the indoor 2 (in-store) air to the use side heat exchangers 27 and 27, provided at positions corresponding to the use side heat exchangers 27 and 27 in the indoor unit 11, respectively. It has been.
[0019]
The compressors 13A and 13B are connected in parallel to each other, and the discharge sides of the compressors 13A and 13B are joined via check valves 5A and 5B, respectively, and connected to one inlet of the four-way valve 14 ( Each check valve 5A, 5B has a four-way valve 14 direction as a forward direction). One outlet of the four-way valve 14 is connected to the inlet of the heat source side heat exchanger 16. The heat source side heat exchanger 16 includes an inlet side 16A having a relatively small flow resistance composed of a large number of parallel pipes and an outlet side 16B in which these are aggregated into a small number of parallel pipes or a single pipe. The outlet on the outlet side 16B of the heat source side heat exchanger 16 is connected to the inlet of the expansion valve 18 via the expansion valve 17, and the outlet of the expansion valve 18 is diverted across the indoor unit 11, so that each use side heat It is connected to the inlets of the exchangers 27 and 27.
[0020]
After the outlets of the use side heat exchangers 27 and 27 are joined, they cross the outdoor unit 12 and are connected to the other inlet of the four-way valve 14. The other outlet of the four-way valve 14 is connected to the accumulator 23 via the check valve 22. It is connected to the. And the exit of this accumulator 23 is connected to the suction side of compressor 13A, 13B. The check valve 22 has a forward direction on the accumulator 23 side.
[0021]
The piping between the expansion valves 17 and 18 is connected to the inlet of the expansion valve 19, and the outlet of the expansion valve 19 is connected to the inlet of the air conditioning side passage 21 </ b> A of the cascade heat exchanger 21. The outlet of the air conditioning side passage 21A of the cascade heat exchanger 21 is connected to the suction side of the compressors 13A and 13B via an accumulator 23.
[0022]
On the other hand, the cooling device 8 is provided with a refrigerant circuit 9 for cooling storage equipment between the outdoor unit 12 and the refrigeration cases 3 and 3 and the refrigeration case 4 installed in the room 2 (inside the store). The refrigerant circuit 9 for the cooling storage facility includes a first compressor (scroll compressor) 37, a condenser (heat exchanger) 38, and two four-way valves 39, 41 installed in the outer case of the outdoor unit 12. (The flow control means is constituted by these two four-way valves), the check valve 42, the oil separator 31, the receiver tank 36, etc., the refrigeration cases 3, 3 and the refrigeration cases 3, 3 Refrigerating evaporators 43 and 43 for cooling the inside of the refrigerator, expansion valves (electric expansion valves with adjustable valve opening) 44 and 44, electromagnetic valves 46, 46 and 47, check valves 48 (for the cooling storage system) A refrigeration system constituting a part), a freezing evaporator 49 that is installed in the freezing case 4 and cools the inside of the freezing case 4, an expansion valve (an electric expansion valve whose valve opening degree can be adjusted) 51, a solenoid valve 52, 53, second compressor (rotary Presser) 54, check valve 30, and, and a refrigeration system) or the like constituting a part of the oil separator 45 (cooled storage facilities system.
[0023]
32 is a refrigerator controller (a controller constituting a cooling storage facility system control means, comprising a general-purpose microcomputer) that controls equipment on the outdoor unit 12 side of the cooling device 8 based on temperature and pressure, The outdoor unit 12 is provided. Reference numeral 35 denotes a blower for passing outside air through the condenser 38, and is provided at a position corresponding to the condenser 38 of the outdoor unit 12. In addition, 50 is a refrigeration case controller (a controller that constitutes a cooling storage facility system control means, configured by a general-purpose microcomputer) that controls equipment on the refrigeration case 3, 3 side based on temperature and pressure, Refrigerating cases 3 and 3 are respectively provided (one is not shown). The refrigeration case controller 50 and the refrigerator controller 32 constitute a control device according to the present invention. Further, 55 is a refrigeration case controller (a controller constituting a cooling storage facility system control means, which is constituted by a general-purpose microcomputer) that controls equipment on the refrigeration case 4 side based on temperature and pressure. 4 is provided.
[0024]
Reference numerals 20 and 20 denote blowers for ventilating the cold air in the refrigerator cases 3 and 3 to the evaporators 43 and 43, respectively. The refrigerators 43 and 43 in the refrigerator cases 3 and 3, respectively. It is provided at the corresponding position. Reference numeral 25 denotes a blower for passing cold air in the refrigerator case 4 through the freezer evaporator 49, and is provided at a position corresponding to the freezer evaporator 49 in the freezer case 4.
[0025]
The discharge side of the compressor 37 is connected to one inlet of the four-way valve 39 via the oil separator 31, and one outlet of the four-way valve 39 is connected to the inlet of the condenser 38. The condenser 38 includes an inlet side 38A having a relatively small flow resistance composed of a large number of parallel pipes, and an outlet side 38B in which these are aggregated into a small number of parallel pipes or a single pipe. The outlet on the outlet side 38B of the condenser 38 is connected to the inlet of the receiver tank 36, and the outlet of the receiver tank 36 is connected to one inlet of the four-way valve 41.
[0026]
One outlet of the four-way valve 41 is connected to the inlet of the case side passage 21 </ b> B of the cascade heat exchanger 21. The cascade heat exchanger 21 exchanges heat between the refrigerant that passes through the air conditioning side passage 21A and the case side passage 21B that are formed inside, thereby cooling the low pressure side of the air conditioning refrigerant circuit 7 and cooling it. The high-pressure side of the storage facility refrigerant circuit 9 is thermally coupled.
[0027]
The outlet of the case side passage 21 </ b> B of the cascade heat exchanger 21 is connected to the other inlet of the four-way valve 39, and the other outlet of the four-way valve 39 is connected to the other inlet of the four-way valve 41. The other outlet of the four-way valve 41 exits from the outdoor unit 12 and branches into the room 2 (inside the store). One of the branched pipes is further branched, and one of the branched pipes is connected to the inlet of the expansion valve 44 via the solenoid valves 47 and 46 in order, and the outlet of the expansion valve 44 is the evaporator for refrigeration of the first refrigeration case 3. 43 is connected to the entrance. The other is connected to the inlet of the expansion valve 44 via the electromagnetic valve 46, and the outlet of the expansion valve 44 is connected to the inlet of the refrigeration evaporator 43 of the second refrigeration case 3.
[0028]
The other pipe branched into the room 2 (inside the store) is connected to the inlet of the expansion valve 51 via the electromagnetic valve 52, and the outlet of the expansion valve 51 is connected to the inlet of the refrigeration evaporator 49. The solenoid valve 53 is connected in parallel to the series circuit of the solenoid valve 52 and the expansion valve 51.
[0029]
The outlet of the refrigeration evaporator 49 is connected to the suction side of the compressor 54 via the check valve 30 (the check valve 30 is in the forward direction on the compressor 54 side). The compressor 54 is a compressor having a smaller output than the compressor 37, and its discharge side is connected to the suction side of the compressor 37 via an oil separator 45. That is, the compressor 37 and the compressor 54 are connected in series on the refrigerant circuit. The outlets of the refrigeration evaporators 43 and 43 are connected to the outlet side of the oil separator 45 on the discharge side of the compressor 54 after joining. The check valve 48 is connected between the check valve 30 before the compressor 54 and the solenoid valves 46 and 47, and the directions of the solenoid valves 46 and 47 are the forward directions. Further, the check valve 42 is connected between the suction side of the compressor 37 and the pipe that exits the oil separator 31, and the oil separator 31 direction is the forward direction. In the refrigerant circuits 7 and 9, a predetermined amount of refrigerant such as R-410 and R-404A is sealed.
[0030]
The operation of the refrigeration system 1 of the present invention will be described with the above configuration. The compressors 37 and 13A are controlled in operating frequency by an inverter (capacity control), and the compressor 13B and the compressor 54 are operated at a constant speed. The operation of the entire refrigeration system 1 is controlled by a main controller (main control means) 56 composed of a general-purpose microcomputer.
[0031]
Here, the main controller 56 is connected to the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller 50, and the refrigeration case controller 55 so as to be able to perform data communication. Receive and collect status data. Then, based on the received data, an optimum operation pattern at that time, which will be described later, is determined, and the data relating to this optimum operation pattern and the operation data of each device are stored in the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, and the refrigerator. The data is transmitted to the case controller 50 and the refrigeration case controller 55. The outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller 50, and the refrigeration case controller 55 are described later on the basis of the data regarding the optimum operation pattern received from the main controller 56 and the operation data of each device. Perform the action.
[0032]
(1) Optimal operation pattern 1: Air conditioner cooling operation (Fig. 1)
First, when the main controller 56 determines that the cooling operation of the air conditioner 6 is optimal in summer or the like, the data related to the optimal operation pattern 1 is the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller. 50 and the refrigeration case controller 55.
[0033]
Based on the received data, the outdoor unit controller 26 communicates the one inlet of the four-way valve 14 with one outlet and the other inlet with the other outlet. Further, the expansion valve 17 is fully opened. Then, the compressors 13A and 13B are operated. The outdoor unit controller 26 controls the capacity by adjusting the operating frequency of the compressor 13A.
[0034]
When the compressors 13A and 13B are operated, the high-temperature and high-pressure gas refrigerant discharged from the discharge sides of the compressors 13A and 13B enters the inlet side 16A of the heat source side heat exchanger 16 via the four-way valve 14. Outside air is ventilated by the air blower 24 to the heat source side heat exchanger 16, and the refrigerant dissipates heat here to be condensed and liquefied. That is, in this case, the heat source side heat exchanger 16 functions as a condenser. The liquid refrigerant exits from the outlet side 16B from the inlet side 16A of the heat source side heat exchanger 16 via the outlet side 16B. And after passing the expansion valve 17, it branches. One of the branches reaches the expansion valve 18, where it is throttled to a low pressure (decompression), and then branches into each use side heat exchanger 27, 27 and evaporates there.
[0035]
The air in the room 2 (inside the store) is ventilated by the blowers 15 and 15 through the use side heat exchangers 27 and 27, and the air in the room 2 is cooled by an endothermic action due to evaporation of the refrigerant. Thereby, the room 2 (inside the store) is cooled. The low-temperature gas refrigerant that has exited from the use side heat exchangers 27 and 27 merges, and then passes from the other inlet of the four-way valve 14 to the other outlet, and sequentially passes through the check valve 22 and the accumulator 23, and then enters the compressor 13A. The circulation sucked into the suction side of 13B is repeated. The indoor unit controller 28 blows air to the use side heat exchangers 27 and 27 so that the temperature of the room 2 (inside the store) becomes the set temperature based on the temperature of the use side heat exchangers 27 and 27 and the air temperature sucked into the use side heat exchangers 27 and 27. 15 and 15 are controlled. Information from the indoor unit controller 28 is transmitted to the main controller 56, and the outdoor unit controller 26 controls the operation of the compressors 13A and 13B based on this information.
[0036]
The other refrigerant branched after passing through the expansion valve 17 reaches the expansion valve 19 where it is throttled to a low pressure (decompression), and then flows into the air conditioning side passage 21A of the cascade heat exchanger 21 where it evaporates. The cascade heat exchanger 21 is cooled by the endothermic action due to the evaporation of the refrigerant in the air-conditioning refrigerant circuit 7 and becomes a low temperature. The low-temperature gas refrigerant exiting the cascade heat exchanger 21 repeats circulation through the accumulator 23 and sucked into the suction sides of the compressors 13A and 13B.
[0037]
The outdoor unit controller 26 is configured such that the refrigerant temperature at the entrance / exit of the use side heat exchangers 27, 27, the temperature of the use side heat exchangers 27, 27, the refrigerant temperature at the entrance / exit of the cascade heat exchanger 21, or the cascade heat exchanger. The valve openings of the expansion valves 18 and 19 are adjusted so as to achieve an appropriate degree of superheat based on the temperature of 21.
[0038]
On the other hand, the refrigerator controller 32 causes the one inlet of the four-way valve 39 of the refrigerant circuit 9 for the cooling storage facility of the cooling device 8 to communicate with one outlet and the other inlet to communicate with the other outlet. Further, the one inlet of the four-way valve 41 is communicated with one outlet, and the other inlet is communicated with the other outlet. Then, the compressor 37 and the compressor 54 are operated. The high-temperature and high-pressure gas refrigerant discharged from the compressor 37 is separated by the oil separator 31 and then enters the inlet side 38 </ b> A of the condenser 38 through the four-way valve 39. Outside air is also passed through the condenser 38 by the blower 35, and the refrigerant flowing into the condenser 38 dissipates heat and condenses there.
[0039]
The refrigerant that has passed through the inlet side 38A of the condenser 38 reaches the outlet side 38B and exits there. The refrigerant from the condenser 38 enters the receiver tank 36 from the inlet side of the receiver tank 36, and is temporarily stored therein to separate the gas / liquid. The separated liquid refrigerant exits from the outlet of the receiver tank 36, passes through the four-way valve 41, and then enters the case side passage 21 </ b> B of the cascade heat exchanger 21. The refrigerant in the refrigerant circuit 9 for the cooling storage facility that has entered the case-side passage 21B is cooled by the cascade heat exchanger 21 that is at a low temperature due to the evaporation of the refrigerant in the air-conditioning refrigerant circuit 7 as described above, and is further in a supercooled state. Increase.
[0040]
The refrigerant supercooled in the cascade heat exchanger 21 is branched after sequentially passing through the four-way valve 39 and the four-way valve 41, one is further branched, and the other is sequentially passed through the electromagnetic valves 47 and 46 and then the expansion valve 44. After being squeezed there (reduced pressure), it flows into the refrigeration evaporator 43 of the first refrigeration case 3 and evaporates there. The other branched part passes through the electromagnetic valve 46 and reaches the expansion valve 44. After being throttled (decompression), it flows into the refrigerating evaporator 43 of the second refrigerating case 3 and evaporates there. The refrigeration evaporators 43, 43 are respectively ventilated and circulated by the blowers 20, 20, and the air in the refrigeration cases 3, 3 is circulated. Thereby, the refrigerator cooling of the refrigeration cases 3 and 3 is performed. The low-temperature gas refrigerant exiting the refrigeration evaporators 43, 43 joins and then reaches the outlet side of the oil separator 45 of the compressor 54.
[0041]
The other refrigerant branched out of the cascade heat exchanger 21 passes through the electromagnetic valve 52 and reaches the expansion valve 51. After being throttled (decompression), it flows into the refrigeration evaporator 49 where it evaporates. The internal air of the refrigeration case 4 is also ventilated and circulated by the blower 25 to the freezing evaporator 49, and the internal air is cooled by the endothermic action due to the evaporation of the refrigerant. Thereby, the inside cooling of the freezing case 4 is performed.
[0042]
The low-temperature gas refrigerant exiting the freezing evaporator 49 passes through the check valve 30 and reaches the compressor 54 where it is compressed and pressure on the outlet side of the refrigerating evaporators 43 and 43 (low pressure side pressure of the refrigerating system). After the pressure has been increased to about 50 ° C., the oil is discharged from the compressor 54, and the oil is separated by the oil separator 45. The merged refrigerant repeats circulation that is sucked into the suction side of the compressor 37.
[0043]
Thus, since the high pressure side refrigerant of the refrigerant circuit 9 for the cooling storage facility can be supercooled by the low pressure side refrigerant of the air conditioning refrigerant circuit 7 flowing through the air conditioning side passage 21A of the cascade heat exchanger 21, the refrigeration case 3, 3 and the cooling capacity in the evaporators 43, 43, 49 of the refrigeration case 4 and the operation efficiency of the refrigerant circuit 9 for the cooling storage facility are improved. Further, the capacity is improved by the supercooling of the refrigerant in the use side heat exchanger 27 of the air conditioning refrigerant circuit 7 of the air conditioner 6, and as a result, the COP of the air conditioning refrigerant circuit 7 can be improved. In this case, since the refrigerant on the high pressure side of the refrigerant circuit 9 for the cooling storage facility flows into the case side passage 21B of the cascade heat exchanger 21 via the condenser 38, the degree of superheat of the air conditioning refrigerant circuit 7 is also in an appropriate range. Can be maintained.
[0044]
Further, the pressure of the refrigerant discharged from the refrigeration evaporator 49 of the refrigerant circuit 9 for the cooling storage facility is lower than the refrigerant discharged from the refrigeration evaporators 43 and 43 because its evaporation temperature is lowered, but the refrigeration evaporation. Before being merged with the refrigerant discharged from the coolers 43, 43, the compressor 54 compresses and pressurizes the interior of the refrigeration cases 3, 3 and the freezing case 4 smoothly by the respective evaporators 43, 43, 49. While cooling, the pressure of the refrigerant sucked into the compressor 37 of the refrigerant circuit 9 for the cooling storage facility can be adjusted so that the operation can be performed without any trouble.
[0045]
(2) Change control of low pressure side set value
Here, the refrigeration case controller 50 includes the internal temperature of the refrigeration cases 3 and 3, the cold air temperature discharged through the refrigeration evaporators 43 and 43, the cold air temperature sucked into the refrigeration evaporators 43 and 43, and the refrigeration case controller 50 Based on the refrigerant temperature on the outlet side of the refrigeration evaporator 43 or the temperature of the refrigeration evaporator 43, the valve opening degree of each expansion valve 44, 44 is adjusted. Thereby, the superheat degree of the refrigerant in each of the refrigeration evaporators 43 and 43 is set to an appropriate value (constant superheat degree) while keeping the inside of the refrigerators of the refrigeration cases 3 and 3 at the above-described refrigeration temperature.
[0046]
That is, when the internal temperature of the refrigeration case 3 is high and cooling is required, the refrigeration case controller 50 increases the valve opening degree of the expansion valve 44 corresponding to the refrigeration evaporator 43 of the refrigeration case 3 for refrigeration. More refrigerant flows through the evaporator 43. When the internal temperature is low and cooling is not required much, the valve opening is reduced to reduce the amount of refrigerant flowing into the refrigeration evaporator 43. As a result, the internal temperature of each of the refrigeration cases 3 and 3 is controlled to a set value, the degree of superheat of the refrigerant in the refrigeration evaporator 43 is kept constant, and finally the expansion occurs when cooling is unnecessary. The valve 44 is closed.
[0047]
The refrigeration case controller 55 is the temperature inside the refrigeration case 4, the discharge cold air temperature through the refrigeration evaporator 49, or the intake cold air temperature to the refrigeration evaporator 49, and the refrigeration case controller 55 is the outlet of the refrigeration evaporator 49. The opening degree of the expansion valve 51 is adjusted based on the refrigerant temperature on the side or the temperature of the evaporator 49 for freezing. As a result, while maintaining the inside of the freezing case 4 to be cooled to the above-described freezing temperature, an appropriate degree of superheat (constant superheat) is obtained. The control of the expansion valve 51 is the same as that of the expansion valve 43 described above.
[0048]
The refrigerator controller 32 controls the operating frequency (capacity) of the compressor 37 based on the low pressure LP of the refrigerant circuit 9 for the cooling storage facility. In this case, a set value LPS of a predetermined low-pressure side pressure is set as a default in the refrigerator controller 32, and an upper limit value LPSH and a lower limit value LPSL are set above and below the set value LPS. And when the low-pressure side pressure LP of the refrigerant circuit 9 for cooling storage facilities falls to the said lower limit LPSL, the operating frequency CHz of the compressor 37 is lowered to the low frequency LHz.
[0049]
Thus, when the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility is reduced to the lower limit value LPSL, the refrigerant to the refrigeration evaporator 43 of the refrigeration case 3 is reduced by reducing the operating frequency CHz of the compressor 37. Since the inflow amount also decreases, the cooling capacity also decreases. As a result, the refrigeration case controller 50 controls the expansion valve 44 so as to expand the opening of the expansion valve 44, thereby preventing a decrease in the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility. Therefore, the COP of the compressor 37 is prevented from decreasing due to the decrease in the low pressure LP.
[0050]
When all the expansion valves 44, 44, 51 are fully closed and the low-pressure side pressure LP is lowered to an extremely low value, the compressor 37 is stopped. Thereafter, if any one of the expansion valves 44, 44, 51 is opened and the low pressure side pressure LP is increased, the refrigerator controller 32 starts the compressor 37, and when the low pressure side pressure LP is increased to the upper limit value LPSH, The compressor 37 is operated by increasing the operating frequency CHz to the high frequency HHz.
[0051]
As described above, the operating frequency of the compressor 37 can be reduced as the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility is reduced. When the load in each refrigerator case 3 is light and the set value LPS is constant, the operation frequency CHz of the compressor 37 is frequently switched, and the low pressure LP is averagely lowered and overshoot. Therefore, there is a problem in that the operation is stopped at a high operating frequency CHz and the operation is repeatedly stopped.
[0052]
Therefore, in the present invention, the refrigerator controller 32 receives information about the valve opening degree of the expansion valve 44 of each refrigeration case 3... From the refrigeration case controller 50, and the set value LPS based on the valve opening degree. To change. The change control of the set value LPS of the low-pressure side pressure LP according to the following will be described.
[0053]
Now, the average valve opening per fixed time of the expansion valves 44 of the first to sixth refrigeration cases 3 described above is the following ratio with respect to the specified valve opening. Shall.
The opening degree of the expansion valve 44 of the first refrigeration case 3 ... 60%
Valve opening of expansion valve 44 of second refrigeration case 3 ... 40%
The opening degree of the expansion valve 44 of the third refrigeration case 3 70%
Valve opening of the expansion valve 44 of the fourth refrigeration case 3 ... 40%
The opening degree of the expansion valve 44 of the fifth refrigeration case 3 60%
The opening degree of the expansion valve 44 of the sixth refrigeration case 3 ... 40%
Here, the above% is not a ratio with respect to the full opening of each expansion valve, but when the valve opening degree (corresponding to the specified valve opening degree) corresponding to the capacity of each refrigeration case 3 (refrigeration cooler 43) is 100. This means the ratio to the specified valve opening.
[0054]
In the above example, the opening degree of the expansion valve 44 of the third refrigeration case 3 is the largest, and therefore the inside of the third refrigeration case 3 needs the most cooling. In such a case, the refrigerator controller 32 selects the expansion valve 44 (an expansion valve having the largest valve opening) of the third refrigeration case 3. Then, the set value LPS is increased. As the set value LPS increases, the operating frequency CHz of the compressor 37 can be switched to the low frequency LHz earlier, so that the valve opening of each expansion valve 44 is expanded as described above.
[0055]
In the refrigerator controller 32, the specified valve opening degree of the expansion valve 44 of the third refrigeration case 3 is 90% (in this case, 90% with respect to the fully open state. % Is 63% with respect to full opening.), The valve opening of the expansion valve 44 of the third refrigeration case 3 approaches the specified valve opening (90%). As described above, the set value LPS is increased. The change control of the set value LPS is preferably increased stepwise every predetermined sampling time.
[0056]
As described above, the set value LPS is changed based on the valve opening degree of the expansion valve 44, and the set value LPS is increased when the ratio of the valve opening degree of the expansion valve 44 of the third refrigeration case 3 is smaller than 90%. As a result, the operating frequency CHz (capacity) of the compressor 37 is reduced and the valve opening of the expansion valve 44 is increased at an early stage of the process in which the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility decreases. Therefore, the problem that the low-pressure side pressure LP of the refrigerant circuit 9 for the cooling storage facility decreases on average is solved, the COP of the compressor 37 is improved, and the operating efficiency of the refrigeration system 1 is improved. Will be able to.
[0057]
In particular, since the refrigerator controller 32 selects the expansion valve 44 of the third refrigeration case 3 having the largest valve opening and changes the set value LPS based on the valve opening, a plurality of refrigeration evaporators 43. Among them, the cooling capacity of the refrigerated case 3 that is most required to be cooled can be secured.
[0058]
When the ratio of the valve opening degree of the expansion valve 44 is increased to 95%, for example, the refrigerator controller 32 decreases the set value LPS of the compressor 37 until the ratio is decreased to 90%. In addition, the refrigerator controller 32 frequently selects the ratio of the valve opening degree of the expansion valve 43 of the specific refrigeration case 3 (in the above case, the third refrigeration case 3) in changing the set value LPS. When the selection becomes remarkable, a record concerning the third refrigeration case 3, or the refrigeration evaporator 43 or the expansion valve 44 is written in the memory and left. In this way, for example, the third refrigerated case 3 is installed in the most difficult place in the store (for example, a place where the solar radiation hits strongly) and the user is informed that the cooling state is deteriorated and improved. Is possible. Here, the criterion for determining that the ratio of the opening degree of the expansion valve 44 is remarkable differs depending on the function, capability, usage, and the like of the refrigeration system 1, but as an example, a specific expansion valve It is considered that the valve opening ratio is selected at a frequency more than twice that of the other, or the expansion valve with the most valve opening ratio selected at the time of determination is considered. It is done.
[0059]
(3) Optimal operation pattern 2: Heating operation of the air conditioner (Fig. 2)
Next, the heating operation of the air conditioner 6 in winter will be described with reference to FIG. When the main controller 56 determines that the heating operation of the air conditioner 6 is optimal, the data regarding the optimal operation pattern 2 includes the outdoor unit controller 26, the indoor unit controller 28, the refrigerator controller 32, the refrigeration case controller 50, and the refrigeration case controller 50. It is transmitted to the case controller 55.
[0060]
Based on the received data, the outdoor unit controller 26 switches so that one inlet of the four-way valve 14 communicates with the other outlet and the other inlet communicates with one outlet. The expansion valve 17 is fully closed and the expansion valve 18 is fully opened. Then, the compressors 13A and 13B are operated. When the compressors 13A and 13B are operated, the high-temperature and high-pressure gas refrigerant discharged from the discharge sides of the compressors 13A and 13B enters the use-side heat exchangers 27 and 27 through the four-way valve 14 from the oil separator 10. As described above, the air in the room 2 (inside the store) is passed through the use side heat exchangers 27 and 27 by the blowers 15 and 15, and the refrigerant radiates heat to heat the air in the room 2 while condensing itself. Liquefaction. Thereby, the room 2 (inside the store) is heated.
[0061]
The refrigerant liquefied in the use side heat exchangers 27, 27 exits from the use side heat exchangers 27, 27, passes through the expansion valve 18, reaches the expansion valve 19, where it is throttled to a low pressure (decompression), and then cascaded. After flowing into the air conditioning side passage 21A of the heat exchanger 21 and evaporating and absorbing heat there, the circulation is repeated through the accumulator 23 and sucked into the suction sides of the compressors 13A and 13B.
[0062]
The outdoor unit controller 26 adjusts the valve opening degree of the expansion valve 19 based on the refrigerant temperature at the inlet / outlet of the cascade heat exchanger 21 or the temperature of the cascade heat exchanger 21 so that the degree of superheat is appropriate. The indoor unit controller 28 also blows air to the use side heat exchangers 27 and 27 so that the temperature of the room 2 (inside the store) is set to the set temperature based on the temperature of the use side heat exchanger 27 and the air temperature sucked into the use side heat exchanger 27. 15 and 15 are controlled. Further, the operation of the compressors 13A and 13B is controlled by the outdoor unit controller 26 as described above.
[0063]
On the other hand, the refrigerator controller 32 switches the one-way inlet 39 of the four-way valve 39 of the refrigerant circuit 9 for the cooling storage facility of the cooling device 8 to communicate with the other outlet, and the other inlet communicates with one outlet. The one inlet 41 is switched to communicate with the other outlet, and the other inlet is communicated with one outlet. The other solenoid valves and the like are the same as in the cooling operation described above. That is, the electromagnetic valves 46, 46, 47 and 52 are opened, and the compressors 37 and 54 are operated.
[0064]
Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 37 sequentially passes through the four-way valves 39 and 41 and first enters the case-side passage 21B of the cascade heat exchanger 21. That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 37 is directly supplied to the case side passage 21 </ b> B of the cascade heat exchanger 21 before going to the condenser 38. Since the refrigerant in the refrigerant circuit 9 for the cooling storage facility that has entered the case side passage 21B dissipates heat in the cascade heat exchanger 21, it is cooled by the refrigerant in the air conditioning refrigerant circuit 7 that evaporates in the air conditioning side passage 21A as described above. Deliver heat. As a result, the refrigerant in the air conditioning refrigerant circuit 7 pumps up the waste heat of the refrigerant in the refrigerant circuit 9 for the cooling storage facility.
[0065]
The refrigerant that has passed through the case side passage 21B of the cascade heat exchanger 21 then enters the inlet side 38A of the condenser 38 via the four-way valve 39. Outside air is also passed through the condenser 38 by the blower 35, and the refrigerant flowing into the condenser 38 dissipates heat and condenses there.
[0066]
The refrigerant that has passed through the inlet side 38A of the condenser 38 reaches the outlet side 38B and exits there. The refrigerant from the condenser 38 enters the receiver tank 36 from the inlet side of the receiver tank 36, and is temporarily stored therein to separate the gas / liquid. The separated liquid refrigerant exits from the outlet of the receiver tank 36, passes through the four-way valve 41, and then branches, and goes to the electromagnetic valves 46, 47, and 52 as described above.
[0067]
By such operation, during the heating operation of the air conditioning refrigerant circuit 7 of the air conditioner 6, the waste heat of the high-pressure side refrigerant of the refrigerant circuit 9 for the cooling storage facility is recovered by the cascade heat exchanger 21 to recover the air conditioning refrigerant circuit 7. It becomes possible to convey to the use side heat exchangers 27, 27. As a result, the heating capacity of the air conditioner 6 can be improved, and the efficiency of the refrigeration system 1 that cools the indoor air conditioning and the refrigeration cases 3 and 3 and the refrigeration case 4 as a whole is improved. Energy saving can be achieved.
[0068]
Particularly in this case, since the refrigerant on the high pressure side of the refrigerant circuit 9 for the cooling storage facility is passed through the cascade heat exchanger 21 before the condenser 38, the waste heat recovery from the high pressure side refrigerant of the refrigerant circuit 9 for the cooling storage facility is performed. The heating capacity in the use side heat exchangers 27 and 27 of the air conditioning refrigerant circuit 7 can be further improved.
[0069]
Here, when the air conditioner 6 is lightly loaded, such as when the store 2 is relatively warm, the outdoor unit controller 26 reduces the refrigerant flow rate by reducing the valve opening of the expansion valve 19, so that cascade heat exchange is performed. However, in the present invention, the refrigerant on the high pressure side of the refrigerant circuit 9 for the cooling storage facility is passed through the cascade heat exchanger 21 and then condensed. Therefore, when the heat radiation amount of the refrigerant in the cascade heat exchanger 21 of the cooling storage facility refrigerant circuit 9 becomes excessive during the heating operation of the air conditioning refrigerant circuit 7, the condenser 38. The excess amount of heat is released at. As a result, a stable waste heat recovery operation can be realized.
[0070]
Further, as described above, the flow paths are switched using the four-way valves 39 and 41, and the cooling air circuit 7 is connected to the condenser 38 and the outlet of the refrigerant circuit 9 for the cooling storage facility during the cooling operation and the heating operation. The flow direction of the refrigerant flowing through the receiver tank 36 is the same. As a result, the pressure loss of the refrigerant flowing in the refrigerant circuit 9 for the cooling storage facility is reduced compared to the case where the refrigerant flows in the condenser 38 and the receiver tank 36 are opposite between the cooling operation and the heating operation. It becomes possible to prevent or suppress, and efficient operation becomes possible. In particular, since the flow path is switched by the two four-way valves 39, 41, the configuration of the refrigerant circuit 9 for the cooling storage facility can be simplified.
[0071]
(4) Optimal operation pattern 3: Control when almost no heat radiation is required in the cascade heat exchanger of the cooling device during heating operation of the air conditioner (FIG. 3)
Here, during the heating operation of the air conditioner 6 as described above, if the indoor (in-store) air load is further reduced and the heating capacity becomes excessive, the outdoor unit controller 26 determines the compressor 13B based on the indoor temperature information. The operating frequency is lowered and the heating capacity is lowered. On the other hand, even if such control is performed and an excessive amount of heat is released in the condenser 38 as described above, the heat radiation in the cascade heat exchanger 21 of the refrigerant circuit 9 for the cooling storage facility of the cooling device 8 is reduced. In a situation that is hardly required, the heating capacity of the air conditioner 6 becomes excessive with the circuit of FIG.
[0072]
In such a case, the refrigerator controller 32 switches the four-way valves 39 and 41 from the state shown in FIGS. That is, in this case, the refrigerator controller 32 switches the four-way valve 39 so that the one inlet communicates with one outlet and the other inlet communicates with the other outlet. The one-way inlet of the four-way valve 41 is switched to one outlet and the other inlet is switched to communicate with the other outlet.
[0073]
As a result, the high-temperature and high-pressure refrigerant discharged from the compressor 37 passes through the condenser 38 and dissipates heat in the same manner as in FIG. 1, and then flows into the cascade heat exchanger 21, so that the air-conditioning refrigerant circuit 7 can be avoided from being overheated in the cascade heat exchanger 21.
[0074]
In the embodiment, the present invention has been described with a refrigeration system that cools indoor air-conditioning and cooling storage equipment in a convenience store. However, the present invention is not limited thereto, and the present invention is also effective when only cooling storage equipment is cooled. . Further, in the embodiment, the capacity control of the compressor is realized by the control of the operation frequency by the inverter. In the embodiments, the expansion valve is an electric expansion valve. However, the present invention is not limited to this, and a gas pressure, a water pressure, or the like may be used as long as the valve opening can be adjusted by a controller.
[0075]
【The invention's effect】
As described above in detail, according to the present invention, in a refrigeration system including a refrigerant circuit including a compressor capable of capacity control, a condenser, an expansion valve capable of adjusting a valve opening degree, and an evaporator, A control device for controlling the compressor and the expansion valve, the control device adjusts the valve opening of the expansion valve so that the degree of superheat of the refrigerant in the evaporator is constant, and based on the low-pressure side pressure of the refrigerant circuit, Decreasing the capacity of the compressor at a predetermined set value, and based on the valve opening of the expansion valve, In the direction that the valve opening is expanded Since the set value is changed, for example, a process in which the low pressure side pressure of the refrigerant circuit is lowered by increasing the set value so that the valve opening degree of the expansion valve is almost fully opened as in claim 2. It is possible to reduce the compressor capacity at an early stage and to control the expansion valve in the opening direction.
[0076]
As a result, the disadvantage that the low-pressure side pressure of the refrigerant circuit decreases on average can be solved, and the COP of the compressor can be improved to improve the operating efficiency of the refrigeration system.
[0077]
According to the invention of claim 3, in addition to the above, when there are a plurality of evaporators and corresponding expansion valves, the control device selects an expansion valve having the largest valve opening and based on the valve opening. Since the set value is changed, the cooling capacity of the plurality of evaporators that require the most cooling can be secured. Also, When a specific expansion valve is selected more than other expansion valves, a record for notifying the user of the expansion valve and / or the corresponding evaporator is written in the memory. Since it did in this way, it can contribute to the improvement of a thing with a bad cooling state.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a system configuration including a refrigerant circuit of a refrigeration system according to an embodiment to which the present invention is applied (during cooling operation of an air conditioner).
FIG. 2 is a diagram illustrating a heating operation of an air conditioner of a refrigeration system according to an embodiment to which the present invention is applied.
FIG. 3 is a diagram illustrating an operation in the case where almost no heat radiation is required in the cascade heat exchanger of the cooling device during the heating operation of the air conditioner of the refrigeration system of the embodiment to which the present invention is applied.
[Explanation of symbols]
1 Refrigeration system
3 Refrigerated cases
4 Freezing cases
6 Air conditioner
7 Air conditioning refrigerant circuit
8 Cooling device
9 Refrigerant circuit for cooling storage equipment
13A, 13B, 37, 54 Compressor
14 Four-way valve
16 Heat source side heat exchanger
21 Cascade heat exchanger
28 Use side heat exchanger
32 Refrigerator controller
38 Condenser
39, 41 Four-way valve (channel control means)
43 Refrigerator evaporator
44, 51 Expansion valve
49 Refrigerating evaporator
50 Refrigerated case controller

Claims (3)

容量制御可能な圧縮機と、凝縮器と、弁開度を調整可能な膨張弁と、蒸発器とを備えて冷媒回路が構成された冷凍システムにおいて、
前記圧縮機と膨張弁を制御する制御装置を備え、
該制御装置は、前記蒸発器における冷媒の過熱度が一定となるよう前記膨張弁の弁開度を調整すると共に、前記冷媒回路の低圧側圧力に基づき、所定の設定値にて前記圧縮機の容量を低下させ、且つ、前記膨張弁の弁開度に基づき、当該弁開度が拡張される方向に前記設定値を変更することを特徴とする冷凍システム。
In a refrigeration system in which a refrigerant circuit is configured by including a capacity-controllable compressor, a condenser, an expansion valve capable of adjusting a valve opening degree, and an evaporator,
A control device for controlling the compressor and the expansion valve;
The control device adjusts the valve opening degree of the expansion valve so that the degree of superheat of the refrigerant in the evaporator becomes constant, and controls the compressor at a predetermined set value based on the low-pressure side pressure of the refrigerant circuit. A refrigeration system that reduces capacity and changes the set value in a direction in which the valve opening is expanded based on the valve opening of the expansion valve .
前記制御装置は、前記膨張弁の弁開度が全開に近くなるように前記設定値を上昇させることを特徴とする請求項1の冷凍システム。  The said control apparatus raises the said setting value so that the valve opening degree of the said expansion valve may become close to full open, The refrigeration system of Claim 1 characterized by the above-mentioned. 前記蒸発器及びそれに対応する前記膨張弁が複数存在する場合に、前記制御装置は、最も弁開度が大きい前記膨張弁を選択して当該弁開度に基づき前記設定値を変更すると共に、特定の膨張弁が他の膨張弁よりも多く選択されている場合、当該膨張弁及び/又はそれに対応する蒸発器を使用者に告知するための記録をメモリに書き込んで残すことを特徴とする請求項1又は請求項2の冷凍システム。When there are a plurality of the evaporators and the corresponding expansion valves, the control device selects the expansion valve having the largest valve opening, changes the set value based on the valve opening, and specifies If more expansion valves are selected than other expansion valves, a record for notifying the user of the expansion valves and / or the corresponding evaporators is written to the memory and left. The refrigeration system according to claim 1 or 2.
JP2003159499A 2003-06-04 2003-06-04 Refrigeration system Expired - Lifetime JP4108003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159499A JP4108003B2 (en) 2003-06-04 2003-06-04 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159499A JP4108003B2 (en) 2003-06-04 2003-06-04 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2004361000A JP2004361000A (en) 2004-12-24
JP4108003B2 true JP4108003B2 (en) 2008-06-25

Family

ID=34052542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159499A Expired - Lifetime JP4108003B2 (en) 2003-06-04 2003-06-04 Refrigeration system

Country Status (1)

Country Link
JP (1) JP4108003B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369589A (en) * 1989-08-04 1991-03-25 Hikari Gijutsu Kenkyu Kaihatsu Kk Method for growing crystal of semiconductor
JP5053527B2 (en) * 2005-07-29 2012-10-17 サンデン株式会社 Showcase cooling system
KR100927072B1 (en) 2009-01-29 2009-11-13 정석권 The superheat and capacity control device of variable speed refrigeration system
JP6184158B2 (en) * 2013-04-25 2017-08-23 三菱電機株式会社 Refrigeration air conditioner

Also Published As

Publication number Publication date
JP2004361000A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
EP1103770A1 (en) Refrigerating device
JP4624223B2 (en) Refrigeration system
JP2004170001A (en) Refrigerating system
JP4123257B2 (en) Refrigeration equipment
JP2007100987A (en) Refrigerating system
JP5033337B2 (en) Refrigeration system and control method thereof
JP4614642B2 (en) Refrigeration system
JP4108003B2 (en) Refrigeration system
JP2005241195A (en) Air conditioning refrigerator
JP4104519B2 (en) Refrigeration system
JP4169638B2 (en) Refrigeration system
JP4660334B2 (en) Refrigeration system
JP2002174465A (en) Refrigerating apparatus
JP2007085720A (en) Refrigeration system
JP4618313B2 (en) Refrigeration equipment
JP2004271123A (en) Temperature control device for heat exchanger
JP2002277098A (en) Refrigerator
JP2005049064A (en) Air-conditioning refrigeration unit
JP4169667B2 (en) Refrigeration system
JP3858918B2 (en) Refrigeration equipment
JP2004361001A (en) Refrigerating system
JP4073375B2 (en) Refrigeration system and control method of refrigeration system
JP4488767B2 (en) Air-conditioning refrigeration equipment
KR20110074069A (en) Refrigerant system
JP2005106365A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4108003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

EXPY Cancellation because of completion of term